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Abstract

A graph is said to be well-edge-dominated if all its minimal edge dominat-

ing sets are minimum. It is known that every well-edge-dominated graph

G is also equimatchable, meaning that every maximal matching in G is

maximum. In this paper, we show that if G is a connected, triangle-free,

nonbipartite, well-edge-dominated graph, then G is one of three graphs. We

also characterize the well-edge-dominated split graphs and Cartesian prod-

ucts. In particular, we show that a connected Cartesian product G�H is

well-edge-dominated, where G and H have order at least 2, if and only if

G�H = K2�K2.
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1 Introduction

A set F of edges in a graph G is an edge dominating set if every edge of G that
is not in F is adjacent to at least one edge in F . Mitchell and Hedetniemi [14]
initiated the study of edge domination by presenting a linear algorithm that finds a
smallest edge dominating set in a tree. Yannakakis and Gavril [18] showed that it
is NP hard to find an edge dominating set of minimum size even when restricted to
planar graphs or subcubic bipartite graphs. See [3, 8, 9] for additional results on the
complexity of finding a minimum edge dominating set. The set consisting of all the
vertices that are incident with at least one edge in a minimum edge dominating
set is a vertex dominating set in a nontrivial connected graph. It follows that
the (ordinary) domination number of such a graph is at most twice the size of
its smallest edge dominating set. Senthilkumar, Venkatakrishna and Kumar [15]
characterized the trees that achieve equality of these numbers, and Baste, Fürst,
Henning, Mohr and Rautenbach [2] gave an improvement of this relationship when
the graph is regular. They conjectured that the domination number is at most
the edge domination number in every regular graph. Klostermeyer and Yeo [10]
investigated edge domination in grid graphs. See [1, 5, 17] for other problems
involving edge domination.

The graphs for which all maximal matchings have the same cardinality were
first studied independently by Lewin [12] and Meng [13] in 1974. These two au-
thors presented different characterizations of this class of graphs that have come to
be known as equimatchable. Lesk, Plummer and Pulleyblank [11] gave a character-
ization of equimatchable graphs that gave rise to a polynomial time algorithm for
recognizing membership in this class of graphs. Since then the structure of several
subclasses of equimatchable graphs have been investigated. Frendrup, Hartnell
and Vestergaard [7] proved that a connected equimatchable graph with no cycles
of length less than 5 is either a 5-cycle, a 7-cycle or belongs to the family C that
contains K2 and all the bipartite graphs one of whose partite sets consists of all
its support vertices. Büyükçolak, Gözüpek and S. Özkan [4] provided a complete
structural characterization of the connected, triangle-free equimatchable graphs
that are not bipartite.

If M is a maximal matching in a graph G, then every edge not in M is adjacent
to at least one edge in M . That is, M is an edge dominating set of G. A maximal
matching in G corresponds to a maximal independent set in the line graph of G.
Since line graphs are claw-free, the independent domination number (the smallest
cardinality among the independent dominating sets) of the line graph equals its
domination number. Translating this back to the original graph, it means the
size of a smallest maximal matching in G and the edge domination number of
G coincide. Frendrup, et al. also proved in [7] that every graph in C has the
additional property that all of its minimal edge dominating sets have the same
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cardinality. In this paper we study graphs that have this latter property and call
them well-edge-dominated. In particular, we completely characterize three classes
of connected well-edge-dominated graphs.

Our main result on triangle-free, nonbipartite well-edge-dominated graphs is
the following result, which is proved in Section 4. We use the characterization,
mentioned above, by Büyükçolak, et al. [4], of the equimatchable graphs satisfying
the hypothesis of Theorem 1 and determine which of these belong to the smaller
class of well-edge-dominated graphs. The graph H∗ is defined in Section 4.

Theorem 1. If G is a connected, nonbipartite, well-edge-dominated graph of girth

at least 4, then G ∈ {C5, C7, H
∗}.

A graph is a split graph if its vertex set admits a partition into two sets, one
of which is independent and the other which induces a complete graph. We show
that a connected split graph is well-edge-dominated if and only if it is a star,
a complete graph of order at most 4, a graph obtained from C5 by adding two
adjacent chords, or belongs to one of two families of graphs constructed from K4.
These are defined in Section 5.

In Section 6 we finish by showing that C4 is the only nontrivial, connected,
well-edge-dominated Cartesian product.

Theorem 2. If G and H are two connected, nontrivial graphs, then G�H is

well-edge-dominated if and only if G�H = K2�K2.

2 Preliminaries

All the graphs considered in this paper are simple and have finite order. Let G
be a graph with vertex set V (G) and edge set E(G). We write n(G) = |V (G)|. If
n(G) ≥ 2, then G is nontrivial. For a positive integer k the set of positive integers
no larger than k is denoted [k]. Although edges are 2-element subsets of vertices, for
simplicity we will shorten the notation of an edge {u, v} to uv. If X ⊆ E(G), then
G−X is the graph with vertex set V (G) and edge set E(G)−X . For graphs G and
H , the Cartesian product G�H has vertex set {(g, h) : g ∈ V (G), h ∈ V (H)}.
Two vertices (g1, h1) and (g2, h2) are adjacent in G�H if either g1 = g2 and
h1h2 ∈ E(H) or h1 = h2 and g1g2 ∈ E(G). For g ∈ V (G) the H-fiber gH
is the subgraph of G�H induced by the set {(g, h) : h ∈ V (H)}. Similarly,
the G-fiber Gh for a given vertex h ∈ V (H) denotes the subgraph induced by
{(g, h) : g ∈ V (G)}. Note that gH is isomorphic to H and Gh is isomorphic to G.

