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Abstract

In [13] Nowakowski and Rall listed a series of conjectures involving several
different graph products. In particular, they conjectured that i(G × H) ≥
i(G)i(H) where i(G) is the independent domination number of G and G × H
is the direct product of graphs G and H . We show this conjecture is false,
and, in fact, construct pairs of graphs for which min{i(G), i(H)}− i(G×H) is
arbitrarily large. We also give the exact value of i(G×Kn) when G is either a
path or a cycle.
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1 Introduction

Independence in graph products has been studied by many authors but almost al-
ways in the context of the independence number, commonly denoted by α. We
mention just samples of papers concerning the independence number of a Carte-
sian product α(G�H) (see [5, 7, 10, 11, 13]) and of a direct product α(G × H)
(see [9, 12, 13]). In addition, for both of these two products some investigation has

also been done on the so-called ultimate independence ratios, limm→∞
α(�m

i=1
G)

n(G)m and

limm→∞
α(×m

i=1
G)

n(G)m . See for example [1, 4, 8, 14].
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Nowakowski and Rall [13] studied the behavior of a number of domination, in-
dependence and coloring type invariants on nine associative graph products whose
edge sets depend on the edge sets of both factors. In particular, they proved some
lower and upper bounds for the cardinality of a smallest maximal independent set,
the independent domination number, of these products. For an excellent survey of
independent domination see the paper [6] by Goddard and Henning. In this work
we will focus on the independent domination number of the direct product of two
graphs. In particular, we are interested in how the independent domination number
of a direct product relates to the independent domination numbers of the two factors.
In the process we give a counterexample to the following conjecture of Nowakowski
and Rall.

Conjecture 1. [13, Section 2.4] For all graphs G and H, i(G ×H) ≥ i(G)i(H).

In fact, we prove a stronger result; namely

Theorem 1. For any positive integer n such that n > 10, there exists a pair of
graphs G and H such that min{i(G), i(H)} = n+ 2 and i(G ×H) ≤ 12.

The organization of the paper is as follows. In the next section we provide nec-
essary definitions and several previous results. In Section 3 we restrict our attention
to direct products in which one of the factors is a complete graph, and introduce
a method for calculating the independent domination number of G × Kn in terms
of minimizing a certain kind of labelling of V (G). Using this scheme we find the
values of i(Pm×Kn) and i(Cm×Kn). Lower bounds for i(G×H), in terms of other
domination-type invariants of G and H, are given in Section 4. The main result of
the paper is in Section 5 where we give an infinite collection of counterexamples to
Conjecture 1 and prove Theorem 1.

2 Definitions and preliminary results

We denote the order of a finite graph G = (V (G), E(G)) by n(G). For a positive
integer n we let [n] = {1, . . . , n}; the vertex set of the complete graph Kn will be
[n] throughout. A subset D ⊆ V (G) dominates a subset S ⊆ V (G) if S ⊆ N [D].
If D dominates V (G), then we will also say that D dominates the graph G and
that D is a dominating set of G. If D, in addition to being a dominating set of G,
has the property that every vertex in D is adjacent to at least one other vertex of
D, then D is a total dominating set of G. The total domination number of G is
the minimum cardinality among all total dominating sets of G; it is denoted γt(G).
The 2-packing number of G, denoted ρ(G), is the largest cardinality of a vertex
subset A such that the distance in G between a1 and a2 is at least 3 for every pair
a1, a2 of distinct vertices in A. A set I ⊆ V (G) is an independent dominating set
if I is simultaneously independent and dominating. This is equivalent to I being a
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maximal independent set with respect to set inclusion. The independence number
of G is the cardinality, α(G), of a largest independent set in G. We denote by i(G)
the smallest cardinality of a maximal independent set in G; this invariant is called
the independent domination number of G.

