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Abstract

The dominating graph of a graph H has as its vertices all dominat-
ing sets of H, with an edge between two dominating sets if one can be
obtained from the other by the addition or deletion of a single vertex
of H. In this paper we prove that the dominating graph of any tree
has a Hamilton path. We also show how a result about binary strings
leads to a proof that the dominating graph of a cycle on n vertices
has a Hamilton path if and only if n 6≡ 0 (mod 4).
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1 Introduction

Let H be a graph with vertex set V (H). A dominating set of H is a set
D ⊆ V (H) such that every vertex of V (H)\D is adjacent to a vertex of D.
The dominating graph of H, D(H), is the graph whose vertices are all the
dominating sets of H; if X and Y are distinct vertices of D(H), then there
is an edge between X and Y if and only if Y can be obtained from X by
adding a vertex of H to X or by deleting a vertex from X. Note that we use
the same label for a vertex of D(H) as for the corresponding dominating set
of H because it is clear from context whether we are referring to H or D(H).

The graph D(H) is the reconfiguration graph of dominating sets of H
under the token addition/removal (TAR) model, first considered in [9]. For
any graph H and any integer k, 1 ≤ k ≤ |V (H)|, the k-dominating graph
of H, denoted Dk(H), is the subgraph of D(H) induced by the dominating
sets of H with cardinality at most k. When k = |V (H)|, then Dk(H) =
D(H). There have been numerous papers about dominating graphs and their
subgraphs, the k-dominating graphs. Most of these focus on conditions on k
that ensure that Dk(H) is connected. Two recent surveys of reconfiguration
of dominating sets are [1] and [11].

There has been considerable interest in reconfiguration and reconfigura-
tion graphs of other well known graph structures and operations, including
independent sets, cliques, vertex covers of graphs, zero forcing, and graph
coloring. Nishimura [10] examines reconfiguration from an algorithmic per-
spective and considers complexity questions in a wide range of reconfigura-
tion settings. Reconfiguration of graph coloring problems and dominating
set problems are surveyed in a recent paper of Mynhardt and Nasserasr [11].

In this paper we investigate Hamilton cycles and Hamilton paths in dom-
inating graphs, properties that have been studied for other types of reconfig-
uration problems. A Hamilton path or Hamilton cycle in a reconfiguration
graph is a combinatorial Gray code, that is, a listing of all the objects in a
set so that successive objects differ in some prescribed minimal way. Several
recent papers give conditions for the existence of Gray codes for all colorings
with k or fewer colors of the following classes of graphs: trees [7], bipartite
graphs [6], and 2-trees [5]. A forthcoming survey by Mütze gives a wide
variety of combinatorial Gray code results [12].

We consider only finite simple graphs. For a graph H, we use the no-
tation P = x1, x2, . . . , xj, where j ≥ 3, to denote a path P in H where
{x1, x2, . . . , xj} is a subset of the vertices of H. An edge e, i.e., a path with
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two vertices x and y, is written simply as e = xy. For basic graph theory
notation and terminology not defined here, see [3].

We begin with the question of which dominating graphs have Hamilton
cycles. It is clear that if H is a graph, then its dominating graph, D(H),
is bipartite, with the bipartition based on the parity of the dominating sets
of H. It follows that if D(H) has a Hamilton cycle, then D(H) has an
even number of vertices (equivalently, the number of dominating sets of H is
even). By contrast, we have the following unpublished result of Brouwer [4],
an expanded proof of which is included in [1].

Lemma 1. [4] The number of dominating sets of any finite graph is odd.

Combining Brouwer’s result with the observation that a bipartite graph
with a Hamilton cycle must have an even number of vertices gives a short
answer to the question of which dominating graphs have Hamilton cycles.

Proposition 2. [1] For any graph H, the dominating graph D(H) has no
Hamilton cycle.

Henceforth, we focus our attention on Hamilton paths in dominating graphs.
In [1] we show that Hamilton paths exist in the dominating graphs of

certain classes of graphs. Specifically, we prove the following.

Theorem 3. [1] Let m and n be positive integers. Then D(Kn) has a Hamil-
ton path, D(Pn) has a Hamilton path, and D(Km,n) has a Hamilton path if
and only if m is odd.