Two distinct edges e and f in a graph G are adjacent if e ∩ f 6= ∅ and are
independent if e ∩ f = ∅. A vertex x of G is incident to an edge e if x ∈ e. If
X ⊆ E(G), then the set of vertices covered by X is denoted by S(X) and is defined
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by S(X) = {u ∈ V (G) : u is incident to an edge in X}. Let f ∈ E(G) and let
F ⊆ E(G). The closed edge neighborhood of f is the set Ne[f ] consisting of f
together with all edges in G that are adjacent to f . The closed edge neighborhood

of F is the set Ne[F ] defined by Ne[F ] = ∪f∈FNe[f ]. Let f ∈ F . The edge f is said
to dominate the set Ne[f ]. An edge g is called a private edge neighbor of f with
respect to F if g ∈ Ne[f ]−Ne[F −{f}]. If Ne[F ] = E(G), then F is called an edge

dominating set of G. The edge domination number of G, denoted by γ′(G), is the
smallest cardinality of an edge dominating set in G, and the upper edge domination

number of G is the largest cardinality, Γ′(G), of a minimal edge dominating set. A
matching in G is a set of independent edges. The matching number of G, denoted
α′(G), is the number of edges in a matching of largest cardinality in G, while the
lower matching number is the number of edges, denoted by i′(G), in a smallest
maximal matching. Any maximal matching M in G is clearly a minimal edge
dominating set of G, which gives

γ′(G) ≤ i′(G) ≤ α′(G) ≤ Γ′(G) .

A graphG is called equimatchable if i′(G) = α′(G) and is called well-edge-dominated

if γ′(G) = Γ′(G). Using the inequality above it is clear that the class of well-edge-
dominated graphs is a subclass of the equimatchable graphs.

It is clear that a graph is well-edge-dominated if and only if each of its com-
ponents is well-edge-dominated. We use this fact throughout the paper together
with the following lemmas.

A very useful tool in our study of well-edge-dominated graphs is the follow-
ing lemma, which is the “edge version” of a fact used by Finbow, Hartnell and
Nowakowski in [6]. It follows from the fact that M ∪ D1 and M ∪ D2 are both
minimal edge dominating sets of G for any matching M and any pair D1 and D2

of minimal edge dominating sets of the graph G−Ne[M ].

Lemma 1. If G is a well-edge-dominated graph and M is any matching in G, then

G−Ne[M ] is well-edge-dominated.

The next two results show that several common graph families contain only a
small number of well-edge-dominated graphs.

Lemma 2. A complete graph of order n is well-edge-dominated if and only if

n ≤ 4.

Proof. Using the definition we see that the complete graphs of order at most 4 are
well-edge-dominated. For the converse suppose n ≥ 5. Label the vertices of Kn

as 1, . . . , n and consider the set D = {12, 13, . . . , 1(n − 1)}. We claim that D is
a minimal edge dominating set. Indeed, D − {1j} is not an edge dominating set
since jn is not adjacent to any edge in D−{1j}. Therefore, D is in fact a minimal
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edge dominating set of cardinality n− 2 where n ≥ 5. On the other hand, we can
choose a matching of Kn of cardinality

⌊

n
2

⌋

. Note that n − 2 > n
2
when n ≥ 5.

Thus, Kn is not well-edge-dominated.

Any star is well-edge-dominated and we show in Theorem 4 that Kn,n is well-
edge-dominated for any n ≥ 1. No other complete bipartite graph is well-edge-
dominated as the following lemma shows.

Lemma 3. If 2 ≤ r < s, then Kr,s is not well-edge-dominated.

Proof. Assume 2 ≤ r < s and write the partite sets of Kr,s as {x1, . . . , xr} and
{y1, . . . , ys}. Note that {x1y1, . . . , x1ys} and {x1y1, x2y2, . . . , xryr} are two minimal
edge dominating sets of different cardinalities. Therefore, Kr,s is not well-edge-
dominated.

3 Randomly matchable graphs

A graph is said to be randomly matchable if every maximal matching is a per-
fect matching. That is, a randomly matchable graph is an equimatchable graph
whose matching number is half its order. Sumner [16] determined all the randomly
matchable graphs.

Theorem 3. ([16]) A connected graph is randomly matchable if and only if it is

isomorphic to K2n or Kn,n for n ≥ 1.

Using Theorem 3 we can now show which randomly matchable graphs are
well-edge-dominated.

Theorem 4. A connected graph G containing a perfect matching is well-edge-

dominated if and only if G = K4 or G = Kn,n for n ≥ 1.

Proof. Suppose first thatG contains a perfect matching and is well-edge-dominated.
It follows that G is equimatchable and every maximal matching is of size n(G)/2.
Therefore, G is randomly matchable and by Theorem 3, G = K2n or G = Kn,n for
n ≥ 1. By Lemma 2, K2n for n ≥ 3 is not well-edge-dominated. It follows that
G = K4 or G = Kn,n for n ≥ 1.

In the other direction, suppose G = K4 or G = Kn,n for n ≥ 1. One can easily
verify that K4 is well-edge-dominated. Therefore, we shall assume G = Kn,n and
let A and B be the partite sets of G. We show that G is well-edge-dominated. Let
D be an edge dominating set of G. Suppose D does not cover a ∈ A and b ∈ B.
Then ab is not dominated by D, which is a contradiction. Thus, we may assume
D covers A which implies |D| ≥ n. Suppose that |D| > n. It follows that some
vertex of A is incident to two edges in D, say e and f . Note that D − {e} is an
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edge dominating set of G since D − {e} covers A and every edge of G is incident
to exactly one vertex of A. Thus, |D| = n and G is well-edge-dominated.

