Emanation Graph: A Plane Geometric Spanner with Steiner Points

Bardia Hamedmohseni • Zahed
Rahmati • Debajyoti Mondal

Received: date / Accepted: date

Abstract

An emanation graph of grade k on a set of points is a plane spanner made by shooting 2^{k+1} equally spaced rays from each point, where the shorter rays stop the longer ones upon collision. The collision points are the Steiner points of the spanner. Emanation graphs of grade one were studied by Mondal and Nachmanson in the context of network visualization. They proved that the spanning ratio of such a graph is bounded by $(2+\sqrt{2}) \approx 3.414$. We improve this upper bound to $\sqrt{10} \approx 3.162$ and show this to be tight, i.e., there exist emanation graphs with spanning ratio $\sqrt{10}$. We show that for every fixed k, the emanation graphs of grade k are constant spanners, where the constant factor depends on k. An emanation graph of grade two may have twice the number of edges compared to grade one graphs. Hence we introduce a heuristic method for simplifying them. In particular, we compare simplified emanation graphs against Shewchuk's constrained Delaunay triangulations on both synthetic and real-life datasets. Our experimental results reveal that the simplified emanation graphs outperform constrained Delaunay triangulations in common quality measures (e.g., edge count, angular resolution, average degree, total edge length) while maintaining a comparable spanning ratio and Steiner point count.

[^0]Keywords Geometric Spanner • Steiner Points • Network Visualization • Plane Spanners

1 Introduction

Let G be a geometric graph embedded in the plane, weighted with Euclidean distances. Let u and v be a pair of vertices in G. Let $d_{G}(u, v)$ and $d_{E}(u, v)$ be the minimum graph distance (i.e., shortest path distance) in G and Euclidean distance between u and v, respectively. The spanning ratio of G is $\max _{\{u, v\} \in G} \frac{d_{G}(u, v)}{d_{E}(u, v)}$, i.e., the maximum ratio between $d_{G}(u, v)$ and $d_{E}(u, v)$ over all pairs of vertices $\{u, v\}$ in G. The graph G is called a t-spanner of the complete geometric graph, if for every pair of vertices $\{u, v\}$ in G, the distance $d_{G}(u, v)$ is at most t times $d_{E}(u, v)$.

We examine plane geometric spanners [23,42, i.e., no two edges in the spanner cross except at their common endpoints. A natural question in this context is as follows: Given a set of points P of n points in the plane, can we compute a planar spanner $G=(V, E)$ of P with small size, degree and spanning ratio? We allow the spanner to have Steiner points, i.e., $P \subseteq V$, thus V may contain vertices that do not correspond to any point of P. We do not require the paths between a pair of Steiner points nor between a point of P and a Steiner point to have bounded spanning ratio. Thus the spanning ratio of a graph G with Steiner points is $\max _{\{u, v\} \in P} \frac{d_{G}(u, v)}{d_{E}(u, v)}$.

Note that keeping the degree, size and spanning ratio of the spanners small is often motivated by application areas, and appeared in the literature [22,|23]. Nachmanson et al. 41 introduced a system called GraphMaps for interactive visualization of large graphs based on constrained Delaunay triangulations. Later, Mondal and Nachmanson 40 introduced and used a specific mesh called the competition mesh to improve GraphMaps (Figure 1). Given a set of points P, a competition mesh is constructed by shooting from each point, four axisaligned rays at the same speed, where the shorter rays stop the longer ones upon collision (the rays that are not stopped are clipped by the axis-aligned bounding box of P). This can also be seen as a variation of a motorcycle graph [29, which is constructed by the tracks of n motorcycles as follows: All motorcycles start from their initial positions with fixed velocities assigned to them. If a motorcycle meets the track left by another motorcycle, then it crashes or stops. If two motorcycles collide, both of them crash simultaneously. Note that this is different in a competition mesh, where one of two motorcycles (or rays) is stopped arbitrarily. Motorcycle graphs have been used to solve various computational geometry problems such as in mesh partitioning [30] and computing the straight skeleton of a polygon [24].

Motivated by the ray shooting idea that the competition mesh used, we introduce a new, general t-spanner called the emanation graph. An emanation graph of grade k, is obtained by shooting 2^{k+1} rays around each given point. Given a set P of n points in the plane, an emanation graph M_{k} is constructed

Fig. 1 (left) A partial node-link diagram of a flight network. (middle) GraphMaps' visualization [40] obtained by first computing an emanation graph of grade 1 and then moving the Steiner points using various local modifications. (right) Selection of a node.
by shooting 2^{k+1} rays from each point $p \in P$ with equal $\frac{\pi}{2^{k}}$ angles between them. Each ray stops as soon as it hits another ray of shorter length or upon reaching the bounding box $R(P)$, where the lengths are computed using L_{2} distance metric. If two parallel rays coming from opposite directions collide, then they both stop. If two rays with equal length collide at a point, then one of them is randomly stopped. The competition mesh is thus the emanation graph of grade 1. The Steiner points are created at the intersection point of the rays. Figure 2 (left) and (middle) depict emanation graphs of grade 1 and 2 with six points in the plane, respectively.

Fig. 2 (left) An emanation graph of grade 1. (middle) An emanation graph of grade 2. (right) A simplified version of the emanation graph of grade 2.

1.1 Contributions

In this paper we prove a $\sqrt{10}$ upper bound on the spanning ratio of emanation graphs of grade one, which improves the previously known upper bound of $(2+\sqrt{2})$ 40. In contrast, we prove that for $k=1$ (resp., $k>1$), there exist emanation graphs of grade k with spanning ratio ratio $\sqrt{10}$ (resp., arbitrarily close to $\sqrt{2}$). We also show that for every fixed k, the emanation graphs of grade k are constant spanners, where the constant factor depends on k.

Emanation graphs of larger grades allow many redundant edges and Steiner points, i.e., elements that can be removed without increasing the spanning ra-
tio. Redundant edges make a spanner visually cluttered and unsuitable for visualization purposes unless we further refine the layout. We propose a simplification for the emanation graphs of grade 2 (e.g., Figure 2 (right)), which we refer to as Simplified Emanation Graph (SEG).

We compare SEGs with (constrained) Delaunay triangulations 43] on both real-word geospatial data and synthetic point sets. The synthetic point sets were created from small world graphs by the FMMM algorithm [32], which is a well-known force directed algorithm to create network visualizations. The experimental results show SEG to achieve significantly smaller edge count, average degree, total edge length, and larger angular resolution, with a small increase of spanning ratio.

1.2 Background

In the following we describe further background literature related to the planar spanners (both with and without Steiner points).

The literature on geometric spanners is rich and there are many approaches to construct geometric spanners and meshes. We refer the reader to [23] and 42 for surveys on geometric spanners and mesh generation, respectively.

Delaunay graphs are one of the most studied plane geometric spanners. Chew [25] showed that the L_{1}-metric Delaunay graph is a $\sqrt{10}$-spanner, which was later improved to 2.61 by Bonichon et al. 77. There have been several attempts to find tight spanning ratio for Delaunay triangulations (L_{2}-metric Delaunay graphs) [20, 27,38. The currently best known upper and lower bound on the spanning ratio of the Delaunay triangulation are 1.998 [45] and 1.5932 [46], respectively.

Comparing emanation graphs with traditional spanners such as the Delaunay triangulation and its variants reveals interesting differences. While Delaunay meshes generally have better spanning ratios, there is no guarantee on the minimum angle between edges incident to the same node, i.e. angular resolution of the resulting graph. Shewchuk 43 has thoroughly examined the angular constraints on Delaunay triangulations and introduced a Delaunay mesh generation algorithm which adds Steiner points to the original vertex set to increase the graph's angular resolution; however, the termination of this algorithm is not guaranteed for angular constraints over 34°. For an emanation graph, the angular resolution is determined by its grade k, and all emanation graphs of grade $k=2$ have 45° angular resolution.

