
ar
X

iv
:2

20
1.

00
86

5v
1 

 [
m

at
h.

C
O

] 
 3

 J
an

 2
02

2

CONSTRUCTIONS OF SARVATE-BEAM GROUP DIVISIBLE DESIGNS
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Abstract. A balanced incomplete block design is a set system in which all pairs of distinct

elements occur with a constant frequency. By contrast, a Sarvate-Beam design induces an interval
of distinct frequencies on pairs. In this paper, we settle the existence of a Sarvate-Beam variant
of group divisible designs of uniform type with block size three.

1. Introduction

Given a set system (V,B), let us say that the frequency of X ⊆ V equals
∑

B∈B 1X⊆B, the number of
members of B (counting multiplicity) that contain X . A t-design is a set system in which all sets of
size i ≤ t have a constant frequency λi. An important special case is that of a Steiner triple system,
where |B| = 3 for every B ∈ B and all two-element subsets have frequency 1. Letting v = |V |, a
Steiner triple system on v elements is known to exist [5] if and only if v ≡ 1, 3 (mod 6). As in this
case, our attention in what follows restricted to frequencies of 2-subsets.

For the recursive construction of designs or for certain experimental applications, it can be useful to
have some frequencies equal to zero. With this in mind, a group divisible design is a triple (V,Π,B),
where V is a set equipped with a partition Π = {V1, . . . , Vu} into ‘groups’, and B is a collection of
subsets of V called ‘blocks’, such that

• every pair of elements in the same group has frequency zero, and
• every pair of elements in different groups has frequency one.

This is abbreviated as a k-GDD of type gu1

1
gu2

2
· · · gus

s when the block size is a constant k and there
are exactly gi groups of size ui, i = 1, . . . , s. Here, we are normally interested in the special case of
‘uniform’ group size; that is, GDDs of type gu.

Sarvate and Beam [9] introduced a new condition for set systems in which all 2-subsets have a differ-

ent frequency. They called such a set system an ‘adesign’, focusing the definition on constant block
size k. With no additional restrictions, it is usually easy to construct adesigns. A more challenging
special case, now called a Sarvate-Beam design SBµ(v, k), demands that the pair frequencies form
an interval {µ, µ+1, . . . , µ+

(

v
2

)

− 1} of distinct values. Since the total of the pairwise frequencies is

equal to
(

k

2

)

times the number of blocks, a necessary divisibility for the existence of an SBµ(v, k) is

(1.1)
(

k
2

)

divides µ
(

v
2

)

+ 1

2

(

v
2

) ((

v
2

)

− 1
)

.

An SBµ(v, 3) is called a Sarvate-Beam triple system and abbreviated SBTSµ(v). With k = 3,
condition (1.1) reduces to v ≡ 0, 1 (mod 3) or µ ≡ 0 (mod 3). Ma, Chang and Feng in [6] settled
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the existence of Sarvate-Beam triple systems in the case µ = 1 for all admissible v > 3, although they
used the term ‘strictly pairwise distinct triple system’ and the notation sPDTS(v) to mean what we
call an SBTS1(v). Then, Dukes and Short-Gershman [4] proved that the necessary conditions for
existence of SBTSµ(v) are sufficient for arbitrary µ ≥ 0, with the exception (v, µ) = (4, 0).

Our focus in this paper is a generalization inspired by GDDs. A Sarvate-Beam group divisible design

(SBGDD) is a triple (V,Π,B) where V is a set, Π = {V1, . . . , Vu} is a partition of V into ‘groups’
and B is a multiset of subsets of V called ‘blocks’, such that

• every pair of elements in the same group has frequency zero, and
• the frequencies of 2-element subsets across different groups are consecutive integers.

We restrict our attention to the case in which all blocks have size three. The type of an SBGDD is the
integer partition of v = |V | induced by the group sizes |Vi|. Of particular interest is the uniform case
where all group sizes are equal, say |Vi| = g for each i. Following the convention used in (ordinary)
GDDs, we use exponential notation gu to abbreviate the type of an SBGDD. To emphasize that the
starting frequency equals µ, we use the notation SBGDDµ.

In slightly different language, existence of an SBGDDµ of type gu is equivalent to a multiset of

triangles in the complete multipartite graph Ku ·Kg covering the edges with frequencies µ, µ+1, µ+
2, . . . , µ + g2

(

u

2

)

− 1. The existence of SBGDDs was first considered by Moolsombut and Hemakul
[7], where a few small examples were given.

We begin with the important case µ = 0. Note that the total of all pair frequencies equals

1

2
g2
(

u

2

) (

g2
(

u

2

)

− 1
)

≡ 0 (mod 3)

for any integers g and u since both g2 and
(

u
2

)

are either 0 or 1 (mod 3).

