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Abstract

LetD be a digraph. A subset S of V (D) is a stable set if every pair of ver-
tices in S is non-adjacent in D. A collection of disjoint paths P of D is a
path partition of V (D), if every vertex in V (D) is on a path ofP. We say
that a stable set S and a path partition P are orthogonal if each path of
P contains exactly one vertex of S. A digraph D satisfies the α-property

if for every maximum stable set S of D, there exists a path partition P
such that S and P are orthogonal. A digraph D is α-diperfect if every
induced subdigraph of D satisfies the α-property. In 1982, Claude Berge
proposed a characterization of α-diperfect digraphs in terms of forbid-
den anti-directed odd cycles. In 2018, Sambinelli, Silva and Lee proposed
a similar conjecture. A digraph D satisfies the Begin-End-property or
BE-property if for every maximum stable set S of D, there exists a path
partition P such that (i) S and P are orthogonal and (ii) for each path
P ∈ P, either the start or the end of P lies in S. A digraph D is
BE-diperfect if every induced subdigraph of D satisfies the BE-property.
Sambinelli, Silva and Lee proposed a characterization of BE-diperfect
digraphs in terms of forbidden blocking odd cycles. In this paper, we
show some structural results for α-diperfect and BE-diperfect digraphs.
In particular, we show that in every minimal counterexample D to both
conjectures, the size of a maximum stable set is smaller than |V (D)|/2.
As an application we use these results to prove both conjectures for
arc-locally in-semicomplete and arc-locally out-semicomplete digraphs.

1

http://arxiv.org/abs/2111.12168v1


2 α-diperfect and BE-diperfect digraphs

Keywords: Arc-locally in-semicomplete digraph, Diperfect digraph, Berge’s
conjecture, Begin-End conjecture

1 Notation

We consider that the reader is familiar with the basic concepts of graph theory.
Thus, this section is mainly concerned with establishing the notation used. For
details that are not present in this paper, we refer the reader to Bang-Jensen
and Gutin’s book [1] or to Bondy and Murty’s book [2].

Let D be a digraph with vertex set V (D) and edge set E(D). We only
consider finite digraphs without loops and multiple edges. Given two vertices
u and v of V (D), we say that u dominates v, denoted by u → v, if uv ∈ E(D).
We say that u and v are adjacent if u → v or v → u; otherwise we say that
u and v are non-adjacent. If every pair of distinct vertices of D are adjacent,
we say that D is a semicomplete digraph. A digraph H is a subdigraph of D if
V (H) ⊆ V (D) and E(H) ⊆ E(D); moreover, if every edge of E(D) with both
vertices in V (H) is in E(H), then we say that H is induced by X = V (H),
and we write H = D[X ]. If uv is an edge of D, then we say that u and v are
incident in uv. We say that two edges are adjacent if they have an incident
vertex in common; otherwise we say that they are non-adjacent. We say that
a digraph H is inverse of D if V (H) = V (D) and E(H) = {uv : vu ∈ E(D)}.

We say that a vertex u is an in-neighbor (resp., out-neighbor) of a vertex
v if u → v (resp., v → u). Let X be a subset of V (D). We denote by N−(X)
(resp.,N+(X)) the set of vertices in V (D)−X that are in-neighbors (resp., out-
neighbors) of some vertex of X . We define the neighborhood of X as N(X) =
N−(X) ∪N+(X); when X = {v}, we write N−(v), N+(v) and N(v). We say
that v is a source if N−(v) = ∅ and a sink if N+(v) = ∅. Furthermore, we
define the neighborhood of a subset X in a graph G, denoted by N(X), as the
set of vertices in V (G)−X that are adjacent of some vertex of X .

For disjoint subsets X and Y of V (D) (or subdigraphs of D), we say that
X and Y are adjacent if some vertex of X and some vertex of Y are adjacent;
X → Y means that every vertex of X dominates every vertex of Y , X ⇒ Y

means that there exists no edge from Y to X and X 7→ Y means that both of
X → Y and X ⇒ Y hold. When X = {x} or Y = {y}, we write x 7→ Y and
X 7→ y.

A path P in a digraph D is a sequence of distinct vertices P = v1v2 . . . vk,
such that for all vi ∈ V (P ), vivi+1 ∈ E(D), for 1 ≤ i ≤ k − 1. We say that P
starts at v1 and ends at vk; to emphasize this fact we may write P as v1Pvk.
We define the length of P as k−1. We denote by Pk the class of isomorphism of
a path of length k− 1. For disjoint subsets X and Y of V (D) (or subdigraphs
of D), we say that X reaches Y if there are u ∈ X and v ∈ Y such that there
exists a path from u to v in D. The distance from u ∈ V (D) to v ∈ V (D),
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denoted by dist(u, v), is the length of the shortest path from u to v. The
distance from X to Y is dist(X,Y ) = min{dist(u, v) : u ∈ X and v ∈ Y }.

A cycle C in a digraph D is a sequence of vertices C = v1v2 . . . vkv1 such
that v1v2 . . . vk is a path, vkv1 ∈ E(D) and k > 1. We define the length of
C as k. If k is odd, then we say that C is an odd cycle. We say that D is an
acyclic digraph if D does not contain cycles. The underlying graph of a digraph
D, denoted by U(D), is the simple graph defined by V (U(D)) = V (D) and
E(U(D)) = {uv : u and v are adjacent in D}. We say that C is a non-oriented
cycle if C is not a cycle in D, but U(C) is a cycle in U(D).

Let D be a digraph. A subset S of V (D) is a stable set if every pair of
vertices in S is non-adjacent in D. The cardinality of a maximum stable set
in D is called the stability number and is denoted by α(D). A collection of
disjoint paths P of D is a path partition of V (D), if every vertex in V (D)
belongs to exactly one path of P . Let S be a stable set of D. We say that S

and P are orthogonal if |V (P ) ∩ S| = 1 for every P ∈ P .
Let G be a connected graph. A clique is a set of pairwise adjacent vertices

of G. The clique number of G, denoted by ω(G), is the size of maximum
clique of G. We say that a vertex set B ⊂ V (G) is a vertex cut if G − B

is a disconnected graph. If G[B] is a complete graph, then we say that B is
a clique cut. A (proper) coloring of G is a partition of V (G) into stable sets
{S1, . . . , Sk}. The chromatic number of G, denoted by χ(G), is the cardinality
of a minimum coloring of G. We say that G is perfect if for every induced
subgraph H of G, the equality ω(H) = χ(H) holds. We say that a digraph D

is diperfect if U(D) is perfect.
A matching M in a graph G is a set of pairwise non-adjacent edges of

G. We denoted by V (M) the set of vertices incident on the edges of M . We
say that a vertex v is covered by M if v ∈ V (M). We also say that M is
a matching covering X ⊆ V (G) if X ⊆ V (M). An M -alternating path P in
G is a path whose edges are alternately in M and E(G) −M . If neither the
start nor the end of P is covered by M , then P is called an M -augmenting
path. A matching M in G is perfect if it covers V (G). We say that a subset of
edges of a digraph D is a matching if its corresponding set of edges in U(D)
is a matching. Moreover, we denote a bipartite (di)graph G with bipartition
(X,Y ) by G[X,Y ].

2 Introduction

Some very important results in graph theory characterize a certain class of
graphs (or digraphs) in terms of certain forbidden induced subgraphs (sub-
digraphs). The most famous one is probably Berge’s Strong Perfect Graph
Conjecture [3]. Berge showed that neither an odd cycle of length at least five
nor its complement is perfect. He conjectured that a graph G is perfect if and
only if it contains neither an odd cycle of length at least five nor its comple-
ment as an induced subdigraph. In 2006, Chudnovsky, Robertson, Seymour
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and Thomas [3] proved Berge’s conjecture, which became known as the Strong
Perfect Graph Theorem.

Theorem 1 (Chudnovsky, Robertson, Seymour and Thomas, 2006). A graph
G is perfect if and only if G contains neither an odd cycle of length at least
five nor its complement as an induced subgraph.

In this paper we are concerned with two conjectures on digraphs which are
somehow similar to Berge’s conjecture. Those conjectures relate path partitions
and stable sets. We need a few definitions in order to present both conjectures.

Let S be a stable set of a digraph D. An S-path partition of D is a path
partition P such that S and P are orthogonal. We say that D satisfies the
α-property if for every maximum stable set S of D there exists an S-path
partition of D, and we say that D is α-diperfect if every induced subdigraph
of D satisfies the α-property. A digraph C is an anti-directed odd cycle if (i)
U(C) = x1x2 . . . x2k+1x1 is a cycle, where k ≥ 2 and (ii) each of the vertices
x1, x2, x3, x4, x6, x8, . . . , x2k is either a source or a sink (see Figure 1).

v4

v2

v3v5

v1

(a)

v1 v2

v3

v4

v5

v6

v7

(b)

Fig. 1: Examples of anti-directed odd cycles with length five and seven,
respectively.

Berge [4] showed that anti-directed odd cycles do not satisfy the α-property,
and hence, they are not α-diperfect, which led him to conjecture the following
characterization for α-diperfect digraphs.

Conjecture 2 (Berge, 1982). A digraph D is α-diperfect if and only if D does
not contain an anti-directed odd cycle as an induced subdigraph.

