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Abstract

Let F1 and F2 be two disjoint graphs. The union F1 ∪F2 is a graph with vertex set

V (F1)∪V (F2) and edge set E(F1)∪E(F2), and the join F1+F2 is a graph with vertex

set V (F1) ∪ V (F2) and edge set E(F1) ∪ E(F2) ∪ {xy | x ∈ V (F1) and y ∈ V (F2)}.

In this paper, we present a characterization to (P5,K1 ∪K3)-free graphs, prove that

χ(G) ≤ 2ω(G)−1 if G is (P5,K1∪K3)-free. Based on this result, we further prove that

χ(G) ≤max{2ω(G), 15} if G is a (P5,K1 +(K1 ∪K3))-free graph. We also construct a

(P5,K1 + (K1 ∪K3))-free graph G with χ(G) = 2ω(G).
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1 Introduction

All graphs considered in this paper are finite and simple. Let G be a graph. The vertex

set of a complete subgraph of G is called a clique of G, and the clique number ω(G) of G

is the maximum size of cliques of G. We use Pk and Ck to denote a path and a cycle on k

vertices respectively.

Let G and H be two vertex disjoint graphs. The union G ∪ H is the graph with

V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H). Similarly, the join G+H is the

graph with V (G+H) = V (G)∪V (H) and E(G+H) = E(G)∪E(H)∪{xy|for each pair x ∈

V (G) and y ∈ V (H)}.

For a subset X ⊆ V (G), let G[X] denote the subgraph of G induced by X. A hole of

G is an induced cycle of length at least 4, and a k-hole is a hole of length k. A k-hole is

∗Supported by NSFC No. 11931106 and 12101117, and by NSFJS No. BK20200344
†Email: weidong@njxzc.edu.cn
‡Email: baogxu@njnu.edu.cn, or baogxu@hotmail.com.
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said to be an odd (even) hole if k is odd (even). An antihole is the complement of some

hole. An odd (resp. even) antihole is defined analogously.

We say that G induces H if G has an induced subgraph isomorphic to H, and say that

G is H-free if G does not induce H. Let H be a family of graphs. We say that G is H-free

if G induces no member of H.

A coloring of G is an assignment of colors to the vertices of G such that no two adjacent

vertices receive the same color. The minimum number of colors required to color G is called

the chromatic number of G, and is denoted by χ(G). Obviously we have that χ(G) ≥ ω(G).

However, determining the upper bound of the chromatic number of some family of graphs

G, especially, giving a function of ω(G) to bound χ(G) is generally very difficult. A family

G of graphs is said to be χ-bounded if there is a function f such that χ(G) ≤ f(ω(G))

for every G ∈ G, and if such a function f does exist to G, then f is said to be a binding

function of G [16]. A graph G is said to be perfect if χ(H) = ω(H) for each induced

subgraph H. Thus the binding function for perfect graphs is f(x) = x. The famous Strong

Perfect Graph Theorem [8] states that a graph is perfect if and only if it is (odd hole, odd

antihole)-free. Erdős [13] showed that for any positive integers k and l, there exists a graph

G with χ(G) ≥ k and without cycles of length less than l. This result motivates the study

of the chromatic number of H-free graphs for some H. Gyárfás [16, 17], and Sumner [27]

independently, proposed the following conjecture.

Conjecture 1.1 [17, 27] For every tree T , T -free graphs are χ-bounded.

Interested readers are referred to [20, 23, 25] for more information on Conjecture 1.1

and related problems. Gyárfás [17] proved that χ(G) ≤ (k − 1)ω(G)−1 for k ≥ 4 if G is

Pk-free and ω(G) ≥ 2. Then the upper bound was improved to (k − 2)ω(G)−1 by Gravier

et al. [18]. The problem of determining whether the class of Pt-free graphs (t ≥ 5) admits

a polynomial χ-binding function remains open.

Problem 1.1 [21] Are there polynomial functions fPk
for k ≥ 5 such that χ(G) ≤

fPk
(ω(G)) for every Pk-free graph G?