A Θ_{6}-graph 18 is formed by partitioning the space around each vertex v into six cones of equal angle, and then connecting the vertex v to the bisector nearest neighbor in each cone; the bisector nearest neighbor in a cone means the vertex whose projection on the bisector of the cone is closest to v. A half- Θ_{6}-graph is a plane geometric spanner, which is constructed in the same way except that the neighbors are only considered in the first, third and fifth cones (for some fixed clockwise ordering of the cones). The half- Θ_{6}-graphs were introduced by Bonichon et al. [5]. They showed that half- Θ_{6}-graphs have inter-
esting connections to triangular-distance Delaunay triangulations [25], which implies that half- Θ_{6}-graphs are 2 -spanners [5].

While both the Delaunay triangulations and half- Θ_{6}-graphs have a linear number of edges and small spanning ratio, they may have vertices with unbounded degree. Bose et al. [21] showed that plane t-spanners of bounded degree exist (for some constant t). A significant amount of research followed this result, which examines the construction of bounded degree plane spanners with low spanning ratio. Some of the best known spanning ratios for spanners with maximum degree 4,6 and 8 are 20 [37, 6 [6] and 4.414 [22], respectively.

Although there exist point sets that do not admit a planar spanner of spanning ratio less than 1.43 [28], by allowing $O(n)$ Steiner points, one can obtain $(1+\epsilon)$-spanners, for any $\epsilon>0$. Arikati et al. [2] showed that one can construct a plane geometric $(1+\epsilon)$-spanner with $O\left(n / \epsilon^{4}\right)$ Steiner points. Bose and Smid [23] asked whether the dependence on ϵ can be improved. Recently, Dehkordi et al. [26] proved that any set of n points admits a planar angle-monotone graph of width 90° with $O(n)$ Steiner points. Since an angle monotone graph of width α is a $\frac{1}{\cos (\alpha / 2)}$-spanner [4], this implies the existence of a $\sqrt{2}$-spanner with $O(n)$ Steiner points, which may contain vertices of unbounded degree. See [39] for more details on the construction of angle-monotone graphs with Steiner points.

Note that instead of choosing three cones in the half- Θ_{6}-graph, one can connect a vertex to the bisector nearest neighbors in all the six cones, which gives rise to the full $-\Theta_{6}$-graphs. The concept has also been extended to full- Θ_{r} graphs [17, 18, 19, where the space around each vertex is partitioned into r cones of equal angle $\theta=2 \pi / r$. Similarly, there exist Yao-graphs Y_{r} [47,13, where the nearest neighbor in a cone is chosen based on the Euclidean distance. However, all these generalizations yield non-planar spanners. Researchers have also examined Θ-graphs and Yao-graphs with fewer than six cones, e.g., it is known that $\Theta_{4}, \Theta_{5}, Y_{4}$ and Y_{5} graphs are spanners [11, 12, 9,14 but Θ_{p} and Y_{q} graphs are not spanners for any $p<q<4$ [10].

2 Spanning Ratio of Emanation Graphs

In this section we present some upper and lower bounds on the spanning ratio of emanation graphs. We first prove the upper bounds in Sections 2.1-2.2 and then prove the lower bounds on Section 2.3 .

2.1 Emanation Graphs of Grade One

The following theorem shows a $\sqrt{10}$ upper bound on the spanning ratio of an emanation graph.

Theorem 1 The spanning ratio of every emanation graph of grade one is at most $\sqrt{10} \approx 3.162$.

Proof Let s and t be a pair of vertices in the emanation graph of grade one. Consider four cones around s, where the cones are determined by two lines passing through s with slopes +1 and -1 , respectively, as illustrated in Figure 3; recall the line-segments that are part of the emanation graph are horizontal and vertical. Without loss of generality assume that t lies in the rightward cone C of s.

Fig. 3 Illustration for the proof of Theorem 1

We now construct an x-monotone path P_{x}, which lies entirely in cone C, as follows: The path starts at s and for each original vertex in this cone, the path follows its rightward segment ℓ. If a rightward segment is stopped by another segment ℓ^{\prime}, then the path follows ℓ^{\prime} to the original vertex that created ℓ^{\prime}, and continues to follow the rightward segment of this vertex. Note that P_{x} stops at a point on the right boundary of $R(P)$, the bounding box. Figure 3 illustrates a subpath a_{1}, a_{2}, \ldots, q of P_{x} in blue; here $s=a_{1}$. For any subpath a_{i}, \ldots, a_{j} on P_{x}, we will use the notation $Y_{a_{i} a_{j}}$ (resp., $X_{a_{i} a_{j}}$) to refer to the sum of the lengths of all the vertical (resp., horizontal) segments in a_{i}, \ldots, a_{j}.

By construction of P_{x} and the definition of the emanation graph, the length of any horizontal segment on P_{x} is at least as large as the subsequent vertical segment. Hence for every subpath a_{i}, \ldots, a_{j} in P_{x}, which starts with a horizontal segment, we will have $X_{a_{i} a_{j}} \geq Y_{a_{i} a_{j}}$.

Without loss of generality assume that t lies on or above P_{x}. We now construct another path P_{y} starting at s using the same construction as that of P_{x}, but following the upward segments instead of rightward ones. Note that t is now in the region bounded by the paths P_{x} and P_{y}. We now construct a directed path, called the $(-x,-y)$-monotone path P_{t} starting at t, which is in the reverse direction of the (x, y)-monotone path. P_{t} starts at t and follows the leftward segment. Since t lies in the region bounded by P_{x} and P_{y}, the path P_{t} must intersect one of these two paths. If the last segment ℓ of P_{t} is stopped by a horizontal (resp., vertical) segment ℓ^{\prime}, then we follow ℓ^{\prime} towards the leftward (resp., downward) direction. Note that P_{t} now either intersects P_{x} or P_{y}. Hence we consider the following two cases.

Case $1\left(P_{t}\right.$ intersects P_{x} at point $\left.q\right)$: This case is illustrated in Figure 33 Let ℓ_{h} be the horizontal line through s.

Assume first that t lies above ℓ_{h} and q lies below ℓ_{h}. Let r be the rightmost intersection point of P_{t} with ℓ_{h}. Thus the sum of the length of the subpath of P_{x} from s to q and the subpath of P_{t} from q to t is as follows:

$$
\begin{aligned}
|s q|_{x}+Y_{s q}+|q t|_{x}+|q t|_{y} & =\left(|s q|_{x}+|q t|_{x}\right)+Y_{s q}+|q t|_{y} & & \\
& =|s t|_{x}+Y_{s q}+|q t|_{y}, & & \text { i.e., }|s t|_{x}=|s q|_{x}+|q t|_{x} \\
& =|s t|_{x}+Y_{s q}+|q r|_{y}+|r t|_{y}, & & \text { i.e., }|q t|_{y}=|q r|_{y}+|r t|_{y} \\
& \leq 2|s t|_{x}+Y_{s q}+|r t|_{y}, & & \text { i.e., }|q r|_{y} \leq|s t|_{x} \\
& \leq 2|s t|_{x}+|s t|_{x}+|r t|_{y}, & & \text { i.e., } Y_{s q} \leq|s t|_{x} \\
& =3|s t|_{x}+|s t|_{y}, & & \text { i.e., }|r t|_{y} \leq|s t|_{y} .
\end{aligned}
$$

Here $|s t|_{x}$ (resp. $\left.|s t|_{y}\right)$ denotes the horizontal (resp. vertical) distance between s and t. Therefore, the spanning ratio is:

$$
f=\frac{\left(3|s t|_{x}+|s t|_{y}\right)}{\sqrt{\left(|s t|_{x}\right)^{2}+\left(|s t|_{y}\right)^{2}}}
$$

To find an upper bound we need to maximize f. By setting $|s t|_{x}=3|s t|_{y}$, the maximum for f obtains, i.e., $f \leq \sqrt{10} \approx 3.162$.

Assume now that t and q both lie on the same side of ℓ_{h}. Hence the sum of the lengths of the paths from s to t is $|s t|_{x}+Y_{s q}+|q t|_{y} \leq 2|s t|_{x}+|r t|_{y}$. If t and q are below ℓ_{h}, then $|q t|_{y} \leq|s t|_{x}$. If they are above ℓ_{h}, then $|q t|_{y} \leq|s t|_{y}$. Hence the path length is bounded by $3|s t|_{x}+|s t|_{y}$ and the upper bound of $\sqrt{10}$ holds.