The direct product, G×H, of graphs G and H is defined as follows:

• V (G×H) = V (G)× V (H);

• E(G×H) = {(g1, h1)(g2, h2) : g1g2 ∈ E(G) and h1h2 ∈ E(H)}

The direct product is both commutative and associative. For a vertex g of G, the
H-layer over g of G ×H is the set { (g, h) | h ∈ V (H) }, and it is denoted by gH.
Similarly, for h ∈ V (H), the G-layer over h, Gh, is the set { (g, h) | g ∈ V (G) }. Note
that each G-layer and each H-layer is an independent set in G×H. The projection
to G is the map pG : V (G × H) → V (G) defined by pG(g, h) = g. Similarly, the
projection to H is the map pH : V (G × H) → V (H) defined by pH(g, h) = h. If
A ⊆ V (G × H) and g ∈ V (G), then we employ gA to denote A ∩ gH. Similarly,
Ah = A ∩Gh for a vertex h of H.

The following result of Topp and Volkmann will be useful in establishing our
main results.

Lemma 2. [15, Proposition 11] Let H be a graph with no isolates. If I is a maximal
independent set of any graph G, then I × V (H) is a maximal independent set of
G×H.

As an immediate consequence of Lemma 2 we get a lower bound for α(G ×H),
which is well-known, and an upper bound for i(G×H). Both were established earlier
by Nowakowski and Rall [13].

Corollary 3. [13, Table 3] If both G and H have no isolated vertices, then

• α(G×H) ≥ max{α(G)n(H), α(H)n(G)};

• i(G×H) ≤ min{i(G)n(H), i(H)n(G)}.

3 Independent domination in G×Kn

In this section we focus on direct products in which one of the factors is a complete
graph, and we will use notation introduced in our paper [12].

Let I be a maximal independent set of G×H. Suppose g is a vertex of G such
that gI 6= ∅ but gI 6= gH. Let (g, h) ∈ gH − gI. Since I is a dominating set of G×H,
it follows that there exists g′ ∈ NG(g) and h′ ∈ NH(h) such that (g′, h′) ∈ I. Note
that such a vertex h′ does not belong to NH(pH(gI)). For if h′x ∈ E(H) for some
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(g, x) ∈ I, then (g′, h′) and (g, x) are adjacent vertices of I, which is a contradiction.
However, it is possible that h′ ∈ pH(gI).

Consider now the special case G×Kn for n ≥ 2. The following lemma is from [12].
For the sake of completeness we give its short proof.

Lemma 4. [12, Lemma 9] Let n ≥ 2 and let G be any graph. If I is any maximal
independent set of G×Kn, then |I ∩ gKn| ∈ {0, 1, n}, for any g ∈ V (G).

Proof. If n = 2, then the conclusion is obvious. Assume n ≥ 3 and suppose for the
sake of contradiction that |I ∩ gKn| = m for some 2 ≤ m < n. Assume without loss
of generality that {(g, 1), (g, 2)} ⊂ I. Let i ∈ [n] such that (g, i) 6∈ I. As above,
there exists g′ ∈ NG(g) and j ∈ NKn

(i) such that (g′, j) ∈ I. Since n ≥ 3, we infer
that j 6= 1 or j 6= 2. This implies that (g′, j) ∈ N({(g, 1), (g, 2)}), which contradicts
the independence of I. Therefore, |I ∩ gKn| ∈ {0, 1, n}.

The following result gives tight upper and lower bounds for i(G×K2).

Theorem 5. If G is any graph with no isolated vertices, then

γt(G) ≤ i(G ×K2) ≤ min{2i(G), n(G)} .

Proof. The upper bound follows from Corollary 3. Let M be an independent dom-
inating set of G × K2 such that i(G × K2) = |M |. If M1 or M2 is empty, say
M2 = ∅, then (g, 1) ∈ M for every g ∈ V (G). Hence, |M | = n(G) ≥ γt(G). Thus,
assume that M1 6= ∅ and M2 6= ∅. For each (g, 2) ∈ M , choose g′ ∈ NG(g). Let

M̂ = M1∪{(g′, 1) : (g, 2) ∈ M}. It is clear that M̂ dominates G2. For if (g, 2) ∈ M ,

then (g′, 1) ∈ M̂ and (g′, 1) is a neighbor of (g, 2). If (g, 2) 6∈ M , then M1 contains

a neighbor of (g, 2) since M is a dominating set of G×K2. Consequently, pG(M̂ ) is
a total dominating set of G, and we get

γt(G) ≤ |pG(M̂)| ≤ |M̂ | ≤ |M | = i(G×K2) .