From the definition, u ≥ 3 is necessary for the existence of an SBGDD of type gu. The boundary
case u = 3 has an interesting alternate interpretation. A Sarvate-Beam cube SBC(n) is an n×n×n

array in which each cell contains a nonnegative integer and such that the 3n2 line sums cover the
interval of integers {0, 1, . . . , 3n2−1}. The above definition was introduced in [4], and example cubes
were given for n = 2, 3. In [3], it was shown that SBC(n) exist for every positive integer n ≥ 2. An
SBC(n) is equivalent to a SBGDD of type n3 in the following way: the (a, b, c)-entry of the SBC
gives the frequency of triple {(a, 1), (b, 2), (c, 3)} on the point set V = [n]× [3], where group partition
Π = {[n] × {i} : i = 1, 2, 3} is used. It is clear that the line sums through the cube correspond to
the total frequency of pairs from different groups.

Our main result decides the existence of uniform SBGDDs with starting frequency zero.

Theorem 1.1. For integers g ≥ 1 and u ≥ 3, there exists an SBGDD0 of type gu, with the

exception of (g, u) = (1, 4).

As mentioned above, the case g = 1 was previously settled in [4] and the case u = 3 was recently
settled in [3]. The result here is a common generalization and the proof is constructive.

The rest of the paper is arranged as follows. In the next section, we review some background on
group divisible designs, especially those with mixed block sizes. Then, in Section 3, we give a broad
recursive construction for SBGDDs that carries most of the subsequent results. The idea behind
this construction is actually very simple: we obtain an SBGDD if its underlying graph can be edge-
decomposed into tiles, each of which realizes a sub-interval of the needed range of frequencies. In
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Section 4, some special ‘atomic’ constructions are given. For the proof of the main result, which
occurs in Section 5, these seed designs are inflated and/or combined to tackle the cases u = 4, 5, 6, 8,
at which point our recursion is relatively easily able to settle the remaining values of u. Finally, in
Section 6, we give some minor modifications of our constructions to handle larger starting frequencies
µ > 0.

2. Background on group divisible designs

This section collects some background existence results on group divisible designs that will come
in handy later. We begin by discussing the extremal case in which every block traverses the group
partition. A transversal design TD(k, n) is a k-GDD of type nk. A TD(k, n) is equivalent to a
set of k − 2 mutually orthogonal latin squares (MOLS) of order n; see for instance [1, III.3.18]. In
particular, there exists a finite field construction when n ≥ k − 1 is a prime power. From this and
the data on MOLS in [1, III.3.81] we obtain existence in many cases when k is small. The following
is enough for our purposes.

Lemma 2.1 (See §III of [1]).

(a) There exists a TD(k, n) if n has a factorization into prime powers, each at least k − 1.
(b) For k ∈ {3, 4, 5}, there exists a TD(k, n) provided (k, n) 6∈ {(4, 2), (4, 6), (5, 2), (5, 6), (5, 10)}.

Next, it is useful to consider group divisible designs with mixed block sizes. If the set of allowed
block sizes in a GDD is K ⊆ {2, 3, · · · }, the abbreviation K-GDD is used. Note that it is not
necessary for every integer in K to be realized as a block size, but only that block sizes belong to K.
In the case that |V | = v and Π is the partition into singletons, we obtain a pairwise balanced design,
or PBD(v,K). Such designs are foundational for R.M. Wilson’s classical existence theory [10, 11]
for 2-designs.

Lemma 2.2. The following GDDs exist:

(a) 3-GDD of type 24 (e) 3-GDD of type 26

(b) {3, 5}-GDD of type 25 (f) {3, 5}-GDD of type 28

(c) 4-GDD of type 35 (g) 4-GDD of type 38

(d) {3, 4}-GDD of type 36 (h) {4, 5}-GDD of type 58.

Proof. The cases with a single block size are straightforward point-deletions of finite geometries
or other known small designs. We highlight the more subtle constructions.

(b) Start from an incomplete triple system of order 11 with a hole H of order 5. (We refer the
reader to [1, 2] for a formal definition and constructions.) Delete an element x 6∈ H , and remove all
blocks incident with x. The removal of these blocks induces a partition of the remaining points into
5 groups, each of size 2. All other blocks are kept, and H is turned into a block.

(d) From a Kirkman triple system of order 15 (see again [1, 2]), turn one parallel class into a set of
groups, producing a resolvable 3-GDD of type 35. Now, extend three parallel classes into blocks of
size four, each joined to a new point in a sixth group.

(f) This is similar to (b), except starting from an incomplete triple system of order 17.