Case $2\left(P_{t}\right.$ intersects P_{y} at point $\left.q\right)$: This case would be the same as when P_{t} intersects P_{x} with t lying on the upward cone of s. However, applying the same analysis, we again get an upper bound of $\left(3|s t|_{x}+|s t|_{y}\right)$ on the length of the path s, \ldots, q, \ldots, t, and hence an upper bound of $\sqrt{10}$.

Note that the above upper bound proof does not hold for emanation graphs of grade 2, as the required monotone paths may not exist. For example, Figure 4 depicts a scenario where we cannot extend an $(-x,-y)$-monotone path from t to reach the bottom boundary of $R(P)$.

2.2 Emanation Graphs of Grade k

In this section, we prove an upper bound on the spanning ratio of emanation graphs of grade k. The proof will rely on the concept of angle-monotone paths. A polygonal path is an angle-monotone path of width γ if the vector of every edge lies in a closed wedge of angle γ (Figure 5 (left)). In other words, there exists an angle β such that every edge vector is between $\beta+\frac{\gamma}{2}$ and $\beta-\frac{\gamma}{2}$.

Fig. 4 The maximal $(-x,-y)$-monotone paths from t are shown in red.

Every angle-monotone path of width γ is an $\left(\frac{1}{\cos (\gamma / 2)}\right)$-approximation of the Euclidean distance between its endpoints 4. A geometric graph in the plane is angle-monotone of width γ if every pair of vertices is connected by an anglemonotone path of width γ. Hence these graphs are also $\left(\frac{1}{\cos (\gamma / 2)}\right)$-spanners.

Fig. 5 (left) An angle-monotone path of width γ. (middle) Illustration for the cones. (right) Illustration for $P(W)$. The dotted line illustrates the bisector of the wedge with apex at c.

Let M be an emanation graph with $r=2^{k+1}$ rays, and let s and t be a pair of vertices in M. Recall that the rays around a vertex create r cones of equal angle $\theta=\frac{2 \pi}{r}$. We rotate the plane by an angle of $\theta / 2$ such that no rays are axis aligned, e.g., see Figure 5 (middle). Let W be an upward wedge of angle $(\pi-\theta)$ with apex at s such that one side is aligned along the horizontal line passing through s (Figure 5 (right)). By $P(W)$ we denote a path inside W that starts from the apex of W and continues as follows: If a segment ℓ stops the last segment of the current path, then we move towards the direction which is monotone with respect to the bisector of W (Figure 6 (left)). If ℓ is perpendicular to the bisector, then we move towards the source of ℓ (Figure 6 (right)). If we reach an original vertex, then we repeat the process until we reach the bounding box R of the point set. The following lemma establishes the property that $P(W)$ lies inside W.

Fig. 6 (left) Illustration for ℓ when the corresponding vector lies inside the wedge of p_{k-1}. (right) A scenario when ℓ is perpendicular to the bisector.

Lemma 1 The path $P(W)$ lies inside W.
Proof Let $p_{1}(=s), p_{2}, \ldots, p_{k}$ be the path $P(W)$. The first segment $p_{1} p_{2}$ of $P(W)$ is clearly inside W. Assume now that the segments $p_{i-1} p_{i}$, where $2 \leq$ $i \leq k-1$, lie inside W. We now consider the segment $p_{k-1} p_{k}$.

If p_{k-1} is an original vertex, then by construction, $p_{k-1} p_{k}$ is a segment inside the wedge of p_{k-1}, and hence it is inside W. We now consider the case when $p_{k-2} p_{k-1}$ is stopped by a segment ℓ.

If the vector of ℓ is inside the wedge of p_{k-1}, then we route $P(W)$ along $p_{k-1} p_{k}$ such that it is monotone with respect to the bisector (Figure 6 (left)). Consequently, $p_{k-1} p_{k}$ lies inside W.

If the vector of ℓ is outside of the wedge of p_{k-1}, then ℓ must be perpendicular to the bisector of the wedge of p_{k-1} (Figure 6 (right)). Here we route $P(W)$ towards the source r of ℓ. The smallest angle that $p_{k-2} p_{k-1}$ can make with the sides of the wedge of p_{k-2} is $\theta / 2$. Since $r p_{k-1}$ is shorter than $p_{k-2} p_{k-1}$, the segment $p_{k-1} p_{k}$ must lie inside the wedge of p_{k-2} and hence also inside W.

We are now ready to describe the construction of a path between a pair of vertices s and t. We first define wedges $W_{1}, W_{2}, \ldots, W_{r}$ around s (Figure 7), where W_{1} coincides with W and the subsequent wedges are obtained by rotating W counter clockwise by an angle of θ. Let $P\left(W_{1}\right), P\left(W_{2}\right) \ldots P\left(W_{r}\right)$ be the corresponding angle monotone paths of width $(\pi-\theta)$. Without loss of generality assume that t is at the rightward cone C of s, i.e., C contains the positive x-axis (Figure 8). Let $P\left(W_{j}\right)$ and $P\left(W_{j+1}\right)$ be a pair of angle monotone paths, where $1 \leq j \leq r$ and $W_{r+1}=W_{1}$. Note that both of these paths end at the bounding box R of the point set. Let $S_{j, j+1}$ be the region bounded by $P\left(W_{j}\right), P\left(W_{j+1}\right)$ and R. Note that the paths $P\left(W_{j}\right)$ and $P\left(W_{j+1}\right)$ may intersect multiple times. We now consider two cases depending on whether there exists some i, where $1 \leq i \leq r$, such that t lies in $S_{i, i+1}$.

Fig. 7 Illustration for the wedges.

Case 1 (There exists a region $S_{i, i+1}$ that contains t): Since the wedges W_{i} and W_{i+1} are consecutive, the right side of W_{i} and the left side of W_{i+1} lie on the same line. Let W_{t} be the wedge of angle $(\pi-\theta)$ at t that intersects the right side of W_{i} at a point b and the left side of W_{i+1} at a point a where $\angle t a b=\angle t b a=\theta / 2$. Figure 8 (left) illustrates an example where W_{i} and W_{i+1} are shown in blue and green, respectively. Figure 8 (right) illustrates W_{t} in gray.

Since t belongs to $S_{i, i+1}$, it suffices to consider the following two scenarios to construct a path between s and t.

Case 1.1: The path $P\left(W_{t}\right)$ intersects either $P\left(W_{i}\right)$ or $P\left(W_{i+1}\right)$ at some point q inside the triangle $\Delta t a b$. We now use the path $P^{\prime}=(s, \ldots, q, \ldots, t)$ to compute an upper bound on the spanning ratio. Here the length of s, \ldots, q is at most the length of an angle monotone path of width $(\pi-\theta)$ from s to q, plus the distances travelled along the segments that are perpendicular to the bisector of the wedges. Thus the total length is bounded by twice the length of an angle monotone path of width $(\pi-\theta)$ from s to q. Since the length of an angle-monotone path of width γ between two points a, b is at most $\frac{d_{E}(a, b)}{\cos (\gamma / 2)}$ [4], the length of s, \ldots, q is at most $\frac{2 d_{E}(s, q)}{\cos (\pi / 2-\theta / 2)}$. Since $\Delta t a b$ is an isosceles triangle, $d_{E}(s, q) \leq d_{E}(a, b) \leq \frac{2 h}{\tan (\theta / 2)}$, where h is the perpendicular distance from t to $a b$. Since $h \leq d_{E}(s, t)$, we have $\frac{2 d_{E}(s, q)}{\cos (\pi / 2-\theta / 2)} \leq \frac{4 d_{E}(s, t)}{\tan (\theta / 2) \cos (\pi / 2-\theta / 2)}$. Hence, if k (equivalently, θ) is fixed, the length of s, \ldots, q can be expressed as $\delta d_{E}(s, t)$, where δ is a constant. Using a similar analysis for $P\left(W_{t}\right)$ one can show the length of q, \ldots, t to be bounded by $\delta^{\prime} d_{E}(s, t)$, where δ^{\prime} is a constant. Consequently, the length of the path P^{\prime} is at most $\left(\delta+\delta^{\prime}\right) d_{E}(s, t)$.