Since P4-free graphs are perfect, finding an optimal binding function for P5-free graphs

attracts much attention. Esperet et al. [14] proved that χ(G) ≤ 5 × 3ω(G)−3 for P5-free

graphs.

Theorem 1.1 ( [14]) χ(G) ≤ 5 · 3ω(G)−3 for P5-free graphs G with ω(G) ≥ 3.

This bound is sharp for ω(G) = 3. In 2007, Choudum, Karthick and Shalu conjectured

that P5-free graphs have a quadratic binding function.

Conjecture 1.2 [7] There is a constant c such that χ(G) ≤ cω2(G) if G is P5-free.
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Conjecture 1.2 has been verified for many classes of P5-free graphs, and tight linear

binding functions are obtained for some (P5,H)-free graphs with |V (H)| ≤ 5, see [3–7, 9–

12, 15, 19, 21]. Very recently, Scott, Seymour and Spirkl [26] provided a near polynomial

binding function for P5-free graphs stating that χ(G) ≤ ω(G)log2ω(G) if G is P5-free.

Let F and H be two graphs. We say that F is a blow up of H if F can be obtained

from H by replacing each vertex with an independent set and then replacing each edge

with a complete bipartite graph. A 5-ring is a blow up of a 5-hole. In [27] (see also [14]),

Sumner characterized the structure of (P5,K3)-free graphs.

Theorem 1.2 ( [27]) A connected (P5,K3)-free graph is either bipartite or a 5-ring.

By Theorems 1.1 and 1.2, we have that each (P5,K4)-free graph is 5-colorable. The

graphK1+(K1∪K3) can be obtained from K4 by adding a new vertex joining to one vertex

of theK4. So, K4-free graphs must be (K1+(K1∪K3))-free. Motivated by Theorem 1.1, we

study the chromatic number of (K1 + (K1 ∪K3))-free graphs. Among other results on the

chromatic number of P5-free graphs, we proved in [11] that if G is (P5,K1+(K1∪K3))-free

then χ(G) ≤ 3ω(G)+11. In this paper, we present a characterization to (P5,K1∪K3)-free

graphs, and prove that each (P5,K1 ∪K3)-free graph is (2ω(G) − 1)-colorable. Based on

this, we get a tight upper bound for the chromatic number of (P5,K1 + (K1 ∪ K3))-free

graphs.

Before introducing the main results of this paper, we need some new notations. Let

v ∈ V (G), and let X be a subset of V (G). We use NX(v) to denote the set of neighbors

of v in X. We say that v is complete to X if NX(v) = X, and say that v is anticomplete

to X if NX(v) = ∅. For two subsets X and Y of V (G), we say that X is complete to Y if

each vertex of X is complete to Y , say that X is anticomplete to Y if each vertex of X is

anticomplete to Y .

Let d(v,X) = minx∈X d(v, x) and call d(v,X) the distance of a vertex v to a subset X.

Let i be a positive integer and N i
G(X) = {y ∈ V (G)\X|d(y,X) = i}. We call N i

G(X) the

i-neighborhood of X and simply write N1
G(X) as NG(X). If no confusion may occur, we

write N i(X) instead of N i
G(X), and N i({v}) is denoted by N i(v) for short. A set D is said

to be a dominating set of G if V (G) = D ∪N(D).

Suppose that C = v1v2v3v4v5v1 is a 5-hole of G. Let M(C) = V (G) \ (V (C) ∪N(C)).

For a subset T ⊆ {1, 2, 3, 4, 5}, we define

NT (C) = {x | x ∈ N(C), and vix ∈ E(G) if and only if i ∈ T}.

It is easy to check that for k ∈ {1, 2, 3, 4, 5} and l = k + 2, N{k,k+2}(C) = N{l,l+3}(C) and

N{k,k+2,k+3}(C) = N{l,l+1,l+3}(C), where the summation of subindex is taken modulo 5 (in

this paper, the summations of subindex are always taken modulo some integer h and we

always set h+ 1 ≡ 1). We define

N (2)(C) = ∪1≤i≤5N{i,i+2}(C),

N (3)(C) = ∪1≤i≤5(N{i,i+1,i+2}(C) ∪N{i,i+1,i+3}(C)),
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and

N (4)(C) = ∪1≤i≤5N{i,i+1,i+2,i+3}(C).