Denote by B the set of all digraphs which do not contain an induced anti-
directed odd cycle. So Berge’s conjecture can be stated as: D is α-diperfect if
and only ifD belongs toB. In 1982, Berge [4] verified Conjecture 2 for diperfect
digraphs and for symmetric digraphs (digraphs such that if uv ∈ E(D), then
vu ∈ E(D)). In the next three decades, no results regarding this problem
were published. In 2018, Sambinelli, Silva and Lee [5, 6] verified Conjecture 2
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for locally in-semicomplete digraphs and digraphs whose underlying graph is
series-parallel. To the best of our knowledge these are the only particular cases
verified for this conjecture. For ease of reference, we state the following result.

Lemma 3 (Berge, 1982). Let D be a diperfect digraph. Then, D is α-diperfect.

In an attempt to understand the main difficulties in proving Conjecture 2,
Sambinelli, Silva and Lee [5, 6] introduced the class of Begin-End-diperfect
digraphs, or simply BE-diperfect digraphs, which we define next.

Let S be a stable set of a digraph D. A path partition P is an SBE-path
partition of D if (i) P and S are orthogonal and (ii) every vertex of S starts
or ends a path at P . We say that D satisfies the BE-property if for every
maximum stable set of D there exists an SBE-path partition, and we say that
D is BE-diperfect if every induced subdigraph of D satisfies the BE-property.
Note that if D is BE-diperfect, then it is also α-diperfect, but the converse is
not true (see the digraph in Figure 2(b)). A digraph C is a blocking odd cycle
if (i) U(C) = x1x2 . . . x2k+1x1 is a cycle, where k ≥ 1 and (ii) x1 is a source
and x2 is a sink (see Figure 2). Note that every anti-directed odd cycle is also
a blocking odd cycle. In the special case k = 1, we say that D is a transitive
triangle (see Figure 2(b)).

v4

v2

v3v5

v1

(a)

v2

v3

v1

(b)

Fig. 2: Examples of blocking odd cycles with length five and three,
respectively. We also say that the digraph in (b) is a transitive triangle.

Sambinelli, Silva and Lee [5, 6] showed that blocking odd cycles do not
satisfy the BE-property, and hence, they are not BE-diperfect, which led them
to conjecture the following characterization of BE-diperfect digraphs.

Conjecture 4 (Sambinelli, Silva and Lee, 2018). A digraph D is BE-diperfect
if and only if D does not contain a blocking odd cycle as an induced subdigraph.

Denote by D the set of all digraphs which do not contain an induced block-
ing odd cycle. So Conjecture 4 can be stated as: D is BE-diperfect if and
only if D belongs to D. Sambinelli, Silva and Lee [5, 6] verified Conjecture 4
for locally in-semicomplete digraphs and digraphs whose underlying graph are
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series-parallel or perfect. To the best of our knowledge these are the only partic-
ular cases verified for this conjecture. Note that a diperfect digraph belongs to
D if and only if it contains no induced transitive triangle. For ease of reference,
we state the following result.

Lemma 5 (Sambinelli, Silva and Lee, 2018). Let D be a diperfect digraph. If
D ∈ D, then D is BE-diperfect.

The rest of this paper is organized as follows. In Section 3, we present
some structural results which may be useful on approaching the general conjec-
tures. In particular, we show that if a digraph D is a minimal counterexample

for Conjecture 2 or Conjecture 4, then α(D) <
|V (D)|

2 . In Section 4, we
provide some results on structure of an arc-locally in-semicomplete digraph.
In Section 5, we verify Conjecture 4 for arc-locally in-semicomplete and for
arc-locally out-semicomplete digraphs. In Section 6, we verify Conjecture 2
for arc-locally in-semicomplete and for arc-locally out-semicomplete digraphs.
Finally, in Section 7, we present some conclusions.

3 Some structural results

In this section, we present some structural results for BE-diperfect digraphs
and α-diperfect digraphs. For the three initial lemmas, we need the celebrated
Hall’s theorem [7] and Berge’s theorem [8] about matching.

Theorem 6 (Hall, 1935). A bipartite graph G := G[X,Y ] has a matching
covering X if and only if |N(W )| ≥ |W | for all W ⊆ X.

Theorem 7 (Berge, 1957). A matching M in a graph G is a maximum
matching if and only if G has no M -augmenting path.

Lemma 8. Let G := G[X,Y ] be a bipartite graph. If G has no matching
covering X, then there exists a non-empty subset X ′ ⊆ X such that G[X ′ ∪
N(X ′)] has a matching covering N(X ′).

Proof Assume that there exists no matching covering X in G. By Theorem 6, there
exists a subset W of X such that |N(W )| < |W |; choose such W as small as possible.
By the choice of W , for every X′ ⊂ W (and hence, for X′ ⊂ X), it follows that
|N(X′)| ≥ |X′|. Let X′ be a subset of W with the same size as |N(W )|. Since for
every X∗ ⊆ X′, it follows that |N(X∗)| ≥ |X∗|, we conclude by Theorem 6 that the
graph G[X′ ∪N(X′)] has a matching covering X′ (and hence, N(W )). �

Lemma 9. Let S be a maximum stable set in a digraph D. Let X be a stable
set disjoint from S and let Y = N(X) ∩ S. Then, there exists a matching
between X and Y covering X.
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Proof Towards a contradiction, assume that there exists no matching between X and
Y covering X. By Theorem 6, there exists a subset W of X such that |N(W )| < |W |.
Since X ∩ S = ∅, it follows that (S −N(W ))∪W is a stable set larger than S in D,
a contradiction. �

Lemma 10. Let G := G[X,Y ] be a bipartite graph which has a matching
covering X. Then, for every Y ′ ⊂ Y , there exists a matching M covering X

such that the restriction of M to G[X ′∪Y ′], where X ′ = N(Y ′), is a maximum
matching of G[X ′ ∪ Y ′].

Proof Let Y ′ ⊂ Y . Let H := H [X′, Y ′] be a bipartite subgraph corresponding to
G[X′∪Y ′], whereX′ = N(Y ′). LetM be a matching coveringX such that |M∩E(H)|
as maximum as possible. Let M ′ = M ∩E(H). Towards a contradiction, assume that
M ′ is not maximum in H . By Theorem 7, there exists an M ′-augmenting path uPv
in H . Since P is odd, we may assume that u ∈ Y ′ and v ∈ X′. Since M covers X,
there exists w ∈ Y − Y ′ such that wv ∈ M . Since X′ = N(Y ′), u is not covered by
an edge of M . Thus M∗ = ((M−E(P ))∪(E(P )−M))−wv is a maximum matching
covering X such that |M∗ ∩ E(H)| > |M ∩E(H)|, a contradiction. �

The next two lemmas are important tools that we use in the forthcoming
sections.

Lemma 11. Let D be a digraph such that every proper induced subdigraph
of D satisfies the BE-property. Let S be a maximum stable set of D. If there
exists no matching between S and N(S) covering S, then D has an SBE-path
partition.

Proof Let H be the bipartite digraph obtained from D[S ∪ N(S)] by removing all
edges connecting vertices in N(S). Since there exists no matching covering S in H ,
by Lemma 8 there exists X ⊂ S such that H [X ∪N(X)] has a matching M covering
N(X). Let D′ = D − N(X). Since N(X) ∩ S = ∅, S is a maximum stable set in
D′. By hypothesis, D′ is BE-diperfect. Let P ′ be a SBE-path partition of D′. Since
V (D′)∩N(X) = ∅, every vertex in X is a path in P ′. Let PM be the set of paths in
D corresponding to the edges in M . Thus the collection (P ′ − (X ∩ V (M)))∪PM is
an SBE-path partition of D. �

Since an SBE-path partition is also an S-path partition, we conclude the
following result.

Lemma 12. Let D be a digraph such that every proper induced subdigraph of
D satisfies the α-property and let S be a maximum stable set of D. If there is
no matching between S and N(S) covering S, then D has an S-path partition.

�

The next lemma is very important and will be used extensively throughout
this paper.
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Lemma 13. Let D be a digraph such that every proper induced subdigraph of
D satisfies the BE-property. If D has a stable set Z such that |N(Z)| ≤ |Z|,
then D satisfies the BE-property.

Proof Let S be a maximum stable set of D. Since S is arbitrary, to show that D
satisfies the BE-property it suffices to show that D has an SBE-path partition. First,
we prove that there exists a perfect matching between Z and N(Z). Let Y = N(Z).
Since S is maximum, then |Z − S| ≤ |Y ∩ S|. Since |Z| ≥ |Y |, this implies that
|Z ∩ S| ≥ |Y − S|. By Lemma 11, we may assume that there exists a matching M1

between Z∩S and Y −S covering Z∩S. Since |Z| ≥ |Y | and |Z−S| ≤ |Y ∩S|, it follows
that |Z ∩ S| = |Y − S| and |Z − S| = |Y ∩ S|. By Lemma 9, there exists a matching
M2 between Z−S and Y ∩S covering Z−S. Thus, the matching M = M1∪M2 is a
perfect matching between Z and Y . Let PM be the set of paths in D corresponding
to the edges of M . Note that PM and S are orthogonal. Let S′ = S − V (M) and let
D′ = D − V (M). Let k = |S ∩ V (M)| = |Z| and note that |S′| = |S| − k. Assume
that S′ is not a maximum stable set of D′. Let S∗ be a maximum stable set of D′.
Since |S∗| > |S| − k and V (D′) ∩ (Z ∪ Y ) = ∅, it follows that S∗ ∪ Z is a stable set
larger than S in D, a contradiction. By hypothesis, D′ is BE-diperfect. Let P ′ be an
S′
BE-path partition of D′. Thus the collection P ′ ∪ PM is an SBE-path partition of

D. �

The next two theorems state that minimal counterexamples to Conjectures
2 and 4 cannot have large stability number.