Fig. 8 Illustration for Case 1. (left) The wedges W_{i} and W_{i+1}. (right) The construction of an s to t path.

Case 1.2: The path $P\left(W_{t}\right)$ intersects the bounding box R at point p inside triangle $\Delta t a b$. Since p is also inside $S_{i, i+1}$, there exists an orthogonal segment $p q$ inside $\Delta t a b$ that intersects either $P\left(W_{i}\right)$ or $P\left(W_{i+1}\right)$ at point q. We now can use the path $P^{\prime}=(s, \ldots, p, q, \ldots, t)$ to compute an upper bound on the spanning ratio. Since $\theta \leq \pi / 2$ the largest segment in $\Delta t a b$ is $a b$, which is of length at most $\frac{2 d_{E}(s, t)}{\tan (\theta / 2)}$. Therefore, using an analysis similar to Case 1.1, we can express the length of P^{\prime} as $\delta^{\prime \prime} d_{E}(s, t)$, where $\delta^{\prime \prime}$ is a constant.

Case 2 (There does not exist any region $S_{i, i+1}$ that contains t): In this case, for every wedge W_{i} containing t, the vertex t lies on the same side of $P\left(W_{i}\right)$. Recall that t is in the rightward cone C of s which contains the positive x-axis. Therefore, either W_{1} or $W_{r / 2+2}$ contains t. Without loss of generality assume the wedge $W^{\prime}=W_{1}$ contains t. We now consider two scenarios depending on whether t lies above or below the path $P\left(W^{\prime}\right)$.

Fig. 9 Illustration for Case 2. (top) The construction of an s to t path. (bottom) Illustration for the wedges $W_{r / 2+2}$ and $W_{r / 2+3}$.

Case 2.1: If t lies above the path $P\left(W^{\prime}\right)$, then consider a downward wedge $W^{\prime \prime}$ with apex at t of angle $(\pi-\theta)$ such that the bisector of $W^{\prime \prime}$ is perpendicular to the x-axis. Let a and b be the point of intersections of W^{\prime} with the x-axis where a is to the left of b. Figure 9 (top) illustrates such a scenario.

First consider the case when $P\left(W^{\prime}\right)$ intersects $P\left(W^{\prime \prime}\right)$ at a point q. Since $\theta \leq \pi / 2$, we have $d_{E}(s, q) \leq d_{E}(s, b) \leq 2|s t|_{x} \leq 2 d_{E}(s, t)$. Similarly, $d_{E}(t, q) \leq$
$d_{E}(t, a) \leq d_{E}(s, t)$. We now can use the analysis of Case 1.1 to first bound the length of the paths s, \ldots, q and q, \ldots, t, and then show that the total length is at most a constant times $d_{E}(s, t)$. The case where $P\left(W^{\prime}\right)$ intersects the bounding box R inside $\Delta t a b$ can be handled in the same way as in Case 1.2.

Case 2.2: If t lies below the path $P\left(W^{\prime}\right)$, then we can find two successive cones W_{i} and W_{i+1} such that $P\left(W_{i}\right)$ and $P\left(W_{i+1}\right)$ enclose t, as follows.

Recall our assumption in Case 2 that for every wedge W_{i} containing t, the vertex t lies on the same side of $P\left(W_{i}\right)$. Since t lies below the path $P\left(W^{\prime}\right)$, it must also lie below the path $P\left(W_{r / 2+3}\right)$ (Figure 9 (bottom)). However, since t lies in $W_{1}=W^{\prime}$, the adjacent wedge $W_{r / 2+2}$ does not contain t and thus t would lie above $P\left(W_{r / 2+2}\right)$. Hence we can find a region $S_{r / 2+3, r / 2+2}$ that contains t, which contradicts the assumption of Case 2.

The following theorem summarizes the result of this section.
Theorem 2 For every fixed k, an emanation graph of grade k is a constant spanner, where the constant factor depends on the value of k.

Note that Theorem 2 is only of theoretical interest as the constant factor we obtain are very large.

2.3 Lower Bound

The following theorem proves a lower bound on the spanning ratio of the emanation graphs.

Fig. 10 Illustration for lower bound proof.

Theorem 3 There exists an emanation graph of grade 1 with spanning ratio arbitrarily close to $\sqrt{10}$. For every $k \geq 2$, there exists an emanation graph of grade k with spanning ratio arbitrarily close to $\sqrt{2}$.

Proof We refer the reader to Figures 10 (left)-(right), which depict the cases $k=1$ and $k=2$, respectively.

Case $1(k=1)$: We construct a set $\left\{p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right\}$ of $2 n$ points as follows. The two points $p_{1}(=s)$ and $q_{n}(=t)$, which will achieve the lower bound, are lying at $(0,0)$ and $(h, h / 3)$, where h is a positive integer. Imagine two parallel guiding lines with slope -1 through s and t, as shown in dashed lines. One of the two guiding lines goes through s and through t. As shown in the figure, the top-left corner of the bounding box R is determined by the intersection of the vertical line through s and the guiding line that starts at t. The bottom-right corner of R is determined by the intersection of the vertical line through t and the guiding line that starts at s. We now place the points equidistantly on the two guiding lines such that each guiding line contains n points; see Figure 10 (left). From this, $|s t|_{x}=h,|s t|_{y}=h / 3$, and $\left|s q_{1}\right|_{y}=4 h / 3$.

It is straightforward to observe from the structure of the emanation graph that a shortest path must be x-monotone. Let P be a simple x-monotone path between s and t. For every index i from 1 to n, let ℓ_{i} be the line passing through p_{i} and q_{i}. Since s and t are on different guiding lines, P must switch from one guiding line to the other using one of these vertical lines $\ell_{1}, \ldots, \ell_{n}$.

Assume that P starts at s, travels towards p_{k}, for some k with $1 \leq k \leq n$, and then switches the guiding line, as highlighted in red. Then the length of the path is

$$
\begin{aligned}
& 2\left|p_{1} p_{k}\right|_{x}-\left|p_{k-1} p_{k}\right|_{y}+\left(\left|p_{k} q_{k}\right|_{y}-\left|p_{k-1} p_{k}\right|_{y}-\left|q_{k} q_{k+1}\right|_{y}\right)+2\left|q_{k} q_{n}\right|_{x}-\left|q_{k} q_{k+1}\right|_{y} \\
& =2\left|p_{1} p_{k}\right|_{x}-\varepsilon+\left|s q_{1}\right|_{y}-2 \varepsilon+2\left|q_{k} q_{n}\right|_{x}-\varepsilon \\
& =2\left|p_{1} p_{k}\right|_{x}+4 h / 3+2\left|p_{k} p_{n}\right|_{x}-4 \varepsilon \\
& =2|s t|_{x}+4 h / 3-4 \varepsilon \\
& =2 h+4 h / 3-4 \varepsilon \\
& =10 h / 3-4 \varepsilon .
\end{aligned}
$$

Here $\varepsilon=\left|p_{1} p_{2}\right|_{x}$ becomes arbitrarily small as n approaches infinity.
Hence for sufficiently large n, the spanning ratio is at least $\frac{(10 h / 3)-4 \varepsilon}{\sqrt{h^{2}+(h / 3)^{2}}}=$ $\frac{(10 h / 3)-4 \varepsilon}{\sqrt{10} h / 3} \approx \sqrt{10}$.

Case $2(k \geq 2)$: We place four points s, p, t and q at the corners of a square in a clockwise order; let S denote the square made by points s, p, t and q. By definition of emanation graphs, q has exactly $\left(2^{k+1}-4\right) / 4=2^{k-1}-1$ rays strictly between its upward and rightward rays. Since this is an odd number of rays, the ray in the median position will hit p.

We then move p and q towards each other along the diagonal each by a small positive constant ε and then perturb by a small positive constant ε^{\prime} such that they do not remain along the diagonal. Figures 10 (right) illustrates such a scenario. Assuming $\varepsilon^{\prime}<\varepsilon / \sqrt{2}$, the points p and q lie in the square S, and therefore, the rays of s are blocked by the rays of p and q. Similarly, the rays of t are blocked by the rays of p and q. Consequently, the shortest path between s and t must visit either p or q, which results in a spanning ratio of $\sqrt{2}$.

