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Abstract

Let An = (a1, a2, . . . , an) and Bn = (b1, b2, . . . , bn) be nonnegative integer sequences

with An ≤ Bn. The purpose of this note is to give a good characterization such that every

integer sequence π = (d1, d2, . . . dn) with even sum and An ≤ π ≤ Bn is graphic. This solves

a forcible version of problem posed by Niessen and generalizes the Erdős–Gallai theorem.

Key words: graph, degree sequence, Niessen’s problem, forcible version.

MSC 2000 Subject Classification: 05C07.

First let us introduce some terminology and notations.

Let An = (a1, a2, . . . , an) and Bn = (b1, b2, . . . , bn) be nonnegative integer sequences with

ai ≤ bi, 1 ≤ i ≤ n, written as An ≤ Bn. A nonnegative integer sequence π = (d1, d2, . . . , dn) is

called graphic if there is some simple graph having degree sequence π.

For simplicity, let S[An, Bn] denote the set of integer sequences π = (d1, d2, . . . , dn) with even

sum and An ≤ π ≤ Bn.

The following Erdős–Gallai theorem gave a good characterization for a nonnegative integer

sequence to be graphic.

∗Supported in part by the National Natural Science Foundation of China (No. 11871329)
†Corresponding authors. Email address: lykang@shu.edu.cn (L. Kang)

http://arxiv.org/abs/2110.04818v1


Theorem 1 (Erdős–Gallai [3]). Let π = (d1, d2, · · · , dn) be a nonnegative integer sequence in

non-increasing order. Then π is graphic if and only if the sum of π is even and

t
∑

i=1

di ≤ t(t− 1) +

n
∑

i=t+1

min{t, di} for every t, 1 ≤ t ≤ n. (1)

Motivated by this theorem, Niessen posed the following

Problem 1. ([5]) Let An and Bn be integer sequences with 0 ≤ An ≤ Bn. Give a simple charac-

terization (like the above theorem) for the existence of a graphic sequence π = (d1, d2, . . . , dn) ∈

S[An, Bn].

The problem is regarded as the potential version. A forcible version of the problem is the

following

Problem 2. ([4]) Let An and Bn be integer sequences with 0 ≤ An ≤ Bn. Give a simple char-

acterization (like the above theorem) such that every sequence π = (d1, d2, . . . , dn) ∈ S[An, Bn]

is graphic.

For convenience, we say that An and Bn are in good order A (respectively, B) if ai > ai+1 or

ai = ai+1 and bi ≥ bi+1 (respectively, ai ≥ ai+1 and ai+ bi ≥ ai+1+ bi+1) for i = 1, 2, . . . , n− 1.

Given An and Bn in good order A, define for t = 0, 1, . . . , n

J(t) = {i | i ≥ t+ 1 , bi ≥ t+ 1},

α(t) =











1 if ai = bi ∀ i ∈ J(t) and
∑

i∈J(t)

bi + t|J(t)| ≡ 1 (mod 2),

0 otherwise.

Cai et al. [2] gave a solution to Problem 1, very similar in form to Theorem 1.

Theorem 2. ([2]) Let An and Bn be in good order A. Then there exists a graphic sequence

π ∈ S[An, Bn] if and only if

t
∑

i=1

ai ≤ t(t− 1) +
n
∑

i=t+1

min{t, bi} − α(t) for every t, 0 ≤ t ≤ n. (2)

Possibly inspired by a result of Niessen [6] , Guo and Yin [4] posed and studied Problem 2,

obtained imperfect results for the case An and Bn in good order B.

2



Given An and Bn in good order B, define for t = 0, 1, . . . , n

J(t) = {i | i ≥ t+ 1 , bi ≥ t+ 1},

ξ(t) =











1 if ai < bi for some i ∈ J(t) or
∑

i∈J(t)

bi + t|J(t)| ≡ 1 (mod 2),

0 otherwise.

