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Abstract An emanation graph of grade k on a set of points is a plane spanner
made by shooting 2k+1 equally spaced rays from each point, where the shorter
rays stop the longer ones upon collision. The collision points are the Steiner
points of the spanner. Emanation graphs of grade one were studied by Mondal
and Nachmanson in the context of network visualization. They proved that
the spanning ratio of such a graph is bounded by (2 +

√
2) ≈ 3.414. We

improve this upper bound to
√

10 ≈ 3.162 and show this to be tight, i.e., there
exist emanation graphs with spanning ratio

√
10. We show that for every

fixed k, the emanation graphs of grade k are constant spanners, where the
constant factor depends on k. An emanation graph of grade two may have
twice the number of edges compared to grade one graphs. Hence we introduce
a heuristic method for simplifying them. In particular, we compare simplified
emanation graphs against Shewchuk’s constrained Delaunay triangulations on
both synthetic and real-life datasets. Our experimental results reveal that the
simplified emanation graphs outperform constrained Delaunay triangulations
in common quality measures (e.g., edge count, angular resolution, average
degree, total edge length) while maintaining a comparable spanning ratio and
Steiner point count.

A preliminary version of this work was presented at the 30th Canadian Conference on
Computational Geometry (CCCG) [35] and the 46th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM) [36].
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1 Introduction

Let G be a geometric graph embedded in the plane, weighted with Euclidean
distances. Let u and v be a pair of vertices in G. Let dG(u, v) and dE(u, v)
be the minimum graph distance (i.e., shortest path distance) in G and Eu-
clidean distance between u and v, respectively. The spanning ratio of G is

max
{u,v}∈G

dG(u,v)
dE(u,v) , i.e., the maximum ratio between dG(u, v) and dE(u, v) over all

pairs of vertices {u, v} in G. The graph G is called a t-spanner of the complete
geometric graph, if for every pair of vertices {u, v} in G, the distance dG(u, v)
is at most t times dE(u, v).

We examine plane geometric spanners [23,42], i.e., no two edges in the
spanner cross except at their common endpoints. A natural question in this
context is as follows: Given a set of points P of n points in the plane, can
we compute a planar spanner G = (V,E) of P with small size, degree and
spanning ratio? We allow the spanner to have Steiner points, i.e., P ⊆ V , thus
V may contain vertices that do not correspond to any point of P . We do not
require the paths between a pair of Steiner points nor between a point of P
and a Steiner point to have bounded spanning ratio. Thus the spanning ratio

of a graph G with Steiner points is max
{u,v}∈P

dG(u,v)
dE(u,v) .

Note that keeping the degree, size and spanning ratio of the spanners small
is often motivated by application areas, and appeared in the literature [22,23].
Nachmanson et al. [41] introduced a system called GraphMaps for interactive
visualization of large graphs based on constrained Delaunay triangulations.
Later, Mondal and Nachmanson [40] introduced and used a specific mesh called
the competition mesh to improve GraphMaps (Figure 1). Given a set of points
P , a competition mesh is constructed by shooting from each point, four axis-
aligned rays at the same speed, where the shorter rays stop the longer ones
upon collision (the rays that are not stopped are clipped by the axis-aligned
bounding box of P ). This can also be seen as a variation of a motorcycle
graph [29], which is constructed by the tracks of n motorcycles as follows:
All motorcycles start from their initial positions with fixed velocities assigned
to them. If a motorcycle meets the track left by another motorcycle, then it
crashes or stops. If two motorcycles collide, both of them crash simultaneously.
Note that this is different in a competition mesh, where one of two motorcycles
(or rays) is stopped arbitrarily. Motorcycle graphs have been used to solve
various computational geometry problems such as in mesh partitioning [30]
and computing the straight skeleton of a polygon [24].

Motivated by the ray shooting idea that the competition mesh used, we
introduce a new, general t-spanner called the emanation graph. An emanation
graph of grade k, is obtained by shooting 2k+1 rays around each given point.
Given a set P of n points in the plane, an emanation graph Mk is constructed
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Fig. 1 (left) A partial node-link diagram of a flight network. (middle) GraphMaps’ visu-
alization [40] obtained by first computing an emanation graph of grade 1 and then moving
the Steiner points using various local modifications. (right) Selection of a node.

by shooting 2k+1 rays from each point p ∈ P with equal π
2k

angles between
them. Each ray stops as soon as it hits another ray of shorter length or upon
reaching the bounding box R(P ), where the lengths are computed using L2

distance metric. If two parallel rays coming from opposite directions collide,
then they both stop. If two rays with equal length collide at a point, then one
of them is randomly stopped. The competition mesh is thus the emanation
graph of grade 1. The Steiner points are created at the intersection point of
the rays. Figure 2 (left) and (middle) depict emanation graphs of grade 1 and
2 with six points in the plane, respectively.
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(a) (b) (c)Fig. 2 (left) An emanation graph of grade 1. (middle) An emanation graph of grade 2.
(right) A simplified version of the emanation graph of grade 2.

1.1 Contributions

In this paper we prove a
√

10 upper bound on the spanning ratio of emanation
graphs of grade one, which improves the previously known upper bound of
(2 +

√
2) [40]. In contrast, we prove that for k = 1 (resp., k > 1), there exist

emanation graphs of grade k with spanning ratio ratio
√

10 (resp., arbitrarily
close to

√
2). We also show that for every fixed k, the emanation graphs of

grade k are constant spanners, where the constant factor depends on k.
Emanation graphs of larger grades allow many redundant edges and Steiner

points, i.e., elements that can be removed without increasing the spanning ra-
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tio. Redundant edges make a spanner visually cluttered and unsuitable for
visualization purposes unless we further refine the layout. We propose a sim-
plification for the emanation graphs of grade 2 (e.g., Figure 2 (right)), which
we refer to as Simplified Emanation Graph (SEG).

We compare SEGs with (constrained) Delaunay triangulations [43] on both
real-word geospatial data and synthetic point sets. The synthetic point sets
were created from small world graphs by the FMMM algorithm [32], which
is a well-known force directed algorithm to create network visualizations. The
experimental results show SEG to achieve significantly smaller edge count,
average degree, total edge length, and larger angular resolution, with a small
increase of spanning ratio.