Let C1 = x1x2x3x4x5x1 and C2 = y1y2y3y4y5y1 be two disjoint 5-cycles. Let F be the

graph obtained from C1 ∪ C2 by adding edges ∪1≤i≤5{xiyi, xiyi+1, xiyi+3}. It is easy to

verify that each independent set of F has size at most 3, and χ(F) = 4.

Figure 1: The graph F

The purpose of this paper is to prove the following

Theorem 1.3 Let G be a connected (P5,K1 ∪ K3)-free graph. Suppose that G has non-
dominating 5-holes. Then, for each non-dominating 5-hole C = v1v2v3v4v5v1, V (G) can
be partitioned into 4 subsets V (C) ∪ N (2)(C), N (3)(C), N{1,2,3,4,5}(C) and M(C) with the
following properties:

(a) G[V (C) ∪ N (2)(C)] is a blow up of C, and G[V (C) ∪ N (2)(C) ∪ N (3)(C)] is a blow
up of a subgraph of F ,

(b) M(C) ∪ V (C) ∪ N (2)(C) is complete to N{1,2,3,4,5}(C), and

(c) M(C) is anticomplete to V (C) ∪ N (2)(C) but complete to N (3)(C), and M(C) is
independent if N (3)(C) 6= ∅.

Theorem 1.4 If G is (P5,K1 ∪K3)-free then χ(G) ≤ 2ω(G) − 1.

Theorem 1.5 If G is a (P5,K1 + (K1 ∪ K3))-free graph then χ(G) ≤ max{2ω(G), 15},
and there exists a (P5,K1 + (K1 ∪K3))-free graph G with χ(G) = 2ω(G).

The proof of Theorem 1.5 is heavily relied on Theorem 1.4. The upper bound of

Theorem 1.4 is clearly tight as C5 and its blow up are extremal graphs. We can construct

a (P5,K1+(K1∪K3))-free graph G with χ(G) = 2ω(G). Let C = v1v2v3v4v5v1 be a 5-hole.

Let H be the graph obtained from C by replacing each vertex vi of C by a 5-hole Ci, for

1 ≤ i ≤ 5, such that a vertex of Ci and a vertex of Cj are adjacent in H if and only if vi

is adjacent to vj in C.

It is certain that H is (P5,K1+(K1∪K3))-free and ω(H) = 4. We claim that χ(H) = 8.

Without loss of generality, for each coloring φ ofH, we can always suppose that φ(V (C1)) =

{1, 2, 3} and φ(V (C2)) = {4, 5, 6}. Let φ(V (C3)) = {1, 7, 8}, φ(V (C4)) = {3, 4, 5} and

φ(V (C5)) = {6, 7, 8}. We see that χ(H) ≤ 8. If χ(H) ≤ 7, then we may assume by

symmetry that φ(V (C3)) = {1, 2, 7}, but now we only have five colors {3, 4, 5, 6, 7} that

can be used to color V (C4) ∪ V (C5), a contradiction. Therefore, χ(H) = 8 = 2ω(H).

The following lemma, which is devoted to the structure of P5-free graphs, will be used

frequently in our proof. Here the summation of subindexes is taken modulo 5.
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Lemma 1.1 ( [11,14]) Let G be a P5-free graph with a 5-hole C = v1v2v3v4v5v1. Then

(a) for i ∈ {1, 2, 3, 4, 5}, N{i}(C) = N{i,i+1}(C) = ∅, and N{i,i+2}(C) ∪N{i,i+1,i+2}(C) is
anticomplete to N2(C),

(b) if x ∈ N(C) and N2(x) ∩N3(C) 6= ∅ then x ∈ N{1,2,3,4,5}(C), and

(c) for each vertex x ∈ N2(C) and each component B of G[N3(C)], x is either complete
or anticomplete to B.

