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Abstract
The Maximum Weight Independent Set Problem (WIS) is a well-known NP-hard
problem. A popular way to study WIS is to detect graph classes for which WIS is
solvable in polynomial time, with particular reference to hereditary graph classes, i.
e., defined by a hereditary graph property or equivalently by forbidding one or more
induced subgraphs. For any two graphs G and H, Gþ H denotes the disjoint union
of G and H. A lK2 is the disjoint union of l edges. A Ym;m is the disjoint union of two
stars of mþ 1 vertices plus one vertex that is adjacent only to the centers of such
stars. For any graph family Y, the class of Y-free graphs is formed by graphs which
are Y-free for every Y 2 Y, and the class of lK2 þ Y-free graphs is formed by graph
which are lK2 þ Y -free for every Y 2 Y. The main result of this manuscript is the
following: For any constant m and for any graph family Y which contains an induced
subgraph of Ym;m, if WIS is solvable in polynomial time for Y-free graphs, then WIS
is solvable in polynomial time for lK2 þ Y-free graphs for any constant l. That
extends some known polynomial results, namely, when Y ¼ fYg and Y is a fork or is
a P5. The proof of the main result is based on Farber’s approach to prove that every
2K2-free graph has Oðn2Þ maximal independent sets (Farber in Discrete Math
73:249–260, 1989), which directly leads to a polynomial time algorithm to solve
WIS for 2K2-free graphs through a dynamic programming approach, and on some
extensions of Farber’s approach.

Keywords Maximum independent set problem · Polynomial algorithms · 2K2-free
graphs · Hereditary graph classes

1 Introduction

For any missing notation or reference let us refer to [6].
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For any graph G, let V(G) and E(G) denote respectively the vertex-set and the
edge-set of G. Let G be a graph. For any vertex-set U � V ðGÞ, let NGðUÞ ¼ fv 2
V ðGÞ n U : v is adjacent to some u 2 Ug be the neighborhood of U in G, and
AGðUÞ ¼ V ðGÞ n ðU [ NðUÞÞ be the anti-neighborhood of U in G. If
U ¼ fu1; . . .; ukg, then let us simply write NGðu1; . . .; ukÞ instead of NGðUÞ, and
AGðu1; . . .; ukÞ instead of AGðUÞ. For any subset U � V ðGÞ let G[U] be the subgraph
of G induced by U. For any vertex v 2 V ðGÞ and for any subset U � V ðGÞ, with
v 62 U , let us say that: v contacts U if v is adjacent to some vertex of U; v dominates
U if v is adjacent to each vertex of U. For any vertex-sets U ;W � V ðGÞ, let us say
that U has a co-join to W (or generally that U and W have mutually a co-join) if
U \W ¼ ; and if each vertex of U is non-adjacent to each vertex ofW. A component
of G is the vertex set of a maximal connected subgraph of G. A component of G is
trivial if it is a singleton, and nontrivial otherwise. A clique of G is a set of pairwise
adjacent vertices of G. An independent set (or a stable set) of a graph G is a subset of
pairwise nonadjacent vertices of G. An independent set of G is maximal if it is not
properly contained in another independent set of G.

The following specific graphs are mentioned later. A Pk has vertices v1; v2; . . .; vk
and edges vjvjþ1 for 1� j\k. A Ck has vertices v1; v2; . . .; vk and edges vjvjþ1 for
1� j\k and vkv1. A Kn is a complete graph of n vertices. A K1;n—which is also
called a star of nþ 1 vertices—is a complete bipartite graph whose sides respectively
have one vertex, called the center of the star, and n vertices, called the leaves of the
star (if n ¼ 1 then there are two trivial centers). A claw has vertices a, b, c, d, and
edges ab, ac, ad; then a claw is a K1;3. A fork has vertices a, b, c, d, e, and edges
ab, ac, ad, de; then a fork contains both a P4 and a claw as induced subgraphs. A
Ym0;m00 , for some constants m0;m00, is the graph formed by two disjoint stars K1;m0 and
K1;m00 plus one vertex which is adjacent only to the centers of such stars; a Ym;m, for
some constant m, is decipted in Fig. 1.

A graph G is H-free, for a given graph H, if G contains no induced subgraph
isomorphic to H; in particular, H is called a forbidden induced subgraph of G. Given
two graphs G and H, Gþ H denotes the disjoint union of G and H; in particular,
lG ¼ Gþ Gþ � � � þ G denotes the disjoint union of l copies of G. For any graph
family Y, the class of Y-free graphs is formed by graphs which are Y-free for every
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Fig. 1 a Si;j;k ; b Ym;m
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Y 2 Y, and the class of lK2 þ Y-free graphs is formed by graph which are lK2 þ Y -
free for every Y 2 Y.

The Maximum Weight Independent Set Problem (WIS) is the following: Given a
graph G and a weight function w on V(G), determine an independent set of G of
maximum weight, where the weight of an independent set I is given by the sum of w
(v) for v 2 I. Let awðGÞ denote the maximum weight of any independent set of G.
WIS reduces to the Maximum Independent Set Problem (MIS) if all vertices v have
the same weight wðvÞ ¼ 1.

WIS is NP-hard [19, 23]. It remains NP-hard under various restrictions, such as e.
g. triangle-free graphs [41] and more generally graphs with no induced cycle of given
length [35], cubic graphs [18] and more generally k-regular graphs [16], planar
graphs [17]. It can be solved in polynomial time for various graph classes, such as e.
g.: :: P4-free graphs [11] and more generally perfect graphs [21],

:: claw-free graphs [13, 32, 36–39, 43],
:: fork-free graphs [3, 27],
:: apple-free graphs [7, 8],
:: 2K2-free graphs [14] and more generally lK2-free graphs for any constant l (by

combining an algorithm generating all maximal independent sets of a graph [44] and
a polynomial upper bound on the number of maximal independent sets in lK2-free
graphs [2, 15, 42]),

:: lP3-free graphs for any constant l [26] and more generally lK1;3-free graphs (i.e.,
lclaw-free graphs) for any constant l [9],

:: P5-free graphs [25],
:: P6-free graphs [22].
Let us mention the (deep) recent results showing that WIS can be solved in sub-

exponential time for Pt-free graphs for any fixed natural t [5, 10] (see also [24] for
P6-free graphs) and in quasi-polynomial time for Pt-free graphs for any fixed natural
t [20, 40].

As one can easily check, for any graph G one has

awðGÞ ¼ maxfwðvÞ þ awðG½AðvÞ�Þ : v 2 Vg

Then WIS for any graph G can be reduced to the same problem for the anti-
neighborhoods of all vertices of G. Then one has:

Proposition 1 For any graph F, if WIS can be solved for F-free graphs in
polynomial time, then WIS can be solved for lK1 þ F-free graphs in polynomial time
for any constant l. h

Let us report the following result due to Alekseev [1, 4]. Let us say that a graph is
of type T if it is the graph Si;j;k depicted in Fig. 1 for some indices i, j, k (e.g., S0;1;2 is
a P4, S1;1;1 is a claw).

Theorem 1 [1] Let X be a class of graphs defined by a finite set M of forbidden
induced subgraphs. If M contains no graph every connected component of which is
of type T, then WIS is NP-hard in the class X . h
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Alekseev’s result implies that WIS is NP-hard for K1;4-free graphs—the fact that
WIS is NP-hard for K1;4-free graphs is already mentioned in [32].

Alekseev’s result implies that (unless P = NP) for any graph F, if WIS is
polynomial for F-free graphs, then each connected component of F is of type T. By
Proposition 1, for any graph F, if WIS can be solved for F-free graphs in polynomial
time, then WIS can be solved for lK1 þ F-free graphs for any constant l in
polynomial time. It follows that, since WIS can be solved in polynomial time for
fork-free graphs [4, 27], for P6-free graphs [22, 24], and for lclaw-free graphs for any
constant l [9], the minimal graphs F of type T for which the complexity of WIS for F-
free graphs is open are: P7, S1;1;3, S1;2;2, K2 þ P4. Then the minimal graph classes,
defined by forbidding one induced subgraph, for which the complexity of WIS is
open are: P7-free graphs, S1;1;3-free graphs, S1;2;2-free graphs, K2 þ P4-free graphs.

The main result of this manuscript is the following:

Theorem 2 For any constant m and for any graph family Y containing an induced
subgraph of Ym;m, if WIS can be solved for Y-free graphs in polynomial time, then
WIS can be solved for lK2 þ Y-free graphs in polynomial time for any constant l. h

The proof of the main result is based on Farber’s approach to prove that every
2K2-free graph has Oðn2Þ maximal independent sets [14], which directly leads to a
polynomial time algorithm to solve WIS for 2K2-free graphs through a dynamic
programming approach, and on some extensions of Farber’s approach [28, 29].