4 Triangle-free nonbipartite graphs

In this section we prove there are only three nonbipartite, triangle-free, connected,
well-edge-dominated graphs. These three graphs are the 5-cycle, the 7-cycle and
H∗, which is depicted in Figure 1.

Figure 1: The graph H∗

We will use the structural characterization of the class of triangle-free, equimatch-
able graphs in the recent paper of Büyükçolak, Gözüpek and Özkan [4]. To de-
scribe their characterization, they defined several graph families using the follow-
ing notation. Let H be a graph on k vertices v1, v2, . . . , vk and let m1, m2, . . . , mk

be nonnegative integers. Then H(m1, m2, . . . , mk) denotes the graph obtained
from H by repeatedly replacing each vertex vi with an independent set of mi

vertices, each of which has the same neighborhood as vi. For example, using
the graph G∗ in Figure 2, we see that G∗(1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0) = C7 and
G∗(2, 0, 0, 0, 3, 0, 0, 0, 2, 3, 0) = K4,6.

u10

u11 u2 u3 u8

u7u6u5u9

u1 u4

Figure 2: The graph G∗

The following definition was made in [4].
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Definition 1. ([4]) Let G∗ be the graph in Figure 2 and let F be the union of the

following six graph families.

1. F11 = {G∗(1, 1, 1, 1, 1, n, n, 0, 0, 0, 0) : n ≥ 1}

2. F12 = {G∗(1, 1, 1, 0, 1, n+ 1, n+ 1, 1, 0, 0, 0) : n ≥ 1}

3. F21 = {G∗(1, 1, 1, n− r − s+ 1, 1, r, n, s, 0, 0, 0) : n− 1 ≥ r ≥ 1, n− 1 ≥ s ≥
1, n ≥ r + s}

4. F22 = {G∗(1, 1, 1, n−r−s, 1, r+1, n+1, s+1, 0, 0, 0) : n−1 ≥ r ≥ 1, n−1 ≥
s ≥ 1, n ≥ r + s}

5. F3 = {G∗(1, 1, r + 1, s + 1, 1, 0, n− s, n− r, 0, 0, 0) : n− 1 ≥ r ≥ 1, n− 1 ≥
s ≥ 1}

6. F4 = {G∗(r+1, n+1, s+1, 1, 1, 0, 0, 0, 0, 0, n−r−s) : n−1 ≥ r ≥ 1, n−1 ≥
s ≥ 1, n ≥ r + s}

By analyzing each of the six families of equimatchable graphs listed above, we
determine all the well-edge-dominated graphs in F .

Proposition 1. If G ∈ F is well-edge-dominated, then G = H∗.

Proof. Throughout this proof when considering a graph from one of these six
families of graphs we will always assume the variables (that is, whichever of n, r
and s are used) satisfy the conditions in Definition 1 for that particular family.

First, let G = G∗(1, 1, 1, 1, 1, n, n, 0, 0, 0, 0) ∈ F11. Note first that if n = 1,
then G = H∗ depicted in Figure 1. It is straightforward to show that H∗ is well-
edge-dominated. Suppose n ≥ 3 and let {x1, . . . , xn} be the set of vertices that
replace u6 and let {y1, . . . , yn} be the set of vertices that replace u7. Note that
Kn−1,n is a component of G − Ne[{x1u5, u3u4}]. By Lemma 3, we infer that G is
not well-edge-dominated. Therefore, we shall assume n = 2. Now, {u1u2, u3u4} is
a matching, and K2,3 is a component of G − Ne[{u1u2, u3u4}]. By Lemma 1 and
Lemma 3, it follows that G is not well-edge-dominated.

Next, let G = G∗(1, 1, 1, 0, 1, n+ 1, n + 1, 1, 0, 0, 0) ∈ F12. Let {x1, . . . , xn+1}
be the set of vertices that replace u6 and let {y1, . . . , yn+1} be the set of vertices
that replace u7. Suppose first that n ≥ 2. Note that Kn,n+1 is a component of G−
Ne[{x1u5, u3u8}]. Since Kn,n+1 is not well-edge-dominated by Lemma 3, it follows
from Lemma 1 that G is not well-edge-dominated. Therefore, we shall assume
n = 1. In this case, both {x1y1, x2y2, u1u5, u3u8} and {x1y1, x2y1, u8y1, u1u5, u2u3}
are both minimal edge dominating sets, and hence G is not well-edge-dominated.

Next, let G ∈ F21 ∪ F22 ∪ F4. Note that n ≥ 2 for every such G. Suppose
G = G∗(1, 1, 1, n−r−s+1, 1, r, n, s, 0, 0, 0) ∈ F21. Note thatG−Ne[{u2u3, u1u5}] =
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Kn,n+1. If G = G∗(1, 1, 1, n − r − s, 1, r + 1, n + 1, s + 1, 0, 0, 0) ∈ F22, then
G−Ne[{u1u5, u2u3}] = Kn+1,n+2. If G = G∗(r+1, n+1, s+1, 1, 1, 0, 0, 0, 0, 0, n−r−
s) ∈ F4, then G−Ne[{u4u5}] = Kn+1,n+2. Therefore, for every G ∈ F21∪F22∪F4,
we see by Lemmas 1 and 3 that G is not well-edge-dominated.

Finally, assume G ∈ F3 and G = G∗(1, 1, r+1, s+1, 1, 0, n−s, n−r, 0, 0, 0). Let
{x1, . . . , xs+1} be the set of vertices that replace u4. The complete bipartite graph
Kn−s+r+1,n−r+s is a component of G−Ne[{u1u2, u5x1}]. Observe that n−s+r+1 6=
n− r + s for otherwise 2r+ 1 = 2s, which is not possible. Furthermore, using the
conditions n − 1 ≥ r ≥ 1 and n − 1 ≥ s ≥ 1 we see that n − s + r + 1 ≥ 3 and
n− r + s ≥ 2. It follows by Lemma 3 that G is not well-edge-dominated.