1.2 Background

In the following we describe further background literature related to the planar
spanners (both with and without Steiner points).

The literature on geometric spanners is rich and there are many approaches
to construct geometric spanners and meshes. We refer the reader to [23]
and [42] for surveys on geometric spanners and mesh generation, respectively.

Delaunay graphs are one of the most studied plane geometric spanners.
Chew [25] showed that the L1-metric Delaunay graph is a

√
10-spanner, which

was later improved to 2.61 by Bonichon et al. [7]. There have been several at-
tempts to find tight spanning ratio for Delaunay triangulations (L2-metric De-
launay graphs) [20,27,38]. The currently best known upper and lower bound on
the spanning ratio of the Delaunay triangulation are 1.998 [45] and 1.5932 [46],
respectively.

Comparing emanation graphs with traditional spanners such as the De-
launay triangulation and its variants reveals interesting differences. While De-
launay meshes generally have better spanning ratios, there is no guarantee
on the minimum angle between edges incident to the same node, i.e. angular
resolution of the resulting graph. Shewchuk [43] has thoroughly examined the
angular constraints on Delaunay triangulations and introduced a Delaunay
mesh generation algorithm which adds Steiner points to the original vertex
set to increase the graph’s angular resolution; however, the termination of this
algorithm is not guaranteed for angular constraints over 34◦. For an emanation
graph, the angular resolution is determined by its grade k, and all emanation
graphs of grade k = 2 have 45◦ angular resolution.

A Θ6-graph [18] is formed by partitioning the space around each vertex
v into six cones of equal angle, and then connecting the vertex v to the bi-
sector nearest neighbor in each cone; the bisector nearest neighbor in a cone
means the vertex whose projection on the bisector of the cone is closest to v. A
half-Θ6-graph is a plane geometric spanner, which is constructed in the same
way except that the neighbors are only considered in the first, third and fifth
cones (for some fixed clockwise ordering of the cones). The half-Θ6-graphs were
introduced by Bonichon et al. [5]. They showed that half-Θ6-graphs have inter-
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esting connections to triangular-distance Delaunay triangulations [25], which
implies that half-Θ6-graphs are 2-spanners [5].

While both the Delaunay triangulations and half-Θ6-graphs have a lin-
ear number of edges and small spanning ratio, they may have vertices with
unbounded degree. Bose et al. [21] showed that plane t-spanners of bounded
degree exist (for some constant t). A significant amount of research followed
this result, which examines the construction of bounded degree plane spanners
with low spanning ratio. Some of the best known spanning ratios for spanners
with maximum degree 4, 6 and 8 are 20 [37], 6 [6] and 4.414 [22], respectively.

Although there exist point sets that do not admit a planar spanner of
spanning ratio less than 1.43 [28], by allowing O(n) Steiner points, one can
obtain (1 + ε)-spanners, for any ε > 0. Arikati et al. [2] showed that one
can construct a plane geometric (1 + ε)-spanner with O(n/ε4) Steiner points.
Bose and Smid [23] asked whether the dependence on ε can be improved. Re-
cently, Dehkordi et al. [26] proved that any set of n points admits a planar
angle-monotone graph of width 90◦ with O(n) Steiner points. Since an angle
monotone graph of width α is a 1

cos(α/2) -spanner [4], this implies the existence

of a
√

2-spanner with O(n) Steiner points, which may contain vertices of un-
bounded degree. See [39] for more details on the construction of angle-monotone
graphs with Steiner points.

Note that instead of choosing three cones in the half-Θ6-graph, one can
connect a vertex to the bisector nearest neighbors in all the six cones, which
gives rise to the full-Θ6-graphs. The concept has also been extended to full-Θr
graphs [17,18,19], where the space around each vertex is partitioned into r
cones of equal angle θ = 2π/r. Similarly, there exist Yao-graphs Yr [47,13],
where the nearest neighbor in a cone is chosen based on the Euclidean distance.
However, all these generalizations yield non-planar spanners. Researchers have
also examined Θ-graphs and Yao-graphs with fewer than six cones, e.g., it is
known that Θ4, Θ5, Y4 and Y5 graphs are spanners [11,12,9,14] but Θp and
Yq graphs are not spanners for any p < q < 4 [10].

2 Spanning Ratio of Emanation Graphs

In this section we present some upper and lower bounds on the spanning ratio
of emanation graphs. We first prove the upper bounds in Sections 2.1–2.2 and
then prove the lower bounds on Section 2.3.

2.1 Emanation Graphs of Grade One

The following theorem shows a
√

10 upper bound on the spanning ratio of an
emanation graph.

Theorem 1 The spanning ratio of every emanation graph of grade one is at
most

√
10 ≈ 3.162.
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Proof Let s and t be a pair of vertices in the emanation graph of grade one.
Consider four cones around s, where the cones are determined by two lines
passing through s with slopes +1 and −1, respectively, as illustrated in Fig-
ure 3; recall the line-segments that are part of the emanation graph are horizon-
tal and vertical. Without loss of generality assume that t lies in the rightward
cone C of s.

a2

s = a1
a3

t

q

r

Fig. 3 Illustration for the proof of Theorem 1.

We now construct an x-monotone path Px, which lies entirely in cone C, as
follows: The path starts at s and for each original vertex in this cone, the path
follows its rightward segment `. If a rightward segment is stopped by another
segment `′, then the path follows `′ to the original vertex that created `′, and
continues to follow the rightward segment of this vertex. Note that Px stops at
a point on the right boundary of R(P ), the bounding box. Figure 3 illustrates
a subpath a1, a2, . . . , q of Px in blue; here s = a1. For any subpath ai, . . . , aj
on Px, we will use the notation Yaiaj (resp., Xaiaj ) to refer to the sum of the
lengths of all the vertical (resp., horizontal) segments in ai, . . . , aj .

By construction of Px and the definition of the emanation graph, the length
of any horizontal segment on Px is at least as large as the subsequent verti-
cal segment. Hence for every subpath ai, . . . , aj in Px, which starts with a
horizontal segment, we will have Xaiaj ≥ Yaiaj .