In details Sect. 2 reports Farber’s approach, together with related results, and
preliminaries; Sect. 3 reports the preliminary step from [29]; Sect. 4 provides the
main step for the case of K2 þ Ym;m-free graphs; Sect. 5 provides the further step for
the case of lK2 þ Ym;m-free graphs for any constant l by iterating the main step.

Then by Theorem 2 one obtains two corollaries for the case in which Y is defined
by a single graph say Y, that is Y ¼ fYg, where Y is an induced subgraph of Ym;m.
They provide an extension of some polynomial results [and of some possibly
forthcoming polynomial results] and which may be useful in view of a possible
classification, according to Alekseev’s result [1, 4], of the complexity of WIS for
graph classes defined by forbidding one induced subgraph.

The first corollary concerns those Y-free graphs for which the complexity of (W)IS
is known to be polynomial. According to the aforementioned known results, such Y-
free graphs are fork-free graphs [i.e. Y0;2-free graphs] [3, 27], which include P4-free
graphs [11] and claw-free graphs [13, 32, 36–39, 43], and P5-free graphs [i.e. Y1;1-
free graphs] [25].

Corollary 1 WIS can be solved for lK2?fork-free graphs and for lK2 þ P5-free
graphs, for any constant l, in polynomial time. h

In particular Corollary 1: (i) addresses the open case concerning WIS for K2 þ P4-
free graphs; (ii) extends the known polynomial results concerning WIS for fork-free
graphs and for P5-free graphs; (iii) implies that the new minimal graph classes,
defined by forbidding one induced subgraph, for which the complexity of (W)IS is
open are: P7-free graphs, S1;1;3-free graphs, S1;2;2-free graphs, K2 þ P6-free graphs,
P3 þ P4-free graphs.
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The second corollary concerns those Y-free graphs for which the complexity of
WIS is known to be open. According to the aforementioned known results and to
Alekseev’s result [1, 4], such Y-free graphs are S1;1;3-free graphs [i.e. Y1;2-free
graphs].

Corollary 2 If WIS can be solved for S1;1;3-free graphs in polynomial time, then WIS
can be solved for lK2 þ S1;1;3-free graphs for any constant l in polynomial time. h

Remark 1 Concerning Corollary 1, let us recall that MIS can be solved for fork-free
graphs in polynomial time with a not specified time bound [3]. By [27] WIS can be
solved for fork-free in nT time where T is the time bound to solve WIS for claw-free
graphs. Different references on polynomial time algorithm to solve WIS for claw-free
graphs [32, 36, 43] were known, however as recently shown WIS can be solved for
claw-free graphs in Oðn3Þ time by [13], and even inOðn2 log nÞ time by [37] which is
the best known time bound. Then by [27] WIS can be solved for fork-free graphs in
Oðn3 log nÞ time. On the other hand, WIS can be solved for P5-free graphs G in

OðjEðGÞjjV ðGÞj12Þ time [25]. h

Remark 2 Concerning Corollary 2, let us recall that MIS can be solved for
(S1;1;3,Kp;p)-free graphs (for any constant p) in polynomial time [12]; then, by
Theorem 2, MIS can be solved for lK2þ(S1;1;3,Kp;p)-free graphs (for any constants l
and p) in polynomial time. h

Remark 3 Let us observe that (a) the results of this manuscript are not implied by
Corollary 6 of [29], since Corollary 6 of [29] concerns subclasses of Ym;m-free
graphs, and (b) the results of this manuscript do not imply and should not be implied
by the results of [34], since those results concern the class of m-plausible graphs for a
constant m; in particular, m-plausible graphs (e.g., chordal graphs) are not necessarily
Ym;m-free graphs, and it seems to be difficult to directly show that Ym;m-free graphs
are m-plausible graphs as remarked in [34]. h

Let us conclude this section by formalizing two possible open problems.
Open Problem 1 The complexity of WIS (of MIS) for the new minimal graph

classes, defined by forbidding one induced subgraph, for which it is open: P7-free
graphs, S1;1;3-free graphs, S1;2;2-free graphs, K2 þ P6-free graphs, P3 þ P4-free
graphs.

Open Problem 2 New sufficient conditions to extend Proposition 1 to the case of
lK2-free graphs for any constant l, or more generally, new extensions of lK2-free
graphs for any constant l for which WIS (for which MIS) can be solved in
polynomial time.

2 Independent Sets in 2K2-free Graphs

In this section, let us report from [29] an algorithm, namely Algorithm Alpha, which
formalizes the aforementioned Farber’s approach [14] and which is the basis of what
follows.
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For a graph G, with vertex set fv1; v2; . . .; vng, let us write Gi:¼G½fv1; v2; . . .; vig�.
At each iteration i, 1� i� n, Algorithm Alpha provides a family Si of subsets of
fv1; v2; . . .; vig such that each maximal independent set of Gi is contained in some
member of Si.

Algorithm Alpha

Input: A 2K2-free graph G with vertex set fv1; v2; . . .; vng.
Output: A family S of subsets of V(G).

S:¼f;g
For i ¼ 1; . . .; n, do

begin

Step 1 [Extension of some members of S]
For each H 2 S,
If H [ fvig is an independent set,

then H :¼H [ fvig.
Step 2 [Addition of some members to S]
For each K2 of Gi containing vi, i.e., for each edge uvi of Gi,

H :¼fvig [ AGi ðu; viÞ,
S:¼S [ fHg.
end

Then let us consider the following algorithm to solve WIS for 2K2-free graphs.

Algorithm WIS

Input: A 2K2-free graph G.

Output: A maximum weight independent set of G.

PHASE 1. Execute Algorithm Alpha for G. Let S be the family of subsets of G produced in this way.

PHASE 2. For each H 2 S, compute a maximum weight independent set of G[H] (each H 2 S is an
independent set since G is 2K2-free). Then choose a best solution, i.e., one of maximum weight.

It is clear from the description of Algorithm Alpha that, since G is 2K2-free, every
member of the family S produced by the algorithm is an independent set of G.
Moreover, according to Farber’s argumentation, S contains all maximal independent
sets of G, which can be proven by induction on i. Then one obtains the following
result:

Theorem 3 [14] WIS can be solved for 2K2-free graphs in Oðn4Þ time via Algorithm
WIS. h

Then let us report an extension of Farber’s approach for lK2-free graphs for any
constant l; that is split (according to the literature) into a structure result shown by
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different authors [2, 15, 42] and a computational result shown by combining such a
structure result and an algorithm generating all maximal independent sets of a graph
[44].

Theorem 4 [2, 15, 42] For any constant l and for any lK2-free graph G, the family
of all maximal independent sets of G contains Oðn2l�2Þ members. h

Theorem 5 [2, 15, 42, 44] For any constant l and for any lK2-free graph G one has:
(i) the family of all maximal independent sets of G can be computed in polynomial
time, (ii) WIS can be solved for G in polynomial time. h

Farber’s approach seems to admit further possibilities of extension, e.g.
[9, 15, 29–31, 33, 34], one of which is reported in Sect. 3.

Finally let us introduce a definition which will be useful later.
Notation: For convenience let us denote the star K1;t, for any constant t, by the

pair (c, L), where c is the center of the star and L is the set of leaves of the star with
jLj ¼ t.

Definition 1 Let G be a graph and let p be a natural. A p-star set of G is a set
H � V ðGÞ such that

(i) G contains p induced stars, namely ðc1; L1Þ; . . .; ðcp; LpÞ, called the stars of H,
which have mutually a co-join,

(ii) H ¼ L1 [ � � � [ Lp [ Hanti, where Hanti is a subset of
AGðc1; . . .; cp; L1; . . .; LpÞ.

Furthermore let us say that, for any natural m, a p-star set of G, say
H ¼ L1 [ � � � [ Lp [ Hanti, is m-full if jLij �m for every i 2 f1; . . .; pg.

The following observation can be proved by the above definition.

Observation 1 Let G be a graph and let H be a p-star set of G for a natural p. Then
all non-trivial components of G[H] are contained in the anti-neighborhood of an
(easily detectable) induced pK2 of G. h

3 Independent Sets in Ym,m-free Graphs

In this section, let us present an algorithm, namely Algorithm Beta(0,m) where m is
any fixed natural, which is just a slightly modified version of Algorithm BðmÞ of
[29], which is an extension of Algorithm Alpha. That allows a very similar
description between this algorithm and its extensions presented in the next sections,
namely Algorithm Beta(l, m), for l� 1; in this sense the description of Algorithm
Beta(0,m) may look redundant with respect to that of Algorithm BðmÞ of [29] but it
already prepares the description of its extensions presented in the next sections.

The subsequent Algorithm Beta(0, m) computes a family S of subsets of V(G), for
any input Ym;m-free graph G, which fulfills properties analogous to Lemma 3, Lemma
4, and Theorem 5 of [29].