Definition 2. ([4]) Let G∗ be the graph in Figure 2 and let G be the union of the

following seven graph families.

1. G11 = {G∗(m+ 1, m+ 1, 1, 0, 1, 1, n+ 1, n+ 1, 0, 0, 0) : n ≥ 1, m ≥ 1}

2. G12 = {G∗(m+1, m+1, 1, n−r−s, 1, r+1, n+1, s+1, 0, 0, 0) : m ≥ 1, n−1 ≥
r ≥ 1, n− 1 ≥ s ≥ 1, n ≥ r + s}

3. G21 = {G∗(1, 1, 1, n − r − s + 1, 1, r, n, s, 0, m,m) : m ≥ 1, n − 1 ≥ r ≥
1, n− 1 ≥ s ≥ 1, n ≥ r + s}

4. G22 = {G∗(1, 1, r + 1, s + 1, 1, 0, n − s, n − r, 0, m,m) : m ≥ 1, n − 1 ≥ r ≥
1, n− 1 ≥ s ≥ 1}

5. G23 = {G∗(r + 1, n + 1, s + 1, 1, 1, m,m, 0, 0, 0, n− r − s) : m ≥ 1, n − 1 ≥
r ≥ 1, n− 1 ≥ s ≥ 1, n ≥ r + s}

6. G31 = {G∗(m − k − ℓ + 1, 1, 1, n− r − s + 1, 1, r, n, s, ℓ,m, k) : n − 1 ≥ r ≥
1, n− 1 ≥ s ≥ 1, n ≥ r + s,m− 1 ≥ ℓ ≥ 1, m− 1 ≥ k ≥ 1, m ≥ k + ℓ}

7. G32 = {G∗(k + 1, ℓ + 1, 1, n − r − s + 1, 1, r, n, s, 0, m− ℓ,m − k) : n − 1 ≥
r ≥ 1, n− 1 ≥ s ≥ 1, n ≥ r + s,m− 1 ≥ ℓ ≥ 1, m− 1 ≥ k ≥ 1, m ≥ k + ℓ}

As we did in Proposition 1, an analysis of all the graphs in G will show that
no such graph is well-edge-dominated.

Proposition 2. If G ∈ G, then G is not well-edge-dominated.

Proof. Throughout this proof when considering a graph from one of these seven
families of graphs we will always assume the variables (that is, whichever of
n,m, r, s, k and ℓ are used) satisfy the conditions in Definition 2 for that particular
family.

First, suppose G ∈ G11 ∪ G12. Let {x1, . . . , xm+1} be the set of vertices that
replace u2 and let {y1, . . . , ym+1} be the set of vertices that replace u1. If G =
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G∗(m+1, m+1, 1, 0, 1, 1, n+1, n+1, 0, 0, 0) ∈ G11, then Kn+1,n+2 is a component of
G−Ne[{x1u3, y1u5}]. If G = G∗(m+1, m+1, 1, n−r−s, 1, r+1, n+1, s+1, 0, 0, 0) ∈
G12, then Kn+1,n+2 is a component of G − Ne[{x1u3, y1u5}]. Since n + 1 ≥ 2, it
follows from Lemmas 1 and 3 in both cases that G is not well-edge-dominated.

Next, suppose G = G∗(1, 1, 1, n− r − s+ 1, 1, r, n, s, 0, m,m) ∈ G21. Note that
this implies n ≥ 2 and G− Ne[{u1u5, u2u3}] contains the component Kn,n+1. By
Lemmas 1 and 3 we infer that G is not well-edge-dominated.

Next, suppose G = G∗(1, 1, r + 1, s + 1, 1, 0, n − s, n − r, 0, m,m) ∈ G22. Let
{x1, . . . , xm} be the set of vertices that replace u11 and let {y1, . . . , yr+1} be the
set of vertices that replace u3. The complete bipartite graph Kn−r+s+1,n−s+r+1 is
a component of G − Ne[{x1u2, u1u5}]. Note that n − r + s + 1 ≥ s + 2 ≥ 3 and
n−s+r+1 ≥ r+2 ≥ 3. If n−r+s+1 6= n−s+r+1, then Kn−r+s+1,n−s+r+1 is not
well-edge-dominated by Lemma 3. On the other hand, if n−r+s+1 = n−s+r+1,
then G − Ne[{u2y1, u1u5}] has a component isomorphic to Kn−r+s+1,n−s+r, which
is not well-edge-dominated. Again by Lemmas 1 and 3 we conclude that G is not
well-edge-dominated.

Next, suppose G = G∗(r + 1, n + 1, s + 1, 1, 1, m,m, 0, 0, 0, n − r − s) ∈ G23.
The graph Kn+1,n+2 is a component of G − Ne[u4u5]. Using Lemmas 1 and 3 we
infer that G is not well-edge-dominated.

Next, suppose G = G∗(m− k− ℓ+1, 1, 1, n− r− s+1, 1, r, n, s, ℓ,m, k) ∈ G31.
Let {x1, . . . , xm−k−ℓ+1} be the set of vertices that replace u1. Note that n ≥ 2 and
that Kn,n+1 is a component of G − Ne[{x1u5, u2u3}]. By Lemmas 1 and 3, this
implies that G is not well-edge-dominated.

Finally, suppose G = G∗(k+1, ℓ+1, 1, n−r−s+1, 1, r, n, s, 0, m−ℓ,m−k) ∈ G32.
Note that n ≥ 2. Let {x1, . . . , xℓ+1} be the set of vertices that replace u2 and let
{y1, . . . , yk+1} be the set of vertices that replace u1. Since Kn,n+1 is a component
of G−Ne[{x1u3, y1u5}], we conclude by Lemmas 1 and 3 that G is not well-edge-
dominated.