Without loss of generality assume that t lies on or above Px. We now
construct another path Py starting at s using the same construction as that of
Px, but following the upward segments instead of rightward ones. Note that
t is now in the region bounded by the paths Px and Py. We now construct a
directed path, called the (−x,−y)-monotone path Pt starting at t, which is in
the reverse direction of the (x, y)-monotone path. Pt starts at t and follows
the leftward segment. Since t lies in the region bounded by Px and Py, the
path Pt must intersect one of these two paths. If the last segment ` of Pt is
stopped by a horizontal (resp., vertical) segment `′, then we follow `′ towards
the leftward (resp., downward) direction. Note that Pt now either intersects
Px or Py. Hence we consider the following two cases.
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Case 1 (Pt intersects Px at point q): This case is illustrated in Figure 3.
Let `h be the horizontal line through s.

Assume first that t lies above `h and q lies below `h. Let r be the rightmost
intersection point of Pt with `h. Thus the sum of the length of the subpath of
Px from s to q and the subpath of Pt from q to t is as follows:

|sq|x + Ysq + |qt|x + |qt|y =(|sq|x + |qt|x) + Ysq + |qt|y
=|st|x + Ysq + |qt|y, i.e., |st|x = |sq|x + |qt|x
=|st|x + Ysq + |qr|y + |rt|y, i.e., |qt|y = |qr|y + |rt|y
≤2|st|x + Ysq + |rt|y, i.e., |qr|y ≤ |st|x
≤2|st|x + |st|x + |rt|y, i.e., Ysq ≤ |st|x
=3|st|x + |st|y, i.e., |rt|y ≤ |st|y.

Here |st|x (resp. |st|y) denotes the horizontal (resp. vertical) distance between
s and t. Therefore, the spanning ratio is:

f =
(3|st|x + |st|y)√
(|st|x)2 + (|st|y)2

.

To find an upper bound we need to maximize f . By setting |st|x = 3|st|y, the
maximum for f obtains, i.e., f ≤

√
10 ≈ 3.162.

Assume now that t and q both lie on the same side of `h. Hence the sum
of the lengths of the paths from s to t is |st|x + Ysq + |qt|y ≤ 2|st|x + |rt|y. If t
and q are below `h, then |qt|y ≤ |st|x. If they are above `h, then |qt|y ≤ |st|y.
Hence the path length is bounded by 3|st|x + |st|y and the upper bound of√

10 holds.
Case 2 (Pt intersects Py at point q): This case would be the same as when

Pt intersects Px with t lying on the upward cone of s. However, applying the
same analysis, we again get an upper bound of (3|st|x + |st|y) on the length
of the path s, . . . , q, . . . , t, and hence an upper bound of

√
10. ut

Note that the above upper bound proof does not hold for emanation graphs of
grade 2, as the required monotone paths may not exist. For example, Figure 4
depicts a scenario where we cannot extend an (−x,−y)-monotone path from
t to reach the bottom boundary of R(P ).

2.2 Emanation Graphs of Grade k

In this section, we prove an upper bound on the spanning ratio of emanation
graphs of grade k. The proof will rely on the concept of angle-monotone paths.
A polygonal path is an angle-monotone path of width γ if the vector of every
edge lies in a closed wedge of angle γ (Figure 5 (left)). In other words, there
exists an angle β such that every edge vector is between β + γ

2 and β − γ
2 .
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t

p

Fig. 4 The maximal (−x,−y)-monotone paths from t are shown in red.

Every angle-monotone path of width γ is an ( 1
cos(γ/2) )-approximation of the

Euclidean distance between its endpoints [4]. A geometric graph in the plane
is angle-monotone of width γ if every pair of vertices is connected by an angle-
monotone path of width γ. Hence these graphs are also ( 1

cos(γ/2) )-spanners.

γ

(a)

θ

s

ℓ

a

b c

d

(b) (c)

s
W

Fig. 5 (left) An angle-monotone path of width γ. (middle) Illustration for the cones. (right)
Illustration for P (W ). The dotted line illustrates the bisector of the wedge with apex at c.

Let M be an emanation graph with r = 2k+1 rays, and let s and t be
a pair of vertices in M . Recall that the rays around a vertex create r cones
of equal angle θ = 2π

r . We rotate the plane by an angle of θ/2 such that
no rays are axis aligned, e.g., see Figure 5 (middle). Let W be an upward
wedge of angle (π − θ) with apex at s such that one side is aligned along the
horizontal line passing through s (Figure 5 (right)). By P (W ) we denote a
path inside W that starts from the apex of W and continues as follows: If a
segment ` stops the last segment of the current path, then we move towards the
direction which is monotone with respect to the bisector of W (Figure 6 (left)).
If ` is perpendicular to the bisector, then we move towards the source of `
(Figure 6 (right)). If we reach an original vertex, then we repeat the process
until we reach the bounding box R of the point set. The following lemma
establishes the property that P (W ) lies inside W .
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pk−2
θ/2

ℓ
ℓ

r

pk−2

pk−1 pk−1

pk

pk(= r)

Fig. 6 (left) Illustration for ` when the corresponding vector lies inside the wedge of pk−1.
(right) A scenario when ` is perpendicular to the bisector.

Lemma 1 The path P (W ) lies inside W .

Proof Let p1(= s), p2, . . . , pk be the path P (W ). The first segment p1p2 of
P (W ) is clearly inside W . Assume now that the segments pi−1pi, where 2 ≤
i ≤ k − 1, lie inside W . We now consider the segment pk−1pk.

If pk−1 is an original vertex, then by construction, pk−1pk is a segment
inside the wedge of pk−1, and hence it is inside W . We now consider the case
when pk−2pk−1 is stopped by a segment `.

If the vector of ` is inside the wedge of pk−1, then we route P (W ) along
pk−1pk such that it is monotone with respect to the bisector (Figure 6 (left)).
Consequently, pk−1pk lies inside W .