3 Simplification for Emanation Graphs of Grade Two

An emanation graph of grade 2 has twice the number of edges than its grade 1 counterpart, i.e., for n points, there are $8 n$ rays and hence at most $8 n$ Steiner points. But most of these edges are redundant. For example, it is common to find two paths of shortest length between a pair of vertices, e.g. p_{1} and p_{3} in Figure 11. Here we propose a simplification technique that attempts to remove such redundancies. We refer to the resulting graph as a Simplified Emanation Graph (SEG) of grade 2.

Fig. 11 (left) An emanation graph of grade 2 and (right) its simplified version.

3.1 Overview of the construction of SEG for $k=2$

Let G be an emanation graph on n points with at most $8 n$ Steiner points where β of them are on the bounding box. The idea of constructing a simplified emanation graph is to iterate over the points and connect each point p to at most 8 other points using exactly one Steiner point per connection. The points we connect p to are guaranteed to be the neighbours of p in the original emanation graph. However, if we connect p to a point q in the SEG, then both of their rays stop at the Steiner point (whereas in original emanation graph the shorter ray would continue). Since a Steiner point blocks a pair of rays, the number of Steiner points in SEG decreases to $(8 n-\beta) / 2+\beta=4 n+\beta / 2$.

Fix some point p, and assume that $k=2$. The idea of choosing at most 8 points for p is as follows. Consider $2^{k+1}=8$ bisectors around p, where each bisector bisects an angle defined by two consecutive rays originated at p. For each cone C determined by two consecutive bisectors, we find a point p_{k} in C such that a ray r of p_{k} must touch a ray r^{\prime} of p irrespective of the position of the other points in C. We call p_{k} the key vertex in cone C but do not create the connection between p and p_{k} immediately. The reason is that a point outside of C may interfere and block r or r^{\prime}. We first select a set of candidate vertices based on some simple distance measure from p, who have the potential to block the connection between p and p_{k}. We then check whether any of these candidate vertices can block the connection between p and p_{k}. If not, then we
make the connection between p and p_{k} by creating a single Steiner point. If we can connect p and p_{k} in this process then we refer to p_{k} as a correct neighbour of p.

3.2 Detailed Construction

Fix a point p. While describing the search for a correct neighbor of p with respect to a fixed cone C, we rotate the plane such that the cone C appears to be vertically upward. For the ease of explanation, the rightward ray of a vertex is labeled r_{1} and its other rays are numbered counter-clockwise (see Figure 12). We denote the emanated rays by $r_{1}, r_{2}, r_{3}, \ldots$ and their angular bisectors by $b_{1}, b_{2}, b_{3}, b_{4}$, respectively. We use the notation $C_{b_{i} b_{j}}$ to refer to the cone shaped region bounded by b_{i} and b_{j}, and denote by l_{g} a sweep line orthogonal to the bisector g, starting from p.

During the computation of the neighbours of p, we will refer to two important vertex types: key vertex $\left(p_{k}\right)$ and candidate vertex $\left(p_{c}\right)$; we will add an edge between p and p_{k} if there is no interference by candidate vertices p_{c}.

Key vertex of p : We define the key vertex p_{k} to be the first vertex found sweeping up p 's top cones $C_{b_{2} r_{3}}$ and $C_{r_{3} b_{3}}$. Figure 12 (left) illustrates a scenario, where two sweep lines $l_{b_{2}}$ and $l_{b_{3}}$, orthogonal to b_{2} and b_{3}, respectively, are used simultaneously to sweep $C_{b_{2} r_{3}}$ and $C_{r_{3} b_{3}}$. Note that a single horizontal sweep line may not hit the correct neighbor p_{k} to be connected to p, e.g. the first point q hit by the horizontal sweep line may be a vertex near p_{k} in the same cone and one of the downward rays of p_{k} may block the connection between q and p (contradicting that q is the correct neighbor). Figure 12 (right) illustrates an example for such cases.

Fig. 12 (left) Illustration for the selection of p_{k}. Both sweep lines start at the same time from p and stop as soon as one finds a vertex p_{k}. (right) An example, where a successful connection between p and p_{k} has been made, but a horizontal sweep cannot find p_{k}.

Candidate vertex of p : We now consider vertices that may potentially block the connection between p and p_{k}. We will impose some constraints to speed up the search. We use sweep lines with angles specific to each cone C to find such candidate vertex p_{c} of C. Figure 13 illustrates the sweep lines for each cone. The angle of the sweep line is chosen in a way so that the first vertex hit by the sweep line wins the competition, of reaching p 's connection to p_{k}, among all the points in C. Thus the first vertex hit by the sweep line of
a cone is called the candidate vertex p_{c} of that cone. The candidate vertices found by the sweep lines may block a ray of p_{k} (see Figure 13 (left)) or the upward ray of p (see Figure 13 (right)).

Fig. 13 Sweep lines used to select p_{c} in each cone around p, drawn in yellow color. A sweep line starts from p and stops upon finding a vertex. The dotted circles centered at the intersection point of the rays of p_{k} and p_{c} illustrate that p_{c} is closer to the point of intersection than p_{k}.

We now show that to block the downward ray of p_{k} towards p or to block the upward ray of p, a candidate point must lie in the wedge determined by the bisectors b_{1} and b_{4}. Thus there can only be four candidate vertices, one in each of the four cones $C_{b_{1} r_{2}}, C_{r_{2} b_{2}}, C_{b_{3} r_{4}}$, and $C_{r_{4} b_{4}}$.

Without loss of generality let q be a point on r_{4}. Without any interference, the rightward ray of q and the upward ray of p would have the same length when they meet (e.g., see Figure 14 (left)). Similarly, let q^{\prime} be a point on b_{4}. The ray with slope +1 (north-eastern) at q^{\prime} and the upward ray of p will have the same length, i.e., if o is the point of intersection, then $\angle o p q^{\prime}\left(=67.5^{\circ}\right)=$ $\angle o q^{\prime} p\left(=180^{\circ}-45^{\circ}-67.5^{\circ}\right)$. Hence to block the upward ray of p, a point must lie in the wedge determined by the bisectors b_{1} and b_{4}.

Fig. 14 Illustration for the location to be searched for candidate points.

Consider now the rightward ray of q^{\prime} and the downward ray (south-eastern) of p_{k} with slope -1 (e.g., see Figure 14 (middle)). Let o be the point of intersection. Then $\angle o q^{\prime} p_{k}=135^{\circ}-\angle o p_{k} q^{\prime}$. Since $\angle o p_{k} q^{\prime}>90^{\circ}$, the rightward ray of q^{\prime} must be larger than the ray of p_{k}. Finally, consider the upward ray (north-eastern) of q^{\prime} with slope +1 and the downward ray of p_{k} with slope -1 (e.g., see Figure 14 (right)). Let o be the point of intersection. If the ray $q^{\prime} o$ blocks the ray of p_{k}, then $p_{k} o$ must be of at least the same length as $q^{\prime} o$. The length of $p_{k} o$ is maximized when o is on the upward ray of r, where the length of $p_{k} o$ becomes equal to the length of $q^{\prime} o$. Hence to block the downward ray of p_{k}, a point must lie in the upward wedge determined by the bisectors b_{1} and b_{4}.

Depending on the geometric properties of every vertex p_{c} in a cone of p, some ray of p_{c} is the most competent (Figure 15), meaning that it has the chance to block the connection between p and p_{k}. For example, for vertex $p_{c} \in C_{b_{4} r_{4}}$, the north-eastern ray r_{2} may interfere with p_{k}, thus to find the most competent vertex inside $C_{b_{4} r_{4}}$ we use a vertical sweep line $l_{r_{5}}$ starting from p. Any point r, to the left of the sweep line $l_{r_{5}}$ through p_{c} inside $C_{b_{4} r_{4}}$ must have a longer ray to reach the ray of p_{k}, so it cannot block the ray of p_{k}.

Fig. 15 Illustration for sweep lines. The dotted circle centered at the intersection point of the rays of p_{k} and p_{c} illustrates that p_{c} is closer to the point of intersection than p_{k}.