The next section is devoted to the proofs of Theorem 1.3 and Theorem 1.4. Theorem 1.5

is proved in Sections 3.

2 (P5, K1 ∪K3)-free graphs

This section is aimed to prove Theorem 1.3 and Theorem 1.4. In this section, we always

suppose that G is a (P5,K1 ∪ K3)-free graph. If G has a 5-hole, we always use C =

v1v2v3v4v5v1 to denote a 5-hole in G. Recall that we defineM(C) = V (G)\(V (C)∪N(C)).

Lemma 2.1 If G has a 5-hole, then the followings hold for each i ∈ {1, 2, . . . , 5}.

(a) N{i,i+1,i+2}(C) = N{i,i+1,i+2,i+3}(C) = ∅.

(b) Both N{i,i+2}(C) and N{i,i+1,i+3}(C) are independent, and N{i,i+2}(C) is complete to
N{i+1,i+3}(C) ∪N{i+1,i+4}(C).

(c) N (2)(C) is complete to N{1,2,3,4,5}(C), and N (3)(C) is complete to M(C).

(d) N{i,i+1,i+3}(C) is anticomplete to N{i,i+3}(C)∪N{i+1,i+3}(C). Moreover, if M(C) 6=
∅, then N{i,i+1,i+3}(C) is anticomplete to N{i,i+2,i+3}(C) ∪ N{i+1,i+3,i+4}(C), and is
either complete or anticomplete to N{i−1,i,i+2}(C) ∪N{i+1,i+2,i+4}(C) whenever both
N{i−1,i,i+2}(C) and N{i+1,i+2,i+4}(C) are not empty.

(e) If ω(G[N{1,2,3,4,5}(C)]) = ω(G)−2 or M(C) 6= ∅ then G[V (C)∪N (2)(C)] is a 5-ring.

Proof. Suppose that N{i,i+1,i+2}(C)∪N{i,i+1,i+2,i+3}(C) 6= ∅ for some i ∈ {1, 2, . . . , 5}. Let

v ∈ N{i,i+1,i+2}(C) ∪ N{i,i+1,i+2,i+3}(C). Then G[{v, vi+1, vi+2, vi+4}] = K1 ∪ K3. Hence

(a) holds.

Next we prove (b). Suppose, for some i, N{i,i+2}(C) is not independent. Let uv be

an edge in G[N{i,i+2}(C)]. Then G[{u, v, vi, vi+3}] = K1 ∪ K3, a contradiction. Simi-

larly, if N{i,i+1,i+3}(C) is not independent, let uv be an edge of G[N{i,i+1,i+3}(C)], then

G[{u, v, vi, vi+2}] = K1∪K3, which leads to a contradiction. If N{i,i+2}(C) is not complete

to N{i+1,i+3}(C) for some i, choose u ∈ N{i,i+2}(C) and v ∈ N{i+1,i+3}(C) with uv 6∈ E(G),

then uvivi+4vi+3v is an induced P5 of G. A similar contradiction occurs if N{i,i+2}(C) is

not complete to N{i+1,i+4}(C). Therefore, (b) holds.

If there exist u ∈ N{1,2,3,4,5}(C) and v ∈ N{i,i+2} with uv 6∈ E(G) for some i, then

G[{u, v, vi+3, vi+4}] = K1 ∪K3. If for some i, there exist u ∈ M(C) and v ∈ N{i,i+1,i+3}

such that uv 6∈ E(G), then G[{u, v, vi, vi+1}] = K1 ∪K3. This proves (c).
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If the first statement of (d) is not true, then we may choose u ∈ N{i,i+1,i+3}(C) and v ∈

N{i,i+3}(C)∪N{i+1,i+3}(C) with uv ∈ E(G) such that G[{u, v, vi, vi+2}] = K1∪K3 when v ∈

N{i,i+3}(C), and that G[{u, v, vi+1, vi+4}] = K1∪K3 when v ∈ N{i+1,i+3}(C). Suppose that