(h) Delete one group G from a 5-GDD of type 59, one example of which appears in [1, VI.16.31].
Any blocks which intersect G are reduced to have size four. �
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It is useful to have various group divisible designs that facilitate ‘lifting’ an interval of frequences
to achieve larger starting values. Let λ be a nonnegative integer. A GDD of index λ is a triple
(V,Π,B), where V and Π are as before, and B is a collection of blocks such that

• every pair of elements in the same group has frequency zero, and
• every pair of elements in different groups has frequency λ.

If all blocks have size three, this is abbreviated as a (3, λ)-GDD. The group type is abbreviated with
the usual exponential notation.

Example 2.3. An SBGDDµ of type 23 can be constructed as the multiset union of blocks of an
SBGDD0 of type 23 (equivalent to a Sarvate-Beam cube of order 2) and a (3, µ)-GDD on the same
points and groups (obtainable from µ copies of a 3-GDD of type 23).

It is easy to see that 3-GDDs of type m3 exist for every positive integer m, as these are equivalent
to m ×m latin squares. The next result gathers some results for 3-GDDs having four, five, six, or
eight groups. The object referenced in part (c) is called an ‘incomplete group divisible design’. For
our purposes it is enough to say that this is equivalent to a {3, 5}-GDD of type m5 with a single
block of size 5 that is removed from the block family B. The reader is referred to [1, IV.1.37] for
more details on IGDDs.

Lemma 2.4 (See [12]). Let m and λ be positive integers. There exists:

(a) a (3, λ)-GDD of type m4 if m or λ is even;

(b) a (3, λ)-GDD of type m5 if 3 | m or 3 | λ;
(c) a 3-IGDD of type (m; 1)5 if 3 ∤ m.

(d) a (3, λ)-GDD of type m6 if m or λ is even;

(e) a (3, λ)-GDD of type m8 if m is even, and 3 | m or 3 | λ.

3. Recursive constructions

The recursive constructions for Sarvate-Beam GDDs to follow are similar in spirit to similar con-
structions for classical block designs. The key difference is that the intervals of pair frequencies in
ingredient SBGDDs must be abutted to form a longer interval in the resultant SBGDD. We begin
with an illustrative example.

Example 3.1 (SBGDD of type 27). Consider the Fano plane on elements V = {0, 1, . . . , 6} whose
blocks are the (mod 7) translates of {0, 1, 3}. We construct an SBGDD of type 27 on the set
V ×{1, 2}. Each element x is replaced by two elements (x, 1) and (x, 2). Every block of the design is
replaced by an SBGDD of type 23. The list of frequencies so produced is 07, 17, . . . , 117, where there
are seven occurrences of each frequency in the ingredient design. In order to have the frequency lists
form an interval, we ‘lift’ the frequencies from the ith block {i, 1 + i, 3 + i} by 12i, i = 0, 1, . . . , 6.
This can be done by appending 12i copies of a GDD of type 23 (equivalent to a latin square of side
2) on the corresponding points. After doing so, on {i, 1 + i, 3 + i} × {1, 2}, pairs of elements (with
distinct first coordinates) occur in the resultant design with frequencies 12i, 12i+1, . . . , 12i+11. In
this way, the full list of frequencies obtained is 0, 1, . . . , 12× 6 + 11, as desired.

The construction of Example 3.1 is reminiscent of Wilson’s fundamental construction, [10], where
small ingredient GDDs are aligned on blocks of a master design to produce a larger GDD. A tech-
nicality for Sarvate-Beam GDDs, however, is that the ingredients must have the correct starting
frequencies, either by lifting via an (ordinary) GDD, as in the example, or otherwise via a direct
construction.
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There are two situations we encounter in the sequel where this technicality requires careful attention.
The first occurs when we wish to replace blocks of size four with SBTSµ(4). If every block of
the master design has size four, there is no way to choose a starting block to obtain frequencies
0, 1, . . . , 5, since an SBTS0(4) does not exist. In this situation, we make a small adjustment to
the ordering of frequencies at the beginning. Choose five blocks of the form {a, b, c, d}, {a, x, ∗, ∗},
{b, x, ∗, ∗}, {c, y, ∗, ∗}, {d, y, ∗, ∗}, where it is not important that the starred points be distinct across
the different blocks. On {a, b, c, d}, instead of an SBTS(4), we use the multiset of triples {a, b, c},
{b, c, d}, {b, c, d}, which induces pair frequencies 0, 1, 1, 2, 2, 3. Next, include three copies of {a, b, x}
and three copies of {c, d, y}, so that {a, b} has frequency 4 and {c, d} has frequency 5. This gives the
correct interval of frequencies on {a, b, c, d}. Now, the other four blocks are assigned triples so as to
achieve the remaining frequencies from 0 to 29. An illustration is shown in Figure 1. After handling
these first five blocks, the remaining blocks can be replaced as usual by SBTSµ(4) to produce the
desired SBGDD.