Theorem 14. Let D be a digraph such that every proper induced subdigraph

of D satisfies the BE-property. If α(D) ≥ |V (D)|
2 , then D satisfies the BE-

property.

Proof Let S a maximum stable set of D. Let S = V (D)−S. By hypothesis, it follows
that |S| ≥ |S|, and hence, the result follows by Lemma 13. �

We omit the proof from the next theorem, since it is analogous to the proof
of Theorem 14, but we use Lemma 12 instead of Lemma 11.

Theorem 15. Let D be a digraph such that every proper induced subdigraph of

D satisfies the α-property. If α(D) ≥ |V (D)|
2 , then D satisfies the α-property.

�

The next three lemmas are more specific structural results and are used
in Sections 5 and 6 to verify Conjectures 4 and 2 for arc-locally (out) in-
semicomplete digraphs, respectively.

Lemma 16. Let D be a digraph such that every proper induced subdigraph
of D satisfies the BE-property. If V (D) contains disjoint nonempty subsets
U,X, Y such that X and Y are stable, N(Y ) ⊆ X, N(X) ⊆ U ∪ Y and every
vertex in U is adjacent to every vertex in X, then D satisfies the BE-property.
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Proof Let S be a maximum stable set of D. To show thatD satisfies the BE-property,
it suffices to show that D has an SBE-path partition. Note that N(Y ∩ S) ⊆ X − S
and N(X ∩S)∩ Y ⊆ Y − S. It follows by Lemma 9 that there exists a matching M1

between Y −S and X ∩S covering Y −S. By Lemma 11, we may assume that there
exists a matching M2 between Y ∩S and X−S covering Y ∩S. Let M = M1∪M2 be
a matching, and note that M covers Y . Let D′ = D−V (M) and let S′ = S−V (M).
Let k = |S ∩ V (M)| = |Y | = |V (M) ∩ X|. Assume that S′ is not a maximum
stable in D′. Let Z be a maximum stable set of D′. Thus, |Z| > |S′| = |S| − k. If
U ∩ Z 6= ∅, then since every vertex in U is adjacent to every vertex in X, it follows
that X ∩Z = ∅. Since N(Y )∩U = ∅ and Y is stable, it follows that the set Z ∪ Y is
stable and larger than S in D, a contradiction. So we may assume that U ∩ Z = ∅.
Since Y ∩Z = ∅, N(X) ⊆ U ∪Y and X is stable, it follows that Z ∪ (V (M)∩X) is a
stable set larger than S in D, a contradiction. Therefore, S′ is a maximum stable in
D′. By hypothesis, D′ is BE-diperfect. Let P ′ be an S′

BE-path partition of D′. Let
PM be the set of paths in D corresponding to the edges of M . Note that PM and S
are orthogonal. Thus the collection P ′ ∪ PM is an SBE-path partition of D. �

Lemma 17. Let D be a digraph such that every proper induced subdigraph of
D satisfies the BE-property. Let S be a maximum stable set of D. If D contains
a connected induced bipartite subdigraph H := H [X,Y ] such that Y ⊆ S,
N(X) ∩ S = Y , N(X) ∩N(Y ) = ∅ and every vertex in N(Y )−X is adjacent
to every vertex in N(X), then D admits an SBE-path partition.

Proof Note that X∩S = ∅ because H is connected and Y ⊆ S. Since S is a maximum
stable set and N(X)∩S = Y , it follows by Lemma 9 that there exists a matching M
between X and Y covering X. Let D′ = D−V (M) and let S′ = S−V (M). Note that
V (D′) ∩ X = ∅. Towards a contradiction, assume that S′ is not a maximum stable
set in D′ and let Z be a maximum stable set in D′. Note that |Z| > |S|− |V (M)∩Y |
and |V (M)∩Y | = |X|. If Z ∩ (N(Y )−X) = ∅, then V (D′)∩X = ∅ and we conclude
that Z ∪ (V (M) ∩ Y ) is a stable set in D larger than S, a contradiction. So we may
assume that Z ∩ (N(Y ) − X) 6= ∅. Since every vertex in N(Y ) − X is adjacent to
every vertex in N(X) and N(X) ∩ N(Y ) = ∅, it follows that N(X) ∩ Z = ∅. Thus
Z ∪ X is a stable set in D larger than S in D, a contradiction. Therefore, S′ is a
maximum stable set in D′. Let PM be the collection of paths corresponding to the
edges of M . By hypothesis, D′ is BE-diperfect. Let P ′ be an S′

BE-path partition of
D′. Thus the collection P ′ ∪ PM is an SBE-path partition of D. �

Lemma 18. Let D be a digraph such that every proper induced subdigraph of
D satisfies the BE-property. Let S be a maximum stable set of D. Let H :=
H [X,Y ] be an induced bipartite subdigraph of D such that N−(X) = Y , Y ⇒
X, Y ∩S = ∅ and N+(X ∩S) = ∅. If there exists no matching between X and
Y covering X, then D has an SBE-path partition.

Proof By Lemma 8, there exists a non-empty subset X′ ⊆ X such that D[X′ ∪
N−(X′)] has a matching M covering N−(X′). Let Y ′ = N−(X′) and let D′ =
D − Y ′. Since Y ∩ S = ∅, S is a maximum stable set in D′. By hypothesis, D′

is BE-diperfect. Let P ′ be an SBE-path partition of D. Since N−(X′) = Y ′ and
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N+(X′ ∩ S) = ∅, it follows that every vertex v in X′ starts a path in P ′ (if v /∈ S)
or v is itself a path in P ′ (if v ∈ S). Since Y ′ ⇒ X′, it is easy to see that using the
edges in M , we can add the vertices of Y ′ to paths in P ′ that starts at some vertex
in V (M) ∩X′, obtaining an SBE-path partition of D. �

4 Arc-locally (out) in-semicomplete digraphs

In this section, we extend the results in [9] and we provide more on structure
of an arc-locally in-semicomplete digraph. Let D be a digraph. We say that D
is arc-locally in-semicomplete (resp., arc-locally out-semicomplete) if for each
edge uv ∈ E(D), every in-neighbor (resp., out-neighbor) of u and every in-
neighbor (resp., out-neighbor) of v are adjacent or are the same vertex. Note
that the inverse of an arc-locally in-semicomplete digraph is an arc-locally
out-semicomplete digraph.

Arc-locally (out) in-semicomplete digraphs were introduced by Bang-
Jensen [10] as a common generalization of semicomplete and semicomplete
bipartite digraphs. Since then, these classes have been extensively studied in
the literature [9, 11–15].

Let us start with a class of digraphs which are closely related to
arc-locally in-semicomplete digraphs. Let Q be a cycle of length k ≥ 2
and let X1, X2, . . . , Xk be disjoint stable sets. The extended cycle Q :=
Q[X1, X2, . . . , Xk] is the digraph with vertex set X1 ∪X2 ∪ · · · ∪Xk and edge
set {xixi+1 : xi ∈ Xi, xi+1 ∈ Xi+1, i = 1, 2, . . . , k}, where subscripts are taken
modulo k. So X1 7→ X2 7→ · · · 7→ Xk 7→ X1. An extended cycle is odd if k is
odd (see Figure 3).

X4

X2

X3X5

X1

Fig. 3: Example of an odd extended cycle.

In [11], Wang and Wang characterized strong arc-locally in-semicomplete
digraphs. Recently, Freitas and Lee [9] characterized the structure of arbitrary
connected arc-locally in-semicomplete digraphs.
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Theorem 19 (Freitas and Lee, 2021). Let D be a connected arc-locally in-
semicomplete digraph. Then,

(i) D is a diperfect digraph, or
(ii) V (D) can be partitioned into (V1, V2, V3) such that D[V1] is a semicomplete

digraph, V1 7→ V2, V1 ⇒ V3, D[V2] is an odd extended cycle of length at
least five, V2 ⇒ V3, D[V3] is a bipartite digraph and V1 or V3 (or both) can
be empty, or

(iii) D has a clique cut.

The next lemma states that if V (D) admits a partition as described in
Theorem 19(ii) and V1 = ∅, then D does not contain cycle of length three.

Lemma 20. Let D be an arc-locally in-semicomplete digraph. Let (V1, V2, V3)
be a partition of V (D) as described in Theorem 19(ii). Then, the graph
U(D[V2 ∪ V3]) does not contain a cycle of length three.

