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Large rainbow matchings in edge-colored graphs with

given average color degree ∗

Wenling Zhou †

Abstract: A rainbow matching in an edge-colored graph is a matching in which no

two edges have the same color. The color degree of a vertex v is the number of different

colors on edges incident to v. Kritschgau [Electron. J. Combin. 27(2020)] studied

the existence of rainbow matchings in edge-colored graph G with average color degree

at least 2k, and proved some sufficient conditions for a rainbow marching of size k

in G. The sufficient conditions include that |V (G)| ≥ 12k2 + 4k, or G is a properly

edge-colored graph with |V (G)| ≥ 8k.

In this paper, we show that every edge-colored graph G with |V (G)| ≥ 4k − 4 and

average color degree at least 2k−1 contains a rainbow matching of size k. In addition,

we also prove that every strongly edge-colored graph G with average degree at least

2k−1 contains a rainbow matching of size at least k. The bound is sharp for complete

graphs.

Keywords: rainbow matching, edge-colored graph, strongly edge-colored graph, av-

erage color degree

1 Introduction

We use [4] for terminology and notation not defined here and only consider simple undirected graphs.

An edge-colored graph is a graph in which each edge is assigned a color. Given an edge-colored graph

G, we call it a properly edge-colored graph if its any two adjacent edges have different colors. Thus, in

a properly edge-colored graph, edges of the same color form a matching. If for each color α, the set

of edges having color α forms an induced matching in G, then we say that G is strongly edge-colored.

Therefore, a strongly edge-colored graph is always properly edge-colored. Furthermore, a matching M

in an edge-colored graph G is a rainbow matching if the edges in M have distinct colors.

Given an edge-colored graph G = (V,E), we use δ(G) and d(G) to denote the minimum degree

and the average degree of G respectively. For a vertex v ∈ V , the color degree, d̂G(v) of v is the

number of different colors on edges incident to v. When it is clear from the context what G is, we

would omit the subscript. We use δ̂(G), ∆̂(G) and d̂(G) to denote the minimum color degree, the

maximum color degree and the average color degree of G respectively, i.e., δ̂(G) = min{d̂(v) : v ∈ V },

∆̂(G) = max{d̂(v) : v ∈ V } and d̂(G) =
∑

v∈V d̂(v)/n. Clearly, for an edge-colored graph G, we have

d(v) ≥ d̂(v) for each v ∈ V .
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Rainbow matchings in edge-colored graphs were originally studied in connection to the famous

conjecture of Ryser [13], which equivalently states that every properly edge-colored complete bipartite

graph Kn,n with n colors contains a rainbow matching of size n, where n is odd. Unlike uncolored

matchings for which the maximum matching problem is solvable in polynomial time, the maximum

rainbow matching problem is NP -Complete, even for bipartite graphs, mentioned in Garey and Johnson

[5] as the multiple choice matching problem. Therefore, the existence of rainbow matchings has also

been studied in its own right.

During the last decades, many researchers have studied the sufficient conditions to ensure that

a properly edge-colored graph G has a rainbow matching of size δ(G). In [14], Wang asked does

there exist a function f(δ(G)), such that every properly edge-colored graph G with |V (G)| ≥ f(δ(G))

contains a rainbow matching of size δ(G). Diemunsch et al. [3] proved that such function does exist and

f(δ(G)) ≤ 98
23δ(G). Gyárfás and Sárközy [6] improved the result to f(δ(G)) ≤ 4δ(G) − 3. Later, this

problem was generalized to find the function f(δ̂(G)) for any edge-colored graph G. Lo and Tan [12]

showed that f(δ̂(G)) ≤ 4δ̂(G)− 4 is sufficient for δ̂(G) ≥ 4. As far as we know, the best result so far is

f(δ̂(G)) ≤ 7
2 δ̂(G) + 2 in [11]. In addition, the lower bound for the size r(G) of the maximum rainbow

matchings in edge-colored graph G has also been studied independently, in terms of the minimum color

degree of G. In [15], Li and Wang showed that r(G) ≥ ⌈5δ̂(G)−13
12 ⌉ for every edge-colored graph G, and

they conjectured that r(G) ≥ ⌈δ̂(G)/2⌉ for δ̂(G) ≥ 4. Consider a properly edge-colored K4, whose edges

of the same color form a matching of size 2. For convenience, it is denoted as K̃4. It is easy to verify

that K̃4 has no a rainbow matching of size 2, which motivates the restriction δ̂(G) ≥ 4. In particular,

the bound of this conjecture is sharp for properly edge-colored complete graphs. This conjecture was

partially confirmed in [10] and fully confirmed in [8]. In particular, Kostochka and Yancey [8] proved

that if G is not K̃4, then r(G) ≥ ⌈δ(G)/2⌉.

