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Abstract

The modelling of interconnection networks by graphs motivated the study of several
extremal problems that involve well known parameters of a graph (degree, diameter, girth
and order) and ask for the optimal value of one of them while holding the other two fixed.
Here we focus in bipartite Moore graphs, that is, bipartite graphs attaining the optimum
order, fixed either the degree/diameter or degree/girth. The fact that there are very few
bipartite Moore graphs suggests the relaxation of some of the constraints implied by the
bipartite Moore bound. First we deal with local bipartite Moore graphs. We find in some
cases those local bipartite Moore graphs with local girths as close as possible to the local
girths given by a bipartite Moore graph. Second, we construct a family of (q+2)-bipartite
graphs of order 2(q2 + q+ 5) and diameter 3, for q a power of prime. These graphs attain
the record value for q = 9 and improve the values for q = 11 and q = 13.

Keywords: Bipartite Moore bound, Bipartite graph, girth, local girth.

1 Introduction

The degree/diameter problem for graphs consists in finding the largest order of a graph with
prescribed degree and diameter (for a survey of it see [9]). Here we focus on the class of
bipartite graphs. In this context, given the values of maximum degree ∆ and diameter d of a
bipartite graph, there is a natural upper bound for its number of vertices n,

n ≤M b
∆,d =





2
(∆− 1)d − 1

∆− 2
if ∆ > 2,

2d if ∆ = 2.
(1)

where M b
∆,d is known as the bipartite Moore bound . It is well known that biparite Moore

graphs only exists for a few combinations of the parameters ∆ and d, namely, ∆ = 1 and
d = 1 (Complete graph of two vertices), ∆ = 2 and d ≥ 1 (Cycle graphs), d = 2 and ∆ ≥ 3
(Complete bipartite graphs). For d = 3, 4, 6 bipartite Moore graphs have been constructed
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only when ∆− 1 is a prime power (see [9]).

The fact that there are very few Moore graphs suggested the study of graphs ‘close’ to
the Moore ones. This ‘closeness’ has been usually measured as the difference between the
(unattainable) Moore bound and the order of the considered graphs. In this sense, the exis-
tence and construction of graphs with small ‘defect’ δ (order n = M(∆, d)− δ) has deserved
much attention in the literature (also see [9] and [11] for complete surveys of the problem).

Besides, the degree/girth problem (also known as the cage problem) consists in finding the
smallest order of a graph with prescribed degree and girth (for a survey of it see [5]). In this
context, given the values of the maximum degree ∆ > 2 and the girth g of a bipartite graph
(notice that g must be even) there is a natural lower bound for its number of vertices n,

n ≥M b
∆,g = 2

(
1 + (∆− 1) + (∆− 1)2 + · · ·+ (∆− 1)

g−2
2
)

= 2
(∆− 1)g/2 − 1

∆− 2
(2)

graphs attaining such a bound are again biparite Moore graphs and hence both problems
collide in their corresponding extremal value (g = 2d). Both bounds (1) and (2) can easily
calculated just by counting the number of vertices at every distance from any edge uv in a
bipartite Moore tree (see Figure 1) where the depth of the tree is d (and therefore the graph
must have girth g = 2d) and where every vertex has degree ∆ (except those vertices at depth
d, that is, terminal vertices of the tree).

Also the existence of graphs with small ‘excess’ ε (order n = M b
∆,g + ε) has been stud-

ied deeply and those graphs with prescribed degree/girth and minimum order are known as
(∆, g)-cages.

Another kind of approach considers relaxing some of the constraints implied by the
Moore bound. For instance, this approach has been considered yet in the context of the
degree/diameter problem, where Tang, Miller and Lin [10] relax the condition of the degree
and admit few vertices with degree ∆ + ε. Alternatively, Capdevila et al. [2] allow the exis-
tence of vertices with eccentricity d+ 1. In this context, regular graphs of degree d, radius d,
diameter d+ 1 and order equal to the Moore bound are known as radial Moore graphs.