In this paper we explore the dominating graphs of trees and prove the fol-
lowing.

Theorem 4. For any tree T , D(T ) has a Hamilton path.

We also use a result of Baril and Vajnovszki [2] on Lucas strings to charac-
terize cycles whose dominating graphs have Hamilton paths.

Theorem 5. For all integers n ≥ 3, D(Cn) has a Hamilton path if and only
if n 6≡ 0 (mod 4).
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2 Two graph operations and their effects on

the dominating graph

We begin this section by introducing two operations on a graph H. We then
prove that if H ′ is a graph obtained from H by applying either operation,
and D(H ′) has a Hamilton path, then D(H) has a Hamilton path. This is
later used to show that the dominating graph of any tree has a Hamilton
path.

Operation I. Let H be a graph with vertices u, v and x such that NH(u) =
NH(v) = {x}. We say that H ′ := H − v is obtained from H by Operation I.

Figure 1: (a) Operation I and (b) Operation II

Operation II. Let H be a graph with vertices u, v and w such that NH(v) =
{u,w} and NH(w) = {v}. We say that H ′ := H −w− v is obtained from H
by Operation II.

Lemma 6. Let H and H ′ be graphs such that H ′ is obtained from H by
Operation I. If D(H ′) has a Hamilton path, then D(H) has a Hamilton path.

Proof. Suppose H and H ′ are graphs as in the statement of the Proposition.
Then there are vertices u, v, x ∈ V (H) such that NH(u) = NH(v) = {x}, and
H ′ := H− v. To simplify notation, we define G and G′ to be the dominating
graphs of H and H ′, respectively, i.e., G := D(H) and G′ := D(H ′). Recall
that each vertex of G represents a dominating set of H, so we name each
vertex of G with the name of the corresponding subset of V (H), and use the
same convention for vertices of G′ and dominating sets of H ′.
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Let n = |V (G′)|, and let PG′ := F1, F2, . . . , Fn be a Hamilton path in G′.
For each i, 1 ≤ i ≤ n, define F v

i := Fi ∪ {v}, and for each i, 1 ≤ i ≤ n, with
u 6∈ Fi, define

F u
i := Fi ∪ {u}, and F uv

i := Fi ∪ {u, v}.

Now consider the dominating sets of H. These can be partitioned into those
that contain v and those that do not contain v. Because NH(u) = {x} =
NH(v), the dominating sets of H that contain v are precisely

W := {F v
i | 1 ≤ i ≤ n},

while the dominating sets of H that do not contain v are

Z := {Fi | x ∈ Fi, 1 ≤ i ≤ n}.

Now consider the following subsets of V (G).

X ′ := {Fi | x ∈ Fi, u 6∈ Fi, 1 ≤ i ≤ n},
B′ := {Fi | {x, u} ⊆ Fi, 1 ≤ i ≤ n} = {F u

i | Fi ∈ X ′},
X := {F v

i | x ∈ Fi, u 6∈ Fi, 1 ≤ i ≤ n} = {F v
i | Fi ∈ X ′},

B := {F v
i | {x, u} ⊆ Fi, 1 ≤ i ≤ n} = {F uv

i | Fi ∈ X ′},
U := {F v

i | u ∈ Fi, x 6∈ Fi, 1 ≤ i ≤ n}.

Figure 2: A partition of V (G) = V (D(H)) into sets {U,B,X,B′, X ′}, with
the parts shaded grey corresponding to a subgraph of G isomorphic to G′ =
D(H ′).
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It is routine to verify that {X ′, B′} is a partition of Z while {X,B,U} is
a partition of W , and hence {U,B,X,B′, X ′} is a partition of V (G). Fur-
thermore, the definitions of B′, X and B in terms of X ′ make it clear that

G[B′] ∼= G[X] ∼= G[B] ∼= G[X ′].

Finally, the definition of W ensures that G[W ] = G[X ∪ B ∪ U ] ∼= G′. It
follows that P := F v

1 , F
v
2 , . . . , F

v
n is a path in G and also a Hamilton path of

G[X ∪B ∪ U ]. We now extend P to a Hamilton path of G.
Let Q := F v

i , F
v
i+1, . . . , F

v
j be a maximal subpath of P in G[X]. There

are two cases to consider, depending on the parity of j − i + 1 (the number
of vertices in Q). First suppose that j − i + 1 is even. Then for each t ∈
{i, i + 2, . . . , j − 1}, replace the edge F v

t F
v
t+1 of P by the path

F v
t , Ft, F

u
t , F

u
t+1, Ft+1, F

v
t+1.