Theorem 1 If G is a connected, nonbipartite, well-edge-dominated graph of girth

at least 4, then G ∈ {C5, C7, H
∗}.

Proof. It is straightforward to check that every graph in F ∪ G is connected, has
girth 4 but is not bipartite. If we consider only nonbipartite graphs, then the main
result of Büyükçolak, et. al [4, Theorem 36] states that a graph G is a connected,
nonbipartite, triangle-free equimatchable graph if and only if G ∈ F∪G∪{C5, C7}.
Applying Proposition 1 and Proposition 2 completes the proof.
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5 Split graphs

Recall that a graph is a split graph if its vertex set can be partitioned into an
independent set and a set that induces a complete graph. In this section we
prove a complete characterization of the family of split graphs that are well-edge-
dominated. We will use the following definitions. Let H1 be the family of graphs
obtained by appending any finite number of leaves to a single vertex of K4 and
let H2 be the family of graphs obtained from K4 by removing any edge uv and
appending at least one leaf to u. Let H3 be the graph of order 5 obtained from
K4 − e by adding a new vertex adjacent to one of the vertices of degree 2 and one
of the vertices of degree 3.

Lemma 4. If G ∈ {K2, K3, K4, H3} ∪ H1 ∪ H2 ∪ {K1,n : n ∈ N}, then G is

well-edge-dominated.

Proof. By Lemma 2, K2, K3, and K4 are well-edge-dominated. It is easy to see
that every minimal edge dominating set of a nontrivial star K1,n consists of exactly
one edge. Therefore, K1,n is well-edge-dominated. It is straightforward to check
that all minimal edge dominating sets of H3 have cardinality 2.

Next, assume G ∈ H1. Suppose the vertices v1, v2, v3 and v4 of G induce a
complete graph and v1 is the support vertex. Let D be a minimal edge dominating
set of G. First assume that D contains an edge, say v1w, where w is a leaf. Note
that D cannot contain more than one edge incident with v1 since D is minimal.
The only edges not dominated by v1w are v2v3, v2v4 and v3v4. Exactly one of
those edges must be in D in order for it to be a minimal edge dominating set.
Thus, |D| = 2. Next, assume D does not contain an edge incident to a leaf. Then
D ∩ {v1v2, v1v3, v1v4} 6= ∅. Without loss of generality, assume v1v2 ∈ D. The
only edge of G not dominated by v1v2 is v3v4, so by minimality |D| = 2 and G is
well-edge-dominated.

Now, assume G ∈ H2. Label the vertices of the K4 as v1, v2, v3 and v4, remove
the edge v1v3, and append leaves to vertex v1. LetD be a minimal edge dominating
set of G. Using a similar argument to the one above we conclude that G is well-
edge-dominated.

Theorem 5. A nontrivial, connected split graph G is well-edge-dominated if and

only if G ∈ {K2, K3, K4, H3} ∪ H1 ∪H2 ∪ {K1,n : n ∈ N}.

Proof. By Lemma 4, each graph in {K2, K3, K4, H3} ∪ H1 ∪ H2 ∪ {K1,n : n ∈ N}
is well-edge-dominated and is a split graph by definition.

For the converse let G be a connected, well-edge-dominated split graph. We
let V (G) = K ∪ I where I is an independent set, K = {x1, . . . , xk}, and G[K] is a
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clique. If k = 1, then G = K1,n where n = |I|. So we may assume k ≥ 2. Suppose
first that I = ∅. Thus, G = Kk, and G ∈ {K2, K3, K4} by Lemma 2. Therefore,
we shall assume I 6= ∅. Assume first that I = {u}. If u is adjacent to every vertex
in K, then G is clique. So we shall assume N(u) = {x1, . . . , xr} where r < k.
Let M = {x1x2, x3x4, . . . , xixi+1} where i + 1 = k if k even or i + 1 = k − 1 if
k odd. We see that M is a maximal matching in G of size

⌊

k
2

⌋

and therefore a
minimal edge dominating set. Let M ′ = {x1x2, x1x3, . . . , x1xk−1}. Note that M ′

is a minimal edge dominating set since M ′ − {x1xj} for 2 ≤ j ≤ k − 1 does not
dominate xjxk. However, |M ′| = k − 2 6=

⌊

k
2

⌋

= |M | when k = 2 or k ≥ 5. If
k = 3, then r ∈ {1, 2}. In this case both {ux1, x2x3} and {x1x2} are maximal
matchings in G, which implies that G is not well-edge-dominated. Suppose then
that k = 4. If r = 1, then G ∈ H1. If r = 2, then G is not well-edge-dominated
since {ux1, x1x3, x1x4} and {ux1, x2x4} are minimal edge dominating sets. If r = 3,
then {x1x2, x3x4} and {ux1, ux2, ux3} are minimal edge dominating sets so G is
not well-edge-dominated.

Thus, we assume for the remainder of the proof that |I| ≥ 2. We let J = {x ∈
K : N(x) ∩ I 6= ∅}. Suppose first that k = 2. If J 6= K, then G = K1,n where
n − 1 = |I|. Therefore, we shall assume J = K. Without loss of generality, we
may assume x1w1 ∈ E(G) for some w1 ∈ I. If there exists w2 ∈ I − {w1} such
that x2w2 ∈ E(G), then both {x1x2} and {x1w1, x2w2} are maximal matchings in
G and G is not well-edge-dominated. So we may assume N(x2)∩ I = {w1}. Since
G is connected and |I| ≥ 2, it follows that there exists w2 ∈ I − {w1} adjacent to
x1. Thus, {x1x2} and {x1w2, x2w1} are both maximal matchings, which implies
that G is not well-edge-dominated. Having considered all cases for k = 2, we now
assume k ≥ 3.