Contributions in this paper

We study two problems related with the ‘relaxation’ of bipartite Moore graphs. In section
2, inspired in the idea given by Capdevila et al [2] about radial Moore graphs (relaxing the
diameter of the graph), we define the local bipartite Moore graphs as graphs preserving one
structural property that every bipartite Moore graph has (in this case we relax the girth).
We enumerate these extremal graphs in a special case and we rank them according to their
proximity to a bipartite Moore graph.

We attend a problem related with the classical relaxation of ‘closeness’ in section 3, con-
structing bipartite graphs with small defect. In particular, we construct a (q + 2)-regular
bipartite graph of diameter 3 and girth 4 adding 8 vertices to the incidence graph of the
projective plane of order q. This result presents new record graphs in the context of the
degree/diameter problem, to consult the record regular bipartite graphs known until this mo-
ment see [12]. Moreover, the graphs attained and improved with our construction are given
in ([1, 3, 6]).
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Finally, in section 4, we present several questions and open problems related to this work.

Terminology and notation

Let G = (V,E) be a connected graph. Given two vertices u and v of G, the distance between
u and v, distG(u, v), is the length of a shortest path joining them. The girth of a graph G is
the length of its shortest cycle. If we restrict our attention to the cycles through a given vertex
v, we can define the local girth of vertex v, g(v), as the smallest length of such ‘rooted’ cycles.
The vector g(G) constituted by the girths of all its vertices will be referred to as the girth
vector of G. Usually, when the vector is long enough, we denote it with a short description
using superscripts, that is, g(G) : gn1

1 , gn2
2 , . . . , gnk

k , where g1 > g2 > · · · > gk, and ni denotes
the number of vertices having gi as its local girth, for all 1 ≤ i ≤ k.

2 Local bipartite Moore graphs

Radial Moore graphs (see [2, 4, 7]) are defined as regular graphs of degree ∆, order M b
∆,d,

radius d and diameter d + 1. In other words, radial Moore graphs have the same distance-
preserving spanning tree than a Moore graph has for any vertex, but only for some of their
vertices (those vertices with eccentricity d). In a radial Moore graph it is allowed the existence
of other spanning trees of depth at most d+ 1. Here we do something similar with bipartite
Moore graphs: if we hang a bipartite Moore graph from any of its edges uv we observe the
‘same’ distance-preserving spanning tree (see figure 1). Thus we could relax this property
in the set of regular bipartite graphs by forcing the existence of this Moore tree for at least
one edge, but allowing others distance-preserving spanning trees in the graph for other edges.
This is how we define a local bipartite Moore graph.

Definition 1. Given two positive integers ∆ ≥ 2 and g ≥ 4, a connected regular bipartite
graph of degree ∆ and order M b

∆,g is said to be a local bipartite Moore graph if it contains
at least one edge such that its corresponding distance-preserving spanning tree is a bipartite
Moore tree (see figure 1).

From this point of view, bipartite Moore graphs are a particular case of local bipartite
Moore graphs having the same distance-preserving spanning tree for any of its edges. There
are at least two vertices with local girth g in a local bipartite Moore graph (the end vertices
of the edge uv in figure 1), meanwhile for a Moore graph all vertices have local girth g (and
hence the whole graph has girth g).

Let us denote by RB(∆, g) the set of all nonisomorphic regular bipartite graphs of degree
d and order M b

∆,g. The set of local bipartite Moore graph of degree ∆ and girth g will be
denoted as LBM(∆, g). Of course LBM(∆, g) ⊆ RB(∆, g) and our purpose is give some
extra information about this set.