If the vector of ` is outside of the wedge of pk−1, then ` must be per-
pendicular to the bisector of the wedge of pk−1 (Figure 6 (right)). Here we
route P (W ) towards the source r of `. The smallest angle that pk−2pk−1 can
make with the sides of the wedge of pk−2 is θ/2. Since rpk−1 is shorter than
pk−2pk−1, the segment pk−1pk must lie inside the wedge of pk−2 and hence
also inside W . ut

We are now ready to describe the construction of a path between a pair of
vertices s and t. We first define wedges W1,W2, . . . ,Wr around s (Figure 7),
where W1 coincides with W and the subsequent wedges are obtained by ro-
tating W counter clockwise by an angle of θ. Let P (W1), P (W2) . . . P (Wr) be
the corresponding angle monotone paths of width (π − θ). Without loss of
generality assume that t is at the rightward cone C of s, i.e., C contains the
positive x-axis (Figure 8). Let P (Wj) and P (Wj+1) be a pair of angle mono-
tone paths, where 1 ≤ j ≤ r and Wr+1 = W1. Note that both of these paths
end at the bounding box R of the point set. Let Sj,j+1 be the region bounded
by P (Wj), P (Wj+1) and R. Note that the paths P (Wj) and P (Wj+1) may
intersect multiple times. We now consider two cases depending on whether
there exists some i, where 1 ≤ i ≤ r, such that t lies in Si,i+1.

s s s

W1 W2 W3

C

Fig. 7 Illustration for the wedges.
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Case 1 (There exists a region Si,i+1 that contains t): Since the
wedges Wi and Wi+1 are consecutive, the right side of Wi and the left side
of Wi+1 lie on the same line. Let Wt be the wedge of angle (π − θ) at t that
intersects the right side of Wi at a point b and the left side of Wi+1 at a point
a where ∠tab = ∠tba = θ/2. Figure 8(left) illustrates an example where Wi

and Wi+1 are shown in blue and green, respectively. Figure 8(right) illustrates
Wt in gray.

Since t belongs to Si,i+1, it suffices to consider the following two scenarios
to construct a path between s and t.

Case 1.1: The path P (Wt) intersects either P (Wi) or P (Wi+1) at some
point q inside the triangle ∆tab. We now use the path P ′ = (s, . . . , q, . . . , t) to
compute an upper bound on the spanning ratio. Here the length of s, . . . , q is
at most the length of an angle monotone path of width (π − θ) from s to q,
plus the distances travelled along the segments that are perpendicular to the
bisector of the wedges. Thus the total length is bounded by twice the length
of an angle monotone path of width (π− θ) from s to q. Since the length of an

angle-monotone path of width γ between two points a, b is at most dE(a,b)
cos(γ/2) [4],

the length of s, . . . , q is at most 2dE(s,q)
cos(π/2−θ/2) . Since ∆tab is an isosceles tri-

angle, dE(s, q) ≤ dE(a, b) ≤ 2h
tan (θ/2) , where h is the perpendicular distance

from t to ab. Since h ≤ dE(s, t), we have 2dE(s,q)
cos(π/2−θ/2) ≤

4dE(s,t)
tan (θ/2) cos(π/2−θ/2) .

Hence, if k (equivalently, θ) is fixed, the length of s, . . . , q can be expressed as
δdE(s, t), where δ is a constant. Using a similar analysis for P (Wt) one can
show the length of q, . . . , t to be bounded by δ′dE(s, t), where δ′ is a constant.
Consequently, the length of the path P ′ is at most (δ + δ′)dE(s, t).

a

s CC

b

θ/2

θ/2

t
q

P (Wi)

P (Wi+1)

a

s CC

b

t

Wi+1
Wi

Fig. 8 Illustration for Case 1. (left) The wedges Wi and Wi+1. (right) The construction of
an s to t path.
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Case 1.2: The path P (Wt) intersects the bounding box R at point p inside
triangle ∆tab. Since p is also inside Si,i+1, there exists an orthogonal segment
pq inside ∆tab that intersects either P (Wi) or P (Wi+1) at point q. We now
can use the path P ′ = (s, . . . , p, q, . . . , t) to compute an upper bound on the
spanning ratio. Since θ ≤ π/2 the largest segment in ∆tab is ab, which is of

length at most 2dE(s,t)
tan (θ/2) . Therefore, using an analysis similar to Case 1.1, we

can express the length of P ′ as δ′′dE(s, t), where δ′′ is a constant.
Case 2 (There does not exist any region Si,i+1 that contains t):

In this case, for every wedge Wi containing t, the vertex t lies on the same
side of P (Wi). Recall that t is in the rightward cone C of s which contains
the positive x-axis. Therefore, either W1 or Wr/2+2 contains t. Without loss
of generality assume the wedge W ′ = W1 contains t. We now consider two
scenarios depending on whether t lies above or below the path P (W ′).

ts

s

(π − θ)
t

θ/2θ/2 q

P (W ′)
W ′

P (W ′′)
C

P (Wr/2+3)

C

P (Wr/2+2)

Wr/2+2 Wr/2+3

a b

Fig. 9 Illustration for Case 2. (top) The construction of an s to t path. (bottom) Illustration
for the wedges Wr/2+2 and Wr/2+3.

Case 2.1: If t lies above the path P (W ′), then consider a downward wedge
W ′′ with apex at t of angle (π−θ) such that the bisector of W ′′ is perpendicular
to the x-axis. Let a and b be the point of intersections of W ′ with the x-axis
where a is to the left of b. Figure 9 (top) illustrates such a scenario.

First consider the case when P (W ′) intersects P (W ′′) at a point q. Since
θ ≤ π/2, we have dE(s, q) ≤ dE(s, b) ≤ 2|st|x ≤ 2dE(s, t). Similarly, dE(t, q) ≤
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dE(t, a) ≤ dE(s, t). We now can use the analysis of Case 1.1 to first bound
the length of the paths s, . . . , q and q, . . . , t, and then show that the total
length is at most a constant times dE(s, t). The case where P (W ′) intersects
the bounding box R inside ∆tab can be handled in the same way as in Case
1.2.

Case 2.2: If t lies below the path P (W ′), then we can find two successive
cones Wi and Wi+1 such that P (Wi) and P (Wi+1) enclose t, as follows.