After finding our candidate p_{c} vertices, we check for some more special conditions in order to know whether they can block the connection between p_{k} and p. These conditions are thoroughly explained later. After the check, if a ray of p can be connected to a ray of p_{k} through one Steiner point, then we first check whether they already have a common Steiner point neighbor. If not, we add a new Steiner point at the intersection of their rays, otherwise, we use the existing Steiner point.

Assuming p_{c} lies on the right side of r_{3}, there are four cases we need to distinguish to determine whether p_{c} interferes with the connection between p_{k} and p :

- Case 1: $p_{k} \in C_{b_{2} r_{3}}$ and $p_{c} \in C_{b_{1} r_{2}}$; see Figure 16 .
- Case 2: $p_{k} \in C_{b_{2} r_{3}}$ and $p_{c} \in C_{r_{2} b_{2}}$; see Figure 17 .
- Case 3: $p_{k} \in C_{r_{3} b_{3}}$ and $p_{c} \in C_{b_{1} r_{2}}$; see Figure 18 .
- Case 4: $p_{k} \in C_{r_{3} b_{3}}$ and $p_{c} \in C_{r_{2} b_{2}}$; see Figure 19 .

Fig. 16 Case 1: Left and middle depict two different cases where p_{c} has interfered, right shows a successful connection between p_{k} and p.

Fig. 17 Case 2: Left depicts p_{c} has interfered, right shows a connection between p_{k} and p.

Fig. 18 Case 3: Left depicts p_{c} has interfered, right shows a connection between p_{k} and p.

Fig. 19 Case 4: Left depicts p_{c} has interfered, right shows a connection between p_{k} and p.

Figures $16 \sqrt{19}$ illustrate examples for each case, where the rightmost section in each figure depicts the case when p_{k} can successfully connect to p. Let $|p|_{x}$ (resp. $|p|_{y}$) be the x (resp. y)-coordinate of the point p.

Let r_{4}^{\prime} be the continued refraction of r_{4} of p_{c} after hitting r_{3} of p. In Case 1 , if $\left|p_{k}\right|_{x}<\left|p_{c}\right|_{x}$ and p_{k} is below r_{4}^{\prime}, the south-western ray of p_{k} reaches to r_{3} sooner than the north-western ray of p_{c}. Therefore, p_{c} cannot interfere with the connection between p_{k} and p; see Figure 16 (right). In this case, p_{c} could block the south-western ray of p_{k} (as shown in Figure 16 (left)) or the upward ray of p (as shown in Figure 16 (middle)).

In Case 2, if p_{k} is swept before p_{c} by the sweep line $l_{b_{1}}$, the south-western ray of p_{k} reaches to r_{3} sooner than the western ray of p_{c}. This implies that p_{k} should connect to p; see Figure 17 .

In Case 3 , if p_{k} is swept before p_{c} by a sweep line $l_{r_{2}}$, the south-eastern ray of p_{k} blocks r_{3} before the north-western ray of p_{c} reaches there, so p_{c} cannot interfere with the connection between p_{k} and p; see Figure 18 .

In Case 4, if $\left|p_{k} p_{c}\right|_{y}<\left|p_{k} p\right|_{x}$, the south-eastern ray of p_{k} blocks r_{3} before the western ray of p_{c} reaches there; therefore, p_{k} connects to p; see Figure 19 .

Explaining the cases where p_{c} is on the left side of r_{3} is straightforward, as every condition needs to be vertically mirrored, relative to p.

Figure 20 demonstrates all the 8 steps (with rotations) described above using the point set used in Figure 11. After stacking blue segments after rotating them back to their starting direction results into the simplified version of the emanation graph.

Fig. 20 Construction steps of an example SEG, each figure represents one of 8 required rotations. Blue segments are rotated back and accumulated to form the final graph, depicted in the right section of Figure 11

4 The Construction Algorithm

In the following section we discuss a few properties of SEG.
Lemma $2 A S E G$ on a set of n points can be constructed in time $O(n$. polylog($n)$).

Proof For each point p, there exist a constant number of cones, and for each cone we need to find a candidate point with the smallest coordinate along some axis. This can easily be done by using a constant number of 2-dimensional range trees each is corresponding to a cone, which can be constructed in time
$O(n \cdot \operatorname{polylog}(n))$ (Theorem 5.9 in [3). At each internal node v^{\prime} of the secondlevel trees $\mathcal{T}_{\text {assoc }}(v)$, we store the point with the smallest coordinate along the axis among the points in $P\left(v^{\prime}\right)$, where v is an internal node of the first-level tree \mathcal{T} and $P\left(v^{\prime}\right)$ is the set of points stored at the leaves of the sub-tree rooted at v^{\prime}. To find the point with the smallest coordinate along the axis of some cone, we can easily query the corresponding range tree in time $O(\operatorname{polylog}(n))$.

After finding the candidates p_{c} in the cones of each point p, we do a constant number of comparisons with p_{k} in order to check whether p_{c} has interfered the connection between p and p_{k}. Therefore, the total construction time is $O(n \cdot \operatorname{polylog}(n))$.

Forming an emanation graph of grade $k=2$ involves shooting 2^{k+1} rays from each vertex simultaneously. This results into a maximum degree of 8 and $8 n$ rays in any graph and $8 n$ maximum number of Steiner points. Any pair of selected vertices $\left(p, p_{k}\right)$ in an emanation graph, falls in one of four categories:

1. They are not connected to each other through a single Steiner point, because other vertices have completely interfered their connection; see (p_{1}, p_{4}) in Figure 11.
2. They are connected by two mirrored paths of two edges; see $\left(p_{1}, p_{5}\right)$ in Figure 11
3. They are connected by a path of two edges, and another path of longer length. The second path is formed due to interference of a ray from p_{c} (i.e., $\left.p_{1}\right)$, thus involving an edge belonging to p_{c}; see $\left(p_{3}, p_{5}\right)$ in Figure 11
4. They are connected by a path of two edges, but neither Category 2 nor Category 3 are satisfied; see (p, t) in Figure 3 (right).

A simplified emanation graph will reduce paths of categories 2 and 3 , and thus will reduce Steiner points. Between path pairs of category 2, one is picked arbitrarily and another is omitted. Also for paths of category 3 , the one with shorter length remains as the one with longer length is removed. Therefore, it is straightforward to construct examples where the number of Steiner points in a SEG are significantly smaller than the emanation graph (e.g., points on a line with angle of inclination 50°).

Lemma 3 An emanation graph of grade k contains $k n$ Steiner points and there exist point sets where an emanation graph must generate $k n-O(k)$ Steiner points. Let G be an emanation graph of grade 2 on a set P of n points. Then G contains at most $8 n$ Steiner points. Assume that β of the Steiner points are on the bounding box. Then a SEG on P will contain at most $4 n+\beta / 2$ Steiner points.

Proof Since an emanation graph of grade k contains $k n$ rays and each generates at most one Steiner point, the total number of Steiner points is at most $k n$. To observe that there exist point sets that generate $k n-O(k)$ Steiner points, first place 4 points along the four corners of a square R and 4 at the midpoint of its edges. We then place $n-8$ points at its center. We perturb the points
at the center to avoid overlap. We thus get $k(n-8)$ rays creating $k n-O(k)$ Steiner points inside R.

The upper bound on the Steiner points of SEG follows from the observation that every Steiner point that does not lie on the bounding box is the result of two rays hitting each other when both of them stop.

5 Experimental Comparison

In this section we compare SEG with graphs generated with Delaunay triangulation: constrained 43 and normal. A normal Delaunay triangulation on a given set of points in general position is defined using the empty circle condition, i.e., three points form a triangle if and only if the interior of the circumcircle does not enclose any point of the pointset. The constrained Delaunay triangulation [43] is generated by setting a minimum angle constraint, where Steiner points are added to guarantee all angles to be above the specified constraint.

Fig. 21 A SEG based on our chosen sample of size 100 (top-left). The normal Delaunay triangulation (top-right), 22.5° constrained Delaunay triangulation (bottom-left) and 33° constrained Delaunay triangulation (bottom-right), all on the same vertex set.