Let us start with the case g = 4 and any ∆ ≥ 2. Let G ∈ LBM(∆, 4), then, according to
Eq. (2), G has orderM b

∆,4 = 2∆ and G contains the Moore tree depicted in Fig. 2. Due to the
regularity of G, every vertex of the set {u2, . . . , u∆} is adjacent to each vertex of {v2, . . . , v∆}
and viceversa. Hence local bipartite Moore graphs for g = 4 are complete bipartite graphs
K∆,∆ and they are indeed Moore graphs (both for girth g = 4 or diameter d = 2).
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The case g = 6 requires a deeper analysis. Next proposition gives a complete enumeration
of these graphs for the cubic case ∆ = 3.

Proposition 1. There are 5 graphs in the set LBM(3, 6), namely H,G1, G2, G3 and G4

depicted in figures 5 and 6, where H is the unique bipartite Moore graph for these parameters
(also known as the Heawood graph).

Proof. Let G be a graph G ∈ LBM(3, 6). By definition, G contains the distance-preserving
spanning tree depicted in Figure 5 and we label the vertices as they are depicted in this figure
(B for ‘black’ vertices and W for ‘white’ vertices). Notice that the edges of G that do not
appear in this Moore tree must join vertices in the set S = {B1, B2, B

′
1, B

′
2,W1,W2,W

′
1,W

′
2},

that is, those vertices at maximum distance from the ‘root’ edge (Wr, Br). Moreover, the
subgraph GS of G induced by the set of vertices S must be 2-regular, and since it is bipartite,
then GS is either a cycle graph of length 8 or the union of two cycle graphs of order 4. Hence,
in order to complete graph G, we have to analyze several cases:

(a) GS = C8: We divide this case according to the distance between vertices inside the
cycle:

(a1) If distGS
(B1, B2) = 4 and distGS

(W1,W2) = 2.
Then, distGS

(B′1, B
′
2) = 4 and distGS

(W ′1,W
′
2) = 2. There are several labelings of C8

with these conditions, one of them is depicted in Fig. 3. Nevertheless, all of them are
equivalent performing a convinient relabeling of vertices in G. However, the local girth
for all v ∈ {W1,W2,W

′
1,W

′
2, B,B

′} is g(v) = 4, since they belong to a cycle of length 4
in G. Moreover, since distGS

(W1,W2) = 2 then W1 and W2 must be adjacent both to
just one black vertex in GS (vertex B1 in Fig. 3). Hence this black vertex has also local
girth 4. Another one black vertex has also local girth 4 because distGS

(W ′1,W
′
2) = 2. It

is easy to see that the remaining vertices have maximum local girth. Hence g(G) : 66, 48.
A complete representation of graph G is given in Fig. 4, where subgraph GS is depicted
in red color.

(a2) If distGS
(B1, B2) = 2 and distGS

(W1,W2) = 4. This case is equivalent to the previous
one replacing black vertices Bi and B′i by white ones Wi and W ′i , respectively.

(a3) If distGS
(B1, B2) = 4 and distGS

(W1,W2) = 4.
Then, distGS

(B′1, B
′
2) = 4 and distGS

(W ′1,W
′
2) = 4. Following the ideas given above,

it is easy to see that every vertex in G has maximum local girth, that is, g(G) : 614.
Therefore G is a Moore graph. This graph is precisely the Heawood graph, denoted by
H in figure 5.

(a4) If distGS
(B1, B2) = 2 and distGS

(W1,W2) = 2.
Then, distGS

(B′1, B
′
2) = 2 and distGS

(W ′1,W
′
2) = 2. Notice that the sequence of vertices

(W,W1, v,W2), where v is one of the black vertices v ∈ {B1, B2, B
′
1, B

′
2}, is a cycle of

length 4. In fact, every vertex of S, together with vertices {W,W ′, B,B′} have local
girth 4. Then g(G) : 62, 412 and G is isomorphic to graph G3 depicted in figure 6.