Any graph G that has a vertex of degree n(G) − 1 shows that the lower bound
in Theorem 5 is tight. For the upper bound let G = Kn,n. Since G ×K2 = 2G, we
see that the upper bound is also tight.

Let I be any maximal independent set of G × Kn and let n ≥ 2 be a positive
integer. As in [12] we use Lemma 4 to define a weak partition of V (G). We will
say this weak partition is generated by or corresponds to I. (A weak partition of a
set X is a collection of pairwise disjoint subsets of X, in which some may be empty,
whose union is X.) In particular, V0, V1, . . . , Vn, V[n] defined by

(a) V0 = {g ∈ V (G) : I ∩ gKn = ∅};
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(b) For each k ∈ [n], Vk = {g ∈ V (G) : I ∩ gKn = {(g, k)}};

(c) V[n] = {g ∈ V (G) : I ∩ gKn = gKn}.

is a weak partition. Furthermore, the following four conditions hold.

1. For k ∈ [n], if u ∈ Vk and v ∈ V (G)− (V0 ∪ Vk), then uv 6∈ E(G).

2. For k ∈ [n], if Vk is not empty, then no vertex of Vk is isolated in G[Vk].

3. The set V[n] is independent in G.

4. For each g ∈ V0, either NG(g) ∩ V[n] 6= ∅ or g has a neighbor in at least two of
the sets V1, . . . , Vn.

Conversely, for a given weak partition of V (G) that satisfies these four conditions,
it is clear how to construct a maximal independent set D of G ×Kn. We then say
this weak partition constructs D. The independent domination number of G×Kn

can be computed in the following way.

i(G×Kn) = min{n · |V[n]|+
n∑

k=1

|Vk|} , (1)

where the minimum is computed over all weak partitions V0, V1, . . . , Vn, V[n] that
satisfy conditions 1−4 above.

We used a computer program to compute the independent domination numbers
of the direct product of small paths and small cycles with complete graphs. In
Table 1 we accumulate some of these values. Because of the smallest independent
dominating sets produced by our software, it is clear that these same values hold if
K3 is replaced by Kn in the direct product for any n ≥ 4.

m 3 4 5 6 7 8 9 10 11 12

i(Pm ×K3) 3 4 4 5 6 6 7 8 8 9

i(Cm ×K3) 3 4 5 4 5 6 6 7 8 8

Table 1: Some independent domination numbers

Instead of specifically listing the sets V0, V1, . . . , Vn, V[n] we can instead represent
this weak partition by a labelling of the vertices of G. A vertex x of G is labelled
with the symbol ∗ ∈ {0, 1, . . . , n, [n]} if and only if x ∈ V∗. (Note that we are
allowing labels to be used more than once.) For any weak partition V0, V1, . . . , Vn, V[n]

(equivalently any labelling) of V (G) that satisfies the four conditions, we say it is
legal and has weight n · |V[n]| +

∑n
k=1 |Vk|. For the purposes of this paper, we call

any weak partition (equivalently, any labelling) of V (G) optimum if it attains the
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minimum weight in (1) above. We illustrate this labelling in Figure 1 on a cycle of
order 16 that defines a maximal independent set of the direct product C16×K3. Note
that 16 = 6r+p for r = 2 and p = 4. This labelling is part of the pattern denoted by
(1, 1, 0, 2, 2, 0)2(3, 3, 3, 0), which means label the vertices of C16 in consecutive order
by repeating the sequence of six labels 1, 1, 0, 2, 2, 0 two (r = 2) times followed by
the sequence of four (p = 4) labels 3, 3, 3, 0 one time.