Since the maximum rainbow matchings problem in edge-colored graphs in terms of the minimum

color degree is well studied, it is natural to study this problem under the average color degree condition.

Michael Ferrara raised [9] the following related question during the Rocky Mountain and Great Plains

Graduate Research Workshop in Combinatorics in 2017.

Question 1. If G is an edge-colored graph with d̂(G) ≥ 2k, does G contain a rainbow matching of size

k?

Since the average color degree condition is weaker than the minimum color degree, it is more difficult

to study the maximum rainbow matchings problem under the average color degree condition. Therefore,

there are few known results under the average color degree condition. Recently, Kritschgau [9] studied

Question 1, and proved some sufficient conditions to bound from below r(G) in G with a prescribed

average color degree. We denote by Ci the cycle with i vertices.

Theorem 1.1 (Kritschgau [9]). Each condition below guarantees that r(G) ≥ k for each edge-colored

graph G with d̂(G) ≥ 2k.

(i) G is C3-free.

(ii) G is C4-free.

(iii) G is properly edge-colored and |V (G)| ≥ 8k.

(iv) |V (G)| ≥ 12k2 + 4k.

Though Kritschgau [9] did not resolve Question 1 for all graphs, he believe the answer is affirmative.

Recall that Kostochka and Yancey showed that r(G) ≥ k for all edge-colored graph G with δ̂(G) ≥ 2k−1
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and G 6= K̃4. We want to study the consistency of the maximum rainbow matching between the

minimum color degree condition and the average color degree condition. Generalising Question 1, we

ask the following question.

Question 2. If G is not K̃4 and d̂(G) ≥ 2k − 1, does G contain a rainbow matching of size k?

If the answer of Question 2 is affirmative, it would be best possible, because the properly edge-

colored complete graph Kt+1 satisfies d̂(Kt+1) ≥ t for each t ∈ N, but r(Kt+1) ≤ ⌈t/2⌉. In this paper,

we partially resolve Question 2 and obtain the following result.

Theorem 1.2. For all k ∈ N
∗, let G is an edge-colored graph with d̂(G) ≥ 2k − 1 and G 6= K̃4. If

|V (G)| ≥ 4k − 4, then r(G) ≥ k.

Remark. Theorem 1.2 implies that, for any k, only finitely many edge-colored graphs with average

color degree at least 2k − 1 can fail to have a rainbow matching of size k. Furthermore, it is easy to

verify that these graphs G that may fail satisfy |E(G)| ≥ |V (G)|2/4+3|V (G)|/4. By the Tuŕan number

of C3 and C4, these graphs all contain C3 and C4. Therefore, Theorem 1.2 can deduce Theorem 1.1.

In addition, the topic of rainbow matchings in strongly edge-colored graphs in terms of the minimum

color degree has been also well studied. Note that for strongly edge-colored graphG, we have d(v) = d̂(v)

for each v ∈ V (G). In 2015 Babu-Chandran-Vaidyanathan [1] showed that r(G) ≥ ⌊3δ(G)/4⌋ for

any strongly edge-colored graph G with |V (G)| ≥ 2⌊3δ(G)/4⌋. They also proposed an interesting

question: Is there a constant c greater than 3/4 such that every strongly edge-colored graph G has

r(G) ≥ ⌊cδ(G)⌋ if |V (G)| ≥ 2⌊cδ(G)⌋? Clearly, c ≤ 1. The best result so far on this question is from

Cheng-Tan-Wang [2], and they proved the following result.

Theorem 1.3 (Cheng-Tan-Wang [2]). If G is a strongly edge-colored graph with |V (G)| ≥ 2δ(G) + 1,

then r(G) ≥ δ(G).