0

1

2

3

+3 +3

5, 6, 7,
9, 10, 11

15, 16, 17,
11, 12, 13

23, 24, 25,
27, 28, 29

21, 22, 23,
17, 18, 19

Figure 1. Starting frequencies using blocks of size four

The other case which requires some attention is when we wish to replace more than one block of
size 5 with SBTSµ(5), which do not exist unless 3 | µ. An SBTS(5) placed on the first such block
block would cover frequencies 0, 1, . . . , 9, but the next could not begin at 10. To overcome this
problem, we make a small shuffle to the frequency lists covered by the next blocks. Observe that
the configuration of triples {a, b, c}, {a, d, e}, {b, d, e}, {c, d, e} induces pair frequencies 1, 1, . . . , 1, 3.
And, the complete (5, 3, 3)-design on points a, b, c, d, e lets us lift frequencies on these pairs by a
multiple of three. So, taking the multiset union of blocks of an SBTS(5), three complete designs,
and the configuration above, we can produce frequency list 10, 11, . . . , 18, 21. Next, taking nine
copies of the configuration in which exactly one pair is omitted as the threefold covered pair, we
can produce frequency list 9, 11, . . . , 11. Take the multiset union with SBTS(5) so that the pair of
frequency 1 is aligned with the pair of frequency 9. This produces frequency list 10, 11, 13, 14, . . . , 20.
Lifting as before with three complete designs, we obtain frequency list 19, 20, 22, 23, . . . , 29. Using
this variant on lifting frequencies, we can take blocks of size five three at a time and form a long
interval of frequencies. Table 1 summarizes the above combinations of frequencies. A similar tactic
can be applied to blocks of size 8; see [8] for details. In all applications to follow, the number of
blocks of size 5 or 8 is congruent to 0 or 1 (mod 3); that is, we are never left with an unpatched
hole in the frequency list.

Our main recursive construction, which gives an analogue of Wilson’s fundamental construction, can
be stated in the language of graphs. Roughly speaking, it says that an SBGDD can be built ‘by
tiles’ which decompose the edges of the underlying complete multipartite graph.
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pair ab ac ad ae bc bd be cd ce de

SBTS 0 1 3 2 5 4 7 6 8 9
(5, 3, 9)-design 9 9 9 9 9 9 9 9 9 9

one configuration 1 1 1 1 1 1 1 1 1 3
totals 10 11 13 12 15 14 17 16 18 21

pair ab ac ad ae bc bd be cd ce de

SBTS 0 1 3 2 5 4 7 6 8 9
(5, 3, 9)-design 9 9 9 9 9 9 9 9 9 9
9 configurations 11 9 11 11 11 11 11 11 11 11

totals 20 19 23 22 25 24 27 26 28 29

Table 1. Variant on lifting frequencies for blocks of size five

Construction 3.2. Suppose the complete multipartite graph Ku ·Kg has an edge-decomposition

into subgraphs G1, G2, . . . , Gk and, for each Gi, there exists a multiset of triangles which cover the

edges of Gi with frequency list [si−1, si − 1], where s0 = µ and in general si = µ +
∑

j<i |E(Gj)|.
Then there exists an SBGDDµ of type gu.

Often in our use of Construction 3.2, the graphs Gi are simply taken as cliques, for instance from
blocks in a master design, to be replaced in the construction by SBTS. More generally, we can
let Gi be complete multipartite graphs and replace with known SBGDDs. Referencing the special
situations above, we can if necessary choose some Gi as an edge-disjoint union of five cliques of size
four (see Figure 1), or three edge-disjoint cliques of order 5 or 8.

4. Special constructions

This section contains some small examples of SBGDDs which are useful as ingredients to our recursive
constructions. The first few with group size g = 2 were found with computer-assisted search.

Example 4.1 (SBGDD of type 24; see also [4]). With group partition {{a, a′}, {b, b′}, {c, c′}, {d, d′}},
the following block multiplicities form an SBGDD of type 24.

ab′c ab′c′ 2ab′d 2ab′d′ 3acd 4acd′ 4ac′d 5ac′d′

a′bd′ a′b′d a′b′d′ a′cd 2a′cd′ 2a′c′d 3a′c′d′ 6bcd
8bcd′ 6bc′d 7bc′d′ 7b′cd 7b′cd′ 10b′c′d 8b′c′d′

Example 4.2 (SBGDD of type 25 with a sub-SBTS(5)). With group partition {{a, a′}, . . . , {e, e′}},
the following block multiplicities result in frequencies 10, 11, . . . , 39 on pairs of the form {x, y′} or
{x′, y′}.