Suppose there exist distinct vertices x and y in J and distinct vertices w1 and
w2, such that w1 ∈ N(x) ∩ I and w2 ∈ N(y) ∩ I. If k is even, then extend xy to
a maximal matching M in G[K]. Note that M is a maximal matching in G. If
k is odd and J 6= K, then let z ∈ K − J and extend xy to a maximal matching
M of G[K] such that z /∈ S(M). Again, M is a maximal matching in G. In both
of these cases let M ′ = (M − {xy}) ∪ {xw1, yw2}. Since M ′ is also a maximal
matching, G is not equimatchable and thus also not well-edge-dominated, which
is a contradiction.

Therefore, we shall assume that k is odd and K = J . If there exists a z ∈
K−{x, y} such thatN(z)∩I 6⊆ {w1, w2}, then extend xy to a maximal matchingM
of G[K] such that z /∈ S(M). Let u ∈ (N(z)∩I)−{w1, w2} and letM ′ = M∪{uz}.
In this case, both M ′ and M ′′ = (M ′−{xy})∪{xw1, yw2} are maximal matchings
in G. Therefore, G is not equimatchable, which is a contradiction. Therefore, we
shall assume for all z ∈ K − {x, y}, N(z) ∩ I ⊆ {w1, w2}.

Suppose in addition that I = {w1, w2}. Reindexing if necessary, we may as-
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sume that degG(w1) ≥ degG(w2) and we may assume the vertices of K have been
enumerated in such a way that N(w1) ∩ K = {x1, . . . , xℓ}. If ℓ = k, then we
could instead partition V (G) as K ′ ∪ I ′ where I ′ = {w2} and K ′ = K ∪ {w1}
and K ′ induces a clique in G. Having already considered this case above, we
instead assume ℓ ≤ k − 1. If ℓ = k − 1, then xkw2 ∈ E(G) since K = J . Let
M ′ = {w1x1, . . . , w1xk−2, w2xk}. Note thatM

′ is edge dominating since all vertices
other than xk−1 are covered by M ′. Moreover, M ′ is minimal since w2xk is its own
private neighbor and M ′ − {w1xi} does not dominate xixk−1 for each i ∈ [k − 2].
On the other hand, M = {x1x2, x3x4, . . . , xk−2xk−1, w2xk} is a maximal matching
and therefore is a minimal edge dominating set. Thus, k+1

2
= |M | = |M ′| = k− 1,

or equivalently, k = 3. Since degG(w1) = 2 ≥ degG(w2), the vertex w2 is adjacent
to at most one of x1 or x2. If degG(w2) = 2, then G = H3. On the other hand,
G ∈ H2 if degG(w2) = 1.

Hence, we shall assume ℓ < k − 1. Let M ′ = {x1x2, x1x3, . . . , x1xk−2, xkw2}.
The only vertices that are not covered by M ′ are xk−1 and w1. It follows that M

′

edge dominates G since xk−1w1 6∈ E(G). Moreover, M ′ is a minimal edge dominat-
ing set since xkw2 is its own private neighbor and M ′ −{x1xj} does not dominate
xjxk−1, for each 2 ≤ j ≤ k − 2. Now, since M = {x1x2, x3x4, . . . , xk−2xk−1, w2xk}
is a maximal matching, we get k+1

2
= |M | = |M ′| = k − 2, or equivalently k = 5.

Notice that degG(w1) ≤ 3 since we have assumed ℓ < k − 1. On the other hand,
degG(w1) ≥ 3, for otherwise degG(w2) > degG(w1) since K = J . Therefore,
degG(w1) = 3. Furthermore, x4w2, x5w2 ∈ E(G), and it is possible that w2 is ad-
jacent to exactly one of x1, x2 or x3, which does not affect the following argument.
The set M ′ = {w1x1, w1x2, w1x3, w2x4} covers all vertices of G other than x5, so it
is edge dominating. Moreover, since any proper subset of M ′ does not dominate
some edge of the form xix5, M

′ is a minimal edge dominating set and we have a
contradiction since |M | = 3 < 4 = |M ′|. Therefore, for the remainder of the proof
we shall assume |I| > 2.

Note that we are assuming for all z ∈ K − {x, y}, N(z) ∩ I ⊆ {w1, w2}, k is
odd, and K = J . Without loss of generality, we may assume the vertices of K are
enumerated in such a way that x = x1 and y = x2; in particular, x1w1 ∈ E(G) and
x2w2 ∈ E(G). Furthermore, we may assume x2 has a neighbor w3 ∈ I − {w1, w2}.
Assume first there exists t ∈ K − {x1, x2} such that tw2 ∈ E(G). Reindexing if
necessary, we may write t = xk. Let M = {x1x2, x3x4, . . . , xk−2xk−1, xkw2}. Both
M and M ′ = {x1w1, x2w3, x3x4, x5x6, . . . , xk−2xk−1, xkw2} are maximal matchings
inG. However, |M | = k+1

2
< 3+ k−3

2
= |M ′|, which contradicts the assumption that

G is well-edge-dominated. Therefore, no such vertex t ∈ K exists; that is, N(xi)∩
I = {w1}, for all 3 ≤ i ≤ k. Moreover, a similar argument (by interchanging x1

and x3) may be used to show that x1w2 6∈ E(G). This implies that each vertex of
I − {w1} is a leaf adjacent to x2. Now the set M ′′ = {x1x3, x1x4, . . . , x1xk, x2w3}
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is an edge dominating set since all vertices of K are covered. Since x2w3 is its own
private neighbor with respect to M ′′ and M ′′ − {x1xj} does not dominate w1xj ,
for 3 ≤ j ≤ k, it follows that M ′′ is a minimal edge dominating set of G. On the
other hand, M = {x1x2, x3x4, . . . , xk−2xk−1, xkw1} is a maximal matching in G.
Since G is a well-edge-dominated graph, we infer that k+1

2
= |M | = |M ′′| = k − 1.