Rather than considering host graphs with a prescribed minimum color degree, we consider host

graphs with a prescribed average color degree, and obtain the following a sharp result.

Theorem 1.4. For any k ∈ N
∗, if G is a strongly edge-colored graph with d(G) ≥ 2k−1, then r(G) ≥ k.

Next, we will prove Theorem 1.2 and Theorem 1.4 in Section 2 and Section 3 respectively. Finally,

we close the paper with some remarks and conjectures in Section 4.

2 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2 by induction on k. The base case k = 1 is trivial. Suppose

k ≥ 2, and let G with edge coloring ϕ be a counterexample to Theorem 1.2 with the fewest edges. Let

2k − 1 := d̂(G) and n := |V (G)| with n ≥ 4k − 4.

For the sake of contradiction, we will study the total color degree of G in the following proofs. Let

us start with some useful notation. For simplicity, set V := V (G). For v ∈ V , the neighborhood of v is

denoted by let N(v) := {u ∈ V | uv ∈ E(G)}. For U ⊆ V , Let G[U ] denote the induced subgraph of G

on vertex set U . The color used on G[U ] will be denoted ϕ(G[U ]), i.e., ϕ(G[U ]) = {ϕ(e) : e ∈ E(G[U ])}.

If U = V , then we write that ϕ(G) simply.
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2.1 Preliminary results

By induction hypothesis, r(G) = k − 1. Choose a rainbow matching M of size k − 1 in G, which

maximizes |ϕ(G[V \ V (M)])|. Let H be the subgraph induced by G[V \ V (M)], and let a = |ϕ(H)|.

Clearly, 0 ≤ a ≤ k − 1. We say that a color appearing in G is free if it does not appear on an

edge of M , otherwise it is unfree. Therefore, we can divide ϕ(G) into two disjoint subset ϕf and

ϕuf , where ϕuf = {ϕ(e) : e ∈ E(M)} and ϕf = ϕ(G) \ ϕuf . For every vertex v ∈ V , let d̂f (v) and

d̂uf (v) denote the free color degree and the unfree color degree of v in G respectively. Clearly, we

have d̂(v) = d̂f (v) + d̂uf (v). Without loss of generality, let E(M) = {uivi : 1 ≤ i ≤ k − 1}. For

1 ≤ i ≤ k − 1, let Bi denote the bipartite subgraph of G whose edge connect {ui, vi} with V (H), and

set h(i) :=
∑

w∈V (H) d̂
f
Bi
(w). This notation h(i) will be used for the rest of the paper. First, we find a

property of G.

Claim 2.1. ∆̂(G) ≤ 2(k − 1) + a.

Proof. Assume for the sake of contradiction that there is a vertex v ∈ V with d̂(v) ≥ 2k + a− 1. Let

G∗ = G − v, which is obtained from G by deleting the vertex v and all edges incident with v. Since

d̂(v) ≤ n− 1 and d̂(G) = 2k − 1, we have

d̂(G∗) ≥
(2k − 1)n− 2(n − 1)

n− 1
> 2(k − 1)− 1.

By induction hypothesis, G∗ contains a rainbow matching M∗ of size k − 1. Let H∗ be the induced

subgraph of G on vertex set V \ V (M∗), we have |ϕ(H∗)| ≤ |ϕ(H)| = a. Since d̂(v) ≥ 2k+ a− 1, there

is at least one vertex u ∈ N(v) such that u /∈ V (M∗) and ϕ(uv) /∈ ϕ(M∗). Let M ′ = M∗ ∪{uv}, which

yields a rainbow matching of size k in G, a contradiction.

Furthermore, recalling the result of Kostochka and Yancey, it follows that δ̂(G) < 2k− 1, otherwise

G contains a rainbow matching of size k, a contradiction. Therefore, we have 2k− 1 = d̂(G) < ∆̂(G) ≤

2(k − 1) + a, i.e., a ≥ 2. In addition, since a ≤ k − 1, we have k ≥ 3 in the next proof.

By the minimality of G, it is easy to prove the following property.

Lemma 2.1 ([8]). The edges of each color class of ϕ form a forest of stars.