M(C) 6= ∅, and let x ∈ M(C). Note that M(C) is complete to N (3)(C) by the statement

(c). If there exist u ∈ N{i,i+1,i+3}(C) and v ∈ N{i,i+2,i+3}(C)∪N{i+1,i+3,i+4}(C) with uv ∈

E(G), then G[{u, v, vi+4, x}] = K1 ∪K3 when v ∈ N{i,i+2,i+3}(C), and G[{u, v, vi+2, x}] =

K1∪K3 when v ∈ N{i+1,i+3,i+4}(C). Suppose thatN{i−1,i,i+2}(C) 6= ∅ andN{i+1,i+2,i+4}(C) 6=

∅. By symmetry, assume that u ∈ N{i,i+1,i+3}(C) is adjacent to v ∈ N{i−1,i,i+2}(C) and

not adjacent to w ∈ N{i+1,i+2,i+4}(C). Then vw 6∈ E(G) and G[{u, v, vi, w}] = K1 ∪K3, a

contradiction. Therefore, (d) holds.

By the statement (b), to prove that N (2)(C) ∪ V (C) induces a 5-ring, we only need to

check that N{i,i+2}(C) is anticomplete to N{i,i+3}(C) ∪N{i+2,i+4}(C).

By Lemma 1.1(a), we observe thatM(C) is anticomplete to N (2)(C)∪V (C). IfM(C) 6=

∅, thenN{i,i+2}(C) must be anticomplete toN{i,i+3}(C)∪N{i+2,i+4}(C), otherwise aK1∪K3

occurs.

Finally, suppose that ω(G[N{1,2,3,4,5}(C)]) = ω(G) − 2, and let K ⊆ N{1,2,3,4,5}(C) be

a clique of size ω(G) − 2. Assume by symmetry that N{i,i+2}(C) is not anticomplete to

N{i+2,i+4}(C). Let u ∈ N{i,i+2}(C) and v ∈ N{i+2,i+4}(C) be an adjacent pair. Then K is

complete to {u, v, vi+2} by statement (c), and so G contains a clique of size ω(G)+1. This

leads to a contradiction and completes the proof of Lemma 2.1.

From Lemma 2.1(a), we observe that

N(C) = N{1,2,3,4,5}(C) ∪ N (2)(C) ∪ N (3)(C),

and it follows from Lemma 2.1(d) that if M(C) 6= ∅ and N{i,i+1,i+3}(C) 6= ∅ for each

1 ≤ i ≤ 5, then N (3)(C) is either independent or induces a 5-ring in G.

Proof of Theorem 1.3: Suppose that G has a non-dominating 5-hole C = v1v2v3v4v5v1,

that is, M(C) = V (G) \ (V (C) ∪ N(C)) 6= ∅. Let A1 = V (C) ∪ N (2)(C), A2 = N (3)(C),

and A3 = N{1,2,3,4,5}(C).

By Lemma 2.1(b) and (d), we observe that G[A1] is a 5-ring which is a blow up of C,

and G[A1 ∪A2] is a blow up of a subgraph of F .

By Lemma 2.1(c), we have that A1 is complete to A3. To prove the second statement,

we only need to verify that A3 is complete toM(C). If it is not the case, choose u ∈ A3 and

v ∈ M(C) with uv 6∈ E(G), then G[{u, v, v1, v2}] = K1 ∪K3, a contradiction. Therefore,

(b) is true.

By Lemma 2.1(c), we observe that M(C) is anticomplete to A1 and complete to A2.

Suppose that A2 6= ∅, and let x ∈ N{i,i+1,i+3}(C) for some i ∈ {1, 2, 3, 4, 5}. If the third

statement is not true then there must be an edge uv in G[M(C)] and so G[{u, v, vi+2, x}] =

K1 ∪ K3. This leads to a contradiction and proves (c), and also completes the proof of

Theorem 1.3.
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Now we turn to prove Theorem 1.4. The following two colorings will be used in the

proof of Theorem 1.4.