This implies that k = 3, and in this case G ∈ H2.
Finally, we may assume there do not exist distinct vertices x and y in J and

distinct vertices w1 and w2, such that w1 ∈ N(x) ∩ I and w2 ∈ N(y) ∩ I. Since
|I| ≥ 2 and G is connected, it follows that |J | = 1. Without loss of generality
we assume J = {x1} and every vertex of I is a leaf adjacent to x1. Let M =
{x1x2, x1x3, . . . , x1xk−1} and let M ′ = {x1x2, x3x4, . . . , xjxj+1}, where j = k − 1
if k is even and j = k − 2 if k is odd. It is easy to see that both M and M ′ are
minimal edge dominating sets, which implies that k − 2 = |M | = |M ′| =

⌊

k
2

⌋

. It
follows that k ∈ {3, 4}. If k = 4, then G ∈ H1. On the other hand, k = 3 gives
a contradiction since it yields a graph obtained by attaching at least two leaves
adjacent to one fixed vertex of K3. This graph is not well-edge-dominated as can
be easily shown. This completes the proof.

6 Cartesian products

This section is devoted to proving our characterization of well-edge-dominated
Cartesian products.

Lemma 5. Let G and H be nontrivial, connected graphs such that at least one

of G or H has order at least 3. If G has a perfect matching, then G�H is not

well-edge-dominated.

Proof. Suppose G admits a perfect matching M and suppose for the sake of con-
tradiction that G�H is well-edge-dominated. By “copying” M to each G-fiber
we see that G�H also has a perfect matching. Suppose G�H has order 2n. By
Theorem 3, it follows that G�H = K2n or G�H = Kn,n. This is a contradiction
since no graph of order at least 6 that is complete or complete bipartite is the
Cartesian product of nontrivial factors.

Proposition 3. Let G and H be nontrivial connected graphs, neither of which

has a perfect matching. If G�H is well-edge-dominated, then both G and H are

well-edge-dominated.

Proof. Let M = {e1, . . . , ek} be any maximal matching in G where ei = xiyi for
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i ∈ [k]. Let H be any connected graph with V (H) = {h1, . . . , hn}. Note that

P =
n
⋃

j=1

k
⋃

i=1

{(xi, hj)(yi, hj)}

is a matching in G�H . By Lemma 1, G�H −Ne[P ] is well-edge-dominated since
G�H is well-edge-dominated. Let I = V (G) − S(M). Since M is a maximal
matching that is not a perfect matching, the set I is nonempty and independent.
Therefore, the nontrivial components of G�H −Ne[P ] are isomorphic to H . This
implies H is well-edge-dominated. Similarly, G is well-edge-dominated.

Lemma 6. If G and H are connected, nontrivial graphs neither of which has a

perfect matching, then G�H is not well-edge-dominated.

Proof. Suppose to the contrary that there exist connected, nontrivial graphs G
and H , neither of which has a perfect matching, such that G�H is well-edge-
dominated. Thus, we may assume n(G) ≥ 3 and n(H) ≥ 3. By Proposition 3,
both G and H are well-edge-dominated. Let r be the matching number of G and s
be the matching number of H . Choose any maximal matching M1 = {e1, . . . , es}
in H and write ei = xiyi for i ∈ [s]. Let IH = V (H) − S(M1). Choose any
maximal matching MG = {f1, . . . , fr} in G and write fi = uivi for i ∈ [r]. Let
IG = V (G)− S(MG). Let

P1 =
⋃

g∈V (G)

s
⋃

i=1

{(g, xi)(g, yi)}

and

P2 =
⋃

h∈IH

r
⋃

i=1

{(ui, h)(vi, h)}.

Note that P1 ∪ P2 is a maximal matching in G�H since the only vertices in
G�H that are not covered by P1 ∪P2 are in IG × IH , which is an independent set
in G�H . Also,

|P1 ∪ P2| = sn(G) + (n(H)− 2s)r.

Next, choose a maximal matching M2 = {a1, . . . , as} in H such that S(M1) 6=
S(M2) and write ai = wizi for i ∈ [s]. Let L = V (H) − (S(M1) ∪ S(M2)),
L′ = S(M1)−S(M2), and L′′ = S(M2)−S(M1). Choose any maximal independent
set J in G and let N1 = {b1c1, . . . , btct} be a minimal edge dominating set of G−J .

Let

Q1 =
⋃

g∈V (G)−J

s
⋃

i=1

{(g, xi)(g, yi)},
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Q2 =
⋃

g∈J

s
⋃

i=1

{(g, wi)(g, zi)},

Q3 =
⋃

h∈L

r
⋃

i=1

{(ui, h)(vi, h)},

and

Q4 =
⋃

h∈L′′

t
⋃

i=1

({(bi, h)(ci, h)}.

We claim that Q = ∪4
i=1Qi is a minimal edge dominating set of G�H . If

g ∈ J , then Q2 ∩ E(gH) is an edge dominating set of gH . If g ∈ V (G)− J , then
Q1 ∩ E(gH) is an edge dominating set of gH . Thus, for every h1h2 ∈ E(H) and
every g ∈ V (G), the set Q1 ∪ Q2 dominates the edge (g, h1)(g, h2). Note that we
can write V (H) as a weak partition

V (H) = L ∪ L′ ∪ L′′ ∪ (S(M1) ∩ S(M2)).