Let us introduce some preliminaries for Algorithm Beta(0,m).
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For a graph G, with vertex set fv1; v2; . . .; vng, let us write Gi:¼G½fv1; v2; . . .; vig�.
At each iteration i, 1� i� n, Algorithm Beta(0,m) provides a family Si of subsets of
fv1; v2; . . .; vig such that each maximal independent set of Gi is contained in some
member of Si.

The members of S are of two kinds: 1-marked and unmarked.
Each 1-marked member is created and marked [or derives from a 1-marked

member which has been created and marked] in Step 2 of some loop. Then it is
possibly extended in Step 1 of the successive loops. Each 1-marked member H is a
1-star set of G whose star is of a center vertex u1ðHÞ 62 H called the marker of H.
Each 1-marked member H keeps its marker u1ðHÞ along its possible extensions.

Each unmarked member (in particular the family S produced by Algorithm Beta
(0,m) contains exactly one unmarked member) is created in the initialization step as
the empty set. Then it is possibly extended in Step 1 of the successive loops. Each
unmarked member is an independent set of G.

For any subset H of V(G), let us denote as:
H0 the vertex-set of trivial components of G[H] (i.e., the isolated vertices of H);
H	 the vertex-set of nontrivial components of G[H];
CðG½H �Þ the family of components of G[H].
For any subset H of V(G) and for any vertex v 2 V ðGÞ n H , let us say that with

respect to H:

(1) v is of Type 1 if v does not contact H;
(2) v is of Type 2 if v dominates some member of CðG½H �Þ; Note: If v is not of

Type 1 or Type 2, then v does not contact H0, v contacts H	, v dominates no
member of CðG½H �Þ. Type 3 and Type 4 are meaningful only if H is a 1-marked
member of S.

(3) v is of Type 3 if v is not of Type 1 or Type 2, v is nonadjacent to u1ðHÞ;
(4) v is of Type 4 if v is not of Type 1 or Type 2, v is adjacent to u1ðHÞ.

Algorithm Beta(0,m)

Input: A Ym;m-free graph G with vertex set fv1; v2; . . .; vng.
Output: A family S of subsets of V(G).

S0:¼f;g (and say that ; is unmarked)

For i ¼ 1; . . .; n, do

begin

Si :¼ Si�1

Step 1 [Extension of some members of Si]

For each H 2 Si�1, do

(1.1) If H is unmarked and if vi is of Type 1,

then H :¼H [ fvig (and say that H remains unmarked)

Si:¼Si [ fHg
(1.2) If H is 1-marked and if vi is of Type 1 or of Type 3,

then H :¼H [ fvig (and say that H remains 1-marked)
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Si:¼Si [ fHg
Step 2 [Addition of 1-marked members to Si]

For each induced star (c, L) of Gi such that jLj �m,

H :¼L [ AGi ðc; LÞ,
Si:¼Si [ fHg (and say that H is 1-marked and that the marker of H is u1ðHÞ:¼c)

end

S:¼Si

end.

The following lemmas can be proved by arguments similar to that of Lemma 3,
Lemma 4, and Theorem 5 of [29]; for the sake of completeness let us describe such
arguments.

Lemma 1 Referring to Algorithm Beta(0,m):

(i) every 1-marked member H of Si, for i ¼ 1; . . .; n, is a 1-star set whose star is
of center u1ðHÞ and of leaves a subset of H0;

(ii) every unmarked member of Si, for i ¼ 1; . . .; n, is an independent set (in
particular Si contains exactly one unmarked member);

(iii) the family S produced by Algorithm Beta(0,m) can be partitioned into
fSone;Stwo;Sthreeg, where: Sone ¼ fI 2 S : I is an independent setg, Stwo ¼
fI 2 S : I is a 1-star m-full set, I is not an independent setg, Sthree ¼ fI 2
S : I is a 1-star set, I is not an independent set, I is not a 1-star m-full setg.

Proof Proof of (i). Each 1-marked member is created in Step 2 of some loop and
then it is possibly extended in Step (1.2) of the successive loops. Then, by definition
of Step 2 and by definition of u1ðHÞ, each 1-marked member H satisfies Statement (i)
at the moment of its creation. Furthermore each 1-marked member satisfies Statement
(i) after its possible extensions by definition of a vertex of Type 1 and Type 3 (let us
observe that each 1-marked member H keeps its marker u1ðHÞ along its possible
extensions).

Proof of (ii). If an unmarked member has been created as an independent set, then
it will remain an independent set after its possible extensions in Step (1.1) by
definition of a vertex of Type 1. Then, to complete the proof, note that exactly one
unmarked member is created, i.e., the empty set in the initialization step, and the
empty set is trivially an independent set.

Prof of (iii). It follows by Statements (i)–(ii) and by definition of Algorithm Beta
(0,m). h

Lemma 2 Let S be the family of subsets of V(G) produced by Algorithm Beta(0,m).
Then for any maximal independent set I of G there is a member H 2 S such that
I � H.

Proof As above let Si denote the content of the family S after i loops of the
algorithm, for i ¼ 1; . . .; n. Then to prove the lemma, let us show that for any
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maximal independent set I of Gi, there is a member H 2 Si such that I � H . The
proof is by induction on i, for i ¼ 1; . . .; n.

For i ¼ 1, S1 ¼ ffv1gg, and fv1g is obviously the only maximal independent set
in the graph G1. Then let us assume that the assertion holds for i� 1 and prove that it
holds for i.

Let I be a maximal independent set of Gi.
Assume that vi 62 I . Then by the inductive hypothesis I is contained in some

member of Si�1 and thus of Si, since each member of Si�1 is contained (properly or
not) in some member of Si.

Assume that vi 2 I . Then by the inductive hypothesis let H be a member of Si�1

containing Infvig.
Case 1. H is unmarked.
By Lemma 1 (ii) H is an independent set, i.e., H ¼ H0, and thus vi can be just of

Type 1 or 2 with respect to H. If vi is of Type 1 with respect to H, then I �
H [ fvig 2 Si (Step 1). If vi is of Type 2 with respect to H, then there exists a vertex
u 2 NGiðviÞ that has no neighbors in Infvig, that is, I is contained in the set fvig [
AGiðu; viÞ 2 Si (Step 2).

Case 2. H is 1-marked.
If vi is of Type 1 or of Type 3 with respect to H, then I � H [ fvig 2 Si (Step 1).

If vi is of Type 2 with respect to H, then there exists a vertex u 2 NGiðviÞ that has no
neighbors in Infvig, that is, I is contained in the set fvig [ AGiðu; viÞ 2 Si (Step 2).

Finally let us consider the case in which vi is of Type 4 with respect to H.
Since vi is of Type 4, vi is adjacent to u1ðHÞ and to a vertex say h of H	. Let us

write U ¼ Nðu1ðHÞÞ \ ðInfvigÞ and T ¼ NðhÞ \ ðInfvigÞ. Note that, by Lemma 1
(i), fu1ðHÞg [ U has a co-join to fhg [ T . Furthermore, by construction, U 6¼ ;.

Assume that T ¼ ;. Then I is contained in the set fvig [ AGiðh; viÞ 2 Si (Step 2).
Assume that T 6¼ ;. Therefore, either jU j\m, or jT j\m, else vertices of

fu1ðHÞg [ U [ fvig [ fhg [ T induce a Ym;m, which is not possible since G is Ym;m-
free. Then I is contained in the set L [ AGiðc; LÞ (Step 2), where either c ¼ u1ðHÞ and
L ¼ fvig [ U , or c ¼ h and L ¼ fvig [ T . h

Lemma 3 Algorithm Beta(0,m) runs in time Oðnmþ5Þ and computes a family S of
size Oðnmþ2Þ.

Proof Concerning 1-marked members of S. The total number of new 1-marked
members added to S by each Step 2 of each loop of Algorithm Beta(0, m) is at most
nmþ2 (that is at most nmþ1 for each loop). In particular, since each 1-marked member
can be created/extended in Oðn2Þ time (in particular in order to determine the
connected components) and since the loops are n, all 1-marked members can be
computed in Oðnmþ5Þ time.

Concerning unmarked members of S. Exactly one unmarked member is contained
in S. Such an unmarked member is created as the empty set in the initialization step
and then it is possibly extended in Step 1 of the successive loops of Algorithm Beta
(0, m) in O(n) time; therefore, since the loops are n, it can be computed in Oðn2Þ
time.
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Therefore maxfOðnmþ5Þ;Oðn2Þg (= Oðnmþ5Þ) is the time bound of Algorithm
Beta(0, m). h

Then, let us consider the following algorithm to solve WIS for Y-free graphs,
where Y is any graph family containing an induced subgraph of Ym;m.

Algorithm WIS(0, m)

Input: A Y-free graph G.

Output: A maximum weight independent set of G.

PHASE 1. Execute Algorithm Beta(0, m) for G. Let S be the family of subsets of G produced in this way.

PHASE 2. For each H 2 S, compute a maximum weight independent set of G[H]. Then choose a best
solution, i.e., one of maximum weight.