0 0 0 0 01 1 1 12 2 2 2 3 3 3

Figure 1: Labeling of C16

Proposition 6. Let m and n be positive integers with m ≥ 3 and n ≥ 3. Then,

(a) i(Pm ×K2) = 2⌈m3 ⌉.

(b) i(Cm ×K2) = ⌈2m3 ⌉ if m is odd, and i(Cm ×K2) = 2⌈m3 ⌉ if m is odd.

(c) i(Cm ×Kn) = m for 3 ≤ m ≤ 5, and i(Cm ×Kn) =
⌈
2m
3

⌉
, for every m ≥ 6.

(d) i(Pm ×Kn) =
⌈
2m+2

3

⌉
.

Proof. Note that Cm ×K2 = C2m if m is odd, and Cm × K2 = 2Cm if m is even.
Also, for any m, Pm ×K2 = 2Pm. Statements (a) and (b) now follow from i(Ck) =
i(Pk) = ⌈k/3⌉.

Now consider Cm × Kn for some n ≥ 3. It is easy to check that the vertex
labellings (1, 1, 1), (1, 1, 1, 1) and (1, 1, 1, 1, 1) of C3, C4 and C5 respectively are
optimum for the direct products Cm ×Kn for 3 ≤ m ≤ 5. Now, let m ≥ 6. Table 2
presents labelling patterns of V (Cm) and V (Pm), based on the congruence of m
modulo 6, that establish the upper bound of ⌈2m/3⌉ for i(Cm ×Kn) and of

⌈
2m+2

3

⌉

for i(Pm ×Kn).
We may assume that in any optimum labelling of V (Cm) no vertex receives the

label [n]. For, suppose some vertex x is labelled [n]. By conditions 1 and 3 both of
the neighbors of x are labelled 0. For the vertices of Cm within distance 2 of x, the
labelling sequence (i, 0, [n], 0, i) can be replaced with (i, i, 0, i, i) and the sequence
(i, 0, [n], 0, j), for i 6= j, can be replaced with (i, i, 0, j, j). This in turn implies that
at most one vertex of any three consecutive vertices of Cm can be labelled 0. That
is, at most ⌊m/3⌋ vertices can be labelled 0. Since m = ⌊m/3⌋ + ⌈2m/3⌉, we get
i(Cm ×Kn) ≥ ⌈2m/3⌉. This establishes statement (c).
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m = labelling pattern of Cm labelling pattern of Pm

6r (1, 1, 0, 2, 2, 0)r (1, 1, 0, 2, 2, 0)r−1(1, 1, 0, 2, 2, 2)

6r + 1 (1, 1, 0, 2, 2, 0)r−1(1, 1, 0, 2, 2, 2, 0) (1, 1, 0, 2, 2, 0)r−1(1, 1, 1, 0, 2, 2, 2)

6r + 2 (1, 1, 0, 2, 2, 0)r−1(1, 1, 0, 2, 2, 2, 2, 0) (1, 1, 0, 2, 2, 0)r (1, 1)

6r + 3 (1, 1, 0, 2, 2, 0)r (3, 3, 0) (1, 1, 0, 2, 2, 0)r (1, 1, 1)

6r + 4 (1, 1, 0, 2, 2, 0)r (3, 3, 3, 0) (1, 1, 0, 2, 2, 0)r (1, 1, 1, 1)

6r + 5 (1, 1, 0, 2, 2, 0)r (3, 3, 3, 3, 0) (1, 1, 0, 2, 2, 0)r (1, 1, 0, 2, 2)