Proof Let Q := Q[X1, X2, ..., Xk] be the odd extended cycle of length at least five
corresponding to D[V2]. Since U(D[V3]) is bipartite and Q is an extended cycle of
length at least five, it follows that both U(D[V3]) and U(Q) do not contain a cycle
of length three. Assume that U(D[V2 ∪ V3]) contains a cycle T of length three.
Note that V (T ) ∩ V2 6= ∅ and V (T ) ∩ V3 6= ∅. Since V2 ⇒ V3, it follows that T is
a transitive triangle in D[V2 ∪ V3]. Let V (T ) = {x1, x2, x3}. Now we consider two
cases, depending on the cardinality of |V (T ) ∩ V2|.

Case 1. |V (T ) ∩ V2| = 2. Let x1, x2 ∈ V2 and let x3 ∈ V3. Without loss of
generality, assume that x1x2 ∈ E(D), x1 ∈ X1, and x2 ∈ X2. Let xk ∈ Xk such
that xk → x1. Since x2 → x3, x1x3 ∈ E(D) and D is arc-locally in-semicomplete,
it follows that xk and x2 are adjacent, a contradiction to the fact that D[V2] is an
odd extended cycle of length at least five.

Case 2. |V (T ) ∩ V2| = 1. Let x1 ∈ V2 and let x2, x3 ∈ V3. Without loss of
generality, assume that x1 ∈ X1 and x2x3 ∈ E(D). Let xk ∈ Xk such that xk → x1.
Since x2 → x3, x1x3 ∈ E(D), V2 ⇒ V3 and D is arc-locally in-semicomplete, it
follows that xk → x2. Therefore, D[{xk , x1, x2}] is a transitive triangle and the result
follows by Case 1. �

The next lemma is more specific structural result.

Lemma 21. Let D be an arc-locally in-semicomplete digraph. Let H :=
H [X,Y ] be an induced connected bipartite subdigraph of D such that |X | ≥ 1,
|Y | ≥ 1 and X ⇒ Y . Let v be a vertex of D − V (H) that dominates some
vertex of X. If v ⇒ X, then v 7→ X.

Proof Let u be a vertex in X such that v → u. Let w be a vertex in X. Since H
is connected, U(H) has a path P = x1y1x2y2 . . . xk−1yk−1xk where x1 = u and
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xk = w; note that xi ∈ X and yi ∈ Y . We prove by induction that v dominates
each vertex xi in P . The base is trivial since v dominates x1 = u. Suppose that v
dominates xi−1. Since X ⇒ Y , we conclude that xi−1yi−1 ∈ E(D) and xi dominates
yi−1. Since D is arc-locally in-semicomplete, v and xi are adjacent; but v ⇒ X, and
hence, v → xi. So we conclude that v dominates w and thus v 7→ X. �

For the next lemma, we need to define some sets. Let D be an arc-locally
in-semicomplete digraph. Let (V1, V2, V3) be a partition of V (D) as described
in Theorem 19(ii). Recall that V1 7→ V2, V1 ∪ V2 ⇒ V3 and D[V2] is an odd
extended cycle of length at least five. Let Q := Q[X1, X2, . . . , Xk] be the odd
extended cycle corresponding to D[V2]. Let N0 = V2 and for d ≥ 1 denote
by Nd the set of vertices that are at distance d from V2. Note that Nd ⊆ V3

for d ≥ 1 because V1 7→ V2. For all i ∈ {1, 2, . . . , k}, denote by Ri (resp.,
Li) the subset of N+(Xi) consisting of those vertices that dominate (resp.,
are dominated by) some vertex in N+(Xi+1) (resp., N+(Xi−1)). Moreover,
let Ii = N+(Xi) − (Li ∪ Ri) and let Wi = N+(Li ∪ Ii ∪ Ri) ∩ N2. Note that
N+(Xi) = Li ∪ Ii ∪Ri (see Figure 4).

X1 X2 X3

L1 I1 R1

W1

L2 I2 R2

W2

L3 I3 R3

W3 N2

N1

Fig. 4: Illustration of sets Li, Ii, Ri e Wi.

Lemma 22. Let D be an arc-locally in-semicomplete digraph. Let (V1, V2, V3)
be a partition of V (D) as described in Theorem 19(ii). Let Q :=
Q[X1, X2, . . . , Xk] be the odd extended cycle of length at least five correspond-
ing to D[V2]. Then, the following hold.

(i) Nd is stable for all d ≥ 2,
(ii) there are no vertices xi ∈ Xi, xj ∈ Xj and y ∈ V3 such that i, j ∈

{1, 2, . . . , k}, i 6= j and {xi, xj} → y,
(iii) there are no vertices u ∈ N+(Xi), v ∈ N+(Xj) such that i, j ∈ {1, 2, . . . , k},

i 6= j, Xi and Xj are non-adjacent and u → v,
(iv) N+(Xi) ⇒ N+(Xi+1) for all i ∈ {1, 2, . . . , k},
(v) N−(Nd) ⊆ Nd−1 ∪ V1 for all d ≥ 1,
(vi) the digraph D[N1] does not contain a path of length two,
(vii) N+(Xi) is stable for all i ∈ {1, 2, . . . , k},
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(viii) the sets Li, Ii and Ri are pairwise disjoint, N−(Li) ⊆ Ri−1 ∪ Xi ∪ V1,
N−(Ii ∪ Ri) ⊆ Xi ∪ V1, N

+(Ri) ⊆ Wi ∪ Li+1, N
+(Li ∪ Ii) ⊆ Wi and

Xi 7→ Ri for all i ∈ {1, . . . , k},
(ix) N−(Wi) ⊆ Li ∪ Ii ∪Ri ∪ V1 for all i ∈ {1, 2, . . . , k}.

Proof (i) First, towards a contradiction assume there exists an edge uv with {u, v} ⊆
N2. Let x ∈ Q and y ∈ N1 such that x → y and y → v. Since D is arc-locally in-
semicomplete, it follows that u and x are adjacent. Since V2 ⇒ V3, it follows that
x → u, a contradiction because u ∈ N2. Therefore, N2 is a stable set. Towards a
contradiction assume there exists Nd with d > 2 which is not stable. Choose such Nd

with d as small as possible. Let u, v ∈ Nd such that u → v. Let x, y be the vertices
of Nd−1 that dominate u and v, respectively. Since D[V3] is bipartite, it follows that
x 6= y. Since D is arc-locally in-semicomplete, it follows that x and y are adjacent, a
contradiction to the choice of d.

(ii) Towards a contradiction, assume that there are vertices xi ∈ Xi, xj ∈ Xj

and y ∈ V3 such that i, j ∈ {1, 2, . . . , k}, i 6= j and {xi, xj} → y. Without loss
of generality, assume that i < j. By Lemma 20, xi and xj cannot be adjacent. So
Xi−1 6= Xj and Xj−1 6= Xi where indices are taken modulo k. Let xi−1 ∈ Xi−1

and let xj−1 ∈ Xj−1. Since xjy ∈ E(D), xi → y, xj−1 → xj and D is arc-locally
in-semicomplete, it follows that xi → xj−1, and hence, i = j − 2. Using the same
argument but with the roles of Xi and Xj exchanged, we conclude that j = i − 2.
This is a contradiction since k ≥ 5.

(iii) Towards a contradiction, assume that there are vertices u ∈ N+(Xi), v ∈
N+(Xj) such that i, j ∈ {1, 2, . . . , k}, i 6= j, Xi and Xj are non-adjacent and u → v.
Let xi be a vertex in Xi that dominates u and let xj be a vertex in Xj that dominates
v. Since uv ∈ E(D), xi → u, xj → v and D is arc-locally in-semicomplete, it follows
that xi and xj are adjacent, a contradiction since Xi and Xj are non-adjacent.

(iv) Towards a contradiction, assume without loss of generality that there exists
an edge uv ∈ E(D) such that u ∈ N+(X3) and v ∈ N+(X2). Let x3 be a vertex of
X3 that dominates u and let x2 be a vertex of X2 that dominates v. Let x1 ∈ X1.
Since x2v ∈ E(D), u → v, x1 → x2, u ∈ V3 and D is arc-locally in-semicomplete, it
follows that x1 → u contradicting (ii).

(v) Towards a contradiction, assume that for some d ≥ 1 and some j 6= d there
exists an edge uv ∈ E(D) such that v ∈ Nd, u ∈ Nj and j 6= d − 1. Choose such d
as small as possible. By the definition of Nd, it follows that j > d. Let y be a vertex
in Nd−1 that dominates v and let x be a vertex of Nd−2 that dominates y, if d ≥ 2,
otherwise let {y, x} ⊆ N0 = V2 such that x → y and y → v. Since yv ∈ E(D), u → v,
x → y and D is arc-locally in-semicomplete, it follows that u and x are adjacent.
By the definition of Nj , u → x. Since u ∈ V3 and V2 ⇒ V3, x /∈ V2; so d ≥ 3. Thus
x ∈ Nd−2 has an in-neighbor u ∈ Nj with j > d− 2, contradicting the choice of d.