Theorem 6 Algorithm WIS(0,m) is correct and can be executed in polynomial time
whenever PHASE 2 can be executed in polynomial time.

Proof Correctness. By Lemma 2, Algorithm WIS(0, m) is correct.
Complexity. By Lemma 3, PHASE 1 can be executed in polynomial time. Then

Algorithm WIS(0, m) can be executed in polynomial time whenever PHASE 2 can be
executed in polynomial time. h

4 Independent Sets in K2 +Ym,m-free Graphs

In this section, let us introduce an extension of Algorithm Beta(0, m) of the previous
section.

The subsequent Algorithm Beta(1, m) computes a family S of subsets of V(G), for
any input K2 þ Ym;m-free graph G, which fulfills properties analogous to Lemmas 1,
2, 3.

The preliminaries for Algorithm Beta(1, m) are exactly those for Algorithm Beta
(0, m) except for the following points.

The members of S are of three kinds: 1-marked, 2-marked, unmarked.
Each 1-marked member is created and marked [or derives from a 1-marked

member which has been created and marked] in Step 3 of some loop. Then it is
possibly extended in Step 1 of the successive loops. Each 1-marked member H is a
1-star set of G whose star is of a center vertex u1ðHÞ 62 H called the marker of H.
Each 1-marked member H keeps its marker u1ðHÞ along its possible extensions.

Each 2-marked member is created with respect to some 1-marked member in Step
2 of some loop. Then it is possibly extended in Step 1 of the successive loops. Each
2-marked member H is a 2-star m-full set of G whose stars are respectively of
center two vertices u1ðHÞ; u2ðHÞ 62 H called the markers of H. Each 2-marked
member H keeps its markers u1ðHÞ; u2ðHÞ along its possible extensions.

Each unmarked member is created either in the initialization step, i.e., the empty
set, or in Step 2 of some loop with respect to some p-marked member for some
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p 2 f1; 2g. Then it is possibly extended in Step 1 of the successive loops. Each
unmarked member is an independent set of G.

For any subset H of V(G) and for any vertex v 2 V ðGÞnH , let us say that with
respect to H:

(1) v is of Type 1 if v does not contact H;
(2) v is of Type 2 if v dominates some member of CðG½H �Þ; Note: If v is not of

Type 1 or Type 2, then v does not contact H0, v contacts H	, v dominates no
element of CðG½H �Þ. Type 3 and Type 4 are meaningful only if H is a 1-marked
or a 2-marked member of S. Type 5 is meaningful only if H is a 2-marked
member of S. In the definition of Type 5 the term ’at least’ is added in order to
save such group of definitions for the next section.

(3) v is of Type 3 if v is not of Type 1 or Type 2, v is adjacent to no marker of H;
(4) v is of Type 4 if v is not of Type 1 or Type 2, v is adjacent to exactly one marker

of H;
(5) v is of Type 5 if v is not of Type 1 or Type 2, v is adjacent to at least two

markers of H.

Algorithm Beta(1, m)

Input: A K2 þ Ym;m-free graph G with vertex set fv1; v2; . . .; vng.
Output: A family S of subsets of V(G).

S0:¼f;g (and say that ; is unmarked)

For i ¼ 1; . . .; n, do

begin

Si :¼ Si�1

Step 1 [Extension of some members of Si]

For each H 2 Si�1, do

(1.1) If H is unmarked and if vi is of Type 1,

then H :¼H [ fvig (and say that H remains unmarked)

Si:¼Si [ fHg
(1.2) If H is p-marked for some p 2 f1; 2g,
and if vi is either of Type 1 being adjacent to at most one marker of H or of Type 3,

then H :¼H [ fvig (and say that H remains p-marked)

Si:¼Si [ fHg
Step 2 [Addition of unmarked members and of 2-marked members to Si]

For each H 2 Si�1, do

(2.1) If H is 1-marked,

if u1ðHÞ has at least m neighbors in H0,

and if vi is of Type 4,

then

:: execute Algorithm Beta(0,m) for G½H	nNðviÞ�,
:: let S0 be the family of subsets of V ðG½H	nNðviÞ�Þ produced in this way,

:: let S0
one ¼ fM 0 2 S0 : M 0 is an independent setg,
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:: let S0
two ¼ fM 0 2 S0 : M 0 is a 1-star m-full set, M 0 is not an independent setg

:: Qði;HÞ:¼ffvig [ H0 [M 0 : M 0 2 S0
oneg,

:: Si:¼Si [ Qði;HÞ (and say that each member of Q(i, H) is unmarked)

:: T ði;HÞ:¼ffvig [ H0 [M 0 : M 0 2 S0
two whose star is of center say c01g,

:: Si:¼Si [ T ði;HÞ
(and say that each member H 0 ¼ fvig [ H0 [M 0 2 T ði;HÞ is 2-marked
and that the markers of H 0 are u1ðH 0Þ:¼u1ðHÞ, u2ðH 0Þ:¼c01).

(2.2) If H is 2-marked,

and if vi is either of Type 1 being adjacent to at least two markers of H or of Type 5,

then

:: compute the family R of all maximal independent sets of G½H	nNðviÞ�
:: Rði;HÞ:¼ffvig [ H0 [ R : R 2 Rg
:: Si:¼Si [ Rði;HÞ (and say that each member of Rði;HÞ is unmarked)
Step 3 [Addition of 1-marked members to Si]

For each induced star (c, L) of Gi such that jLj �m,

H :¼L [ AGi ðc; LÞ,
Si:¼Si [ fHg (and say that H is 1-marked and that the marker of H is u1ðHÞ:¼c)

end

S:¼Si

end.

Let us prove the following lemmas.
Note: Statement ði0Þ of the subsequent Lemma 4 ensures that Step (2.1) of

Algorithm Beta(1, m) is well defined, in fact G½H	nNðviÞ� needs to be Ym;m-free in
order to execute Algorithm Beta(0, m) for G½H	nNðviÞ�.

Lemma 4 Referring to Algorithm Beta(1,m):

(i) every 1-marked member H of Si, for i ¼ 1; . . .; n, is a 1-star set whose star is
of center u1ðHÞ and of leaves a subset of H0;

(ii) every 2-marked member H of Si, for i ¼ 1; . . .; n, is a 2-star m-full set whose
stars respectively are of center u1ðHÞ; u2ðHÞ and of leaves a subset of H0;

(iii) referring to Step (2.1) of Loop i of Algorithm Beta(1,m), for i ¼ 1; . . .; n,
G½H	nNðviÞ� is Ym;m-free;

(iv) referring to Step (2.2) of Loop i of Algorithm Beta(1,m), for i ¼ 1; . . .; n,
G½H	nNðviÞ� is K2-free, i.e., H	nNðviÞ is an independent set;

(v) every unmarked member of Si, for i ¼ 1; . . .; n, is an independent set;
(vi) the family S produced by Algorithm Beta(1,m) can be partitioned into

fSone;Stwo;Sthreeg, where: : Sone ¼ fI 2 S : I is an independent setg,
Stwo ¼ fI 2 S : I is a p-star m-full set for some p 2 f1; 2g, I is not an
independent setg, Sthree ¼ fI 2 S : I is a p-star set for some p 2 f1; 2g, I is
not an independent set, I is not a p-star m-full set for p 2 f1; 2gg.
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Proof Proof of (i). The proof is similar to that of Lemma 1 (i), with Step 3 instead of
Step 2.

Proof of (ii). Each 2-marked member is created in Step (2.1) of some loop and
then it is possibly extended in Step (1.2) of the successive loops. Then, by definition
of Step (2.1) and by definition of u1ðHÞ and u2ðHÞ, each 2-marked member satisfies
Statement (ii) at the moment of its creation. Furthermore each 2-marked member
satisfies Statement (ii) after its possible extensions by definition of a vertex of Type 1
being adjacent to at most one marker of H and of Type 3 (let us observe that each 2-
marked member H keeps its markers u1ðHÞ; u2ðHÞ along its possible extensions).

Proof of (i’). At Step (2.1) of Loop i of Algorithm Beta(1, m), for i ¼ 1; . . .; n, by
construction H	nNðviÞ is contained in the anti-neighborhood of
fvig [ u1ðHÞ [ ðNðu1Þ \ H0Þ, which is a star of center u1ðHÞ (thus containing a
K2) by Statement (i) and since vi is of Type 4. Then Statement (i’) follows since G is
K2 þ Ym;m-free.

Proof of (ii’). At Step (2.2) of Loop i of Algorithm Beta(1, m), for i ¼ 1; . . .; n, H
is 2-marked and vi is either of Type 1 being adjacent to at least two markers of H or
of Type 5. Therefore, by Statement (ii), vi and the two stars of H induce a subgraph of
Gi that contains an induced Ym;m. Then Statement (ii’) follows since G is K2 þ Ym;m-
free.