By Lemma 2.1(d), we can construct a 5-coloring ψ of G[V (C)∪N(C)]−N{1,2,3,4,5}(C)

as below:






























ψ−1(1) = N{2,4}(C) ∪N{1,2,4}(C) ∪ {v3},

ψ−1(2) = N{3,5}(C) ∪N{2,3,5}(C){v4},

ψ−1(3) = N{1,4}(C) ∪N{3,4,1}(C) ∪ {v2, v5},

ψ−1(4) = N{2,5}(C) ∪N{4,5,2}(C) ∪ {v1},

ψ−1(5) = N{1,3}(C) ∪N{5,1,3}(C).

(1)

If M(C) 6= ∅, it follows from Theorem 1.3 that we can construct a 4-coloring φ of

G[V (C) ∪N(C)]−N{1,2,3,4,5}(C) as below:



















φ−1(1) = N{1,4}(C) ∪N{1,2,4}(C) ∪N{2,4}(C) ∪ {v3, v5},

φ−1(2) = N{2,5}(C) ∪N{2,3,5}(C) ∪N{3,5}(C) ∪ {v1, v4},

φ−1(3) = N{1,3}(C) ∪N{1,3,4}(C) ∪N{5,1,3}(C) ∪ {v2},

φ−1(4) = N{4,5,2}(C).

(2)

Proof of Theorem 1.4. Let G be a connected (P5,K1 ∪K3)-free graph with ω(G) = h.

Clearly the theorem holds when h = 1. If h = 2, then G is bipartite or a 5-ring by

Theorem 1.2 and so χ(G) ≤ 3 = 2h − 1. Thus we assume that h ≥ 3 and the theorem

holds for all graphs with clique number smaller than h.

If G does not have any 5-hole, then for an arbitrary vertex v, G − N(v) is bipartite

and ω(G[N(v)]) ≤ h − 1. Thus by induction χ(G) ≤ 2 + χ(G[N(v)]) ≤ 2 + (2(h −

1) − 1) = 2h − 1. Otherwise, let C = v1v2v3v4v5v1 be a 5-hole of G. It is certain that

ω(G[N{1,2,3,4,5}(C) ∪ N{i,i+1,i+3}(C)]) ≤ h − 2 for each i ∈ {1, 2, 3, 4, 5} as {vi, vi+1} is

complete to N{1,2,3,4,5}(C) ∪N{i,i+1,i+3}(C).

If N{1,2,3,4,5}(C) =M(C) = ∅, then χ(G) ≤ 5 ≤ 2h−1 by the coloring ψ defined in (1).

If N{1,2,3,4,5}(C) = ∅ and M(C) 6= ∅, then N (3)(C) 6= ∅, which implies that M(C)

is independent by Theorem 1.3(c). It follows from the coloring φ defined in (2) that

χ(G) ≤ 5 ≤ 2h− 1.

Suppose that N1,2,3,4,5(C) 6= ∅ and M(C) = ∅. If ω(G[N{1,2,3,4,5}(C)]) ≤ h − 3, then

χ(G−N{1,2,3,4,5}(C)) ≤ 5 by the coloring ψ defined in (1), which implies that χ(G) ≤ χ(G−

N{1,2,3,4,5}(C))+χ(G[N{1,2,3,4,5}(C)]) ≤ 5+(2(h−3)−1) < 2h−1 by induction. So, suppose

that ω(G[N{1,2,3,4,5}(C)]) = h − 2. By Lemma 2.1(d) and (e), we have that N{1,3}(C) is

anticomplete to N{1,4}(C)∪N{3,4,1}(C)∪ {v2, v5}, and so we can modify the coloring ψ by

recoloring N{1,3}(C) with 3, which implies that χ(G − N{1,2,3,4,5}(C) ∪ N{5,1,3}(C)) ≤ 4.

Now, we have that χ(G) ≤ χ(G − N{1,2,3,4,5}(C) ∪ N{5,1,3}(C)) + χ(G[N{1,2,3,4,5}(C) ∪

N{5,1,3}(C)]) ≤ 4 + (2(h − 2)− 1) = 2h− 1 by induction.