We generated three datasets (Rand1, Rand2 and Rand3) using NetworkX 33, each containing 1000 random Newman_ Watts_Strogatz small world graphs. All the graphs in a data set contain the same number of nodes. Thus the three

Fig. 22 (left) A SEG of grade 2 on a sample of size 1000. (right) The corresponding 33° constrained Delaunay triangulation.
data sets contain graphs of size 100,500 , and 1000 . We generated the layout for all these graphs using the fast multi-pole multilevel (FMMM) layout [32]. Aside from experimenting on randomly generated data [34, we also tried SEG on two commonly used data sets: Locations of 1000 Most Populated Cities and US Airports [1].

Figure 21 demonstrates our output on one of the sample data set of size 100, for a SEG of grade 2 along with normal, 22.5° and 33° constrained Delaunay triangulations, which are the exact configurations we used for this comparison. Figure 22 depicts SEG of grade 2 and the corresponding constrained Delaunay triangulations for a sample of size 1000 .

Although one would like to have angular constraints higher than 33° and close to what emanation graph gives, the algorithm for constrained Delaunay triangulation does not guarantee termination for larger angular resolutions. We used Triangle [44] to compute the Delaunay triangulations.

The metrics we chose to compare our samples are Steiner Point Count, Vertex Degree, Edge Count, Edge Length, Angle and Spanning Ratio. Results are depicted in Table 1. separated by different configurations and the number of vertices. For the first three datasets (Rand1, Rand2 and Rand3), every row of the table shows the mean performance over all 1000 instances of the graphs. The reason that we report the averages is because the average is a better representative when examining the properties for a graph family (i.e., small world graphs) than the outcomes for individual instances. In comparison with 33° constrained Delaunay triangulation, SEG shows:

- Much better angular resolution (45° compared to 33°)
- Less than half the number of edges
- Less than half the total edge length
- Less than half the average vertex degree
- Slightly worse spanning ratio (within a factor of 1.18 when $n=100$ and $n=500$; and the comparable when $n=1000$)

Configuration	$\begin{aligned} & \text { H } \\ & \vdots \\ & 0 \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & H \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \\ & 0.1 \end{aligned}$				$\begin{aligned} & \stackrel{0}{60} \\ & \frac{1}{4} \\ & \# \\ & \sum \end{aligned}$	
SEG	100	Rand1	197.25	6.20	2.55	404.54	80.33	19.36	7319.71	45.00	1.88
DEL C=0	100	Rand1	0	9.55	5.66	283.29	304.15	50.50	14301.99	0.57	1.37
DEL C=22.5	100	Rand1	87.73	9.05	5.40	506.70	89.49	29.34	14803.31	22.68	1.44
DEL C=33	100	Rand1	315.60	8.18	5.56	1156.10	56.95	18.75	21392.89	33.07	1.59
SEG	500	Rand2	1085.44	6.85	2.63	2262.01	69.35	12.58	28451.72	45.00	2.07
DEL C=0	500	Rand2	0	10.31	5.91	1478.01	317.07	28.97	42820.80	0.27	1.39
DEL C=22.5	500	Rand2	253.14	9.48	5.75	2165.57	76.87	21.06	45576.34	22.55	1.60
DEL C=33	500	Rand2	1017.13	8.69	5.79	4398.15	47.44	14.35	62963.46	33.02	1.84
SEG	1000	Rand3	2177.86	7.01	2.66	4601.47	58.10	9.52	43864.43	45.00	2.16
DEL C=0	1000	Rand3	0	10.72	5.95	2974.35	284.05	21.16	62933.44	0.20	1.40
DEL C=22.5	1000	Rand3	472.20	9.75	5.83	4296.57	64.75	15.91	68346.21	22.53	1.96
DEL C=33	1000	Rand3	1933.36	8.90	5.86	8601.86	39.35	10.95	94099.05	33.01	2.16
SEG	235	AIR	485	7	2.69	970	61.17	9.95	9651.47	45.00	1.96
DEL C=0	235	AIR	0	11	5.89	692	291.34	26.64	18432.64	0.06	1.39
DEL C=22.5	235	AIR	221	9	5.57	1270	66.82	15.50	19682.53	22.53	1.48
DEL C=33	235	AIR	729	8	5.66	2727	56.96	10.15	27691.84	33	1.73
SEG	1000	CIT	1913	6	2.59	4102	394.56	18.14	74447.77	45.00	2.35
DEL C=0	1000	CIT	0	12	5.95	2975	2024.00	50.93	151541.50	0.09	1.41
DEL C=22.5	1000	CIT	1358	10	6.28	7414	373.59	27.64	192302.55	22.55	1.49
DEL C=33	1000	CIT	4676	9	6.03	17139	166.38	18.34	308560.57	33.00	1.60

Table 1 Results of our comparisons on 3 random and two real data sets. CIT marks the results related to World's most populated cities data set while $S E G$ stands for Simplified Emanation Graph of grade $k=2$ and DEL C $=\alpha$ is a α° constrained Delaunay Triangulation.

- Comparable number of Steiner points (less than half the number of Steiner points for $n=100$; but slightly worse for $n=1000$)

The reason that SEG provides better angular resolution than that of 33° constrained Delaunay triangulation is inherent to its construction, where the slopes of the edges are in $\{0, \pm 1, \pm \infty\}$. The number of edges of SEG is smaller because it has only two edges adjacent to each Steiner point whereas much more is often needed in a 33° constrained Delaunay triangulation. Together with the fact that SEG does not consider filling the empty spaces around Steiner points, this significantly reduces the total edge length and average vertex degree. The spanning ratio of SEG appears to be slightly worse. A potential reason is that every bend on a path at a Steiner point is of at least 45°, whereas in a 33° constrained Delaunay triangulation a path has an opportunity to reduce its bend angles by leveraging the high degree of the Steiner points. The number of Steiner points in SEG appears to be smaller when the number of points is small, but it becomes slightly larger as the number of points increases. A potential reason is that two points can directly be connected in a 33° constrained Delaunay triangulation, whereas in SEG, they must be connected through a Steiner point. Hence for a dense point set, this benefit of a 33° constrained Delaunay triangulation may outweigh SEG.

6 Conclusion

The most obvious open question following our work is to find a tight bound on the spanning ratio for emanation graphs of grade 2. Another interesting research direction is to find a geometric spanner that is better than the emanation graphs of grade one; specifically, a max-degree-4 planar geometric spanners with at most $4 n$ Steiner points and a spanning ratio better than $\sqrt{10}$. It would be interesting to examine whether known bounded degree spanners [8] without Steiner points could be modified to construct such a spanner. It would also be interesting to examine whether emanation graphs admit local routing with small routing ratio.

A natural extension of our work is to implement simplified emanation graphs in visualization systems such as GraphMaps 41 to compare the visual results with those generated by the Delaunay and constrained Delaunay triangulations. Although simplified emanation graphs appear to be promising in our experimental analysis, we do not know whether they admit a bounded spanning ratio. Therefore, it would be interesting to further explore the spanning properties of these graphs.

Acknowledgements The research D. Mondal is supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). We thank anonymous reviewers for their helpful suggestions and feedback to improve the presentation of the paper.