Table 2: Construction of minimum independent dominating sets

We use essentially the same reasoning to prove the lower bound for i(Pm ×Kn)
with one small difference, this being that the path has two vertices of degree 1. This
forces several additional cases. Suppose the path Pm is v1, v2, . . . , vm−1, vm. We
claim that without loss of generality we may assume that any optimum labelling
of V (Pm) does not use the label [n]. We modify any labelling that has such a
vertex x with label [n] in such a way that the weight is not increased. Note that
every neighbor of x is labelled 0. Suppose first that x and the vertices within
distance 2 of x all have degree 2. As above, the labelling sequence (i, 0, [n], 0, i)
can be replaced with (i, i, 0, i, i) and the sequence (i, 0, [n], 0, j), for i 6= j, can be
replaced with (i, i, 0, j, j). The labelling sequence ([n], 0, [n], 0, i) can be replaced
with ([n], 0, i, i, i); similarly (i, 0, [n], 0, [n]) can be replaced with (i, i, i, 0, [n]). Now
suppose that x = v2. The sequence (0, [n], 0, i, i) can be replaced with (i, i, i, i, i), the
sequence (0, [n], 0, [n], 0) can be replaced with (i, i, 0, [n], 0), and (0, [n], 0, 0, [n]) can
be replaced with (i, i, i, 0, [n]). The case x = vm−1 is handled in a similar fashion.
Finally, if 0 and [n] are the only labels used, then the only case to consider is when
one or both of the end vertices is labelled [n]. Suppose v1 is labelled [n]. The
labelling sequence ([n], 0, [n], 0, [n]) can be replaced with (i, i, i, 0, [n]), the sequence
([n], 0, [n], 0, 0) can be replaced with (i, i, i, i, 0), and ([n], 0, 0, [n], 0) can be replaced
with (i, i, 0, [n], 0). The case where vm is labelled [n] is handled symmetrically. Thus,
we may assume that no optimum labelling of V (Pm) uses the label [n].

Therefore, any optimum labelling of V (Pm) has weight
∑n

k=1 |Vk| since V[n] = ∅.
By considering the three cases of m modulo 3 and using conditions 1, 2 and 4, it
is now easy to see that at most

⌊
m−2
3

⌋
vertices of Pm can be labelled 0. Since

m =
⌊
m−2
3

⌋
+
⌈
2m+2

3

⌉
, it follows that any legal labelling of V (Pm) has weight at

least
⌈
2m+2

3

⌉
. This lower bound coincides with the values given in Table 2, which

finishes the proof.
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4 Lower bounds

In the section we prove some lower bounds for i(G×H) in terms of other domination-
type graphical invariants. Using an argument similar to that in the proof of Theo-
rem 5, we can establish a lower bound for the independent domination number of
two graphs, neither of which has an isolated vertex.

Proposition 7. If G and H are any two graphs that both have minimum degree at
least 1, then

i(G×H) ≥ max{ρ(G)γt(H), ρ(H)γt(G)} .

Proof. Let I be an independent dominating set of G×H of smallest cardinality. For
a vertex g of G, let Jg = I ∩ (NG(g) × V (H)). Since I is a dominating set, each
vertex of {g} × V (H) is either in I or is adjacent to a vertex in Jg. Furthermore,
since I is independent, exactly one of these holds for each vertex in {g}×V (H). For
each h ∈ V (H) such that (g, h) ∈ I, fix a single neighbor (g′, h′) of (g, h). Finally,
let Ĵg = Jg ∪ {(g′, h′) : (g, h) ∈ I}. Note that |{(g′, h′) : (g, h) ∈ I}| ≤ |gI| and

that the projection pH(Ĵg) is a total dominating set of H. Let A be a maximum
2-packing of G. It now follows that

|I| =
∑

x∈V (G)

|xI| ≥
∑

g∈A

|I ∩ (NG[g]×V (H))| ≥
∑

g∈A

|Ĵg| ≥
∑

g∈A

|pH(Ĵg)| ≥ ρ(G)γt(H) .

By reversing the roles of G and H in the above argument we get the desired conclu-
sion.

In Section 5 we demonstrate the existence of pairs of graphs G and H such that
i(G ×H) < min{i(G), i(H)}. The following corollary to Proposition 7 shows that
when both factors are claw-free this is not possible.

Corollary 8. If G and H are both claw-free with no isolated vertices, then

i(G×H) ≥ max{i(G), i(H)} .

Proof. From Proposition 7 it follows directly that i(G × H) ≥ max{γ(G), γ(H)}.
The result now follows since G and H are claw-free, which implies that γ(G) = i(G)
and γ(H) = i(H).