Proof of (iii). If an unmarked member has been created as an independent set, then
it will remain an independent set after its possible extensions in Step (1.1) by
definition of a vertex of Type 1. Then, to complete the proof, note that unmarked
members are created either in the initialization step, i.e., the empty set, or in Step 2 of
each loop, which is well defined by Statement (i’). Concerning the empty set, it is
trivially an independent set. Concerning Step 2 of each loop: in Step (2.1) unmarked
members (i.e., the members of Qði;HÞ) are independent sets by definition of H0, of
H	, and of S0

one; in Step (2.2) unmarked members (i.e., the members of Rði;HÞ) are
independent sets by definition.

Proof of (iv). It follows by Statements (i)–(iii) and by definition of Algorithm Beta
(1,m). h

Lemma 5 Let S be the family of subsets of V(G) produced by Algorithm Beta(1,m).
Then for any maximal independent set I of G, there is a member H 2 S such that
I � H.

Proof The first part of this proof is similar to the first part of the proof of Lemma 2.
Case 1. H is unmarked.
This case is similar to Case 1 of Lemma 2, with Lemma 4 instead of Lemma 1,

and with Step 3 instead of Step 2.
Case 2. H is p-marked for some p 2 f1; 2g.
Case 2.1. p ¼ 1.
By Lemma 4 (i) H is a 1-star set of G whose star is of center u1ðHÞ and of leaves a

subset of H0. In particular vi can be just of Type 1 or 2 or 3 or 4 with respect to H. If
vi is of Type 1 with respect to H being adjacent to at most one marker of H or of Type
3 with respect to H, then I � H [ fvig 2 Si (Step 1). If vi is of Type 2 with respect to
H, then there exists a vertex u 2 NGiðviÞ that has no neighbors in Infvig, that is, I is
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contained in the set fvig [ AGiðu; viÞ 2 Si (Step 3).
Let us consider the case in which vi is of Type 1 with respect to H being adjacent

to at least two markers of H.
Then I is contained in some member of the familyRði;HÞ generated by Step (2.2)

of Loop i of Algorithm Beta(1,m).
Let us consider the case in which vi is of Type 4 with respect to H.
Since I is a maximal independent set of Gi, I is a maximal independent set of

G½H [ fvig� as well, i.e., Infvig is a maximal independent set of G½HnNðviÞ�. In
particular, since v is of Type 4, one has that vi is adjacent to u1ðHÞ and that
H0 � Infvig.

If H is not m-full, i.e., jNðu1ðHÞÞ \ H0j\m, then I is contained in the set fvig [
ðNðu1ðHÞÞ \ H0Þ [ AGiðu1ðHÞ; fvig [ ðNðu1ðHÞÞ \ H0ÞÞ 2 Si (Step 3).

If H is m-full, i.e., jNðu1ðHÞÞ \ H0j �m, then let us consider the following
argument.

Let us write I ¼ fvig [ H0 [ I 0, where I 0 ¼ ðInfvigÞ \ ðH	nNðviÞÞ. Since Infvig
is a maximal independent set of G½HnNðviÞ�, I 0 is a maximal independent set of
G½H	nNðviÞ�. Now, according to Step (2.1) of Algorithm Beta(1, m) and according to
Lemma 1 (iii), let S0 ¼ S0

one [ S0
two [ S0

three be the family of subsets of
V ðG½H	nNðviÞ�Þ produced by Algorithm Beta(0, m) executed for G½H	nNðviÞ�.
Therefore, by Lemma 2 there exists an M 0 2 S0 such that I 0 � M 0, and by Lemma 1
(iii) one of the following three subcases occurs.

Assume that M 0 2 S0one. Then fvig [ H0 [M 0 belongs to the family Qði;HÞ
generated by Step (2.1) of Loop i of Algorithm Beta(1,m), i.e., I is contained in
fvig [ H0 [M 0 2 Si.

Assume that M 0 2 S0two. Then fvig [ H0 [M 0 belongs to the family T ði;HÞ
generated by Step (2.1) of Loop i of Algorithm Beta(1,m), i.e., I is contained in
fvig [ H0 [M 0 2 Si.

Assume that M 0 2 S0three. Therefore, M
0 is a 1-star set of G½H	nNðviÞ�, whose star

say ðc0; L0Þ is such that jL0j\m and is clearly a star of Gi as well. Then I is contained
in the set L0 [ AGiðc0; L0Þ 2 Si (Step 3).

Case 2.2. p ¼ 2.
By Lemma 4 (ii) H is a 2-star m-full set of G whose stars respectively are of

centers u1ðHÞ; u2ðHÞ and of leaves a subset of H0. If vi is of Type 1 with respect to H
being adjacent to at most one marker of H or of Type 3 with respect to H, then
I � H [ fvig 2 Si (Step 1). If vi is of Type 2 with respect to H, then there exists a
vertex u 2 NGiðviÞ that has no neighbors in Infvig, that is, I is contained in the set
fvig [ AGiðu; viÞ 2 Si (Step 3).

Let us consider the case in which vi is either of Type 1 with respect to H being
adjacent to at least two markers of H or of Type 5 with respect to H.

Then I is contained in some member of the familyRði;HÞ generated by Step (2.2)
of Loop i of Algorithm Beta(1,m).

Let us consider the case in which vi is of Type 4 with respect to H.
Without loss of generality by symmetry let us assume that vi is adjacent to u1ðHÞ

and is non-adjacent to u2ðHÞ.
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Let Uj, for j ¼ 1; 2, denote the set of neighbors of ujðHÞ in H0; then by the above
jUjj �m.

Since vi is of Type 4, vi is adjacent to a vertex say h of H	. Let us write
T ¼ NðhÞ \ ðInfvigÞ. Note that, by Lemma 4 (ii), fu1ðHÞg [ U1 has a co-join to
fhg [ T .

Assume that T ¼ ;. Then I is contained in the set fvig [ AGiðh; viÞ 2 Si (Step 3).
Assume that T 6¼ ;. Therefore jT j\m, else vertices of fu1ðHÞg [ U1 [ fvig [

fhg [ T would induce a Ym;m, that is, any edge of the remaining star of H of center
u2ðHÞ and such an induced Ym;m would induce a K2 þ Ym;m, which is not possible
since G is K2 þ Ym;m-free. Then I is contained in the set fvig [ T [ AGiðh; fvig [
TÞ 2 Si (Step 3). h

The next lemma deals with the families Qði;HÞ (unmarked members), T ði;HÞ (2-
marked members), and Rði;HÞ (unmarked members) computed in Step 2 of Loop i
of Algorithm Beta(1, m).

Lemma 6 Referring to Algorithm Beta(1,m):

(i) for i ¼ 1; . . .; n, and for any 1-marked member H, the family Qði;HÞ [
T ði;HÞ contains Oðnmþ1Þ members and can be computed in Oðnmþ4Þ time;

(ii) for i ¼ 1; . . .; n, and for any 2-marked member H, the family Rði;HÞ
contains one member and can be computed in O(n) time;

(iii) Algorithm Beta(1,m) runs in time Oðn2mþ9Þ time and computes a family S
of size Oðn2mþ5Þ.

Proof Proof of (i): It follows by definition of Step (2.1), i.e., the execution of
Algorithm Beta(0, m), and by Lemma 3.

Proof of (ii): It follows by definition of Step (2.2); in fact, by Lemma 4 (ii’),
H	nNðviÞ is an independent set; therefore HnNðviÞ is an independent set by
definition of H0; then the family Rði;HÞ contains one member and can be computed
in O(n) time.

Proof of (iii):
Concerning 1-marked members of S. The total number of new 1-marked members

added to S by each Step 3 of each loop of Algorithm Beta(1, m) is at most nmþ2 (that
is at most nmþ1 for each loop); in particular, since each 1-marked member can be
created/extended in Oðn2Þ time (in particular in order to determine the connected
components) and since the loops are n, all 1-marked members can be computed in
Oðnmþ5Þ time.

Concerning 2-marked members of S. Each 2-marked member is created with
respect to some 1-marked member in Step (2.1) and then it is possibly extended in
Step 1 of the successive loops. By statement (i), for i ¼ 1; . . .; n, and for any 1-
marked member H, the family T ði;HÞ of 2-marked members contains Oðnmþ1Þ
members and can be computed in Oðnmþ4Þ time. Therefore, since i ¼ 1; . . .; n and
since the total number of 1-marked members is Oðnmþ2Þ, the total number of 2-
marked members from families T ði;HÞ (for i ¼ 1; . . .; n, and for any 1-marked
member H) is Oðn2mþ4Þ, and all such members can be computed in Oðn2mþ7Þ time; in
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particular, since each 2-marked member can be extended in O(n) time and since the
loops are n, all 2-marked members can be computed in Oðn2mþ9Þ time.