10ae′c′ 3ae′b′ ac′b′ 10ad′b′ 2be′c′ 11be′a′ 4be′d′ 7bc′a′ 15bc′d′

8ba′d′ 9ce′a′ 13ce′d′ 6ce′b′ 3ca′b′ 12cd′b′ 7de′c′ 9de′b′ 5dc′a′

7dc′b′ 13da′b′ 6ec′a′ 6ec′d′ 8ec′b′ 13ea′d′ 4ea′b′ 3ed′b′ 4e′c′a′

6e′c′d′ 6e′c′b′ 5e′a′d′ 5e′a′b′ 3e′d′b′ 6c′a′d′ 5c′a′b′ 3c′d′b′ 7a′d′b′

6



If we take the multiset union with an SBTS(5) on {a, b, . . . , e}, the result is an SBGDD of type
25. Moreover, using copies of a 3-IGDD of type (2; 1)5, we can raise the starting frequency of our
‘incomplete’ SBGDD to any integer µ ≥ 10.

Example 4.3 (SBGDD of type 26 with a sub-SBTS(6)). Similar to the previous example, we

can begin with an SBTS(6) on {a, b, . . . , f}, and then realize larger frequencies starting at
(

6

2

)

= 15
using blocks of the form {x, y′, z′} or {x′, y′, z′}. There is considerable freedom in assigning block
multiplicities to accomplish this: for instance, one can begin with 7ab′c′, 8ab′d′, 9ab′e′ so that ab′

has frequency 7+8 = 15, and ac′ has frequency 7+9 = 16, and so on. Multiplicities for blocks of the
form {x′, y′, z′} to finish off the construction are found without much difficulty by computer. More
details on the methodology can be found in the second author’s dissertation [8]. See the appendix
for a complete list of block multiplicities; the first row of the block list gives a sub-SBTS(6).

Example 4.4 (SBGDD of type 28). This construction uses the existence of an SBGDD of type
26 with two appended groups of size two. An SBC(2) is placed on the two new groups with each of
the original groups. Unfortunately the pair frequencies do not abut perfectly, as the points between
the two added groups are covered in the blocks of every Sarvate-Beam cube. In order to reduce
the four pair frequencies of the added points, ad-hoc block swaps are performed. The blocks and
multiplicities are listed in the appendix.

We note a few other useful small SBGDDs, where now we are able to begin to use Construction 3.2
to assemble them in pieces.

Proposition 4.5. There exists an SBGDD of type 3u for each u ∈ {4, 5, 8}.

Proof. Referring to Lemma 2.2, begin with a 4-GDD of type 3u. Apply Construction 3.2, replacing
blocks with SBTSµ(4). Here, we take care to reserve five blocks of size 4 for starting the interval of
frequencies, as described in Section 3. �

Proposition 4.6. There exists an SBGDD of type 36.

Proof. We apply Construction 3.2 by decomposingK6·K3 into the direct productK6×K3 and three
copies of K6 on the independent sets of the product. In [3], it is shown that there exists a multiset
of triangles in K6 ×K3 that cover the |E(K6 ×K3)| = 90 edges with frequencies 0, 1, 2, . . . , 89. To
this, we include SBTSµ(6), µ = 90, 105, 120 on each of the sets of size 6. This produces the desired
SBGDD. �

Proposition 4.7. There exists an SBGDD of type 58.

Proof. Take a {4, 5}-GDD of type 58 and replace blocks with SBTSµ(4) or SBTSµ(5). We note
that not all blocks have size four; hence, we may begin the interval of frequencies using at least one
SBTSµ(5), and finish using SBTSµ(4) with µ > 0. �

5. Combining the constructions

We begin by highlighting a few instances of Construction 3.2 carried by well known designs. This
sets the stage for the proof of Theorem 1.1 in two steps, first for u ∈ {4, 5, 6, 8}, and then for other
values of u.
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5.1. TD template. The idea here is to use a transversal design as a template, or ‘master’ design,
replacing blocks with SBTSµ (or minor variations thereof).

Lemma 5.1. Suppose there exists a TD(k, n), where n > 1 and k ∈ {4, 5, 6, 8}. Then there exists

an SBGDD of type nk.