Proposition 9. For any connected graphs G and H,

i(G×H) ≥ max

{
n(H)γ(G)

∆(H) + 1
,
n(G)γ(H)

∆(G) + 1

}
.
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Proof. Let D be an independent dominating set of G ×H. For each v ∈ V (H), let
Xv = pG(D ∩ (V (G) ×NH [v])). Note that Xv is a dominating set of G. Moreover,∑

v∈V (H) |Xv | counts each vertex of D at most ∆(H) + 1 times. Thus,

|D| ≥

∑
v∈V (H) |Xv|

∆(H) + 1
≥

n(H)γ(G)

∆(H) + 1
.

The result now follows by interchanging the roles of G and H.

If both factors of a direct product are connected and bipartite, then we get a
lower bound just in terms of the domination numbers of the factors.

Proposition 10. If G and H are two connected bipartite graphs, then

i(G×H) ≥ max{2γ(G), 2γ(H)} .

Proof. Let D be an independent dominating set of G × H. Let AG, BG be the
bipartition of V (G) and AH , BH be the bipartition of V (H). Note that G × H is
disconnected since no vertex in (AG × BH) ∪ (BG × AH) is adjacent to a vertex in
(AG ×AH) ∪ (BG ×BH). Thus, it suffices to show that

|D ∩ ((AG ×BH) ∪ (BG ×AH))| ≥ γ(G).

Let A2 = pG(D ∩ (AG × BH)) and let A1 = AG − A2. Similarly, we let B2 =
pG(D ∩ (BG ×AH)) and let B1 = BG −B2. We claim that A2 ∪B2 is a dominating
set of G. To see this, fix x ∈ A1. Since AG × BH is an independent set, every
vertex in {x} ×BH is dominated by some vertex in B2 ×AH . This implies that B2

dominates A1, and a similar argument shows A2 dominates B1. Thus, A2 ∪ B2 is
a dominating set of G, and we infer that |D ∩ ((AG × BH) ∪ (BG × AH))| ≥ γ(G).
Similarly, |D ∩ ((AG ×AH)∪ (BG ×BH))| ≥ γ(G), and it follows that |D| ≥ 2γ(G).
Interchanging the roles of G and H in the above argument shows that |D| ≥ 2γ(H),
which finishes the proof.

5 Counterexamples to Conjecture 1

We now present counterexamples to Conjecture 1. Let m and r be positive integers
larger than 2. Let A,B,C and D be pairwise disjoint independent sets of cardinality
m. The graph Xm has vertex set and edge set defined as follows.

• V (Xm) = A ∪B ∪ C ∪D ∪ {x1, x2, x3, x4}.

• E(Xm) = {x1w : w ∈ A∪C}∪{x2w : w ∈ B∪D}∪{x3w : w ∈ A∪B}∪{x4w :
w ∈ C ∪D} ∪ {x1x2, x3x4}.

9



x3 x4

x1 x2

Figure 2: The graph X3

For example, the graph X3 in shown in Figure 2.
We claim that i(Xm) = m+2. The set D∪{x1, x3} is an independent dominating

set of Xm, and hence i(Xm) ≤ m + 2. Now let J be any independent dominating
set of Xm. If J has a nonempty intersection with one of A,B,C or D, then J
contains all the vertices of that set. On the other hand, no independent subset of
{x1, x2, x3, x4} dominates all of A ∪B ∪ C ∪D. This establishes the claim.

Let Hr be the complete multipartite graph of order 2r in which each of the r
partite sets has cardinality 2. More specifically, let the partite sets be {ui, vi} for i ∈
[r]. It is straightforward to check that the set I defined by I = ({x1, x2}×{u1, v1})∪
({x3, x4} × {u2, v2}) is an independent dominating set of Xm ×Hr. Therefore,

i(Xm ×Hr) ≤ 8 < (m+ 2)2 = i(Xm)i(Hr) .