Concerning unmarked members of S. Each unmarked member (except for the
unmarked member which is created as the empty set in the initialization step and then
is possibly extended in Step 1 of the successive loops) is created with respect to some
1-marked member in Step (2.1) or with respect to some 2-marked member in Step
(2.2), and then it is possibly extended in Step 1 of the successive loops.

By statement (i), for i ¼ 1; . . .; n, and for any 1-marked member H, the family
Qði;HÞ of unmarked members contains Oðnmþ1Þ members and can be computed in
Oðnmþ4Þ time. Therefore, since i ¼ 1; . . .; n and since the total number of 1-marked
members is Oðnmþ2Þ, the total number of unmarked numbers from families Qði;HÞ
(for i ¼ 1; . . .; n, and for any 1-marked member H) is Oðn2mþ4Þ, and all such
members can be computed in Oðn2mþ7Þ time; in particular, since each unmarked
member can be extended in O(n) time and since the loops are n, all such unmarked
members can be computed in Oðn2mþ9Þ time.

By statement (ii), for i ¼ 1; . . .; n, and for any 2-marked member H, the family
Rði;HÞ of unmarked members contains 1 member and can be computed in O(n)
time. Therefore, since i ¼ 1; . . .; n and since the total number of 2-marked members
is Oðn2mþ4Þ by the above, the total numbers of unmarked members from families
Rði;HÞ (for i ¼ 1; . . .; n, and for any 2-marked member H) is Oðn2mþ5Þ, and all such
members can be computed in Oðn2mþ6Þ time; in particular, since each unmarked
member can be extended in O(n) time and since the loops are n, all such unmarked
members can be computed in Oðn2mþ8Þ time.

Summarizing: the total number of members of the family S produced by
Algorithm Beta(1, m) is Oðn2mþ5Þ, and all such members can be computed in
Oðn2mþ9Þ time, which is also the time bound of Algorithm Beta(1, m). h

Then, let us consider the following algorithm to solve WIS for K2 þ Y-free
graphs, where Y is any graph family containing an induced subgraph of Ym;m.

Algorithm WIS(1, m)

Input: A K2 þ Y-free graph G.

Output: A maximum weight independent set of G.

PHASE 1. Execute Algorithm Beta(1, m) for G. Let S be the family of subsets of G produced in this way.

PHASE 2. For each H 2 S, compute a maximum weight independent set of G[H]. Then choose a best
solution, i.e., one of maximum weight.

Theorem 7 Algorithm WIS(1,m) is correct and can be executed in Oðn2mþmaxf9;5þtgÞ
time whenever WIS can be solved for Y-free graphs in OðntÞ time for some constant t.

Proof Correctness. By Lemma 5, Algorithm WIS(1, m) is correct.
Complexity.
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Concerning PHASE 1: By Lemma 6, PHASE 1 can be executed in Oðn2mþ9Þ time.
Concerning PHASE 2: By Lemma 6, the family S contains Oðn2mþ5Þ members.
On the other hand, by Lemma 4 (iv) and by Observation 1, for each H 2 S only

two cases may occur: either H is an independent set (and then the problem is trivial),
or each non-trivial component K of G[H] is contained in the anti-neighborhood of
one edge of G (easily detectable), i.e., K is Y-free since G is K2 þ Y-free. Therefore
PHASE 2 can be executed in Oðn2mþ5þtÞ time whenever WIS can be solved for Y-free
graphs in OðntÞ time for some constant t.

Then Algorithm WIS(1, m) can be executed in Oðn2mþmaxf9;5þtgÞ time whenever
WIS can be solved for Y-free graphs in OðntÞ time for some constant t. h

Then one obtains the following result.

Theorem 8 For any constant m and for any graph family Y containing an induced
subgraph of Ym;m, if WIS can be solved for Y-free graphs in polynomial time, then
WIS can be solved for K2 þ Y-free graphs in polynomial time. h

5 Independent Sets in lK2 +Ym,m-free Graphs

In this section, let us introduce a class of algorithms which generalize/iterate
Algorithm Beta(1, m) of the previous section.

The subsequent recursive Algorithm Beta(l, m), for any l� 1, computes a family S
of subsets of V(G), for any input lK2 þ Ym;m-free graph G, which fulfills properties
analogous to that of Lemmas 4, 5, 6. In particular Algorithm Beta(l, m), for l ¼ 1, is
exactly Algorithm Beta(1, m) of the previous section.

The preliminaries for Algorithm Beta(l, m) are exactly those for Algorithm Beta
(1, m) except for the following points.

The members of S are of l þ 2 kinds: p-marked, for p 2 f1; . . .; l þ 1g, unmarked.
Each 1-marked member is created and marked [or derives from a 1-marked

member which has been created and marked] in Step 3 of some loop. Then it is
possibly extended in Step 1 of the successive loops. Each 1-marked member H is a
1-star set of G whose star is of a center vertex u1ðHÞ 62 H called the marker of H.
Each 1-marked member H keeps its marker u1ðHÞ along its possible extensions.

Each p-marked member for p 2 f2; . . .; l þ 1g is created with respect to some p0-
marked member, with p0\p, in Step 2 of some loop. Then it is possibly extended in
Step 1 of the successive loops. Each p-marked member H is a p-star m-full set of
G whose stars are respectively of center p vertices u1ðHÞ; . . .; upðHÞ 62 H called the
markers of H. Each p-marked member H keeps its markers u1ðHÞ; . . .; upðHÞ along
its possible extensions.

Each unmarked member is created either in the initialization step, i.e., the empty
set, or in Step 2 of some loop with respect to some p-marked member for some
p 2 f1; . . .; pg. Then it is possibly extended in Step 1 of the successive loops. Each
unmarked member is an independent set of G.
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Algorithm Beta(l, m)

Input: A lK2 þ Ym;m-free graph G and a vertex-ordering ðv1; v2; . . .; vnÞ of G.
Output: A family S of subsets of V(G).

S0:¼f;g (and say that ; is unmarked)

For i ¼ 1; . . .; n, do

begin

Si :¼ Si�1

Step 1 [Extension of some members of Si]

For each H 2 Si�1, do

(1.1) If H is unmarked and if vi is of Type 1,

then H :¼H [ fvig (and say that H remains unmarked)

Si:¼Si [ fHg
(1.2) If H is p-marked for some p 2 f1; . . .; l þ 1g,
and if vi is either of Type 1 being adjacent to at most one marker of H or of Type 3,

then H :¼H [ fvig (and say that H remains p-marked)

Si:¼Si [ fHg
Step 2 [Addition of unmarked members and of p-marked members for p 2 f2; . . .; l þ 1g to Si]

For each H 2 Si�1, do

(2.1) If H is p0-marked, for some p0 2 f1; . . .; lg,
if ujðHÞ for j 2 f1; . . .; p0g has at least m neighbors in H0,

and if vi is of Type 4,

then

:: execute Algorithm Beta(l � p0,m) for G½H	nNðviÞ�,
:: let S0 be the family of subsets of V ðG½H	nNðviÞ�Þ produced in this way,

:: let S0
one ¼ fM 0 2 S0 : M 0 is an independent setg,

:: let S0
two ¼ fM 0 2 S0 : M 0 is a q-star m-full set for some q 2 f1; . . .; l � p0 þ 1g,

M 0 is not an independent setg,
:: Qði;HÞ:¼ffvig [ H0 [M 0 : M 0 2 S0

oneg,
:: Si:¼Si [ Qði;HÞ (and say that each member of Qði;HÞ is unmarked)
:: T ði;HÞ:¼ffvig [ H0 [M 0 : M 0 2 S0

two

whose q stars are of centers say c01; . . .; c
0
q for some q 2 f1; . . .; l � p0 þ 1gg

:: Si:¼Si [ T ði;HÞ
(and say that each member H 0 ¼ fvig [ H0 [M 0 2 T ði;HÞ is p0 þ q-marked

and that the markers of H 0 are

ujðH 0Þ:¼ujðHÞ, for j ¼ 1; . . .; p0, and up0þjðH 0Þ:¼c0j, for j ¼ 1; . . .; q).

(2.2) If H is p-marked for some p 2 f2; . . .; l þ 1g,
and if vi is either of Type 1 being adjacent to at least two markers of H or of Type 5,

then

:: compute the family R of all maximal independent sets of G½H	nNðviÞ�
:: Rði;HÞ:¼ffvig [ H0 [ R : R 2 Rg
:: Si:¼Si [ Rði;HÞ (and say that each member of Rði;HÞ is unmarked)
Step 3 [Addition of 1-marked members to Si]

For each induced star (c, L) of Gi such that jLj �m,

H :¼L [ AGi ðc; LÞ,
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Si:¼Si [ fHg (and say that H is 1-marked: the marker of H is u1ðHÞ:¼c)

end

S:¼Si

end.