Recall our assumption in Case 2 that for every wedge Wi containing t, the
vertex t lies on the same side of P (Wi). Since t lies below the path P (W ′), it
must also lie below the path P (Wr/2+3) (Figure 9 (bottom)). However, since
t lies in W1 = W ′, the adjacent wedge Wr/2+2 does not contain t and thus
t would lie above P (Wr/2+2). Hence we can find a region Sr/2+3,r/2+2 that
contains t, which contradicts the assumption of Case 2.

The following theorem summarizes the result of this section.

Theorem 2 For every fixed k, an emanation graph of grade k is a constant
spanner, where the constant factor depends on the value of k.

Note that Theorem 2 is only of theoretical interest as the constant factor
we obtain are very large.

2.3 Lower Bound

The following theorem proves a lower bound on the spanning ratio of the
emanation graphs.

k = 1

(a)

p2

pn

p1(= s)

pk

q1

qk

4h/3

h/3 = |st|y

qn(= t)

h = |st|x

s ps p

(b)

k = 4
t

q

Fig. 10 Illustration for lower bound proof.

Theorem 3 There exists an emanation graph of grade 1 with spanning ratio
arbitrarily close to

√
10. For every k ≥ 2, there exists an emanation graph of

grade k with spanning ratio arbitrarily close to
√

2.
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Proof We refer the reader to Figures 10 (left)–(right), which depict the cases
k = 1 and k = 2, respectively.

Case 1 (k = 1): We construct a set {p1, . . . , pn, q1, . . . , qn} of 2n points
as follows. The two points p1(= s) and qn(= t), which will achieve the lower
bound, are lying at (0,0) and (h, h/3), where h is a positive integer. Imagine
two parallel guiding lines with slope −1 through s and t, as shown in dashed
lines. One of the two guiding lines goes through s and through t. As shown
in the figure, the top-left corner of the bounding box R is determined by
the intersection of the vertical line through s and the guiding line that starts
at t. The bottom-right corner of R is determined by the intersection of the
vertical line through t and the guiding line that starts at s. We now place
the points equidistantly on the two guiding lines such that each guiding line
contains n points; see Figure 10 (left). From this, |st|x = h, |st|y = h/3, and
|sq1|y = 4h/3.

It is straightforward to observe from the structure of the emanation graph
that a shortest path must be x-monotone. Let P be a simple x-monotone path
between s and t. For every index i from 1 to n, let `i be the line passing
through pi and qi. Since s and t are on different guiding lines, P must switch
from one guiding line to the other using one of these vertical lines `1, . . . , `n.

Assume that P starts at s, travels towards pk, for some k with 1 ≤ k ≤ n,
and then switches the guiding line, as highlighted in red. Then the length of
the path is

2|p1pk|x − |pk−1pk|y + (|pkqk|y − |pk−1pk|y − |qkqk+1|y) + 2|qkqn|x − |qkqk+1|y
= 2|p1pk|x − ε+ |sq1|y − 2ε+ 2|qkqn|x − ε
= 2|p1pk|x + 4h/3 + 2|pkpn|x − 4ε

= 2|st|x + 4h/3− 4ε

= 2h+ 4h/3− 4ε

= 10h/3− 4ε.

Here ε = |p1p2|x becomes arbitrarily small as n approaches infinity.

Hence for sufficiently large n, the spanning ratio is at least (10h/3)−4ε√
h2+(h/3)2

=

(10h/3)−4ε√
10h/3

≈
√

10.

Case 2 (k ≥ 2): We place four points s, p, t and q at the corners of a square
in a clockwise order; let S denote the square made by points s, p, t and q. By
definition of emanation graphs, q has exactly (2k+1 − 4)/4 = 2k−1 − 1 rays
strictly between its upward and rightward rays. Since this is an odd number
of rays, the ray in the median position will hit p.

We then move p and q towards each other along the diagonal each by a
small positive constant ε and then perturb by a small positive constant ε′ such
that they do not remain along the diagonal. Figures 10 (right) illustrates such
a scenario. Assuming ε′ < ε/

√
2, the points p and q lie in the square S, and

therefore, the rays of s are blocked by the rays of p and q. Similarly, the rays of
t are blocked by the rays of p and q. Consequently, the shortest path between
s and t must visit either p or q, which results in a spanning ratio of

√
2. ut
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3 Simplification for Emanation Graphs of Grade Two

An emanation graph of grade 2 has twice the number of edges than its grade 1
counterpart, i.e., for n points, there are 8n rays and hence at most 8n Steiner
points. But most of these edges are redundant. For example, it is common to
find two paths of shortest length between a pair of vertices, e.g. p1 and p3 in
Figure 11. Here we propose a simplification technique that attempts to remove
such redundancies. We refer to the resulting graph as a Simplified Emanation
Graph (SEG) of grade 2.

p1

p2

p6

p3

p4
p5

R(P)p2

p6

p4

p1
p3

p5

R(P)

Fig. 11 (left) An emanation graph of grade 2 and (right) its simplified version.

3.1 Overview of the construction of SEG for k = 2

Let G be an emanation graph on n points with at most 8n Steiner points where
β of them are on the bounding box. The idea of constructing a simplified
emanation graph is to iterate over the points and connect each point p to
at most 8 other points using exactly one Steiner point per connection. The
points we connect p to are guaranteed to be the neighbours of p in the original
emanation graph. However, if we connect p to a point q in the SEG, then both
of their rays stop at the Steiner point (whereas in original emanation graph
the shorter ray would continue). Since a Steiner point blocks a pair of rays,
the number of Steiner points in SEG decreases to (8n− β)/2 + β = 4n+ β/2.

Fix some point p, and assume that k = 2. The idea of choosing at most 8
points for p is as follows. Consider 2k+1 = 8 bisectors around p, where each
bisector bisects an angle defined by two consecutive rays originated at p. For
each cone C determined by two consecutive bisectors, we find a point pk in C
such that a ray r of pk must touch a ray r′ of p irrespective of the position of
the other points in C. We call pk the key vertex in cone C but do not create the
connection between p and pk immediately. The reason is that a point outside
of C may interfere and block r or r′. We first select a set of candidate vertices
based on some simple distance measure from p, who have the potential to
block the connection between p and pk. We then check whether any of these
candidate vertices can block the connection between p and pk. If not, then we
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make the connection between p and pk by creating a single Steiner point. If we
can connect p and pk in this process then we refer to pk as a correct neighbour
of p.