This shows that Conjecture 1 is false. Moreover, it shows that the difference
i(G)i(H) − i(G × H) can be arbitrarily large. In fact, for m ≥ 7 we see that
i(Xm ×Hr) < i(Xm).

Since the above shows there exist pairs of graphs G and H such that i(G ×H)
is not only strictly smaller than i(G)i(H) but can be smaller than max{i(G), i(H)},
we are led to the following obvious question.

Question 1. Is i(G×H) ≥ min{i(G), i(H)} for every pair of graphs G and H?

We now prove Theorem 1, which answers the above question in the negative and
in fact shows that the difference min{i(G), i(H)} − i(G×H) can be arbitrary large.

Theorem 1 For any positive integer n such that n > 10, there exists a pair of
graphs G and H such that min{i(G), i(H)} = n+ 2 and i(G ×H) ≤ 12.

Proof. For each positive integer n such that n > 10, we now define a pair of graphs
Gn and Hn.

10



Let A be the collection of subsets of [6] defined by

A = {{3, 4, 5, 6}, {2, 5, 6}, {1, 2, 3, 4}, {1, 3, 4, 6}, {1, 2, 5}} ,

and let As = {us, vs}, for each s ∈ [6]. For each J ∈ A, we let AJ be an independent
set of n vertices. The graph Gn has vertex set

V (Gn) =

(
6⋃

s=1

As

)
∪

(⋃

J∈A

AJ

)
.

The only edges of Gn are given by the following three conditions.

• For each s ∈ [6], the vertex us is adjacent to vs.

• For each J ∈ A and for every s ∈ J , each of the n vertices of AJ is adjacent
to both vertices of As.

• Each of the sets A1 ∪ A5, A1 ∪ A6, A2 ∪ A3, A2 ∪ A4, A2 ∪ A6, A3 ∪ A5, and
A4 ∪A5 induces a clique in Gn.

We claim that i(Gn) = n+ 2. To see this, observe first that {u1, u2} ∪A{3,4,5,6}

is an independent dominating set of Gn. To see that i(Gn) ≥ n+2, let X = ∪6
i=1Ai.

It is easy to see that the only maximal independent sets in Gn[X] are the following:

(a) {x, y} where x ∈ A1 and y ∈ A2,

(b) {x, y, z} where x ∈ A1, y ∈ A3, and z ∈ A4

(c) {x, y} where x ∈ A2 and y ∈ A5

(d) {x, y, z} where x ∈ A3, y ∈ A4, and z ∈ A6

(e) {x, y} where x ∈ A5 and y ∈ A6

Moreover, for each maximal independent set I of Gn[X] listed above, there exists
a J ∈ A such that no vertex of AJ is adjacent to a vertex of I. Thus, i(Gn) ≥ n+2.

The graph Hn is defined in a similar way. Let B be the collection of subsets of
[6] defined by

B = {{2, 3, 4, 6}, {2, 3, 4, 5}, {1, 3, 5, 6}, {1, 2, 4, 6}, {1, 3, 4, 5}, {1, 2, 3, 6}, {1, 4, 5, 6}} .

For each K ∈ B we let BK be an independent set of n vertices. The vertex set of
Hn is given by

V (Hn) = {y1, y2, y3, y4, y5, y6} ∪

( ⋃

K∈B

BK

)
,

and the edge set of Hn is given by the following two conditions.
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• {y1y2, y1y3, y1y4, y2y5, y3y6, y3y4, y4y6, y5y6} ⊂ E(Hn)

• For every K ∈ B, the vertex yk is adjacent to each vertex of BK if and only if
k ∈ K.

We claim that i(Hn) = n + 2. One can easily verify that the only maximal
independent sets in the induced subgraphHn[{y1, y2, y3, y4, y5, y6}] are the following:
{y1, y5}, {y1, y6}, {y2, y4}, {y3, y5}, {y2, y6}, {y2, y3}, and {y4, y5}.

Moreover, for each maximal independent set I of Hn[{y1, y2, y3, y4, y5, y6}] listed
above, there exists a set BK such that no vertex of BK is adjacent either vertex of
I. Thus, i(Hn) ≥ n + 2. On the other hand, {y1, y5} ∪ B{2,3,4,6} is an independent
dominating set of Hn.