Let us prove the following lemmas.
Note: Statement ði0Þ of the subsequent Lemma 7 ensures that Step 2 of Algorithm

Beta(l, m) is well defined, in fact G½H	nNðviÞ� needs to be ðl � p0ÞK2 þ Ym;m-free in
order to execute Algorithm Betaðl � p0;mÞ for G½H	nNðviÞ�.

Lemma 7 Referring to Algorithm Beta(l, m) for any l� 1:

(i) every 1-marked member H of Si, for i ¼ 1; . . .; n, is a 1-star set whose star is
of center u1ðHÞ and of leaves a subset of H0;

(ii) every p-marked member H for p 2 f2; . . .; l þ 1g of Si, for i ¼ 1; . . .; n, is a
p-star m-full set whose stars respectively are of center u1ðHÞ; . . .; upðHÞ and
of leaves a subset of H0;

(iii) referring to Step (2.1) of Loop i of Algorithm Beta(l, m), for i ¼ 1; . . .; n,
G½H	nNðviÞ� is ðl � p0ÞK2 þ Ym;m-free;

(iv) referring to Step (2.2) of Loop i of Algorithm Beta(l, m), for i ¼ 1; . . .; n,
G½H	nNðviÞ� is lK2-free;

(v) every unmarked member of Si, for i ¼ 1; . . .; n, is an independent set;
(vi) the family S produced by Algorithm Beta(l, m) can be partitioned into

fSone;Stwo;Sthreeg, where: Sone ¼ fI 2 S : I is an independent setg, Stwo ¼
fI 2 S : I is a p-star m-full set for some p 2 f1; . . .; l þ 1g, I is not an
independent setg, Sthree ¼ fI 2 S : I is a p-star set for some
p 2 f1; . . .; l þ 1g, I is not an independent set, I is not a p-star set m-full
for p 2 f1; . . .; l þ 1gg.

Proof The proof is by induction on l. For l ¼ 1 the proof is that of Lemma 4. Then
let us assume that the lemma holds for l � 1 and let us show that it holds for l.

Proof of (i). The proof is similar to that of Lemma 4 (i).
Proof of (ii). Each p-marked member for p 2 f2; . . .; l þ 1g is created in Step (2.1)

of some loop with respect to a p0-marked member, with p0\p, and then it is possibly
extended in Step (1.2) of the successive loops. Then, by the inductive assumption on l
(i.e., by Statement (iv) concerning Algorithm Beta(l � p0,m)), by definition of Step
(2.1) and by definition of u1ðHÞ; . . .; upðHÞ, each p-marked member satisfies
Statement (ii) at the moment of its creation. Furthermore each p-marked member
satisfies Statement (ii) after its possible extensions by definition of a vertex of Type 1
being adjacent to at most one marker of H and of Type 3 (let us observe that each p-
marked member H keeps its markers u1ðHÞ; . . .; upðHÞ along its possible extensions).

Proof of (i’). At Step (2.1) of Loop i of Algorithm Beta(l, m), for i ¼ 1; . . .; n, by
construction H	nNðviÞ is contained in the anti-neighborhood of
fvig [ fu1ðHÞ; . . .; up0 ðHÞg [ ðNðu1Þ \ H0Þ [ � � � [ ðNðup0 Þ \ H0Þ, for some
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p0 2 f1; . . .; lg, which is a collection of p0 stars of centers u1ðHÞ; . . .; up0 ðHÞ having
mutually a co-join (thus containing an induced p0K2) by Statements (i)–(ii) and since
vi is of Type 4. Then Statement (i’) follows since G is lK2 þ Ym;m-free.

Proof of (ii’). At Step (2.2) of Loop i of Algorithm Beta(l, m), for i ¼ 1; . . .; n, H is
p-marked for some p 2 f2; . . .; l þ 1g and vi is either of Type 1 being adjacent to at
least two markers of H or of Type 5, say without loss of generality, vi is adjacent to
u1ðHÞ and u2ðHÞ. Therefore, by Statement (ii), vi and the two stars of H of center
u1ðHÞ and u2ðHÞ induce a subgraph of Gi that contains an induced Ym;m. Then
Statement (ii’) follows since G is lK2 þ Ym;m-free.

Proof of (iii). The proof is similar to that of Lemma 4 (iii).
Proof of (iv). It follows by Statements (i)–(iii) and by definition of Algorithm Beta

(l,m). h

Lemma 8 Let S be the family of subsets of V(G) produced by Algorithm Beta(l,m)
for any l� 1. Then for any maximal independent set I of G, there is a member H 2 S
such that I � H.

Proof The proof is by induction on l. For l ¼ 1 the proof is that of Lemma 5. Then
let us assume that the lemma holds for l � 1 and let us show that it holds for l.

The first part of this proof is similar to the first part of the proof of Lemma 2.
Case 1. H is unmarked.
This case is similar to Case 1 of Lemma 2, with Lemma 7 instead of Lemma 1,

and with Step 3 instead of Step 2.
Case 2. H is p-marked for some p 2 f1; . . .; l þ 1g.
Case 2.1. p 2 f1; . . .; lg.
By Lemma 7 (i)–(ii) H is a p-star set of G whose stars are of center

u1ðHÞ; . . .; upðHÞ and of leaves a subset of H0. If vi is of Type 1 with respect to H
being adjacent to at most one marker of H or of Type 3 with respect to H, then
I � H [ fvig 2 Si (Step 1). If vi is of Type 2 with respect to H, then there exists a
vertex u 2 NGiðviÞ that has no neighbors in Infvig, that is, I is contained in the set
fvig [ AGiðu; viÞ 2 Si (Step 3).

Let us consider the case in which vi is either of Type 1 with respect to H being
adjacent to at least two markers of H or of Type 5 with respect to H (so that p� 2).

Then I is contained in some member of the familyRði;HÞ generated by Step (2.2)
of Loop i of Algorithm Beta(l,m).

Let us consider the case in which vi is of Type 4 with respect to H.
Since I is a maximal independent set of Gi, I is a maximal independent set of

G½H [ fvig� as well, i.e., Infvig is a maximal independent set of G½HnNðviÞ�. In
particular, since v is of Type 4, one has that vi is adjacent to exactly one marker of H
and that H0 � Infvig.

If H is not m-full, i.e., jNðujðHÞÞ \ H0j\m for some j 2 f1; . . .; pg, then I is
contained in the set fvig [ ðNðujðHÞÞ \ H0Þ [ AGiðujðHÞ; fvig [ ðNðujðHÞÞ \
H0ÞÞ 2 Si (Step 3).

If H is m-full, i.e., jNðujðHÞÞ \ H0j �m for j 2 f1; . . .; pg, then let us consider the
following argument.
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Let us write I ¼ fvig [ H0 [ I 0, where I 0 ¼ ðInfvigÞ \ ðH	nNðviÞÞ. Since Infvig
is a maximal independent set of G½HnNðviÞ�, I 0 is a maximal independent set of
G½H	nNðviÞ�. Now, according to Step (2.1) of Algorithm Beta(l, m) and according to
Lemma 7 (iv) by the inductive assumption on l, let S0 ¼ S0

one [ S0
two [ S0

three be the
family of subsets of V ðG½H	nNðviÞ�Þ produced by Algorithm Betaðl � p;mÞ
executed for G½H	nNðviÞ�. Therefore, by the present lemma and by the inductive
assumption on l, there exists an M 0 2 S0 such that I 0 � M 0, and by Lemma 7 (iv) and
by the inductive assumption on l, one of the following three subcases occurs.

Assume that M 0 2 S0
one. Then fvig [ H0 [M 0 belongs to the family Qði;HÞ

generated by Step (2.1) of Loop i of Algorithm Beta(l,m), i.e., I is contained in
fvig [ H0 [M 0 2 Si.

Assume that M 0 2 S0
two. Then fvig [ H0 [M 0 belongs to the family T ði;HÞ

generated by Step (2.1) of Loop i of Algorithm Beta(l,m), i.e., I is contained in
fvig [ H0 [M 0 2 Si.

Assume that M 0 2 S0
three. Therefore, M

0 is a p0-star set of G½H	nNðviÞ� for some
p0 2 f1; . . .; l � pþ 1g, whose at least one star say ðc0; L0Þ is such that jL0j\m and is
clearly a star of Gi as well. Then I is contained in the set L0 [ AGiðc0; L0Þ 2 Si (Step
3).

Case 2.2. p ¼ l þ 1.
By Lemma 7 (ii) H is a p-star m-full set of G whose stars are of center

u1ðHÞ; . . .; upðHÞ and of leaves a subset of H0. If vi is of Type 1 is either of Type 1
with respect to H being adjacent to at most one marker of H or of Type 3 with respect
to H, then I � H [ fvig 2 Si (Step 1). If vi is of Type 2 with respect to H, then there
exists a vertex u 2 NGiðviÞ that has no neighbors in Infvig, that is, I is contained in
the set fvig [ AGiðu; viÞ 2 Si (Step 3).