Now, let us consider the relationship between the rainbow matching M and the induced subgraph

H. Given a color α ∈ ϕ(H), let Hα denote the subgraph of H with the edges in color class α, and sH(α)

denote the number of stars in Hα. Since ϕ(H) ⊆ ϕuf , we partition M into X1,X2,X3 as following:

(1) For every e ∈ X1, sH(ϕ(e)) ≥ 2;

(2) For every e ∈ X2, sH(ϕ(e)) = 1;

(3) For every e ∈ X3, sH(ϕ(e)) = 0.

A free edge in G is an edge colored with a free color. For v ∈ V (M), let Ef
H(v) denote the set of

free edges connecting v and V (H) in G. In order to get a more detailed estimate, we partition X3 into

Y1, Y2, Y3 as following:

(i) For every e ∈ Y1, every endpoint v of edge e with |ϕ(Ef
H(v))| ≥ 1;

(ii) For every e ∈ Y2, there is only one endpoint v of edge e with |ϕ(Ef
H(v))| ≥ 1;

(iii) For every e ∈ Y3, every endpoint v of edge e with |ϕ(Ef
H(v))| = 0.
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Figure 1: Some configurations that can not appear in G.
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Figure 2: Two extremal configurations of Claim 2.3.

For convenience, let xj = |Xj | and yj = |Yj | for 1 ≤ j ≤ 3, and let ϕ(uivi) = i for every edge

uivi ∈ E(M). Next, for the partition above, we will state and prove several claims that are useful for

the proof of Theorem 1.2.

Claim 2.2. For every edge uivi ∈ X1, we have h(i) = 0.

In Figure 1 we list three configurations (1.1), (1.2) and (1.3), which can not appear in G, otherwise,

they would yield a rainbow matching of size k in G. Configurations (1.1) directly proves Claim 2.2.

Claim 2.3. For every edge uivi ∈ X2, if |E(H i)| = 1, then we have h(i) ≤ 4; if |E(H i)| ≥ 2, then we

have h(i) ≤ 2.

In Figure 2 we list the extremal configurations for |E(H i)| = 1 with h(i) = 4 (see Figure (2.1)), and

|E(H i)| ≥ 2 with h(i) = 2 (see Figure (2.2)). In particular, for the extremal configurations (2.1), we

have the following claim. We denote by G3 the induced subgraph of G on V \ V (X3).

Claim 2.4. For every edge uivi ∈ X2, if h(i) = 4, then d̂fG3
(ui) + d̂fG3

(vi) = 4.

Proof. Fix uivi ∈ X1. Since h(i) = 4, we have |E(H i)| = 1, and the extremal configurations (2.1)

appears in G. Without loss of generality, let ϕ(Ef
H(ui)) = ϕ(Ef

H(vi)) = {α, β}. For any ujvj ∈ X1∪X2

with ujvj 6= uivi, since E(Hj) 6= ∅, there are e1 ∈ E(H i) and e2 ∈ E(Hj) such that e1 and e2 either

intersect or disjoint. If e1 ∩ e2 = ∅, then ϕ(Ef
ujvj (ui)) = ϕ(Ef

ujvj (vi)) = ∅, since the configurations (1.2)

in Figure 1 can not appear in G. If e1 ∩ e2 6= ∅, then ϕ(Ef
ujvj (ui)), ϕ(E

f
ujvj (vi)) ∈ {α, β}, since the

configurations (1.3) in Figure 1 can not appear in G. Therefore, ui and vi can only connect α color

edges or β color edges in G3, i.e., d̂
f
G3

(ui) + d̂fG3
(vi) = 4.

Claim 2.5. For every edge uivi ∈ Y1, we have d̂(ui) + d̂(vi) + h(i) ≤ n+ 2k + 2a− 2.