Theorem 3. ([4]) Let An and Bn be in good order B. If every sequence π ∈ S[An, Bn] is

graphic, then for t = 0, 1, . . . , n,

t
∑

i=1

bi ≤















t(t− 1) +
n
∑

i=t+1
min{t, ai} − ξ(t) + 2 if ai < bi for some i,

t(t− 1) +
n
∑

i=t+1
min{t, ai} − ξ(t) if ai = bi for each i.

(3)

Theorem 4. ([4]) Let An and Bn be in good order B. If for t = 0, 1, . . . , n,

t
∑

i=1

bi ≤







t(t− 1) +
∑n

i=t+1 min{t, ai} − ξ(t) + 1 if ai < bi for some i,

t(t− 1) +
∑n

i=t+1 min{t, ai} − ξ(t) if ai = bi for each i,
(4)

then every sequence π ∈ S[An, Bn] is graphic.

Clearly, there is a gap between the necessary and sufficient conditions given above.

In [1] we eliminated the gap and characterized the case An and Bn in good order B by

Theorem 5.

Given An and Bn in good order B, define for t = 1, 2, . . . , n

J ′(t) = {i > t | ai ≥ t},

β′(t) =











1 if An 6= Bn, ai = bi ∀i ∈ J ′(t) and
t
∑

i=1
bi +

n
∑

i=t+1
ai ≡ 1 (mod 2),

0 otherwise.

Theorem 5. ([1]) Let An and Bn be in good order B. Every sequence π ∈ S[An, Bn] is graphic

if and only if

t
∑

i=1

bi ≤ t(t− 1) +

n
∑

i=t+1

min{t, ai}+ β′(t) for every t, 1 ≤ t ≤ n. (5)

Now it should be pointed out that in good order A and in good order B are essentially

different. Given nonnegative integer sequences An and Bn with An ≤ Bn, it is always possible

to arrange them in good order A. But it is less likely to arrange them in good order B because,
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generally speaking, the conditions b1 ≥ b2 ≥ · · · ≥ bn and a1 + b1 ≥ a2 + b2 ≥ · · · ≥ an + bn are

not necessarily compatible.

Therefore, Problem 1 was solved completely, but Problem 2 is not, solved only for the special

case An and Bn in good order B by Theorem 5. However, the approach used in [1] can be

modified to deal with the general case.

The purpose of this note is to give a solution to Problem 2, similar in form to Theorem 1.

Let t be an integer with 1 ≤ t ≤ n. We say that An and Bn are in good order O(t) if

• bi +min{t, ai} > bi+1 +min{t, ai+1} or

• bi > bi+1 when bi +min{t, ai} = bi+1 +min{t, ai+1} or

• bi + ai ≥ bi+1 + ai+1 when bi +min{t, ai} = bi+1 +min{t, ai+1} and bi = bi+1

for i = 1, 2, . . . , n− 1.

Obviously, for each t = 1, 2, . . . , n, An and Bn can be arranged as Atn = (at1, at2, . . . , atn)

and Btn = (bt1, bt2, . . . , btn) such that Atn and Btn are in good order O(t). We define

ρ(t) = btt +min{t, att}, J∗(t) = {i | bti +min{t, ati} = ρ(t)},

I1(t) = {1, 2, . . . , t}, I2(t) = {i > t | ati ≥ t}, I3(t) = {i > t | ati < t},

β(t) =























1 if An 6= Bn, ati = bti ∀ i ∈ I2(t),
t
∑

i=1
bti +

n
∑

i=t+1
ati ≡ 1 (mod 2)

and bti + ati ≡ 0 (mod 2) ∀i ∈ I1(t) ∩ J∗(t) when I2(t) ∩ J∗(t) 6= ∅,

0 otherwise.

Now let us show

bti ≥







min{atj + 1, btj} ≥ atj if i < j,

atj if i, j ∈ J∗(t).
(6)

Indeed, assuming bti < min{atj + 1, btj}, then btj > bti, atj ≥ bti ≥ ati, btj +min{t, atj} > bti +

min{t, ati}, thus j < i, a contradiction. Similarly, assuming bti < atj , then btj +min{t, atj} >

bti +min{t, ati} but btj +min{t, atj} = bti +min{t, ati} because i, j ∈ J∗(T ).