(vi) Towards a contradiction, suppose that there exists a path P = u1u2u3 in
D[N1]. Let xi ∈ Xi be a vertex of Q that dominates u3. Since u1 → u2, u2u3 ∈ E(D),
xi → u3, D is arc-locally in-semicomplete and V2 ⇒ V3, it follows that xi → u1.
Let xi−1 ∈ Xi−1, xi−2 ∈ Xi−2 and xi−3 ∈ Xi−3 be vertices of Q where indices are
taken modulo k. So xi−3 → xi−2, xi−2 → xi−1 and xi−1 → xi. Since xi−1 → xi,
xiu3 ∈ E(D), u2 → u3, D is arc-locally in-semicomplete and V2 ⇒ V3, it follows
that xi−1 → u2. Analogously for xi−2, u1 and the edge xi−1u2, we conclude that
xi−2 → u1. Again, similarly for xi−3, xi and the edge xi−2u1, we conclude that xi−3
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and xi are adjacent, a contradiction to the fact that Q is an extended cycle of length
at least five.

(vii) Towards a contradiction, assume that there exists an edge u1u2 in E(D)
such that {u1, u2} ⊆ N+(Xi), for some i in {1, 2, . . . , k}. Let v1 and v2 be vertices of
Xi that dominate u1 and u2, respectively. By extended cycle definition, Xi is stable.
By Lemma 20, the graph U(D[V2 ∪ V3]) does not contain a cycle of length three,
and hence, v1 6= v2. Since u1u2 ∈ E(D), v1 → u1, v2 → u2 and D is arc-locally
in-semicomplete, it follows that v1 and v2 are adjacent, a contradiction to the fact
that Xi is a stable set.

(viii) By definition, Ii is disjoint from both Li and Ri; also by (vi) it follows
Li ∩ Ri = ∅ for all i ∈ {1, 2, . . . , k}. Now, towards a contradiction assume that
N−(Li ∪ Ii ∪ Ri) 6⊆ Ri−1 ∪Xi ∪ V1 for some i ∈ {1, 2, . . . , k}. Let v be a vertex in
V (D)− (Ri−1∪Xi∪V1) that dominates a vertex u in Li∪Ii∪Ri. By (ii), v 6∈ V (Q),
and by (v) it follows v 6∈ Nd for all d ≥ 2. Thus v ∈ N+(Xj) for some j 6= i. By (iv),

j 6= i+1 but this contradicts (iii); so N−(Li∪Ii∪Ri) ⊆ Ri−1∪Xi∪V1. By definition
of Li, Ii and Ri, it follows that N

−(Li) ⊆ Ri−1∪Xi∪V1 and N−(Ii∪Ri) ⊆ Xi∪V1.
No vertex in Li ∪ Ii ∪Ri dominates a vertex in N+(Xj) for j 6∈ {i− 1, i+1} by (iii),

nor a vertex in N+(Xi−1) ∪ V (Q) by (iv) and V2 ⇒ V3. By (vii), N+(Xi) is stable
for all i ∈ {1, 2, . . . , k}, and hence, N+(Ri) ⊆ Wi ∪ Li+1 and N+(Li ∪ Ii) ⊆ Wi.
Finally, let u ∈ Xi and let v ∈ Ri; we want to show that u → v. Let w ∈ Li+1 such
that v → w. Let x ∈ Xi+1 such that xw ∈ E(D); since u → x, v → w, V2 ⇒ V3 and
D is locally arc in-semicomplete, it follows that u → v.

(ix) Towards a contradiction, assume there exists i ∈ {1, 2, . . . , k} such that
N−(Wi) 6⊆ Li ∪ Ii ∪ Ri ∪ V1. Let v be a vertex in V (D) − (Li ∪ Ii ∪ Ri ∪ V1) that
dominates a vertex w in Wi. By (v), v ∈ N+(Xj) for some j 6= i. Let xj be a vertex
in Xj such xj → v and let u be a vertex in Li ∪ Ii ∪ Ri such that u → w. Since
V (Q) ⇒ V3, vw ∈ E(D), xj → v, u → w and D is arc-locally in-semicomplete, it
follows that xj → u. Let xi be a vertex in Xi such that xi → u. Thus {xi, xj} → u
which contradicts (ii). �

In next sections we verify Conjectures 2 and 4 for the class of arc-locally
(out) in-semicomplete digraphs. First, let D be an arc-locally in-semicomplete
digraph and let H be the inverse of D. Note that H is an arc-locally out-
semicomplete digraph. By definition, an SBE-path partition (resp., S-path
partition) of D is also an SBE-path partition (resp., S-path partition) in
H , but with the direction of the paths inverted. Thus D satisfies the BE-
property (resp., α-property) if and only if H satisfies the BE-property (resp.,
α-property). So from now on we aim to prove Conjectures 2 and 4 for arc-
locally in-semicomplete digraphs. Moreover, Sambinelli, Silva and Lee [5, 6]
proved the following lemmas.

Lemma 23 (Sambinelli, Silva and Lee, 2018). Let D be a digraph. If V (D) can
be partitioned into k subsets, say V1, V2, . . . , Vk>2, such that D[Vi] satisfies the

BE-property (resp., α-property) and α(D) =
∑k

i=1 α(D[Vi]), then D satisfies
the BE-property (resp., α-property).
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Lemma 24 (Sambinelli, Silva and Lee, 2018). Let D be a digraph. If D has a
clique cut, then V (D) can be partitioned into two subsets V1 and V2 such that
α(D) = α(D[V1]) + α(D[V2]).

Thus by Lemmas 23 and 24 if a digraph D is a minimal counterexample for
Conjectures 2 or 4, then D is connected and D has no clique cut. Moreover, by
Lemmas 3 and 5, Conjectures 2 and 4 hold for diperfect digraphs. So we may
assume that D is connected, not diperfect and has no clique cut. Therefore,
V (D) admits a partition as described in Theorem 19(ii).

5 Begin-End Conjecture

In this section we prove that Conjecture 4 holds for arc-locally (out) in-
semicomplete digraphs. Recall thatD denotes the set of all digraphs containing
no induced blocking odd cycle.

First we present an outline of the main proof. Let D be an arc-locally in-
semicomplete digraph. Note that every induced subdigraph of D is also an
arc-locally in-semicomplete digraph. Thus, it is suffices to show that D satisfies
the BE-property. By Theorem 19(ii), V (D) admits a partition (V1, V2, V3) as
described in the statement. First, we show that if D ∈ D, then V1 = ∅. Next,
we show that an extended cycle satisfies the BE-property. Finally, we show
that if V3 6= ∅, then D satisfies the BE-property. This last case is divided into
two subcases, depending on whether there exists a vertex v in V3 such that
dist(V2, v) ≥ 3 or not.

Lemma 25. Let D be an arc-locally in-semicomplete digraph. Let (V1, V2, V3)
be a partition of V (D) as described in Theorem 19(ii). If D ∈ D, then V1 = ∅.

Proof Towards a contradiction, assume that there exists v in V1. Let xy be an edge
of D[V2]. Since V1 7→ V2 and D[V2] is an extended cycle, it follows that D[{v, x, y}]
is a transitive triangle, a contradiction to the fact that D ∈ D. �

Next, we prove that an extended cycle satisfies the BE-property.

Lemma 26. If a digraph D ∈ D is an extended cycle, then D satisfies the
BE-property.

Proof Let D := D[X1, X2, . . . , Xk ] be an extended cycle and let S be a maximum
stable set of D. Recall that X1 7→ X2 7→ · · · 7→ Xk 7→ X1. If k is even, then D
is a bipartite digraph. Since a bipartite digraph is diperfect, the result follows by
Lemma 5. Thus, we may assume that k is odd. Note that for each Xi, it follows
that Xi ∩ S = ∅ or Xi ⊆ S, because Xi 7→ Xi+1 for all i ∈ {1, 2, . . . , k}. Also, if
Xi ∩ S = Xi, then Xi+1 ∩ S = Xi−1 ∩ S = ∅. Since k is odd, there exists some i
such that Xi ∩ S = Xi+1 ∩ S = ∅. Now we proceed to prove the result by induction
on |V (D)|.
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If D is an odd cycle, that is, each Xi is singleton, then the result follows easily.
Without loss of generality, assume that X1 ⊆ S and X2 ∩ S = X3 ∩ S = ∅. Let
P = x1x2x3 be a path with xi ∈ Xi for i ∈ {1, 2, 3}. Let D′ = D − {x1, x2, x3}
and let S′ = S − x1. We show next that S′ is a maximum stable set in D′. Towards
a contradiction, assume that S′ is not a maximum stable set in D′ and let Z be a
maximum stable set in D′. So |Z| > |S′| = |S| − 1, and this implies that |Z| = |S|.
Note that Z must necessarily contain one of the sets Xi − xi, i ∈ {1, 2, 3}, otherwise
Z ∪ X2 would be a stable set in D larger than S, a contradiction. Assume that
Xi − xi ⊆ Z for some i ∈ {1, 2, 3}. Thus Z ∪ xi is a stable set larger than S in D,
a contradiction. Therefore, S′ is maximum in D′. If D′ is disconnected, then D′ is
bipartite, and hence, satisfies the BE-property. If D′ is connected, then D′ is an odd
extended cycle with |V (D′)| < |V (D)|, and by induction hypothesis D′ satisfies the
BE-property. Let P ′ be an S′

BE-path partition of D′. Thus P ′ ∪ P is an SBE-path
partition D. This finishes the proof. �

Let D be an arc-locally in-semicomplete digraph. Let (V1, V2, V3) be a par-
tition of V (D) as described in Theorem 19(ii). Let Q := Q[X1, X2, . . . , Xk]
be the odd extended cycle of length at least five corresponding to D[V2].
Recall that Nd is the set of vertices that are at distance d from Q, Ri (resp.,
Li) the subset of N+(Xi) consisting of those vertices that dominate (resp.,
are dominated by) some vertex in N+(Xi+1) (resp., N+(Xi−1)). Moreover,
Ii = N+(Xi)− (Li ∪Ri) and Wi = N+(Li ∪ Ii ∪Ri) ∩N2.