(b) GS = C4 ∪ C4. In this case every vertex of S has local girth 4. The local girth of the
vertices in the set {W,W ′, B,B′} depends on the configuration of these cycles of length
four. Although there are serveral cases to take into account, all of them fall into one of
these three cases, after a vertex relabeling.
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(b1) distGS
(B1, B

′
1) = 2 and distGS

(W1,W
′
1) = 2.

Then distGS
(B2, B

′
2) = 2 and distGS

(W2,W
′
2) = 2 and there are two possibilities for

GS : Either GS is the union of the cycles (B1,W1, B
′
1,W1) and (C4 : B2,W2, B

′
2,W

′
2)

or the union of the cycles (B1,W2, B
′
1,W

′
2) and (B2,W1, B

′
2,W

′
1). Both are equivalent

with a properly relabeling. However, each vertex of {W,W ′, B,B′} has local girth 6 in
this situation. Then g(G) : 66, 48 and G is again the graph G1 depicted in figure 4,
where each C4 has been depicted in different color.

(b2) If distGS
(B1, B2) = 2 and distGS

(W1,W2) = 2. Then, W (resp. B) has local girth 4
since it is adjacent both to B1 and B2 (resp. W1 and W2). The same reasoning applies
to W ′ and B′ since distGS

(B′1, B
′
2) = 2 and distGS

(W ′1,W
′
2) = 2. As a consequence

g(G) : 62, 412 and G is isomporphic to G4 (See figure 6).

(b3) distGS
(B1, B2) = 2 and distGS

(W1,W
′
1) = 2. ThenW andW ′ has local girth 4. Besides

B and B′ has maximum local girth. Hence g(G) : 64, 410 and G is isomorphic to G2

depicted in figure 6.

Now we would like to rank each local bipartite Moore graph according to their closeness
to the Moore graph. Two ranking measures are introduced in [2] in the context of radial
Moore graphs. Here we describe the one involving local girths: Let us consider the set of
graphs LBM(∆, g) and let g∆,g be the vector of length M b

∆,g with all components equal to
g, where M b

∆,g is the bipartite Moore bound (2). Notice that g∆,g represent the girth vector
of a bipartite Moore graph of degree ∆ and girth g. For every positive integer p,

Ñp(G) = ‖g(G)− g∆,g‖p.

In particular,
Ñ1(G) =

∑

v∈V
(g − g(v))

is the girth norm of G. Given two graphs G1, G2 ∈ LBM(∆, g) we define G1 and G2 to
be girth-equivalent , G1 ≈ G2, if they have the same girth vector. In the quotient set of
LBM(∆, g) by ≈, LBM(∆, g)/ ≈, we will say that G1 is closer than G2 to be a Moore graph
if there exists a positive integer l such that

Ñp(G1) = Ñp(G2), p = 1, . . . , l − 1 and Ñl(G1) < Ñl(G2),

in which case we will denote G1 ≺ G2.

In the particular case ∆ = 3 and g = 6 it is suffice to compute the girth norm Ñ1(G) of
the five graphs to rank them. The girth norm for each one of these five graphs is calculated
in proposition 1 and it is resumed in figures 5 and 6. Taking into account that G3 and G4

share the same vector of local girths, we have that:

Corollary 1. Let H,G1, G2, G3 and G4 be the five graphs in LBM(3, 6). Then,

H ≺ G1 ≺ G2 ≺ G3 ≈ G4.
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3 New record graphs in the context of the degree/diameter
problem for bipartite graphs

In this section we construct new record bipartite graphs with small defect that attend the
Moore problem in the context of the degree/diameter problem. To consult more about this
topic see [12]. In particular, we construct a (q + 2)-regular bipartite graph of diameter 3 and
girth 4 adding 8 vertices to the incidence graph of the projective plane of order q. See ([1, 3, 6])
to consult the graphs given in [12] which are attained and improved by our construction.

Description of the incidence graph of the projective plane or order q

Firstly, we introduce the algebraic projective plane of order q and their incidence graph Gq.