Theorem 6. Let An and Bn be integer sequences with 0 ≤ An ≤ Bn. Every sequence π ∈

S[An, Bn] is graphic if and only if

t
∑

i=1

bti ≤ t(t− 1) +

n
∑

i=t+1

min{t, ati}+ β(t) for every t, 1 ≤ t ≤ n. (7)
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Proof. We may first assume that S[An, Bn] 6= ∅, for otherwise the theorem holds trivially. We

may further assume that An 6= Bn, for otherwise β(t) = 0, t = 1, 2 . . . , n, so that (7) becomes

(1).

Necessity. For each fixed t with 1 ≤ t ≤ n, consider an integer sequence π∗ = (d∗1, d
∗
2, . . . , d

∗
n)

satisfying


















d∗i = bti if i ∈ I1(t),

ati ≤ d∗i ≤ min{ati + 1, bti} if i ∈ I2(t),

d∗i = ati if i ∈ I3(t).

(8)

Then it follows from (6) that

d∗i ≥ d∗j for 1 ≤ i ≤ t < j ≤ n. (9)

Now we distinguish two cases.

Case 1: There is a graphic sequence π∗ = (d∗1, d
∗
2, . . . , d

∗
n) ∈ S[An, Bn] satisfying (8).

If necessary, we order d∗1, d
∗
2, . . . , d

∗
n such that d∗i1 ≥ d∗i2 ≥ · · · ≥ d∗in with the result that

{i1, i2, . . . , it} = I1(t) in view of (9). Since π∗ is graphic, applying Theorem 1 to (d∗i1 , d
∗
i2
, · · · , d∗in),

we have
t

∑

i=1

bti =

t
∑

j=1

d∗ij ≤ t(t− 1) +

n
∑

j=t+1

min{t, d∗ij}

= t(t− 1) + t|I2(t)|+
∑

i∈I3(t)

ati = t(t− 1) +

n
∑

i=t+1

min{t, ati}.

Moreover, β(t) = 0 in that if ati = bti for all i ∈ I2(t), then
t
∑

i=1
bti +

n
∑

i=t+1
ati =

n
∑

i=1
d∗i ≡ 0

(mod 2).

Case 2: There is no such sequence π∗ = (d∗1, d
∗
2, . . . , d

∗
n) ∈ S[An, Bn].

Then ati = bti ∀ i ∈ I2(t) and
n
∑

i=1
d∗i =

t
∑

i=1
bti +

n
∑

i=t+1
atj ≡ 1 (mod 2), or else Case 1 would

occur. There are two subcases.

Subcase 2.1: There are j′ ∈ I2(t)∩J∗(t) and i′ ∈ I1(t)∩J∗(t) such that bti′+ati′ ≡ 1 (mod 2).

Then β(t) = 0.

Clearly bti′ > ati′ , btj′ = atj′ ≥ t as j′ ∈ I2(t). Thus btj′ + t = btj′ + min{t, atj′} =

bti′ + min{t, ati′} since i′, j′ ∈ J∗(t). Then ati′ < t otherwise ati′ ≥ t, bti′ = btj′ , bti′ + ati′ <

2bti′ = btj′ + atj′ , yielding j′ < i′, a contradiction. Hence

btj′ + t = btj′ +min{t, atj′} = bti′ +min{t, ati′} = bti′ + ati′ . (10)
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Replace d∗i′ and d∗j′ in π∗ with d∗j′ and ati′ , respectively, and denote the new sequence by

π̄∗ = (d̄∗1, d̄
∗
2, . . . , d̄

∗
n). Let us show that

d̄∗i ≥ d̄∗j for 1 ≤ i ≤ t < j ≤ n. (11)

By (9), (11) holds if i 6= i′ and j 6= j′. As i′, j′ ∈ J∗(t), then k ∈ J∗(t) for every k with

i′ ≤ k ≤ j′. Thus for i = i′ or j = j′, (11) drives easily from (6).