Since G[B′] ∼= G[X], this replacement results in a path in G.
Now assume that j−i+1 is odd. In this case, for each t ∈ {i, i+2, . . . , j−

2}, replace the edge F v
t F

v
t+1 of P by the path

F v
t , Ft, F

u
t , F

u
t+1, Ft+1, F

v
t+1.

Again, since G[B′] ∼= G[X], this replacement results in a path in G′. If
j = n, replacing vertex F v

n in P by the path F v
n , Fn, F

u
n results in a path.

Otherwise, j < n, so the maximality of Q implies F v
j+1 ∈ B, and hence

F v
j+1 = F uv

j . Replacing the edge F v
j F

v
j+1 (which equals F v

j F
uv
j ) of P with the

path
F v
j , Fj, F

u
j , F

uv
j

ensures the result is a path in G.
Since G[B′] ∼= G[X ′] ∼= G[X], making these replacements for each maxi-

mal subpath Q of P in G[X] incorporates all the vertices of X ′ and B′ into
the resulting path and produces a Hamilton path of G = D(H).

Lemma 7. Let H and H ′ be graphs such that H ′ is obtained from H by
Operation II. If D(H ′) has a Hamilton path, then D(H) has a Hamilton path.

Proof. Suppose H and H ′ are graphs as in the statement of the Proposition.
Then there exist vertices u, v, w ∈ V (H) such that NH(v) = {u,w}, NH(w) =
{v}, and H ′ := H−w−v. As before, we define G and G′ to be the dominating
graphs of H and H ′, respectively, i.e., G := D(H) and G′ := D(H ′).
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Let Y be a dominating set of H ′. Since neither v nor w is a vertex of H ′,
Y ∩ {v, w} = ∅, so we define

Y v := Y ∪ {v}, Y w := Y ∪ {w}, and Y vw := Y ∪ {v, w},

and let
A := {Y v, Y w, Y vw | Y ∈ V (G′)}

Then A consists of dominating sets of H. The dominating sets of H that are
not in A can be described as follows. Let

J := {S ⊆ V (H ′) | S is a dominating set of H ′ − u and S ∩NH′ [u] = ∅},

i.e., J consists of the dominating sets of H ′− u that are not dominating sets
of H ′. It follows that if S ∈ J , then S ∩ {u, v, w} = ∅, so we define

Su := S ∪ {u}, Sv := S ∪ {v}, Suv := S ∪ {u, v},
Svw := S ∪ {v, w}, and Suvw := S ∪ {u, v, w}.

We now let
B := {Sv, Svw | S ∈ J}.

It is routine to verify that {A,B} is a partition of the dominating sets of H.
Let n = |V (G′)|, and let PG′ = F1, F2, . . . , Fn be a Hamilton path in G′.

Note that Fi ∩ {v, w} = ∅. By Lemma 1, n is odd, so replacing vertex Fi of
PG′ with the path F v

i , F
vw
i , Fw

i when i is odd, and with the path Fw
i , F

vw
i , F v

i

when i is even produces the path

P := F v
1 , F

vw
1 , Fw

1 , F
w
2 , F

vw
2 , F v

2 , . . . , F
v
n , F

vw
n , Fw

n

in G. Since P consists of all the vertices in A, what remains is to incorporate
the vertices of B into this path.

First notice that, for each S ∈ J , Su is a dominating set of H ′, and hence
Su = Fi for some i, 1 ≤ i ≤ n. Furthermore, it is clear that if S1, S2 ∈ J ,
then S1 6= S2 if and only if Su

1 6= Su
2 .

We now proceed as follows. For S ∈ J , let t ∈ {1, . . . , n} be the index for
which Su = Ft. In the path P , we either have the edge F v

t F
vw
t (which is the

same as SuvSuvw) or the edge F vw
t F v

t (which is the same as SuvwSuv). If P
contains F v

t F
vw
t , replace it with the path

F v
t = Suv, Sv, Svw, Suvw = F vw

t .
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Otherwise, replace F vw
t F v

t with the path

F vw
t = Suvw, Svw, Sv, Suv = F v

t .