Proof. We replace each block B of the TD with an SBTSµ(|B|) so that the frequency intervals
abut. In the case k = 4, we take care to apply the adjustment outlined in Section 3 to the first five
blocks. For k ∈ {5, 8}, we apply the frequency interleaving technique to three blocks at a time, as
detailed in Section 3. �

Remarks. This result holds with the same proof for any k ≡ 0, 1 (mod 3), but for our application
to follow it is enough to focus on the indicated block sizes. Note that extending the proof to k ≡ 2
(mod 3), k ≥ 11, would require an interleaving strategy for larger blocks.

We also remark that incomplete transversal designs can be used in a minor variant of this con-
struction for situations when a TD(k, n) is unavailable. For instance, an SBGDD of type 64 can be
constructed from an SBGDD of type 24 and a pair of orthogonal latin squares missing a common
2× 2 subsquare. More details are given in [8].

5.2. GDD inflation. We have the following analogue of Wilson’s fundamental construction.

Lemma 5.2. Suppose there exists a {3, 4, 5}-GDD of type gu. Suppose further that, for each block

size k present in this GDD, there exists an SBGDD of type mk which has a sub-SBTS(5) in the

event that k = 5 and 3 ∤ m. Then there exists an SBGDD of type (mg)u.

Proof. Let (X,B) be the hypothesized GDD. Give every point weight m, so that the resultant set
of points is X × [m]. For each block B ∈ B, say with |B| = k, we replace it with an SBGDD of type
mk on B × [m], where in the case k = 5 and 3 ∤ m we use instead an SBIGDD of type (m; 1)5.

Note that we may lift frequencies of such designs using either a 3-GDD of type m|B| or 3-IGDD
of type (m; 1)5, respectively. In the case when 3 ∤ m, we take care to first set aside and order the
blocks of size 5, replacing with SBTS(5) and applying the interleaved lifting method in Section 3 so
that frequencies from such blocks form an interval. Then, we ensure that the SBGDDs of type m3,
m4, m5 (or SBIGDDµ(m; 1)5) have abutting frequency lists. �

Remarks. Note that we may take m = 1 in the event that no blocks of size three occur in the
GDD. Or, if the GDD has exclusively blocks of size three, then the conclusion holds automatically
for any m ≥ 2 in view of the existence [3] of Sarvate-Beam cubes of order m.

5.3. Proof of the main result. As noted earlier, the case g = 1 was settled in [4, 6] and the case
u = 3 was settled in [3]. The remaining cases are handled by the following two results.

Proposition 5.3. There exists an SBGDD of type gu for any g ≥ 2 and u ∈ {4, 5, 6, 8}.

Proof. Suppose first that u ∈ {4, 5}. Lemma 5.1 produces an SBGDD of type gu except when the
corresponding TD is not available, namely for g ∈ {2, 6} or in the case 105. When g = 2, we have
a direct construction. For 64, we apply Lemma 5.2 to a 3-GDD of type 24, giving weight 3. For 65,
we apply Lemma 5.2 to a 4-GDD of type 35, giving weight 2. Finally, for 105, we apply Lemma 5.2
to a 5-GDD of type 55 (i.e. an affine plane with one parallel class removed), giving weight 2.
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Next, suppose u ∈ {6, 8}. We divide the argument according to the prime factorization of g. Suppose
first that every prime divisor of g is at least u−1. There exists a TD(u, g) by Lemma 2.1(a), and hence
an SBGDD of type gu by Lemma 5.1. On the other hand, suppose g has a prime divisor p < u− 1,
so that (p, u) ∈ {(2, 6), (2, 8), (3, 6), (3, 8), (5, 8)}. In each of these cases, we have constructed an
SBGDD of type pu. Suppose now that g = pm, m ≥ 2. By Lemma 2.2, there exists a {3, 4, 5}-GDD
of type pu. Also, there exists an SBGDD of type mk for each k ∈ {3, 4, 5} from [3] and the first part
of the proof. So it follows from Lemma 5.2 that there exists an SBGDD of type gu. �

Proposition 5.4. There exists an SBGDD of type gu for any g ≥ 2 and u = 7 or u ≥ 9.

Proof. For the stated values of u, there exists a PBD(u, {3, 4, 5}) (see [1, IV.3.23]) which is equiv-
alently a {3, 4, 5}-GDD of type 1u. Also, there exists an SBGDD of type gk for each k ∈ {3, 4, 5} by
Proposition 5.3. The result now follows by letting g take the role of m in Lemma 5.2. �

A summary of cases of the proof for g > 1 is shown in Table 2.

u ↓ g → 2 3 5 6 10 other
3 Sarvate-Beam cubes
4 special 4-GDD TD GDD×3 TD
5 special 4-GDD TD GDD×2 GDD×2 TD
6 special special TD or GDD×m

8 special 4-GDD {4, 5}-GDD TD or GDD×m

7,≥ 9 from PBD(u, {3, 4, 5}

Table 2. Summary of constructions for SBGDDs

6. Larger starting frequencies

Using 3-GDDs to raise frequencies, and with a few other minor variations to the ingredients, we can
settle the existence of SBGDDs having any starting frequency µ > 0. We first consider the recursive
constructions, u = 7 or u ≥ 9, followed by special constructions for u ∈ {3, 4, 5, 6, 8}. In general,
whenever a recursive construction uses an SBTS0(k) to replace a block of size k, we may instead use
an SBTSν(k); however, the latter object only exists [4] when 3 | ν or k ≡ 0, 1 (mod 3).