Moreover,
n
∑

i=1
d̄∗i =

n
∑

i=1
d∗i − bti′ + ati′ ≡

n
∑

i=1
d∗i + 1 ≡ 0 (mod 2), thus π̄∗ is graphic. Applying

a similar argument used in Case 1 to π̄∗, we obtain

t
∑

i=1

d̄∗i ≤ t(t− 1) +
n
∑

i=t+1

min{t, d̄∗i }. (12)

On the other hand,

t
∑

i=1

d̄∗i =

t
∑

i=1

bti − bti′ + btj′ and

n
∑

i=t+1

min{t, d̄∗ti} =

n
∑

i=t+1

min{t, ati} − t+ ati′ ,

combined with (10) and (12), we have

t
∑

i=1

bti ≤ t(t− 1) +
n
∑

i=t+1

min{t, ati}.

Subcase 2.2: bti+ati ≡ 0 (mod 2) ∀ i ∈ I1(t)∩J
∗(t) provided I2(t)∩J

∗(t) 6= ∅. Then β(t) = 1.

Since S[An, Bn] 6= ∅, there exists i∗ ∈ I3(t) or i
∗ ∈ I1(t) such that ati∗ < bti∗ . Replace d∗i∗ in

π∗ with d∗i∗ +1 or d∗i∗ − 1 according to whether or not there exists an i∗ ∈ I3(t) with ati∗ < bti∗ ,

and denote the new sequence by π̂∗ = (d̂∗1, d̂
∗
2, . . . , d̂

∗
n). Clearly π̂∗ ∈ S[An, Bn] as the sum of π̂∗

is even, hence is graphic. Let us show that

d̂∗j ≥ d̂∗i∗ for every j ≤ t if i∗ ∈ I3(t),

d̂∗i∗ ≥ d̂∗j for every j > t if i∗ ∈ I1(t).
(13)

In the case i∗ ∈ I3(t) and j ≤ t, then d̂∗j = btj ≥ min{ati∗+1, bti∗} = d̂∗i∗ by (6). And in the other

case, i∗ ∈ I1(t) and atj = btj for every j > t, then bti∗ > btj , for otherwise ati∗ < bti∗ ≤ btj = atj ,

implying j < i∗, a contradiction. Hence d̂∗i∗ = d∗i∗ − 1 ≥ d∗j = d̂∗j .

Similarly, we order d̂∗1, d̂
∗
2, . . . , d̂

∗
n such that d̂∗i1 ≥ d̂∗i2 ≥ · · · ≥ d̂∗in , with the result that

{i1, i2, . . . , it} = I1(t) due to (13). Since π̂ is graphic, applying Theorem 1 to (d̂∗i1 , d̂
∗
i2
, · · · , d̂∗in),
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we have in the case i∗ ∈ I3(t)

t
∑

i=1

bti =

t
∑

j=1

d̂∗ij ≤ t(t− 1) +

n
∑

j=t+1

min{t, d̂∗ij}

= t(t− 1) +

n
∑

i=t+1

min{t, d∗i }+ 1 = t(t− 1) +

n
∑

i=t+1

min{t, ati}+ 1

and in the other case

t
∑

i=1

bti − 1 =
t

∑

j=1

d̂∗ij ≤ t(t− 1) +
n
∑

j=t+1

min{t, d̂∗ij}

= t(t− 1) +

n
∑

i=t+1

min{t, d∗i } = t(t− 1) +

n
∑

i=t+1

min{t, ati}.

Therefore (7) holds in both cases.

Sufficiency. Taking any sequence Sn = (d1, d2, . . . , dn) ∈ S[An, Bn], we order Sn as di1 ≥

di2 ≥ . . . ≥ din .

According to Theorem 1, we need to show that

t(t− 1) +
n
∑

j=t+1

min{t, dij} −
t

∑

j=1

dij ≥ 0 (14)

for every t, 1 ≤ t ≤ n.

For simplicity, let δ(Sn) stand for the left-hand side of (14) and set I∗t = {i1, i2, . . . , it}.