Lemma 27. Let D be an arc-locally in-semicomplete digraph such that every
proper induced subdigraph of D satisfies the BE-property. Let (V1, V2, V3) be
a partition of V (D) as described in Theorem 19(ii). If Nd = ∅ for d ≥ 3 and
V1 = ∅, then D satisfies the BE-property.

Proof Let Q := Q[X1, X2, . . . , Xk] be the odd extended cycle of length at least
five corresponding to D[V2]. Let S be a maximum stable set of D. By hypothe-
sis, N+(N2) = ∅ and V1 = ∅. By Lemma 22(i) and (vii), it follows that Wi and
Li ∪ Ii ∪Ri are stable. Next, we prove some claims.

Claim 1. We may assume that N+(Li) = ∅ for all i ∈ {1, . . . , k}.
Assume that there exists i ∈ {1, 2, . . . , k} such that N+(Li) 6= ∅.

By Lemma 22(viii), N+(Li) ⊆ Wi and by Lemma 22(ix) it follows that
N−(Wi) ⊆ Li ∪ Ii ∪ Ri. Let H := H [X,Y ] be a maximal connected bipar-
tite subdigraph with edges between Li and N+(Li). Assume that X ⊆ Li and
Y ⊆ N+(Li) ⊆ Wi. Since Y ⊆ Wi, it follows by Lemma 22(v) that X ⇒ Y . By
Lemma 22(viii), the sets Li, Ii and Ri are disjoint. Towards a contradiction, assume
that there exists v ∈ Ii ∪ Ri such that v dominates a vertex u in Y . Let x ∈ X and
y ∈ Ri−1 be vertices such that x → u and y → x. Since v → u and D is arc-locally
in-semicomplete, we have that y and v are adjacent, and by Lemma 22(iv) it follows
that y → v, a contradiction to fact that v /∈ Li. Since H is maximal and connected,
Y ⊆ Wi and N−(Wi) ⊆ Li ∪ Ii ∪ Ri, it follows that N−(Y ) = X ⊆ Li. Let
U = N−(X). By Lemma 22(viii), U ⊆ Ri−1∪Xi. By Lemma 22(iv) and V2 ⇒ V3, it
follows that U ⇒ X. By Lemma 21 applied to U and H , U 7→ X. Since N+(Y ) = ∅,
N(Y ) = X. Since X and Y are stable, N(Y ) = X, N(X) = U ∪ Y and every vertex
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in U is adjacent to every vertex in X, it follows by Lemma 16 applied to U , X and
Y that D has an SBE-path partition. So we may assume that N+(Li) = ∅ for all
i ∈ {1, 2, . . . , k}. This ends the proof of Claim 1.

From now on, let I+i = N−(Wi) ∩ Ii for all i ∈ {1, 2, . . . , k}. The Figure 5
illustrates the structure of D applying Claim 1 and Lemma 22.

X1 X2 X3

L1 I1 R1

W1

L2 I2 R2

W2

L3 I3 R3

W3

Fig. 5: By Claim 1 and Lemma 22 D has this structure: the sets Li, Ii, Ri,
Wi and Xi are stable, Li ∩ Ii = ∅, Ii ∩Ri = ∅, Li ∩Ri = ∅,

N−(Wi) ⊆ I+i ∪Ri, N
−(Li) ⊆ Ri−1 ∪Xi, N

−(Ii ∪Ri) = X2, N
+(Li) = ∅,

N+(I+i ) ⊆ Wi, N
+(Ii − I+i ) = ∅ and N+(Ri) ⊆ Wi ∪ Li+1.

Claim 2. We may assume that Xi 7→ I+i ∪Ri ∪Xi+1 for all i ∈ {1, 2, . . . , k}.
Let i in {1, 2, . . . , k}. Since V (Q) ⇒ V3 and Q is an extended cycle, it follows

that Xi ⇒ I+i ∪Ri and Xi 7→ Xi+1. By Lemma 22(viii), Xi 7→ Ri. So it remains to

show that Xi 7→ I+i . Since V1 = ∅, it follows by Lemma 22(ix) and Claim 1 that

N−(Wi) ⊆ Ii ∪Ri. Let H := H [X,Y ] be a maximal connected bipartite subdigraph
with edges between I+i ∪ Ri and Wi. Assume that X ⊆ I+i ∪ Ri and Y ⊆ Wi.

Let U = N−(X). Since Y ⊆ Wi, it follows by Lemma 22(v) that X ⇒ Y . Since
V (Q) ⇒ V3 and X ⇒ Y , it follows by Lemma 21 applied to U and H that U 7→ X.
Since H is maximal and connected, if X ⊆ I+i , then N(X) = U ∪Y and N(Y ) = X,
and hence, it follows by Lemma 16 applied to U , X and Y that D has an SBE-path
partition. Thus, we may assume that X ⊆ I+i ∪ Ri and X 6⊂ I+i . Since Xi 7→ Ri,
it follows that U = Xi, and hence, Xi 7→ X. Since H is arbitrary, it follows that
Xi 7→ I+i . So we may assume that Xi 7→ I+i ∪ Ri ∪ Xi+1 for all i ∈ {1, 2, . . . , k}.
This ends the proof of Claim 2.

Claim 3. We may assume that if S∩Xi 6= ∅, then Xi ⊆ S for all i ∈ {1, 2, . . . , k}.
Assume that there exists i ∈ {1, 2, . . . , k} such that Xi ∩ S 6= ∅ and Xi 6⊆ S.

Without loss of generality, assume that i = 2. By Claim 2, X2 7→ I+2 ∪R2∪X3. Since

X1 7→ X2, it follows that (X1 ∪ I+2 ∪R2 ∪X3)∩S = ∅. Let S1 = S∩ (L2 ∪ (I2− I+2 ))
and let S2 = S ∩W1. Since X2 − S 6= ∅ and S is a maximum stable set, S1 must be
non-empty. By Claim 1, N+(L1) = N+(L2) = ∅. By hypothesis, N+(W1 ∪W2) = ∅
and V1 = ∅. By Lemma 22(ix), N−(W1) ⊆ I1 ∪ R1. By definition of I+2 and by

Lemma 22(viii), we have that N(I2 − I+2 ) ⊆ X2 and N−(L2) ⊆ R1 ∪ X2. Thus,

N(S1 ∪ S2) ⊆ I1 ∪R1 ∪X2. Since S is maximum and (X1 ∪X3 ∪ I+2 ∪R2)∩ S = ∅,
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we have |S1 ∪ S2| ≥ |N(S1 ∪ S2)|. By Lemma 13 applied to S1 ∪ S2 it follows that
D satisfies the BE-property. So we may assume that if S ∩Xi 6= ∅, then Xi ⊆ S for
all i ∈ {1, 2, . . . , k}. This ends the proof of Claim 3.

Claim 4. We may assume that there exists no i ∈ {1, 2, . . . , k} such that (Xi ∪
Xi+1 ∪Xi+2) ∩ S = ∅.

Without loss of generality, assume that i = 1. Since X1 7→ X2 7→ X3 and S
is maximum, it follows that (L2 ∪ I2 ∪ R2) ∩ S 6= ∅. Let S1 = S ∩ (L2 ∪ I2 ∪ R2)
and let S2 = S ∩ W1. By Claim 1, N+(L1) = N+(L2) = N+(L3) = ∅. By hypoth-
esis, N+(W1 ∪ W2) = ∅ and V1 = ∅. By Lemma 22(ix), N−(W1) ⊆ I1 ∪ R1 and
N−(W2) ⊆ I2 ∪R2. By Lemma 22(viii), N(L2 ∪ I2 ∪R2) ⊆ R1 ∪X2 ∪W2 ∪L3 and
N(I1 ∪R1) ⊆ X1 ∪W1 ∪L2. Thus N(S1 ∪ S2) ⊆ I1 ∪R1 ∪X2 ∪W2 ∪L3. Since S is
maximum and (X1∪X2∪X3)∩S = ∅, we have |S1∪S2| ≥ |N(S1∪S2)|, and hence, by
Lemma 13 applied to S1 ∪S2 it follows that D satisfies the BE-property. So we may
assume that there exists no i ∈ {1, 2, . . . , k} such that (Xi ∪Xi+1 ∪Xi+2) ∩ S = ∅.
This ends the proof of Claim 4.