For starting frequencies µ ≡ 0 (mod 3), the modification is straightforward. Replacing blocks of size
5 in the cases µ ≡ 1, 2 (mod 3) needs to be handled slightly differently. We consider each congruence
class in turn.

For µ ≡ 1 (mod 3), append one configuration to the first SBTS(5), as in Table 1, so that the pair
frequencies covered are 1, 2, 3, . . . , 9, and 12. To the second copy of SBTS(5), similarly add nine
copies of the configuration which covers frequencies 10, 11, 13, 14, . . . , 20. From there, continue to
add blocks of size five in sets of three according to the main construction. Adding µ − 1 copies of
a (5, 3, 3)-design to each block of size five gives starting frequency µ for any µ ≡ 1 (mod 3). This
requires the remaining number of blocks to be a multiple of three. If this is not the case, we have
u ≡ 2 (mod 3) and µ ≡ 1 (mod 3), so the necessary conditions imply that the SBGDD has g ≡ 0
(mod 3). In this case, the blocks of size 5 are replaced after inflation by g, ensuring their frequency
lists can be grouped three at a time.

For starting frequencies µ ≡ 2 (mod 3), define a system T = {abd, abe, acd, ace, bcd, bce} on the
point set {a, b, c, d, e}, which has one pair de, of frequency 0 and all other pairs of frequency 2.
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Two copies of T are used alongside the configuration in Table 1 to cover frequencies from µ to
µ+29. The construction for the first three blocks is summarized in Table 3 with µ = 2. For starting
frequency µ = 2 + 3k, a (5, 3, 3k)-design can accompany each block of size 5. Subsequent blocks
of size 5 are handled in a similar fashion to those listed in the table, and lifted to cover the next
interval of frequencies using copies of a (5, 3, 30)-design. Similar to the case with µ ≡ 1 (mod 3),
this construction requires the number of blocks of size 5 to be divisible by three. If instead the
number of blocks of size 5 is congruent to 1 (mod 3), then u ≡ 2 (mod 3). As µ ≡ 2 (mod 3), the
necessary conditions ensure that g ≡ 0 (mod 3), and we may proceed as in the previous case.

pair ab ac ad ae bc bd be cd ce de

SBTS 0 1 3 2 5 4 7 6 8 9
two configurations 2 2 2 2 2 2 2 2 4 4

totals 2 3 5 4 7 6 9 8 12 13

pair ab ac ad ae bc bd be cd ce de

SBTS 0 1 3 2 5 4 7 6 8 9
two configurations 2 2 2 2 2 2 2 2 4 4

two T -configurations 2 2 4 4 4 4 4 4 4 4
(5, 3, 6)-design 6 6 6 6 6 6 6 6 6 6

totals 10 11 15 14 17 16 19 18 22 23

pair ab ac ad ae bc bd be cd ce de

SBTS 0 1 3 2 5 4 7 6 8 9
two T -configurations 2 2 4 4 4 4 4 4 4 4

(5, 3, 18)-design 18 18 18 18 18 18 18 18 18 18
totals 20 21 25 24 27 26 29 28 30 31

Table 3. Lifting blocks of size 5 in designs with higher starting frequency

We now consider the necessary special constructions with u ∈ {3, 4, 5, 6, 8}. First, the incidence
triples of a latin square of order g produce a 3-GDD of type g3. Taking λ copies gives a (3, λ)-
GDD of type gu. This, together with the main result of [3], settles the case of SBGDDµ of type
g3. Similarly, starting frequencies for type gu can be increased by λ whenever Lemma 2.4 gives a
(3, λ)-GDD of type gu. This settles existence for types 24, 25, 26, 28, 35, 48, 64, 65, and 105. The only
remaining exceptions to handle are SBGDDµ of types 36, 38, and 58.