Let us consider the case in which vi is either of Type 1 with respect to H being
adjacent to at least two markers of H or of Type 5 with respect to H (so that p� 2).

Then I is contained in some member of the familyRði;HÞ generated by Step (2.2)
of Loop i of Algorithm Beta(l,m).

Let us consider the case in which vi is of Type 4 with respect to H.
Let Uj, for j ¼ 1; . . .; p, denote the set of neighbors of ujðHÞ in H0; then by the

above jUjj �m.
Without loss of generality, by symmetry, assume that vi is adjacent to u1ðHÞ and is

non-adjacent to u2ðHÞ; . . .; upðHÞ.
Since vi is of Type 4, vi is adjacent to a vertex say h of H	. Let us write

T ¼ NðhÞ \ ðInfvigÞ. Note that, by Lemma 7 (ii), fu1ðHÞg [ U1 has a co-join to
fhg [ T .

Assume that T ¼ ;. Then I is contained in the set fvig [ AGiðh; viÞ 2 Si (Step 3).
Assume that T 6¼ ;. Therefore jT j\m, else vertices of T, fh; vi; u1ðHÞg, U1 would

induce a Ym;m, that is, any induced lK2 of the remaining stars of H of center
u2ðHÞ; . . .; upðHÞ (recall that p ¼ l þ 1) and such an induced Ym;m would induce a
lK2 þ Ym;m, that is not possible since G is lK2 þ Ym;m-free. Then I is contained in the
set fvig [ T [ AGiðh; fvig [ TÞ 2 Si (Step 3). h
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The next lemma is the homologous of Lemma 6. However let us omit a detailed
analysis on polynomial time bounds since that would comport a (not difficult but)
recursive analysis with long expressions.

Lemma 9 Referring to Algorithm Beta(l,m):

(i) for i ¼ 1; . . .; n, and for any p0-marked member H for p0 2 f1; . . .; lg, the
family Qði;HÞ [ T ði;HÞ contains polynomially many members and can be
computed in polynomial time;

(ii) for i ¼ 1; . . .; n, and for any p-marked member H for p 2 f2; . . .; l þ 1g, the
family Rði;HÞ contains polynomially many members and can be computed
in polynomial time;

(iii) Algorithm Beta(l,m) runs in polynomial time and computes a family S of
polynomial size.

Proof For l ¼ 1 the proof is that of Lemma 6. Then let us assume that the lemma
holds for l � 1 and let us show that it holds for l.

Proof of (i): It follows by definition of Step (2.1), i.e., the execution of Algorithm
Betaðl � p0;mÞ, and by the induction assumption on l.

Proof of (ii): It follows by definition of Step (2.2); in fact, by Lemma 4 (ii’),
G½H	nNðviÞ� is lK2-free; therefore G½HnNðviÞ� is lK2-free by definition of H0; then
G½HnNðviÞ� contains polynomially many maximal independent sets by Theorem 4
and by Theorem 5, i.e., the family Rði;HÞ contains polynomially many members.

Proof of (iii):
Concerning 1-marked members of S. The total number of new 1-marked members

added to S by each Step 3 of each loop of Algorithm Beta(l, m) is at most nmþ2 (that
is at most nmþ1 for each loop); in particular, since each 1-marked member can be
created/extended in Oðn2Þ time (in particular in order to determine the connected
components) and since the loops are n, all the marked members can be computed in
Oðnmþ4Þ time.

Concerning p-marked members of S for p 2 f2; . . .; l þ 1g. Let us observe that
each p-marked member for p 2 f2; . . .; l þ 1g is created in Step 2 of some loop with
respect to a p0-marked member for p0 2 f1; . . .; lg, with p0\p, and then it is possibly
extended in Step (1.2) of the successive loops. Then let us prove that Algorithm Beta
(l,m) produces polynomially many p-marked members for p 2 f2; . . .; l þ 1g by
induction on p.

For p ¼ 2: By statement (i), for i ¼ 1; . . .; n, and for any 1-marked member H, the
family T(i, H) of 2-marked members contains polynomially many members and can
be computed in polynomial time. Therefore, since the total number of 1-marked
members is bounded by a polynomial (by the above), the total number of 2-marked
members from families T ði;HÞ (for i ¼ 1; . . .; n, and for any 1-marked member H) is
bounded by a polynomial, and all such members can be computed in polynomial
time; in particular, since each 2-marked member can be extended in O(n) time and
since the loops are n, all 2-marked members can be computed in polynomial time.

For p[ 2: By statement (i), for i ¼ 1; . . .; n, and for any p0-marked member H
with p0\p, the family T ði;HÞ of p-marked members contains polynomially many
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members and can be computed in polynomial time. Therefore, since the total number
of p0-marked members with p0\p is bounded by a polynomial by the inductive
assumption on p, the total number of p-marked members from families T ði;HÞ (for
i ¼ 1; . . .; n, and for any p0-marked member H with p0\p) is bounded by a
polynomial, and all such members can be computed in polynomial time; in particular,
since each p-marked member can be extended in O(n) time and since the loops are n,
all p-marked members can be computed in polynomial time.

Concerning unmarked members of S. Let us observe that each unmarked member
is created with respect to some p0-marked member for p0 2 f1; . . .; lg in Step (2.1) or
with respect to some p-marked member for p 2 f2; . . .; l þ 1g in Step (2.2), and then
it is possibly extended in Step 1 of the successive loops (except for the unmarked
member which is created as the empty set in the initialization step and is possibly
extended in Step 1 of the successive loops).

By statement (i), for i ¼ 1; . . .; n, and for any p0-marked member H, the family
Qði;HÞ of unmarked members contains polynomially many elements and can be
computed in polynomial time. Therefore, since the total number of p0-marked
members is bounded by a polynomial (by the above), the total number of unmarked
numbers from familiesQði;HÞ (for i ¼ 1; . . .; n, and for any p0-marked member H) is
bounded by a polynomial, and all such members can be computed in polynomial
time; in particular, since each unmarked member can be extended in polynomial time
and since the loops are n, all such unmarked members can be computed in
polynomial time.

By statement (ii), for i ¼ 1; . . .; n, and for any p-marked member H, the family
Rði;HÞ of unmarked members contains polynomially many elements and can be
computed in polynomial time. Therefore, since the loops of the algorithm are n, and
since the total number of p-marked members is bounded by a polynomial (by the
above), the total numbers of unmarked members from families Rði;HÞ (for
i ¼ 1; . . .; n, and for any p-marked member H) is bounded by a polynomial, and all
such members can be computed in polynomial time; in particular, since each
unmarked member can be extended in polynomial time and since the loops are n, all
such unmarked members can be computed in polynomial time.

Summarizing: the total number of members of the family S produced by
Algorithm Beta(l, m) is bounded by a polynomial, and all such members can be
computed in polynomial time, which is also the time bound of Algorithm Beta(l, m).

h

Then, let us consider the following algorithm to solve WIS for lK2 þ Y-free
graphs for any l� 1, where Y is any graph family containing an induced subgraph of
Ym;m.
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Algorithm WIS(l, m)

Input: A lK2 þ Y-free graph G.

Output: A maximum weight independent set of G.

PHASE 1. Execute Algorithm Beta(l, m) for G. Let S be the family of subsets of G produced in this way.

PHASE 2. For each H 2 S, compute a maximum weight independent set of G[H]. Then choose a best
solution, i.e., one of maximum weight.

Theorem 9 Algorithm WIS(l,m) is correct and can be executed in polynomial time
whenever WIS can be solved for Y-free graphs in polynomial time.

Proof The proof is by induction on l. For l ¼ 1 the proof is that of Theorem 7. Then
let us assume that the theorem holds for l � 1 and let us show that it holds for l.

Correctness. By Lemma 8, Algorithm WIS(l, m) is correct.
Complexity.
Concerning PHASE 1: By Lemma 9, PHASE 1. can be executed in polynomial time.
Concerning PHASE 2: By Lemma 9, the family S contains polynomially many

members. On the other hand, by Lemma 7 (ii) and by Observation 1, for each H 2 S
only two cases may occur: either H is an independent set (and then the problem is
trivial), or each non-trivial component K of G[H] is contained in the anti-
neighborhood of one induced edge of G (easily detectable), i.e., K is ðl � 1ÞK2 þ Y-
free since G is lK2 þ Y-free. Therefore, by the inductive assumption on l, PHASE 2 can
be executed in polynomial time whenever WIS can be solved for Y-free graphs in
polynomial time.

Then Algorithm WIS(l, m) can be executed in polynomial time whenever WIS can
be solved for Y-free graphs in polynomial time. h

Then one obtains the following result.

Theorem 10 For any constant m and for any graph family Y containing an induced
subgraph of Ym;m, if WIS can be solved for Y-free graphs in polynomial time, then
WIS can be solved for lK2 þ Y-free graphs in polynomial time for any constant l. h
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