Since Q is odd, there exists i ∈ {1, . . . , k} such that (Xi ∪Xi+1) ∩ S = ∅. With-
out loss of generality, assume that (X2 ∪X3) ∩ S = ∅. By Claim 3 and 4, it follows
that X1 ∪X4 ⊆ S. By Claim 1, N+(L2) = ∅. Since X1 ⊆ S, (X2 ∪X3) ∩ S = ∅, we
conclude that (L1 ∪ I1 ∪ R1) ∩ S = ∅ and W1 ∪ L2 ⊆ S. The rest of the proof is
divided into two cases, depending on whether R2 6= ∅ or R2 = ∅.

Case 1. R2 6= ∅. First, assume that (I+2 ∪ R2) ∩ S 6= ∅. Let H := H [X,Y ] be

a maximal connected bipartite subdigraph with edges between (I+2 ∪ R2) ∩ S and

W2 ∪ L3. Assume that Y ⊆ (I+2 ∪ R2) ∩ S and X ⊆ W2 ∪ L3. By hypothesis and

by Claim 1, we have N+(W2 ∪ L3) = ∅. By Lemma 22(viii) and (ix), it follows
that N(X) ⊆ I+2 ∪ R2 ∪ X3 and N(Y ) ⊆ X ∪ X2. Note that N(X) ∩ N(Y ) = ∅.
Since X3 ∩ S = ∅ and H is maximal and connected, N(X) ∩ S = Y . By Claim 2,
X2 7→ (I+2 ∪ R2 ∪ X3), and hence, every vertex in N(Y ) − X is adjacent to every
vertex in N(X). Thus by Lemma 17 applied to H it follows that D has an SBE-path
partition.

So we may assume that (I+2 ∪ R2) ∩ S = ∅. Since (X2 ∪X3) ∩ S = ∅, it follows

that W2 ∪L3 ⊆ S, I2− I+2 ⊆ S and I3− I+3 ⊆ S. Now, let X := W2 ∪L3 ∪ (I3− I+3 )
and let Y = N(X). Note that X ⊆ S and Y ∩ S = ∅. By Lemma 22(viii) and (ix),
Y ⊆ I+2 ∪R2∪X3. Let H = D[X∪Y ] be a bipartite subdigraph of D. Note that X, Y
is a bipartition of H . Since X ⊆ S and Y = N(X), by Lemma 11 we may assume
that there exists a matching between X and Y covering X. We show next that M
covers I+2 ∪ R2. By Lemma 22(viii), N+(I+2 ∪ R2) = W2 ∪ L3. Thus by Lemma 10
applied to U(H) there exists a matching M between X and Y covering X such that
the restriction of M on U(H [I+2 ∪ R2 ∪ W2 ∪ L3]) is a maximum matching. Since

(X2 ∪ I+2 ∪R2)∩ S = ∅, N(I+2 ∪R2)∩ S = W2 ∪ L3. Thus by Lemma 9 there exists

a matching between I+2 ∪ R2 and W2 ∪ L3 covering I+2 ∪ R2, and this implies that

M covers I+2 ∪R2.

Let D′ = D−V (M) and let S′ = S−X. Since M covers X and I+2 ∪R2, we have

V (D′)∩ (X ∪ I+2 ∪R2) = ∅. Assume that S′ is not a maximum stable set in D′ and
let Z be a maximum stable set in D′. So |Z| > |S′| = |S| − |X| = |S| − |V (M) ∩ Y |.
By Claim 2, X3 7→ I+3 ∪R3 ∪X4. Since X2 7→ X3, if Z ∩ (X2 ∪ I+3 ∪R3 ∪X4) 6= ∅,
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then X3 ∩ Z = ∅. Since (I+2 ∪ R2) ∩ V (D′) = ∅, Z ∪X is a stable set larger than S

in D, a contradiction. So we may assume that Z ∩ (X2 ∪ I+3 ∪ R3 ∪ X4) = ∅. Thus
Z ∪ (V (M) ∩ Y ) is a stable set larger than S in D, a contradiction. Therefore, S′ is
a maximum stable set in D′. Let PM be the set of paths in D corresponding to the
edges of M . By hypothesis, D′ is DE-diperfect. Let P ′ be an S′

BE-path partition of
D′. Thus the collection P ′ ∪ PM is an SBE-path partition of D.

Case 2. R2 = ∅. First, we prove that W2 = ∅. By Claim 2, X2 7→ I+2 ∪ X3.

By Claim 1, N+(L2) = ∅. Suppose that W2 6= ∅. Let H := H [X,Y ] be a maximal
connected bipartite subdigraph with edges between I+2 andW2. Assume thatX ⊆ I+2
and Y ⊆ W2. Since R2 = ∅ and H is maximal and connected, we conclude that
N(Y ) = X and N(X) = X2 ∪ Y . Since X2 7→ X, it follows by Lemma 16 applied to
X2, X and Y that D has an SBE-path partition. So we may assume that W2 = ∅.
Since X1 ⊆ S and (X2 ∪X3) ∩ S = ∅, it follows that X1 ∪W1 ∪ L2 ∪ I2 ⊆ S.

Let X := W1 ∪ L2 ∪ I2 ∪ X3 and let Y = N−(X). Note that X 6= ∅ because
X3 6= ∅. By Lemma 22(viii) and (ix), it follows that Y = I+1 ∪R1 ∪X2 and Y ⇒ X.
Let H = D[X ∪ Y ] be a bipartite subdigraph of D. Note that X,Y is a bipartition
of H . Since N+(W1) = ∅ and W2 = ∅, we conclude that N+(X ∩ S) = ∅. By Claim
2, X1 7→ I+1 ∪ R1 ∪X2. Since X1 ⊆ S, Y ∩ S = ∅. Thus by Lemma 18 applied to H
we may assume that there exists a matching M between X and Y covering X.

Let D′ = D − X3. Since X3 ∩ S = ∅, it follows that S is maximum in D′. By
hypothesis, D′ is BE-diperfect. Let P ′ be an SBE-path partition of D′. Let PM

be the set of paths corresponding to the edges of M ∩ E(D′). If PM = ∅, then
W1 ∪ I+1 ∪ R1 ∪ L2 ∪ I2 = ∅. Since X2 ∩ S = ∅, every vertex in X2 ends a path in
P ′. Since X2 7→ X3 and M covers X3, it is easy to see that using the edges of M , we
can add the vertices of X3 to paths in P ′ that ends at some vertex in X2, obtaining
an SBE-path partition of D. So we may assume that PM 6= ∅. Let PY be the set of
paths of P ′ such that V (P ) ∩ Y 6= ∅ for all P ∈ PY . Since X1 ⊆ S, (X −X3) ⊆ S
and Y is a stable set, it follows that every path in PY has length one. Moreover,
every P ∈ PY starts at some vertex of X1 or ends at some vertex of X − X3. Let
P∗ = (P ′ −PY ) ∪ PM . Note that every vertex of X −X3 is an end of some path in
P∗. Also, note that there might be some vertex of Y which does not belong to any
path in P∗. Since P ′ is an SBE-path partition of D′, every vertex in Y belongs to
some path of P ′ and since every vertex in X−X3 belongs to some path in P∗, there
are at least |Y − V (M)| vertices in X1 that do not belong to any path of P∗. Since
X1 7→ I+1 ∪R1∪X2, we can add to P∗ the path u → v where v ∈ Y −V (M) and u is
a vertex in X1 that does not belong to any path of P . Since M covers X3, there are
at least |X3| paths in P∗ that end in vertices of X2. So it easy to see that using the
edges of M , we can add the vertices of X3 to paths in P∗ that ends at some vertex
in X2, obtaining an SBE-path partition of D. This finishes the proof. �

Lemma 28. Let D be an arc-locally in-semicomplete digraph such that every
proper induced subdigraph of D satisfies the BE-property. Let (V1, V2, V3) be a
partition of V (D) as described in Theorem 19(ii). If Nd 6= ∅ for some d ≥ 3
and V1 = ∅, then D satisfies the BE-property.

Proof Let Nd 6= ∅ such that d is maximum. Note that d ≥ 3. By Lemma 22(i),
the sets Nd and Nd−1 are stable. Since V1 = ∅, it follows by Lemma 22(v) that
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N−(Nd) ⊆ Nd−1, N
−(Nd−1) ⊆ Nd−2 and N−(Nd−2) ⊆ Nd−3, this implies that

Nd−2 ⇒ Nd−1 and Nd−1 ⇒ Nd. LetH := H [X,Y ] be a maximal connected bipartite
subdigraph with edges between Nd−1 and Nd. Assume that X ⊆ Nd−1 and Y ⊆ Nd.
Let U = N−(X). Since U ⇒ X and X ⇒ Y , it follows by Lemma 21 applied to
U and H that U 7→ X. By the choice of d, N+(Y ) = ∅. Since H is maximal and
connected, we conclude that N(Y ) = X and N(X) = U ∪Y . Since U 7→ X, it follows
by Lemma 16 applied to U , X and Y that D has an SBE-path partition. �

Now, we ready for the main result of this section.

Theorem 29. Let D be an arc-locally in-semicomplete digraph. If D ∈ D,
then D is BE-diperfect.