3.2 Detailed Construction

Fix a point p. While describing the search for a correct neighbor of p with
respect to a fixed cone C, we rotate the plane such that the cone C appears
to be vertically upward. For the ease of explanation, the rightward ray of a
vertex is labeled r1 and its other rays are numbered counter-clockwise (see
Figure 12). We denote the emanated rays by r1, r2, r3, ... and their angular
bisectors by b1, b2, b3, b4, respectively. We use the notation Cbibj to refer to
the cone shaped region bounded by bi and bj , and denote by lg a sweep line
orthogonal to the bisector g, starting from p.

During the computation of the neighbours of p, we will refer to two impor-
tant vertex types: key vertex (pk) and candidate vertex (pc); we will add an
edge between p and pk if there is no interference by candidate vertices pc.

Key vertex of p: We define the key vertex pk to be the first vertex found
sweeping up p’s top cones Cb2r3 and Cr3b3 . Figure 12 (left) illustrates a sce-
nario, where two sweep lines lb2 and lb3 , orthogonal to b2 and b3, respectively,
are used simultaneously to sweep Cb2r3 and Cr3b3 . Note that a single horizontal
sweep line may not hit the correct neighbor pk to be connected to p, e.g. the
first point q hit by the horizontal sweep line may be a vertex near pk in the
same cone and one of the downward rays of pk may block the connection be-
tween q and p (contradicting that q is the correct neighbor). Figure 12 (right)
illustrates an example for such cases.

p

r2

b1

r4

b4

b2b3 r3

r1

la2

pk
la1 pk

p

r2

b1

r4

b4

b2b3 r3

r1

la1

q

Fig. 12 (left) Illustration for the selection of pk. Both sweep lines start at the same time
from p and stop as soon as one finds a vertex pk. (right) An example, where a successful
connection between p and pk has been made, but a horizontal sweep cannot find pk.

Candidate vertex of p: We now consider vertices that may potentially
block the connection between p and pk. We will impose some constraints to
speed up the search. We use sweep lines with angles specific to each cone C
to find such candidate vertex pc of C. Figure 13 illustrates the sweep lines for
each cone. The angle of the sweep line is chosen in a way so that the first
vertex hit by the sweep line wins the competition, of reaching p’s connection
to pk, among all the points in C. Thus the first vertex hit by the sweep line of
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a cone is called the candidate vertex pc of that cone. The candidate vertices
found by the sweep lines may block a ray of pk (see Figure 13 (left)) or the
upward ray of p (see Figure 13 (right)).

p

pc

lr2

r2
r4

r3

r1
p

lr4

r2

b1

r4

b4

b2b3
r3

r1

p

pc

r2
r4

r3

r1

lr1

p

r2
r4

r3

r1

lr5

pc

pk

pk

pc b1
b4

b2b3

b1
b4

b2b3

b1
b4

b2b3

Fig. 13 Sweep lines used to select pc in each cone around p, drawn in yellow color. A
sweep line starts from p and stops upon finding a vertex. The dotted circles centered at
the intersection point of the rays of pk and pc illustrate that pc is closer to the point of
intersection than pk.

We now show that to block the downward ray of pk towards p or to block
the upward ray of p, a candidate point must lie in the wedge determined by
the bisectors b1 and b4. Thus there can only be four candidate vertices, one in
each of the four cones Cb1r2 , Cr2b2 , Cb3r4 , and Cr4b4 .

Without loss of generality let q be a point on r4. Without any interference,
the rightward ray of q and the upward ray of p would have the same length
when they meet (e.g., see Figure 14 (left)). Similarly, let q′ be a point on b4.
The ray with slope +1 (north-eastern) at q′ and the upward ray of p will have
the same length, i.e., if o is the point of intersection, then ∠opq′(= 67.5◦) =
∠oq′p(= 180◦−45◦−67.5◦). Hence to block the upward ray of p, a point must
lie in the wedge determined by the bisectors b1 and b4.

p

r2

b1

r4

b4

b2b3 r3

r1
p

r2r4

r3

r1

q

q′

pk

p

r2r4

r3

r1

pk

o
o

q′

q′

b1
b4

b2b3

b1
b4

b2b3

Fig. 14 Illustration for the location to be searched for candidate points.
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Consider now the rightward ray of q′ and the downward ray (south-eastern)
of pk with slope -1 (e.g., see Figure 14 (middle)). Let o be the point of inter-
section. Then ∠oq′pk = 135◦ − ∠opkq′. Since ∠opkq′ > 90◦, the rightward
ray of q′ must be larger than the ray of pk. Finally, consider the upward ray
(north-eastern) of q′ with slope +1 and the downward ray of pk with slope -1
(e.g., see Figure 14 (right)). Let o be the point of intersection. If the ray q′o
blocks the ray of pk, then pko must be of at least the same length as q′o. The
length of pko is maximized when o is on the upward ray of r, where the length
of pko becomes equal to the length of q′o. Hence to block the downward ray of
pk, a point must lie in the upward wedge determined by the bisectors b1 and
b4.

Depending on the geometric properties of every vertex pc in a cone of p,
some ray of pc is the most competent (Figure 15), meaning that it has the
chance to block the connection between p and pk. For example, for vertex
pc ∈ Cb4r4 , the north-eastern ray r2 may interfere with pk, thus to find the
most competent vertex inside Cb4r4 we use a vertical sweep line lr5 starting
from p. Any point r, to the left of the sweep line lr5 through pc inside Cb4r4
must have a longer ray to reach the ray of pk, so it cannot block the ray of pk.

p

r2
r4

r3

r1

pc

pk

p

r2
r4

r3

r1

pk

r
r
pc

b3

b1

b2

b4

b3

b1

b2

b4

Fig. 15 Illustration for sweep lines. The dotted circle centered at the intersection point of
the rays of pk and pc illustrates that pc is closer to the point of intersection than pk.