Let q be a prime power and denote by GF (q) the Galois Field of order q. The following
is a useful description of the projective plane over GF (q): Let P and L two incident point
and line that we will call the infinity point and line respectively, and let {P0, P1, . . . , Pq−1}
the set of points, different of P , incident with L and analogously {L0, L1, . . . , Lq−1} the set
of lines, different of L, incident with P .

Moreover, let {(i, 0), (i, 1), . . . , (i, q − 1)} the set of points, different to P , incident in Li;
and, let {[i, 0], [i, 1], . . . , [i, q − 1]} the set of lines, different to L, incident with Pi. With the
previous information, we construct the bipartite Moore tree of depth 3, depicted on figure 1,
that is the spanning tree of Gq, the incidence graph of the projective plane of order q.

The rest of the incidences are given by the cordinatization, here the line [m, b] is adjacent
in the graph with all the points (x, y) that satisfy that y = mx + b using the arithmetic of
GF (q). As we known, Gq is a (q + 1, 6)-Moore Cage with diameter 3 and girth 6.

Figure 7 depicts G3, the incidence graph of the projective plane of order 3.
In the sequel we construct, using Gq, another bipartite (q + 1)-regular graph, called Hq,

it has also diameter 3, but the girth is equal to 4.
The next simple observation on Gq is very useful for the construction of Hq:

Observation 1. (1) The set of points incident with the line [0, i], different of L0, are:
{(0, i), (1, i), . . . , (q − 1, i)}.

(2) The set of lines incident with the point (0, i), different of P0, are:
{[0, i], [1, i], . . . , [q − 1, i]}.

General construction for bipartite graphs of diameter 3

In this section we construct Hq that is (q + 2)-regular bipartite Moore graph of diameter 3
and girth 4 adding 8 vertices to Gq.

Let:
V (Hq) = V (Gq) ∪ {Q0,M0, (̂0, 0), (̂0, 1), (̂0, a), [̂0, 0], [̂0, 1], [̂0, a]},

be the set of vertices of Hq, where a is any element of GF (q) different of 0 and 1 and let:

E(Hq) = E(Hq)− {((0, a), [0, a])} ∪ {(P,M0), (L,Q0), (Q0, ̂[0, j]), (M0, (̂0, j)), (Q0, [0, i]),
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(M0, (0, i)), (P0, [̂0, a]), (L0, (̂0, a)), ((̂0, 0), [̂0, 1]), ((̂0, 1), [̂0, 0]), ((̂0, j), [t, j]), (̂[0, j], (t, j))}
be the set of edges of Hq, such that j ∈ {0, 1, a}, i ∈ GF (q)− {0, 1} and t ∈ GF (q).

In the sequel we prove that Hq is a bipartite graph with degree sequence {q, q + 1}, girth
4 and diameter 3:

To prove that Hq is bipartite we only have to note that Q0, and the new vertices denoted
with parenthesis are in the partite set of the points whereas M0 and the new vertices denoted
with brackets are in the partite set of the lines in the incidence graph of the projective plane
of order q. To show that it has the degree sequence given, notice that the new vertices, P , L,
P0, L0, {(t, j), [t, j]} for j ∈ {0, 1, a} and t ∈ GF (q) have degree q+1, and the rest has degree
q. It is important to notice that adding the edges (Q0, [0, a]) and ((̂0, a), [0, a]) the degree of
[0, a] is equal to q+2, but, to construct Hq, we delete the edge α = ((0, a), [0, a]) and with this
we garantice that degHq

([0, a]) = q+1. A similar analysis garantice that degHq
((0, a)) = q+1.

Clearly, the girth of Hq is four because it is an incidence graph, it is bipartite, and it is
plenty of 4-cycles; for instance (M0, (0, a), L0, (̂0, a)) is a C4.

Related with observation 1, we have this new observation:

Observation 2. For Hq we have that

(1) For i ∈ {0, 1}:

N([0, i]) ∪N([̂0, i]) = {(0, i), (1, i), . . . , (q − 1, i)},

N((0, i)) ∪N((̂0, j)) = {[0, i], [1, i], . . . , [q − 1, i]}.