Proof Since every induced subdigraph of D is also an arc-locally in-semicomplete
digraph, it suffices to show that D satisfies the BE-property. If D is diperfect or D
has a clique cut, then the result follows by Lemmas 5, 23 and 24. So we may assume
that V (D) can be partitioned into (V1, V2, V3) as described in Theorem 19(ii). By
Lemma 25, V1 = ∅. If V3 = ∅, then the result follows by Lemma 26. Then, by
Lemmas 27 and 28 it follows that D satisfies the BE-property. This finishes the proof.

�

Let D be an arc-locally in-semicomplete digraph and let H be the inverse of
D. Since D satisfies the BE-property if and only if H satisfies the BE-property,
we have the following result.

Theorem 30. Let D be an arc-locally out-semicomplete digraph. If D ∈ D,
then D is BE-diperfect. �

6 Berge’s conjecture

In this section we prove that Conjecture 2 holds for arc-locally (out) in-
semicomplete digraphs. Recall that we denote by B the set of all digraphs
containing no induced anti-directed odd cycle.

First we present an outline of the main proof. Let D be an arc-locally
in-semicomplete digraph. Since every induced subdigraph of D is also an arc-
locally in-semicomplete digraph, it is suffices to show that D satisfies the α-
property. By Theorem 19(ii), V (D) admits a partition (V1, V2, V3) as described
in the statement. First, we show that if V1 = ∅, then D satisfies the α-property.
Next, we show that an extended cycle satisfies the α-property (it is analogous
to the proof of Lemma 26). Finally, we show that if V1 6= ∅, then D satisfies
the α-property.

For the next two lemmas we need the following auxiliary lemma.

Lemma 31 (Freitas and Lee, 2021). If D is an arc-locally in-semicomplete
digraph, then D contains no induced non-oriented odd cycle of length at least
five.
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Lemma 32. Let D be an arc-locally in-semicomplete digraph such that every
proper induced subdigraph of D satisfies the α-property. Let (V1, V2, V3) be a
partition of V (D) as described in Theorem 19(ii). If V1 = ∅, then D satisfies
the α-property.

Proof Since V1 = ∅, it follows by Lemma 20 that U(D) does not contain a cycle
of length three. Note that a blocking odd cycle is a non-oriented odd cycle. So by
Lemma 31 D contains no blocking odd cycle as an induced subdigraph, and hence,
D ∈ D. Since D ∈ D, it follows by Theorem 29 that D satisfies the BE-property, and
hence, the α-property. �

The next lemma states that if a digraph D is an extended cycle, then D

satisfies the α-property. We omit its proof since it is analogous to the proof of
Lemma 26, but we use Lemma 3 instead of Lemma 5.

Lemma 33. If a digraph D is an extended cycle, then D satisfies the α-
property. �

Let D be an arc-locally in-semicomplete digraph. By Theorem 19(ii), V (D)
admits a partition (V1, V2, V3) such that D[V1] is a semicomplete digraph,
V1 7→ V2, V1 ⇒ V3 and V2 ⇒ V3.

Lemma 34. Let D be an arc-locally in-semicomplete digraph such that every
proper induced subdigraph of D satisfies the α-property. Let (V1, V2, V3) be a
partition of V (D) as described in Theorem 19(ii). If V1 6= ∅, then D satisfies
the α-property.

Proof Let S be a maximum stable set of D. The proof is divided into two cases,
depending on whether S ∩ V1 = ∅ or S ∩ V1 6= ∅.

Case 1. S ∩ V1 = ∅. Let D′ = D − V1. Note that S is maximum in D′. By
hypothesis, D′ is α-diperfect. Let P ′ be an S-path partition of D′. Since V2 ⇒ V3,
there exists a path xPy in P ′ such that x in V2. Since D[V1] is a semicomplete
digraph, it follows that D[V1] is diperfect. By Lemma 3, D[V1] satisfies the α-
property; this implies that there exists a Hamiltonian path uP ′v in D[V1]. Since
v 7→ V2, v → x. Let R = uP ′vxPy be a path formed by the concatenation of P ′ and
P . Thus the collection (P ′ − P ) ∪ R is an S-path partition of D.

Case 2. S ∩ V1 6= ∅. Since V1 7→ V2, S ∩ V2 = ∅. Let Q := Q[X1, X2, . . . , Xk ] be
the odd extended cycle of length at least five corresponding to D[V2]. Let xi ∈ Xi for
all i ∈ {1, 2, . . . , k} and let C = x1x2 . . . xkx1 be a cycle of D. Let D′ = D − V (C).
Since V (C) ∩ S = ∅, S is maximum in D′. By hypothesis, D′ is α-diperfect. Let
P ′ be an S-path partition of D′. The rest of proof is divided into two subcases,
depending on whether V (Q) 6= V (C) or V (Q) = V (C).

Case 2.1. V (Q) 6= V (C). First, suppose that there exists a vertex vi ∈ Xi − xi
that starts (resp., ends) a path viPw (resp., wPvi ) in P ′ for some i ∈ {1, 2, . . . , k}.
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Let xiP
′xi−1 (resp., xi+1P

′xi) be a path in C containing V (C). By definition
of extended cycle, xi−1 → vi (resp., vi → xi+1). Let R = xiP

′xi−1viPw (resp.,
R = wPvixi+1P

′xi) be a path. Thus the collection (P ′ − P ) ∪ R is an S-path
partition of D. So we may assume that there exists no vertex in V (Q)− V (C) that
starts or ends a path of P ′. Thus there exists a vertex vi ∈ Xi − xi such that vi
is an intermediate vertex in a path xPy of P ′ for some i ∈ {1, 2, . . . , k}. Let w be
the vertex of P that dominates vi. Let xP1w and viP2y be the subpaths of P . Since
xi, vi belong to the same Xi of Q and V2 ⇒ V3, it follows that w ∈ V1 ∪Xi−1. Since
V1 ∪Xi−1 7→ Xi, w → xi. By definition of extended cycle, xi−1 → vi. Let xiP

′xi−1

be a path in C containing V (C). Let R = xP1wxiP
′xi−1viP2y be the path formed

by inserting P ′ between P1 and P2. Thus the collection (P ′ − P ) ∪ R is an S-path
partition of D.

Case 2.2. V (Q) = V (C). Since D′ = D−V (C), V (D′) = V1∪V3. Since D[V1] is
a semicomplete digraph, α(D[V1]) = 1. Since α(D[V (Q)]) > 1, S ∩V1 6= ∅ and S is a
maximum stable set in D, it follows that V3 6= ∅. Recall that Nd is the set of vertices
that are at distance d from Q. Since V1 7→ V2, Nd ⊆ V3 for d ≥ 1. By Lemma 22(v),
N−(N1) ⊆ V (Q) ∪ V1. Assume that there exists a vertex v in N1 such that v starts
a path vPw in P ′. Without loss of generality, assume that x1 ∈ V (C) dominates v
in D. Let x2P

′x1 be a path in C containing V (C). Let R = x2P
′x1vPw be the path

formed by the concatenation of P ′ and P . Thus the collection (P ′ − P ) ∪ R is an
S-path partition of D. So we may assume that there exists no vertex v in N1 such
that v starts a path in P ′. Since N−(N1) ⊆ V (Q) ∪ V1 and V1 ⇒ V3, there exists
a path xPy in P ′ such that P contains vertices w ∈ V1 and v ∈ N1 where w → v.
Let xP1w and vP2y be the subpaths of P . Without loss of generality, assume that
x1 ∈ V (C) dominates v in D. Let x2P

′x1 be a path in C containing V (C). Since
V1 7→ V2, w → x2. Let R = xP1wx2P

′x1vP2y be the path formed by inserting P ′

between P1 and P2. Thus the collection (P ′ − P ) ∪ R is an S-path partition of D.
This finishes the proof. �

Now, we are ready for the main result of this section.

Theorem 35. Let D be an arc-locally in-semicomplete digraph. If D ∈ B,
then D is α-diperfect.

Proof Since every induced subdigraph of D is also an arc-locally in-semicomplete
digraph, it suffices to show that D satisfies the α-property. If D is diperfect or D
has a clique cut, then the result follows by Lemmas 3, 23 and 24. So we may assume
that V (D) can be partitioned into (V1, V2, V3) as described in Theorem 19(ii). If
V1 = V3 = ∅, then by Lemma 33 D satisfies the α-property. So V1 ∪ V3 6= ∅. If
V1 = ∅, then the result follows by Lemma 32. If V1 6= ∅, then the result follows by
Lemma 34. �

Similarly to Theorem 30, we have the following result.

Theorem 36. Let D be an arc-locally out-semicomplete digraph. If D ∈ B,
then D is α-diperfect. �
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7 Conclusion

In this paper, we have shown some structural results for α-diperfect digraphs
and BE-diperfect digraphs. In particular, the Theorems 14 and 15 state that
if a digraph D is a minimal counterexample to both conjectures, then α(D) <
|V (D)|

2 . This result suggests that dealing with digraph with small stability
number may be the most difficult part of both conjectures. We also have shown
that both conjectures hold for arc-locally (out) in-semicomplete digraphs.

Moreover, Conjectures 2 and 4 are somehow similar to Berge’s conjecture
on perfect graphs (nowadays known as Strong Perfect Graph Theorem). Fur-
thermore, for more than three decades no results regarding Conjecture 2 were
published. This suggests that both problems may be very difficult.
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