After finding our candidate pc vertices, we check for some more special
conditions in order to know whether they can block the connection between
pk and p. These conditions are thoroughly explained later. After the check, if
a ray of p can be connected to a ray of pk through one Steiner point, then
we first check whether they already have a common Steiner point neighbor. If
not, we add a new Steiner point at the intersection of their rays, otherwise,
we use the existing Steiner point.

Assuming pc lies on the right side of r3, there are four cases we need to
distinguish to determine whether pc interferes with the connection between pk
and p:

– Case 1: pk ∈ Cb2r3 and pc ∈ Cb1r2 ; see Figure 16.
– Case 2: pk ∈ Cb2r3 and pc ∈ Cr2b2 ; see Figure 17.
– Case 3: pk ∈ Cr3b3 and pc ∈ Cb1r2 ; see Figure 18.
– Case 4: pk ∈ Cr3b3 and pc ∈ Cr2b2 ; see Figure 19.
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pk

p

pc

pk

p

pc

pk

p

pc

r2
r4

r3

r1

r2
r4

r3

r1

r2
r4

r3

r1

r3

r′4

r3r3

r′4
r′4

b4

b2b3

b1 b4

b2b3

b1
b4

b2b3

b1

Fig. 16 Case 1: Left and middle depict two different cases where pc has interfered, right
shows a successful connection between pk and p.

pk

p

pc

lb1

p

pc

lb1

r2
r4

r3

r1

r2
r4

r3

r1

pk

b1
b4

b2b3

b1
b4

b2b3

Fig. 17 Case 2: Left depicts pc has interfered, right shows a connection between pk and p.

pk

p

pc

pk

p

pcpc

r2

b1

r4

b4

b2b3
r3

r1

r2
r4

r3

r1

lr2

lr2

b1
b4

b2b3

Fig. 18 Case 3: Left depicts pc has interfered, right shows a connection between pk and p.

p

pc

p

pc

r2
r4

r3

r1

r2
r4

r3

r1

pk

b1
b4

b2b3

pk

b4

b2b3

b1

Fig. 19 Case 4: Left depicts pc has interfered, right shows a connection between pk and p.

Figures 16–19 illustrate examples for each case, where the rightmost section
in each figure depicts the case when pk can successfully connect to p. Let |p|x
(resp. |p|y) be the x (resp. y)-coordinate of the point p.

Let r′4 be the continued refraction of r4 of pc after hitting r3 of p. In Case 1,
if |pk|x < |pc|x and pk is below r′4, the south-western ray of pk reaches to r3
sooner than the north-western ray of pc. Therefore, pc cannot interfere with
the connection between pk and p; see Figure 16 (right). In this case, pc could
block the south-western ray of pk (as shown in Figure 16 (left)) or the upward
ray of p (as shown in Figure 16 (middle)).
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In Case 2, if pk is swept before pc by the sweep line lb1 , the south-western
ray of pk reaches to r3 sooner than the western ray of pc. This implies that pk
should connect to p; see Figure 17.

In Case 3, if pk is swept before pc by a sweep line lr2 , the south-eastern ray
of pk blocks r3 before the north-western ray of pc reaches there, so pc cannot
interfere with the connection between pk and p; see Figure 18.

In Case 4, if |pkpc|y < |pkp|x, the south-eastern ray of pk blocks r3 before
the western ray of pc reaches there; therefore, pk connects to p; see Figure 19.

Explaining the cases where pc is on the left side of r3 is straightforward,
as every condition needs to be vertically mirrored, relative to p.

Figure 20 demonstrates all the 8 steps (with rotations) described above us-
ing the point set used in Figure 11. After stacking blue segments after rotating
them back to their starting direction results into the simplified version of the
emanation graph.

p1

p2

p6

p3

p4
p5

p1

p2

p6

p3

p4

p5

p1

p2

p6

p3
p4

p5

p1

p2

p6

p3

p4 p5

p1

p2

p6p3

p4

p5

p1

p2

p6

p3

p4

p5

p1

p2

p6

p3
p4

p5

p1
p2

p6 p3

p4

p5

Fig. 20 Construction steps of an example SEG, each figure represents one of 8 required
rotations. Blue segments are rotated back and accumulated to form the final graph, depicted
in the right section of Figure 11.

4 The Construction Algorithm

In the following section we discuss a few properties of SEG.

Lemma 2 A SEG on a set of n points can be constructed in time O(n ·
polylog(n)).

Proof For each point p, there exist a constant number of cones, and for each
cone we need to find a candidate point with the smallest coordinate along some
axis. This can easily be done by using a constant number of 2-dimensional
range trees each is corresponding to a cone, which can be constructed in time
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O(n · polylog(n)) (Theorem 5.9 in [3]). At each internal node v′ of the second-
level trees Tassoc(v), we store the point with the smallest coordinate along the
axis among the points in P (v′), where v is an internal node of the first-level
tree T and P (v′) is the set of points stored at the leaves of the sub-tree rooted
at v′. To find the point with the smallest coordinate along the axis of some
cone, we can easily query the corresponding range tree in time O(polylog(n)).

After finding the candidates pc in the cones of each point p, we do a constant
number of comparisons with pk in order to check whether pc has interfered
the connection between p and pk. Therefore, the total construction time is
O(n · polylog(n)). ut

Forming an emanation graph of grade k = 2 involves shooting 2k+1 rays
from each vertex simultaneously. This results into a maximum degree of 8 and
8n rays in any graph and 8n maximum number of Steiner points. Any pair of
selected vertices (p, pk) in an emanation graph, falls in one of four categories:

1. They are not connected to each other through a single Steiner point, be-
cause other vertices have completely interfered their connection; see (p1, p4)
in Figure 11.

2. They are connected by two mirrored paths of two edges; see (p1, p5) in
Figure 11.

3. They are connected by a path of two edges, and another path of longer
length. The second path is formed due to interference of a ray from pc (i.e.,
p1), thus involving an edge belonging to pc; see (p3, p5) in Figure 11.

4. They are connected by a path of two edges, but neither Category 2 nor
Category 3 are satisfied; see (p, t) in Figure 3 (right).