Therefore, we have shown that i(Gn) = i(Hn) = n+2. We claim that the set D
defined by D = ∪6

s=1{(us, ys), (vs, ys)} is an independent dominating set of Gn×Hn.
It is clear that {(us, ys), (vs, ys)} is independent for each s ∈ [6]. Now suppose (a, yj)
and (b, yk) are adjacent where a ∈ Aj and b ∈ Ak for 1 ≤ j ≤ k ≤ 6. It follows
that ab ∈ E(Gn) and yjyk ∈ E(Hn). However, by construction, each vertex of Aj is
adjacent to each vertex of Ak only if {yj , yk} is an independent set in Hn, which is
a contradiction. Hence, D is independent in Gn ×Hn.

Now we verify that D dominates Gn × Hn. First, we show that all vertices of
X × {y1, y2, y3, y4, y5, y6} are dominated.

• A1×{y1} dominates A1×{y1, y2, y3, y4}, A5×{y2, y3, y4} and A6×{y2, y3, y4}.

• A2 × {y2} dominates A2 × {y1, y2, y5}, A3 × {y1, y5}, A4 × {y1, y5}, and A6 ×
{y1, y5}.

• A3×{y3} dominates A3×{y1, y3, y4, y6}, A2×{y1, y4, y6}, and A5×{y1, y4, y6}.

• A4 × {y4} dominates A4 × {y1, y3, y4, y6} and A2 × {y3}.

• A5 × {y5} dominates A1 × {y6}, A3 × {y2}, and A4 × {y2}.

• A6 × {y6} dominates A1 × {y5}.

Next, let J ∈ A and let g ∈ AJ . It is easy to see that {yj : j ∈ J} is a total
dominating set of Hn. This implies that ∪j∈J{(uj , yj), (vj , yj)} dominates gHn.
Finally, let K ∈ B and let h ∈ BK . Again it is straightforward to verify that
∪k∈KAk totally dominates Gn. It follows that ∪k∈K{(uk, yk), (vk, yk)} dominates
Gh

n.
Therefore, D is an independent dominating set of Gn ×Hn and

i(Gn ×Hn) ≤ |D| = 12 < n+ 2 = min{i(Gn), i(Hn)} .
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6 Conclusion

Nowakowski and Rall posited the following list of conjectures involving a direct or
Cartesian product in [13].

Conjecture 2. [13, Section 2.4] For all graphs G and H

1. ir(G✷H) ≥ ir(G)ir(H)

2. i(G×H) ≥ i(G)i(H)

3. γ(G✷H) ≥ γ(G)γ(H) (Vizing’s conjecture)

4. Γ(G×H) ≥ Γ(G)Γ(H); Γ(G✷H) ≥ Γ(G)Γ(H)

Brešar proved that Γ(G✷H) ≥ Γ(G)Γ(H) in [2] and Brešar, Klavžar, and Rall
proved that Γ(G ×H) ≥ Γ(G)Γ(H) in [3]. It is still unknown whether ir(G✷H) ≥
ir(G)ir(H) (ir denotes the lower irredundance number), and Vizing’s conjecture
remains unsettled. In this paper, we proved that there exist pairs of graphs for
which i(G ×H) < min{i(G), i(H)}. We also studied the behavior of i(G ×Kn) for
a general graph G and were able to provide the exact values for i(G × Kn) when
G ∈ {Pm, Cm}.

Consider the following computational problem.

Independent Domination of Direct Products

Input: A graph G, a positive integer n ≥ 3 and an integer k.
Question: Is i(G×Kn) ≤ k?

As presented in Section 3, showing that i(G×Kn) ≤ k is equivalent to finding a
weak partition V0, V1, . . . , Vn, V[n] of V (G) that satisfies the four conditions necessary
to construct an independent dominating set such that the weight is at most k. We
pose the following problem.

Problem 1. Determine the complexity of Independent Domination of Direct

Products
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