References

1. Gephi sample data sets: US airlines. https://github.com/gephi/gephi/wiki/Datasets 2019. Online; accessed 6 June 2019.
2. S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M. Smid, and C. D. Zaroliagis. Planar spanners and approximate shortest path queries among obstacles in the plane. In Proceedings of the 4th Annual European Symposium on Algorithms (ESA), pages 514-528, 1996.
3. M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition, 2008.
4. N. Bonichon, P. Bose, P. Carmi, I. Kostitsyna, A. Lubiw, and S. Verdonschot. Gabriel triangulations and angle-monotone graphs: Local routing and recognition. In Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD), pages 519-531, 2016.
5. N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas. Connections between thetagraphs, Delaunay triangulations, and orthogonal surfaces. In D. M. Thilikos, editor, Proceedings of the 36th International Workshop Graph Theoretic Concepts in Computer Science ($W G$), volume 6410 of LNCS, pages 266-278, 2010.
6. N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic. Plane spanners of maximum degree six. In Proceedings of the 37th International Colloquium, on Automata, Languages and Programming (ICALP), pages 19-30, 2010.
7. N. Bonichon, C. Gavoille, N. Hanusse, and L. Perkovic. Tight stretch factors for L_{1} - and L_{∞}-Delaunay triangulations. Computational Geometry, 48(3):237-250, 2015.
8. N. Bonichon, I. A. Kanj, L. Perkovic, and G. Xia. There are plane spanners of degree 4 and moderate stretch factor. Discrete \& Computational Geometry, 53(3):514-546, 2015.
9. P. Bose, M. Damian, K. Douïeb, J. O'Rourke, B. Seamone, M. Smid, and S. Wuhrer. $\pi / 2$-Angle Yao Graphs are Spanners. Int. J. Comput. Geom. Appl.. 22(1): 61-82 (2012)
10. N. El Molla. Yao spanners for wireless ad hoc networks. Master's thesis, Villanova University, 2009.
11. L. Barba, P. Bose, J. Carufel, A. Renssen, and S. Verdonschot. On the stretch factor of the Theta-4 graph. Workshop On Algorithms And Data Structures. pp. 109-120, 2013.
12. P. Bose, P. Morin, A. Renssen, and S. Verdonschot. The Θ_{5}-graph is a spanner. Comput. Geom.. 48(2): 108-119, 2015.
13. M. Damian, and K. Raudonis. Yao Graphs Span Theta Graphs. Discret. Math. Algorithms Appl.. 4(2):1250014, 2012.
14. L. Barba, P. Bose, M. Damian, R. Fagerberg, W. Keng, J. O'Rourke, A. Renssen, P. Taslakian, S. Verdonschot, and G. Xia. New and improved spanning ratios for Yao graphs. J. Comput. Geom.. 6(2): 19-53, 2015.
15. P. Bose, D. Hill, and A. Ooms. Improved Bounds on the Spanning Ratio of the Theta5 -Graph. In A. Lubiw and M. Salavatipour, editor, Proceedings of the 17 th Algorithm and Data Structures Symposium (WADS), pages 215-228. Springer International Publishing, 2021.
16. P. Bose, J. D. Carufel, D. Hill, and M. H. M. Smid. On the spanning and routing ratio of theta-four. In T. M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2361-2370. SIAM, 2019.
17. P. Bose, J. D. Carufel, P. Morin, A. van Renssen, and S. Verdonschot. Towards tight bounds on theta-graphs: More is not always better. Theoretical Computer Science, 616:7093, 2016.
18. K. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings of the nineteenth annual ACM symposium on Theory of computing (STOC), pages 56-65 Association for Computing Machinery, 1987.
19. J. M Keil. Approximating the complete Euclidean graph. In Proceedings of the 1 st Scandinavian workshop on algorithm theory (SWAT), pages 208-213 Springer-Verlag, 1988.
20. P. Bose, L. Devroye, M. Löffler, J. Snoeyink, and V. Verma. Almost all Delaunay triangulations have stretch factor greater than pi/2. Computational Geometry, 44(2):121127, 2011.
21. P. Bose, J. Gudmundsson, and M. H. M. Smid. Constructing plane spanners of bounded degree and low weight. Algorithmica, 42(3-4):249-264, 2005.
22. P. Bose, D. Hill, and M. H. M. Smid. Improved spanning ratio for low degree plane spanners. Algorithmica, 80(3):935-976, 2018.
23. P. Bose and M. H. M. Smid. On plane geometric spanners: A survey and open problems. Computational Geometry, 46(7):818-830, 2013.
24. S. Cheng, L. Mencel, and A. Vigneron. A faster algorithm for computing straight skeletons. ACM Transaction on Algorithms, 12(3):44:1-44:21, 2016.
25. P. Chew. There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences, 39(2):205-219, 1989.
26. H. R. Dehkordi, F. Frati, and J. Gudmundsson. Increasing-chord graphs on point sets. Journal of Graph Algorithms and Applications, 19(2):761-778, 2015.
27. D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as good as complete graphs. Discrete \& Computational Geometry, 5:399-407, 1990.
28. A. Dumitrescu and A. Ghosh. Lower bounds on the dilation of plane spanners. International Journal of Computational Geometry \& Applications, 26(2):89-110, 2016.
29. D. Eppstein and J. Erickson. Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete \mathcal{E} Computational Geometry, 22(4):569-592, 1999.
30. D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf. Motorcycle graphs: Canonical quad mesh partitioning. Computer Graphics Forum, 27(5):1477-1486, 2008.
31. P. Bose and A. van Renssen. Spanning Properties of Yao and Θ-Graphs in the Presence of Constraints International Journal of Computational Geometry $\&$ Applications, 29(2):95-120, 2019.
32. S. Hachul and M. Jünger. Large-graph layout with the fast multipole multilevel method. Technical Report. Cologne: University of Cologne, Computer Science Department, 2005.
33. A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using networkx. In Proceedings of the 7th Python in Science Conference (SciPy), 2008.
34. B. Hamedmohseni, D. Mondal, and Z. Rahmati. Simplified emanation graph - implementations and tests. https://github.com/sneyes/SEG/tree/master 2019. Online; accessed 6 June 2019.
35. B. Hamedmohseni, Z. Rahmati, and D. Mondal. Emanation graph: A new t-spanner. In S. Durocher and S. Kamali, editors, Proceedings of the 30th Canadian Conference on Computational Geometry (CCCG), pages 311-317, 2018.
36. B. Hamedmohseni, Z. Rahmati, and D. Mondal. Simplified emanation graphs: A sparse plane spanner with steiner points. In A. Chatzigeorgiou, R. Dondi, H. Herodotou, C. A. Kapoutsis, Y. Manolopoulos, G. A. Papadopoulos, and F. Sikora, editors, Proceedings of the 46th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), volume 12011 of LNCS, pages 607-616. Springer, 2020.
37. I. A. Kanj, L. Perkovic, and D. Türkoglu. Degree four plane spanners: Simpler and better. Journal of Computational Geometry (JoCG), 8(2):3-31, 2017.
38. J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean graph. Discrete \mathcal{E}^{8} Computational Geometry, 7:13-28, 1992.
39. A. Lubiw and D. Mondal. Angle-monotone graphs: Construction and local routing. CoRR, abs/1801.06290, 2018.
40. D. Mondal and L. Nachmanson. A new approach to GraphMaps, a system browsing large graphs as interactive maps. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), pages 108-119, 2018.
41. L. Nachmanson, R. Prutkin, B. Lee, N. H. Riche, A. E. Holroyd, and X. Chen. GraphMaps: Browsing large graphs as interactive maps. In Proceedings of the 23rd International Symposium on Graph Drawing and Network Visualization (GD), pages 3-15, 2015.
42. S. J. Owen. A survey of unstructured mesh generation technology. In Proceedings of the 7th International Meshing Roundtable (IMR), pages 239-267, 1998.
43. J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In M. C. Lin and D. Manocha, editors, Proceedings of the Applied Computational Geormetry, Towards Geometric Engineering (FCRC), volume 1148 of LNCS, pages 203-222. Springer, 1996.
44. Triangle. A two-dimensional quality mesh generator and Delaunay triangulator. https:
//www.cs.cmu.edu/~quake/triangle.html 2013. Online; accessed 6 June 2019.
45. G. Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on Computing, 42(4):1620-1659, 2013.
46. G. Xia and L. Zhang. Toward the tight bound of the stretch factor of Delaunay triangulations. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry ($C C C G$), pages 175-180, 2011.
47. A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing, 11(4):721-736, 1982.

[^0]: A preliminary version of this work was presented at the 30th Canadian Conference on Computational Geometry (CCCG) 35 and the 46th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM) 36.
 B. Hamedmohseni

 Department of Mathematics and Computer Science, Amirkabir University of Technology
 E-mail: fhamedmohseni@aut.ac.ir
 Z. Rahmati

 Department of Mathematics and Computer Science, Amirkabir University of Technology
 E-mail: zrahmati@aut.ac.ir
 D. Mondal

 Department of Computer Science, University of Saskatchewan, Canada
 E-mail: dmondal@cs.usask.ca