(2) N([0, a]) ∪N([̂0, a]) = {(1, a), . . . , (q − 1, a)},

N((0, a)) ∪N((̂0, a)) = {[1, a], . . . , [q − 1, a]}.

We are ready to prove that the diameter of Hq is 3:
Notice that the distance between two vertices on Gq is preserving in Hq, except the

distances that involve the deleted edge α = ((0, a), [0, a]). In fact, in Hq, d((0, a), [0, a]) = 3

because there exists a 3-path ((0, a), [̂0, a], L0, [0, a]).
Moreover, as α∗ = ((0, a), [̂0, a]) and α∗∗ = ([0, a], (̂0, a)) are edges of Hq, by observation

2, the paths that use to used in Gq the deleted edge α use in Hq the edges α∗ and α∗∗, with
this the vertices (0, a) and [0, a] preserve their distances with all the vertices of Gq.

Now, we will prove that the new vertices have eccentricity at most three.

• By observation 2, we have that (̂0, s) have the same distance to all the vertices of Gq than
the vertex (0, s), for s ∈ {0, 1, a}, except with the vertices {(0, t), L0, P} for t ∈ GF (q).

– The d((̂0, s), (0, t)) = 2 for s ∈ {0, 1}, and t ∈ GF (q)− {0, 1}, because there exists
the path {(̂0, s),M0, (0, t)}.

– For s = 0 and t ∈ {0, 1}; d((̂0, 0), (0, 0)) = 2 by the path {(̂0, 0), [0, 0], (0, 0)};
d((̂0, 0), (0, 1)) = 2 by the path {(̂0, 0), [̂0, 1], (0, 1)}. The d((̂0, 0), L0) = 3 by the
path ((̂0, 0),M0, (̂0, a), L0). An analogous analysis can be doing for s = 1.
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– For s = a, L0 is adjacent with (̂0, a) and d((̂0, a), (0, s)) = 2 for s ∈ {0, 1, a}
because ((̂0, a), L0, (0, s)) is a path of length 2.

Notice that, by construction, the distance of (̂0, s) to P is equal to three.

• A similar analysis should be for ̂[0, s] for s ∈ {0, 1, a} to all the vertices of Gq and for
the vertices {[0, t], P0, L} for t ∈ GF (q).

• To finish we will prove that the distance of M0 to the vertices of Gq is at most three,
notice that their first neighborhood coincides with the first neighborhood of L0 (except
with (0, s) for s ∈ {0, 1}). Notice that as (̂0, s) ∈ N(M0) for s ∈ {0, 1}, using the
observation 2, we can conclude that the second neighborhoods of M0 and L0 coincide
in all. Then we only have to check the distance to (0, s) for s ∈ {0, 1} and the distance
to [̂0, t] for t ∈ {0, 1, a} and Q0.

– The d(M0, (0, s)) = 3 for s ∈ {0, 1} by the path (M0, (0, a), L0, (0, s)).

– The d(M0, [̂0, 0]) = d(M0, [̂0, 1]) = d(M0, [̂0, a]) by the paths (M0, (̂0, 1), [̂0, 0]),
(M0, (̂0, 0), [̂0, 1]), and (M0, (0, a), [̂0, a]) respectively.

– The d(M0, Q0) = 3 by the path (M0, P, L,Q0).

• An analogously analysis could be for Q0.

Finally, to obtain a (q + 2)-regular graph, called Rq, we add to Hq a matching:
{(Pi, Li), ((x, y), [x, y])} for i ∈ GF (q)−{0, 1, a} and {x, y} ∈ GF (q) with degHq

{Pi, (x, y)} =
q+1. This matching is well defined because, by construction if degHq

{Pi, (x, y)} = q+1. then
also degHq

{Li, [x, y]} = q + 1.