If h ∈ L′ and g1g2 ∈ E(G), then Q1 dominates the edge (g1, h)(g2, h) since
J × L′ is independent and every vertex of (V (G) − J) × L′ is covered by Q1. If
h ∈ S(M1)∩S(M2) and g ∈ V (G), then (g, h) is covered by Q1∪Q2. If h ∈ L′′ and
g ∈ J , then (g, h) is covered by Q2. On the other hand, if h ∈ L′′ and (g1, h)(g2, h)
is an edge of G�H where neither g1 nor g2 is in J , then (g1, h)(g2, h) is dominated
by Q4. Finally, Q3 ∩ E(Gh) is an edge dominating set of Gh, for any h ∈ L since
MG is a maximal matching in G. Therefore, Q is an edge dominating set of G�H .

Next, we show Q is in fact a minimal edge dominating set. Let e be an arbitrary
edge in Q. If e ∈ Q1 ∪ Q2 ∪ Q3, then Q − {e} does not dominate e. If e ∈ Q4,
say e = (g1, h)(g2, h) where h ∈ L′′, then some edge in the subgraph induced
by (V (G) − J) × {h} is not dominated by Q − {e} since N1 is a minimal edge
dominating set of G− J . Thus, Q is a minimal edge dominating set of G�H .

Since G�H is well-edge-dominated, |P1 ∪ P2| = |Q| where

|Q| = |Q1|+ |Q2|+ |Q3|+ |Q4|

= (n(G)− |J |)s+ |J |s+ |L|r + |L′′|t

= n(G)s+ (n(H)− |S(M1)| − |S(M2)|+ |S(M1) ∩ S(M2)|)r

+(2s− |S(M1) ∩ S(M2)|)t

= n(G)s+ (n(H)− 4s+ |S(M1) ∩ S(M2)|)r + (2s− |S(M1) ∩ S(M2)|)t.

In particular, this means

n(G)s+(n(H)−2s)r = n(G)s+(n(H)−4s+|S(M1)∩S(M2)|)r+(2s−|S(M1)∩S(M2)|)t
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or equivalently
(|S(M1) ∩ S(M2)| − 2s)(r − t) = 0.

Note that |S(M1) ∩ S(M2)| 6= 2s since S(M1) 6= S(M2). Thus, r = t and every
minimal edge dominating set of G − J has cardinality r since N1 was chosen
arbitrarily. It follows that G − J is well-edge-dominated and γ′(G − J) = γ′(G).
Furthermore, we claim G−J contains a perfect matching. Suppose to the contrary
that G − J does not admit a perfect matching. Let A be any maximal matching
of G − J and let x be a vertex of G − J that is not covered by A. Since J is
a maximal independent set of G, there exists a vertex y ∈ J where xy ∈ E(G).
However, A∪{xy} is a matching in G of cardinality r+1, which is a contradiction.
Hence, A is a perfect matching of G− J , and so G− J is a well-edge-dominated,
randomly matchable graph. By Theorem 4, G−J = K4 or G−J = Kn,n for some
n ≥ 1.

Notice that since J is assumed to be a maximal independent set, each vertex
of G − J is adjacent to a vertex in J . Let e = wz be an arbitrary edge in A.
If there exists a pair u, v of distinct vertices in J such that u ∈ N(w) ∩ J and
v ∈ N(z)∩ J , then (A−{wz})∪ {uw, vz} is a matching in G of cardinality r+ 1,
which is a contradiction. It follows that |N(w) ∩ J | = 1 = |N(z) ∩ J |, and in
fact N(w) ∩ J = N(z) ∩ J . Since every edge of G − J can be extended to a
perfect matching of G − J and since G − J is connected, it follows that |J | = 1
and therefore G is a complete graph. This implies that G = K5, which is not
well-edge-dominated. This contradiction completes the proof.

Theorem 2 is restated here for ease of reference.

Theorem 2 If G and H are two connected, nontrivial graphs, then G�H is

well-edge-dominated if and only if G�H = K2�K2.

Proof. The Cartesian product K2�K2 is well-edge-dominated. Conversely, sup-
poseG andH are connected and nontrivial such thatG�H is well-edge-dominated.
By Lemma 6, at least one of G or H has a perfect matching, and then by Lemma 5
it follows that G�H = K2�K2.

7 Open Questions

In their study of connected, equimatchable graphs of girth at least 5, Frendrup,
Hartnell and Vestergaard [7] characterized the connected, well-edge-dominated
graphs of girth at least 5. In particular, they proved the following result.

Theorem 6. ([7]) If G is a connected graph with g(G) ≥ 5, then G is well-edge-

dominated if and only if G ∈ {K2, C5, C7} or G is bipartite with partite sets V1

and V2 such that V1 is the set of all support vertices of G.
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In Theorem 1 of this paper we showed that only one additional graph, namely
H∗, is added to the list of connected, well-edge-dominated graphs if the girth
restriction is lowered to 4 but we now require that the graph be nonbipartite.

A natural problem now presents itself.

Problem 1. Find a structural characterization of the class of connected, bipartite

graphs of girth 4 that are well-edge-dominated.

By Theorem 4 this class contains Kn,n, for any n ≥ 2 and by Theorem 2 it
does not contain any nontrivial Cartesian products other than K2�K2.

For graphs that contain a triangle, we have characterized the connected, split
graphs that are well-edge-dominated in Theorem 5. Determining the structure for
arbitrary well-edge-dominated graphs of girth 3 is an interesting problem.

Problem 2. Find a structural characterization of the class of connected graphs of

girth 3 that are well-edge-dominated.
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