Repeating this for each S ∈ J results in a path containing all the vertices of
A∪B = V (G), and hence all the dominating sets of H. Therefore, G = D(H)
has a Hamilton path.

Together, the two preceding propositions imply the following.

Corollary 8. Let H be a graph and let H ′ be a graph obtained from H by
applying any sequence of the Operations I and II. If D(H ′) has a Hamilton
path then D(H) has a Hamilton path.

3 Hamilton paths in dominating graphs of

trees

A particular class of graphs to which we can apply Corollary 8 is trees.
Let T be a tree and let D(T ) be the dominating graph of T . To prove
that D(T ) has a Hamilton path (Theorem 4), we use an iterative process
for constructing such a path. Doing so requires the following lemma to
deconstruct an arbitrary tree on n ≥ 3 vertices using Operations I and II.

Lemma 9. If T is a tree on n ≥ 3 vertices, then one of the following holds:

(1) there exist distinct u, v, x ∈ V (T ) with NT (u) = NT (v) = {x}, or

(2) there exist distinct u, v, w ∈ V (T ) with NT (v) = {u,w} and NT (w) =
{v}.

Proof. The proof is by induction on n. When n = 3, then T ∼= P3 and the
result is obvious.

Suppose n ≥ 4. Let z ∈ V (T ) be a vertex of degree one, and let T ′ = T−z.
By the induction hypothesis, T ′ satisfies (1) or (2) of the statement of the
Lemma.

First suppose that T ′ satisfies (1), and let u, v, x ∈ V (T ′) with NT ′(u) =
NT ′(v) = {x}. If NT (z) 6⊆ {u, v}, then NT (u) = NT (v) = {x}, and T
satisfies (1). Otherwise, NT (z) ⊆ {u, v} and we may assume, without loss of
generality that, NT (z) = {u}. We now have z, u, x ∈ V (T ) with NT (u) =
{z, w} and NT (z) = {u}, so T satisfies (2).
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Now suppose that T ′ satisfies (2), and let u, v, w ∈ V (T ′) with NT ′(v) =
{u,w} and NT (w) = {v}. If NT (z) 6⊆ {v, w}, then NT (v) = {u,w} and
NT (w) = {v}, so T satisfies (2). Otherwise, NT (z) = {v} or NT (z) = {w}.
There are two cases to consider. If NT (z) = {v}, then z, v, w ∈ V (T ) and
NT (w) = NT (z) = {v}, and thus T satisfies (1). If NT (z) = {w}, then
z, v, w ∈ V (T ), NT (w) = {v, z} and NT (z) = {w}, so T satisfies (2).

We are now in a position to prove our main result about trees, first stated
in the Introduction.

Theorem 4. For any tree T , D(T ) has a Hamilton path.

Proof. Let Pi denote the path on i ≥ 1 vertices. If |V (T )| ≤ 2, then T ∼= P1

or T ∼= P2. Since D(P1) ∼= P1 and D(P2) ∼= P3, D(T ) has a Hamilton path.
If |V (T )| ≥ 3, then by Lemma 9, we can repeatedly apply Operations I and
II to T to obtain a tree T ′ with |V (T ′)| ≤ 2. Since D(T ′) has a Hamilton
path, it follows from Corollary 8 that D(T ) has a Hamilton path.

4 Hamilton paths in dominating graphs of

cycles

Let Cn denote the cycle on n ≥ 3 vertices. In our original construction of a
Hamilton path in D(Cn) if and only if n 6≡ 0 (mod 4), we encode dominating
sets of Cn as binary strings, and construct a Gray code of this set of strings.
It was pointed out to us by T. Mütze that the set of strings corresponding to
the dominating sets of Cn are the bitwise complements of the Lucas strings
Ln,3. Further, the Gray codes of Lucas strings are well-understood, and thus
we use them for the proof presented here.