Proof. For every edge uivi ∈ Y1, we have |ϕ(Ef
H (ui))| ≥ 1 and |ϕ(Ef

H (vi))| ≥ 1. First, we claim that

|ϕ(Ef
H(ui))| ≤ 2 and |ϕ(Ef

H (vi))| ≤ 2. Otherwise, without loss of generality, suppose that there are at

least three vertices w1, w2, w3 ∈ N(ui)∩V (H) such that ϕ(uiw1) = α1, ϕ(uiw2) = α2 and ϕ(uiw3) = α3,
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where {α1, α2, α3} ⊆ ϕf . Since |ϕ(Ef
H (vi))| ≥ 1, there is at least one vertex wk ∈ N(vi) ∩ V (H) such

that ϕ(viwk) = αk and αk ∈ ϕf . In this case, we can always find two disjoint edges with different

free colors to replace uivi and obtain a larger matching in G, a contradiction. Namely, for any edge

uivi ∈ Y1, Bi can not contain two disjoint edges with different free colors. Next, we will discuss all the

possible cases.

Case 1: |ϕ(Ef
H(ui))| = |ϕ(Ef

H(vi))| = 2. In this case, the set of edges with free colors in Bi can

only form a K̃4, whose edges of the same color form a matching of size 2. Otherwise, Bi contains

two disjoint edges with different free colors, a contradiction. Thus h(i) = 4. By Claim 2.1, we have

d̂(ui) + d̂(vi) + h(i) ≤ 4k + 2a.

Case 2: |ϕ(Ef
H(ui))| = 2 and |ϕ(Ef

H (vi)) = 1. Under the circumstances, there are two vertices

w1, w2 ∈ N(ui) ∩ V (H) such that ϕ(uiw1) = α1, ϕ(uiw2) = α2, and {α1, α2} ⊆ ϕf . Similarly, there is

also one vertex wk ∈ N(vi)∩V (H) such that ϕ(viwk) = αk and αk ∈ ϕf . In order to avoid two disjoint

edges with different free colors in Bi, either wk = w1 and αk = α2 or wk = w2 and αk = α1, which

implies that |Ef
H(vi)| = 1. For w ∈ V (H)\{w1, w2}, if there exists uiw ∈ E(G), then either ϕ(uiw) = αk

or ϕ(uiw) ∈ ϕuf . Hence, h(i) = |Ef
H(ui)|+ |Ef

H(vi)| ≤ |V (H)| − |Euf
H (ui)|+ 1. In addition, recall that

d̂(ui) = d̂M (ui) + d̂fH(ui) + d̂ufH (ui), d̂
f
H(ui) = |ϕ(Ef

H(ui))| = 2 and d̂ufH (ui) ≤ |Euf
H (ui)|. Therefore, we

have

d̂(ui) + d̂(vi) + h(i) ≤ 2(k − 1)− 1 + 2 + d̂(vi) + n− 2(k − 1) + 1 ≤ n+ 2k + a,

where the last inequality follows from Claim 2.1, ∆c(G) ≤ 2(k − 1) + a.

Case 3: ϕ(Ef
H(ui)) = {α1}, ϕ(Ef

H(vi)) = {α2} and α1 6= α2. It is easy to check |Ef
H(ui)| =

|Ef
H(vi)| = 1, otherwise, Bi contains two disjoint edges with different free colors, a contradiction.

Therefore, d̂(ui) + d̂(vi) + h(i) ≤ 2∆̂(G) + 2 ≤ 4k + 2a− 2.

Case 4: ϕ(Ef
H(ui)) = ϕ(Ef

H(vi)) = {α}. In this case, we have d̂(ui) + d̂(vi) + h(i) ≤ 2∆̂(G) +

|V (H)| ≤ n+ 2k + 2a− 2.

In conclusion, since a ≥ 2 and n ≥ 4k − 4, we have d̂(ui) + d̂(vi) + h(i) ≤ n+ 2k + 2a− 2.

Finally, by the definition of Y2, it is easy to get the following claim.

Claim 2.6. For every edge uivi ∈ Y2, we have h(i) ≤ n− 2k + 2.

2.2 Estimating the total color degree of G

In this section, using above claims, we will estimate the total color degree of G. First, recalling the

definition of h(i), we have

∑

v∈V

d̂(v) =
∑

v∈V (M)

d̂(v) +
∑

w∈V (H)

d̂(w)

≤
∑

uivi∈E(M)

(d̂(ui) + d̂(vi) + h(i)) +
∑

w∈V (H)

d̂uf (w)
(1)

Note that d̂uf (v) ≤ k − 1 for all v ∈ V , since |ϕuf | = k − 1. Next, we break the proof step into two

cases.