With the previous construction we have the following theorem:

Theorem 1. Let q be a power of prime, then there exists a (q+2)-bipartite graph of diameter
3 and order 2(q2 + q + 5).

The right side of figure 7 depicts R3, the (5, 3)-biregular bipartite graph constructed before
and given in theorem 1.

4 Questions and open problems

We give a complete enumeration of LBM(3, 6) in section 2. It would be nice to have this
enumeration also for other values of ∆ and/or g. Nevertheless, it seems that the number of
graphs in LBM(∆, g) increases very quickly with ∆ and/or g, since the order of the graphs
(Moore bound) follows an exponential law.

Problem 1. Give a complete enumeration of LBM(∆, g) for any ∆ ≥ 3 and/or g ≥ 6, other
than (∆, g) = (3, 6).

There are 13 graphs in RB(3, 6) (they can be counted using an appropiatte software, like
Nauty [8]) but just 5 of them belong to LBM(3, 6). There are 23466857 graphs in RB(3, 8)
(again one can use Nauty), but we do not know how many of them are local bipartite Moore
graphs.
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Question 1. Can we say something about the ratio
|LBM(∆, g)|
|RB(∆, g)|

?

Local bipartite Moore graphs include Moore graphs, but Moore graphs do not exist for
infinitely many values of ∆ and g. For any of these combinations of ∆ and g it would be nice
to have the closest graph to the ‘theoretical’ Moore graph in terms of the girth norm. For
∆ = 3 and g = 6 we have seen that G1 is the closest graph to the Moore graph. Even for
these cases when Moore graph exist, which is the ‘closest’ graph to the Moore one?

Problem 2. Find the closest graph (in terms of local girths) to the Moore graph for other
values of ∆ and/or g.

In the context of degree-diameter problem of bipartite Moore graphs the principal open
problems are construct graphs that improve the graphs given in [12]. In particular we include
two particular problems related with our results:

Problem 3. Find smaller bipartite regular graphs with the same parameters that we give in
this paper. In other words "improve" our construction.

Problem 4. Generalize our construction to construct bipartite regular graphs of diameters 4
and 6.
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u v
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Figure 1: Bipartite Moore tree, that is, a distance-preserving spanning tree of a bipartite
Moore graph depicted ‘hanging’ from any of its edges uv.
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Figure 2: Spanning tree of a bipartite Moore graph for g = 4.

12



Br

W

B1 B2

W ′

B′
1 B′

2

Wr

B

W1 W2

B′

W ′
1 W ′

2

W2

B1

W1

B′
1

W ′
1

B2

W ′
2

B′
2

(a) (b)

Figure 3: (a) Spanning tree of a cubic bipartite Moore graph for g = 6 where vertices are
labelled as in Proposition 1. (b) The subgraph GS induced by the vertices at maximum
distance from the edge root (Br,Wr) for the case (a1) in Proposition 1.
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Figure 4: (a) The graphs obtained in cases (a1) and (b1) of Proposition 1. They are isomorphic
to the graph G1 depicted in figure 5

.

Heawood Graph H G1

g(H) : 614; Ñ1(H) = 0. g(G1) : 66, 48; Ñ1(G1) = 16.

Figure 5: The Moore graph for d = 3 and g = 6 (Heawood graph) and its closest graph G1 in
terms of local girths.
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G2 G3 G4

g(G2) : 64, 410 g(G3) : 62, 412 g(G4) : 62, 412

Ñ1(G2) = 20 Ñ1(G3) = 24 Ñ1(G4) = 24

Figure 6: The remaining graphs in LBM(3, 6) and their corresponding girth vector g(G) and
girth norm Ñ1(G). Notice that G3 and G4 have the same girth vector and hence both are
girth-equivalent.
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Figure 7: On the left G3, the incidence graph of the projective plane of order q = 3, and on
the right the new graph R3.
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