For a t-set It = {j1, j2, . . . , jt} ⊆ {1, 2, . . . , n} we define a set function

f(It) = t(t− 1) +
∑

j∈It

min{t, atj} −
∑

j∈It

btj .

Obviously,

δ(Sn) ≥ f(I∗t ). (15)

Recall that I1(t) = {1, 2, . . . , t}. Let us show that

f(I∗t ) ≥ f(I1(t)), (16)

or equivalently,

∑

i∈I1(t)\I∗t

[bti +min{t, ati}] ≥
∑

j∈I∗t \I1(t)

[btj +min{t, atj}].
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Indeed, if i ∈ I1(t) \ I
∗
t and j ∈ I∗t \ I1(t), then i ≤ t < j. As Atn and Btn are in good order

O(t),

bti +min{t, ati} ≥ ρ(t) ≥ btj +min{t, atj}. (17)

Using (7), we have

δ(Sn) ≥ f(I∗t ) ≥ f(I1(t)) ≥ −β(t).

Consequently, (14) holds if β(t) = 0 or one of (15) and (16) is strict.

To complete the proof, it suffices to show that (15) is strict if β(t) = 1 and (16) holds with

equality.

For the case β(t) = 1, by definition, we have

ati = bti for all i ∈ I2(t), (18)
t

∑

i=1

bti +
n
∑

i=t+1

ati ≡ 1 (mod 2), (19)

bti + ati ≡ 0 (mod 2) for all i ∈ I1(t) ∩ J∗(t) when I2(t) ∩ J∗(t) 6= ∅. (20)

And for the case (16) being equality, we have equality in (17). Clearly, the symmetric difference

I1(t)∆I∗t ⊆ J∗(t). Our next aim is to show that

t
∑

j=1

btij +

n
∑

j=t+1

atij ≡ 1 (mod 2), (21)

equivalently by (19)

∑

i∈I1(t)∆I∗t

{bti + ati} ≡ 0 (mod 2). (22)

If there is an i′ ∈ I1(t) \ I
∗
t such that ati′ ≥ t, then

bti′ = ati′ = btj = atj ∀j ∈ I∗t \ I1(t). (23)

In fact, for every j ∈ I∗t \I1(t), we have bti′ ≥ btj as i
′ < j and i′, j ∈ J∗(t), implying atj ≥ t and

bti′ = btj as bti′ +min{t, at′
i
} = btj +min{t, atj}. Thus j ∈ I2(t), by (18) btj = atj ≤ ati′ ≤ bti′ ,

(23) holds. Then (22) follows from (20) and (23).

So we may assume that ati < t for every i ∈ I1(t) \ I
∗
t . If I2(t) ∩ J∗(t) 6= ∅, then bti + ati =

ρ(t) ≡ 0 (mod 2) for every i ∈ I1(t) \ I∗t by (20). Moreover, bti + ati = ρ(t) ≡ 0 (mod 2) for

every i ∈ I3(t)∩I
∗
t and therefore for every i ∈ I∗t \I1(t), thus (22) holds. And if I2(t)∩J

∗(t) = ∅,

then bti + ati = ρ(t) for every i ∈ I1(t)∆I∗t , hence (22) holds.
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We are now ready to show that (15) holds strictly. Note that
∑n

i=1 di ≡ 0 (mod 2), it follows

from (21) that either
∑

i∈I∗t
di <

∑

i∈I∗t
bti or there is an i′ ∈ I∗t such that ati′ < di′ ≤ bti′ . And

for the latter case we claim further ati′ < t for otherwise i′ ∈ I1(t) \ I∗t as i′ /∈ I2(t) ∪ I3(t),

contradicting (23). Therefore (15) is strict, as required. This completes the proof. ✷

Remark 1. Theorem 6 gives a simple algorithm that decides whether every π ∈ S[An, Bn] is

graphic in O(n2 log n) time.

Remark 2. As we have shown, Theorem 6 derives from Theorem 1. Conversely, the latter is

just a special case of the former when An = Bn.
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