A simplified emanation graph will reduce paths of categories 2 and 3, and thus
will reduce Steiner points. Between path pairs of category 2, one is picked
arbitrarily and another is omitted. Also for paths of category 3, the one with
shorter length remains as the one with longer length is removed. Therefore, it
is straightforward to construct examples where the number of Steiner points
in a SEG are significantly smaller than the emanation graph (e.g., points on
a line with angle of inclination 50◦).

Lemma 3 An emanation graph of grade k contains kn Steiner points and
there exist point sets where an emanation graph must generate kn − O(k)
Steiner points. Let G be an emanation graph of grade 2 on a set P of n points.
Then G contains at most 8n Steiner points. Assume that β of the Steiner
points are on the bounding box. Then a SEG on P will contain at most 4n+β/2
Steiner points.

Proof Since an emanation graph of grade k contains kn rays and each generates
at most one Steiner point, the total number of Steiner points is at most kn.
To observe that there exist point sets that generate kn−O(k) Steiner points,
first place 4 points along the four corners of a square R and 4 at the midpoint
of its edges. We then place n − 8 points at its center. We perturb the points
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at the center to avoid overlap. We thus get k(n− 8) rays creating kn − O(k)
Steiner points inside R.

The upper bound on the Steiner points of SEG follows from the observation
that every Steiner point that does not lie on the bounding box is the result of
two rays hitting each other when both of them stop. ut

5 Experimental Comparison

In this section we compare SEG with graphs generated with Delaunay tri-
angulation: constrained [43] and normal. A normal Delaunay triangulation
on a given set of points in general position is defined using the empty circle
condition, i.e., three points form a triangle if and only if the interior of the
circumcircle does not enclose any point of the pointset. The constrained De-
launay triangulation [43] is generated by setting a minimum angle constraint,
where Steiner points are added to guarantee all angles to be above the specified
constraint.

Fig. 21 A SEG based on our chosen sample of size 100 (top-left). The normal Delaunay
triangulation (top-right), 22.5◦ constrained Delaunay triangulation (bottom-left) and 33◦

constrained Delaunay triangulation (bottom-right), all on the same vertex set.

We generated three datasets (Rand1, Rand2 and Rand3) using NetworkX [33],
each containing 1000 random Newman Watts Strogatz small world graphs.
All the graphs in a data set contain the same number of nodes. Thus the three
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Fig. 22 (left) A SEG of grade 2 on a sample of size 1000. (right) The corresponding 33◦

constrained Delaunay triangulation.

data sets contain graphs of size 100, 500, and 1000. We generated the layout
for all these graphs using the fast multi-pole multilevel (FMMM) layout [32].
Aside from experimenting on randomly generated data [34], we also tried SEG
on two commonly used data sets: Locations of 1000 Most Populated Cities and
US Airports [1].

Figure 21 demonstrates our output on one of the sample data set of size 100,
for a SEG of grade 2 along with normal, 22.5◦ and 33◦ constrained Delaunay
triangulations, which are the exact configurations we used for this comparison.
Figure 22 depicts SEG of grade 2 and the corresponding constrained Delaunay
triangulations for a sample of size 1000.

Although one would like to have angular constraints higher than 33◦ and
close to what emanation graph gives, the algorithm for constrained Delaunay
triangulation does not guarantee termination for larger angular resolutions.
We used Triangle [44] to compute the Delaunay triangulations.

The metrics we chose to compare our samples are Steiner Point Count,
Vertex Degree, Edge Count, Edge Length, Angle and Spanning Ratio. Results
are depicted in Table 1, separated by different configurations and the number
of vertices. For the first three datasets (Rand1, Rand2 and Rand3), every
row of the table shows the mean performance over all 1000 instances of the
graphs. The reason that we report the averages is because the average is a
better representative when examining the properties for a graph family (i.e.,
small world graphs) than the outcomes for individual instances. In comparison
with 33◦ constrained Delaunay triangulation, SEG shows:

• Much better angular resolution (45◦ compared to 33◦)
• Less than half the number of edges
• Less than half the total edge length
• Less than half the average vertex degree
• Slightly worse spanning ratio (within a factor of 1.18 when n = 100 and
n = 500; and the comparable when n = 1000)
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• Comparable number of Steiner points (less than half the number of Steiner
points for n = 100; but slightly worse for n = 1000)

The reason that SEG provides better angular resolution than that of 33◦

constrained Delaunay triangulation is inherent to its construction, where the
slopes of the edges are in {0,±1,±∞}. The number of edges of SEG is smaller
because it has only two edges adjacent to each Steiner point whereas much
more is often needed in a 33◦ constrained Delaunay triangulation. Together
with the fact that SEG does not consider filling the empty spaces around
Steiner points, this significantly reduces the total edge length and average
vertex degree. The spanning ratio of SEG appears to be slightly worse. A po-
tential reason is that every bend on a path at a Steiner point is of at least 45◦,
whereas in a 33◦ constrained Delaunay triangulation a path has an opportunity
to reduce its bend angles by leveraging the high degree of the Steiner points.
The number of Steiner points in SEG appears to be smaller when the number
of points is small, but it becomes slightly larger as the number of points in-
creases. A potential reason is that two points can directly be connected in a
33◦ constrained Delaunay triangulation, whereas in SEG, they must be con-
nected through a Steiner point. Hence for a dense point set, this benefit of a
33◦ constrained Delaunay triangulation may outweigh SEG.

6 Conclusion

The most obvious open question following our work is to find a tight bound
on the spanning ratio for emanation graphs of grade 2. Another interesting
research direction is to find a geometric spanner that is better than the em-
anation graphs of grade one; specifically, a max-degree-4 planar geometric
spanners with at most 4n Steiner points and a spanning ratio better than√

10. It would be interesting to examine whether known bounded degree span-
ners [8] without Steiner points could be modified to construct such a spanner.
It would also be interesting to examine whether emanation graphs admit local
routing with small routing ratio.

A natural extension of our work is to implement simplified emanation
graphs in visualization systems such as GraphMaps [41] to compare the vi-
sual results with those generated by the Delaunay and constrained Delaunay
triangulations. Although simplified emanation graphs appear to be promising
in our experimental analysis, we do not know whether they admit a bounded
spanning ratio. Therefore, it would be interesting to further explore the span-
ning properties of these graphs.
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