Case 1: a = k − 1.

By the definition of a, one should notice that a = k − 1, which means that M = X1 ∪ X2. By

Claim 2.1, ∆̂(G) ≤ 3k−3 under this case. Recalling Claim 2.2, we have d̂(ui)+ d̂(vi)+h(i) ≤ 2∆̂(G) ≤
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6(k − 1) for any uivi ∈ X1. By Claim 2.3 and 2.4, we have

d̂(ui) + d̂(vi) + h(i) ≤ max{d̂uf (ui) + d̂uf (vi) + 4 + 4, 2∆̂(G) + 3} ≤ 6(k − 1) + 3

for any uivi ∈ X2, where the last inequality follows from k ≥ 3.

According to Inequations (1), d̂(G) = 2k − 1 and n ≥ 4k − 4, we have

(2k − 1)n =
∑

v∈V

d̂(v) ≤(k − 1)(6(k − 1) + 3) + (n− 2k + 2)(k − 1)

<(2k − 1)n,

which is contradictory.

Case 1: a < k − 1.

According to Inequations (1), Claim 2.1–2.6 and n ≥ 4k − 4, we have
∑

v∈V

d̂(v) ≤2∆̂(G) · (k − 1− y1) + 4x2 + y1(n+ 2k + 2a− 2) + y2(n− 2k + 2) + (n− 2k + 2)(k − 1)

≤2(2k − 2 + a)(k − 1) + 4x2 + (y1 + y2)(n − 2k + 2) + (n− 2k + 2)(k − 1)

<(2k − 1)n,

which is also contradictory.

3 Proof of Theorem 1.4

In this section, we will prove Theorem 1.4 by induction on k. The base case k = 1 is trivial. Suppose

k ≥ 2, and let G with strongly edge coloring ϕ be a counterexample to Theorem 1.4 with the fewest

edges. Let 2k−1 := d(G) and n := |V (G)|. By the result of Kostochka and Yancey [8] and Theorem 1.3,

we may assume that n ≥ 2k + 1 and δ(G) ≤ k − 1.

For the sake of contradiction, we still consider the total degree of G in the following proofs. Since

δ(G) ≤ k − 1, there is a vertex v ∈ V (G) such that d(v) ≤ k − 1. By the minimality of G, we have

d(v) ≥ 1. Let u ∈ N(v), ϕ(uv) = α, and Gα denote the subgraph of G with the edges in color

class α. Since G is strongly edge-colored, Gα is an induced matching in G. Hence, d(u) is at most

n − 2|E(Gα)| + 1. Let G∗ be obtained from G by deleting the vertex v, u and all edges in Gα, then

r(G∗) < k − 1. By induction hypothesis, d(G∗) < 2k − 3. Therefore, we have

(2k − 1)n =
∑

v∈V

d(v) =2d(u) + 2d(v) + 2(|E(Gα)| − 1) + (n− 2)d(G∗)

<2(k − 1) + 2(n − 2|E(Gα)|+ 1) + 2(|E(Gα)| − 1) + (n− 2)(2k − 3)

<(2k − 1)n,

which is contradictory.

4 Concluding Remarks

Though we were not able to resolve Question 2 for all graphs, we believe the answer is affirmative:

Conjecture 4.1. All but K̃4 edge-colored graphs G with d̂(G) ≥ 2k − 1 contain a rainbow matching

of size at least k.
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We remark that using the ideas introduced in the proof of Theorem 1.2, for properly edge-colored

graph G, it is conceivable that the lower bound for |V (G)| in Theorem 1.2 may be further improved.

However, it would be very interesting (and seems to be difficult) to prove conjecture 4.1 for all properly

edge-colored graphs. If conjecture 4.1 for all properly edge-colored graphs is ture, then it would yield a

good upper bound on the rainbow Turán number of matchings. Given a graph H, the rainbow Turán

number of H is defined as the maximum number of edges in a properly edge-colored graph on n vertices

with no rainbow copy of H. The systematic study of rainbow Turán number was initiated in 2007 by

Keevash-Mubayi-Sudakov-Verstraëte [7]. They asymptotically determined the rainbow Turán number

for any non-bipartite graph, but for the rainbow Turán number of matchings, there are still no good

results so far.
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