For our purposes, the cycle on n ≥ 3 vertices has vertex set V (Cn) =
{0, 1, . . . , n − 1} and edge set {ij : i − j ≡ ±1 (mod n)}. We encode X ⊆
V (Cn) as an n-digit binary string, x0x1 · · ·xn−1, by setting xi = 1 if and only
if i ∈ X, 0 ≤ i ≤ n − 1. It follows that X ⊆ V (Cn), encoded by the binary
string x0x1 · · ·xn−1, is a dominating set of Cn if and only if xi−1xixi+1 6= 000
for all i, 0 ≤ i ≤ n−1, where subscripts are taken modulo n. If X and Y are
dominating sets of Cn, and are represented by binary strings x0x1 · · ·xn−1
and y0y1 · · · yn−1, respectively, then X and Y are adjacent in D(Cn) if and
only if x0x1 · · ·xn−1 and y0y1 · · · yn−1 differ in exactly one bit.
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The set of Lucas strings of length n and order p ≥ 1, denoted Ln,p, is
the set of binary strings of length n that have no p consecutive ones when
the strings are considered circularly. In particular, the set of Lucas strings
of length n and order 3 is

Ln,3 = {x0 · · ·xn−1 | xi−1xixi+1 6= 111 for 0 ≤ i ≤ n− 1 subscripts mod n},

and is the set of bitwise complements of elements of V (Cn).
Baril and Vajnovszki [2] construct an ordering of the elements of Ln,p

called a minimal change list (see [2]), denoted by Ln,p. They prove Ln,p

is a Gray code if and only if n 6≡ 0 (mod (p + 1)); that is, every pair of

consecutive strings of Ln,p differs in exactly one bit. Let L̂n,p denote the
sequence obtained by taking bitwise complements of the strings of Ln,p, and

note that Ln,p is a Gray code if and only if L̂n,p is a Gray code. Since a Gray

code of L̂n,3 corresponds precisely to a Hamilton path in D(Cn), this proves
the following.

Theorem 5. For all integers n ≥ 3, D(Cn) has a Hamilton path if and only
if n 6≡ 0 (mod 4).

A computationally inefficient construction of Ln,p (though not the con-
struction used in the proof) is described in [2], and can easily be modified to
directly construct a Hamilton path of D(Cn) whenever n 6≡ 0 (mod 4). We
illustrate this construction in Example 1.

Example 1. Let n = 5. To construct a Hamilton path of D(C5), begin with
the reflected Gray code order (due to Frank Gray [8]) of the set of all binary
strings of length five. The strings are organized in Figure 3(a) to be read
from top to bottom and left to right. Next, delete any string x0x1x2x3x4 that
has xi−1xixi+1 = 000 for 0 ≤ i ≤ 4, subscripts modulo 4. The reader can
easily verify that remaining strings, shown in Figure 3(b), are still a Gray
code when read from top to bottom and left to right, and hence describe a
Hamilton path in D(C5).

5 Further results

Corollary 8 applies more generally and can be used to prove the existence
of Hamilton paths in classes of dominating graphs that are built up using
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00000 01100 11000 10100
00001 01101 11001 10101
00011 01111 11011 10111
00010 01110 11010 10110
00110 01010 11110 10010
00111 01011 11111 10011
00101 01001 11101 10001
00100 01000 11100 10000

(a)

10100
01101 11001 10101
01111 11011 10111
01110 11010 10110
01010 11110 10010

00111 01011 11111 10011
00101 01001 11101

11100
(b)

Figure 3: Constructing a Hamilton path in D(C5).

dominating graphs that are known to have Hamilton paths. These include
complete graphs, paths, cycles Cn when n 6≡ 0 (mod 4), certain complete
bipartite graphs (Theorem 3), and trees (Theorem 4). We include one ex-
ample.

For any graph H, we say that H is reducible to subgraph H ′ if H ′ can be
obtained from H by applying a sequence of Operations I and II as described
in Section 2. Suppose G is a unicyclic graph whose unique cycle Cn has length
n ≥ 3, where n 6≡ 0 (mod 4). Let V (Cn) = {v1, v2, . . . , vn}, and let Ti be the
component (a tree) of G − E(Cn) containing vi for some i, 1 ≤ i ≤ n. If Ti

is reducible to vi for each i, 1 ≤ i ≤ n, then by Theorem 5 and Corollary 8,
D(G) has a Hamilton path.
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