An SBGDDµ of type 36 can be constructed similarly as for µ = 0 in Proposition 4.6. To lift
frequencies, we first observe that a K3-decomposition of K3 ×K6 is obtainable as a set of incidence
triples of an idempotent latin square of order six with diagonal entries removed. Include µ copies
of this collection of blocks, and then SBTSν(6) beginning at ν = 90 + µ, 105 + µ and 120 + µ.
An SBGDDµ of type 38 can be constructed as in Proposition 4.5 using ingredient SBTSν(4) whose
frequencies are increased as needed. A similar modification to Proposition 4.7 produces an SBGDDµ

of type 58.

The above modifications to our constructions result in an extension to general starting frequency µ,
which we summarize below.

Theorem 6.1. For positive integers g, µ, u with u ≥ 3, there exists an SBGDDµ of type gu if and

only if 3 | g or 3 | µ or u ≡ 0, 1 (mod 3).
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Appendix

Two SBGDDs found with the aid of a computer are given below. The blocks are listed without
braces or commas for readability. The number preceding each block denotes its multiplicity.

• SBGDD of type 26 with group partition {{a, a′}, {b, b′}, {c, c′}, {d, d}′, {e, e′}, {f, f ′}}

ace 2adf 5aef 3bcf 4bde 9bef 4cde 7cdf
24ab′d′ 19ab′e′ 20ac′e′ 21ac′f ′ 21ad′f ′ 7ba′c′ 8ba′d′ 9bc′e′ bd′e′ 8bd′f ′

10be′f ′ 9ca′e′ 10ca′f ′ 11cb′d′ 11cb′f ′ 12cd′e′ 2cd′f ′ 13da′b′ 13da′c′ 2db′c′

12db′e′ 2db′f ′ 13dc′f ′ 12de′f ′ 16ea′d′ 15ea′f ′ 17eb′c′ 15eb′f ′ 17ec′d′ 18fa′b′

18fa′e′ 20fb′c′ 2fb′e′ 17fc′d′ 18fd′e′ 8a′b′c′ 10a′b′d′ a′b′e′ a′b′f ′ 4a′c′d′

11a′c′e′ a′c′f ′ 11a′d′f ′ 9a′e′f ′ 11b′c′f ′ 9b′d′e′ 12b′e′f ′ 10c′d′e′ 11c′d′f ′ 3d′e′f ′

• SBGDD of type 28 with group partition {{a, a′}, {b, b′}, {c, c′}, {d, d}′, {e, e′}, {f, f ′}, {g, g′}, {h, h′}}

48abc ace 4adf 48adb′ 46aef 13aeg′ 13aeh′ 3afg afg′ 4afh afh′

ab′c′ 24ab′d′ 19ab′e′ ab′f ′ 48ac′d′ 18ac′e′ 23ac′f ′ 2ad′e′ 22ad′f ′ 49ae′f ′ ae′g′

36agh 4agh′ ag′h 28ag′h′ bce 2bcf 2bde 48bde′ 7bef 48bea′ 47bfc′

5ba′c′ 8ba′d′ 2bc′d′ 7bc′e′ bc′f ′ 53bd′f ′ 10be′f ′ bgh′ 4bg′h 2bg′h′ 4cde
53cdf 48cef ′ 48ca′b′ 8ca′e′ 10ca′f ′ 10cb′d′ 10cb′f ′ 59cd′e′ cd′f ′ 8cgh 3cgh′

cg′h 11cg′h′ 48dec′ 3deg 3deh 12dfg′ 12dfh′ 11da′b′ 13da′c′ 47da′f ′ 2db′c′

12db′e′ 2db′f ′ 13dc′f ′ 12de′f ′ 13dgh dgh′ 4dg′h 6dg′h′ 16ea′d′ 14ea′f ′ 17eb′c′

47eb′d′ 15eb′f ′ 17ec′d′ 21egh 4egh′ eg′h 13eg′h′ 19fa′b′ fa′c′ 48fa′d′ 19fa′e′

19fb′c′ 61fb′e′ 17fc′d′ 18fd′e′ 29fgh fgh′ 4fg′h 21fg′h′ 8a′b′c′ 10a′b′d′ a′b′f ′

4a′c′d′ 52a′c′e′ 2a′c′f ′ 2a′d′f ′ 9a′e′f ′ 8a′e′g′ 8a′e′h 8a′f ′g 8a′f ′h′ 32a′gh′ 34a′g′h
5a′g′h′ b′c′d′ 52b′c′f ′ 2b′d′e′ 11b′e′f ′ 2b′gh′ 5b′g′h′ 9c′d′e′ 11c′d′f ′ 8c′gh′ 10c′g′h
5c′g′h′ 8d′e′g 8d′e′h′ 7d′f ′g′ 7d′f ′h 10d′gh′ 9d′g′h 5d′g′h′ 16e′gh′ 18e′g′h 5e′g′h′

26f ′gh′ 24f ′g′h 5f ′g′h′
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