Therefore, suppose that N{1,2,3,4,5}(C) 6= ∅ and M(C) 6= ∅. Thus, N (2)(C) ∪ V (C)

induces a 5-ring by Lemma 2.1(d). It is obvious that G[M(C)] is K3-free, otherwise a

triangle of G[M(C)] together with any vertex of C induces aK1∪K3, and so χ(G[M(C)]) ≤

3 by Theorem 1.2.
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If N (3)(C) = ∅, then χ(G − N{1,2,3,4,5}(C)) = 3 as M(C) is anticomplete to N (2)(C)

by Lemma 1.1(a), and so χ(G) ≤ 3 + (2(h− 2)− 1) = 2h− 1 by induction. Thus, suppose

that N (3)(C) 6= ∅, which implies that M(C) is independent by Theorem 1.3(c). By the

coloring φ defined in (2), G − N{1,2,3,4,5}(C) ∪ N{4,5,1}(C) ∪M(C) is 3-colorable, and so

G −N{1,2,3,4,5}(C) ∪N{4,5,1}(C) is 4-colorable. Since ω(G[N{1,2,3,4,5}(C) ∪N{4,5,1}(C)]) ≤

h− 2, we have χ(G) ≤ 4+ χ(G[N{1,2,3,4,5}(C)∪N{4,5,1}(C)]) ≤ 4+ (2(h− 2)− 1) = 2h− 1

by induction. This completes the proof of Theorem 1.4.

3 (P5, K1 + (K1 ∪K3))-free graphs

Before proving Theorem 1.5, we first present several lemmas on the structure of (P5,K1 +

(K1 ∪K3))-free graphs. From now on, we always suppose that G is a connected (P5,K1 +

(K1 ∪ K3))-free graph without clique cutset. For two subsets X and Y of V (G), we say

that X is adjacent to Y if N(X) ∩ Y 6= ∅.

Let C = v1v2v3v4v5v1 be a 5-hole of G. Recall that N (2)(C) = ∪1≤i≤5N{i,i+2}(C),

N (4)(C) = ∪1≤i≤5N{i,i+1,i+2,i+3}(C), and M(C) = V (G) \ (V (C) ∪ N(C)). We further

define N (3,1)(C) = ∪1≤i≤5N{i,i+1,i+2}(C), and N (3,2)(C) = ∪1≤i≤5N{i,i+1,i+3}(C). By

Lemma 1.1(a), we have

N(C) = N{1,2,3,4,5}(C) ∪ N (2)(C) ∪ N (3,1)(C) ∪ N (3,2)(C) ∪ N (4)(C).

Lemma 3.1 ( [11]) Let C = v1v2v3v4v5v1 be a 5-hole of G, and T be a component of
G[N2(C)]. Then the followings hold.

(a) For each i ∈ {1, 2, 3, 4, 5}, G[N(vi)] is (K1 ∪K3)-free, G[N{i,i+2}(C)] is K3-free, and
N{i,i+1,i+2}(C) ∪N{i,i+1,i+3}(C) ∪N{i,i+1,i+2,i+3}(C) is independent.

(b) If no vertex in N(C) dominates T , then there exist two non-adjacent vertices u and
v in N(C) such that both NT (u) and NT (v) are not empty.

Lemma 3.2 Let C = v1v2v3v4v5v1 be a 5-hole of G, S be a component of G[N{1,2,3,4,5}(C)]
with ω(S) ≥ 2. Then for each i ∈ {1, 2, 3, 4, 5}, the followings hold.

(a) N{i,i+2}(C) ∪N{i,i+1,i+2}(C) is complete to S, and N{i,i+2}(C) is independent.

(b) For each edge xy in S, no vertex of N{i,i+1,i+3}(C)∪N{i,i+1,i+2,i+3}(C) is anticomplete
to {x, y}.

(c) N{i,i+2}(C) is anticomplete to N{i−1,i,i+1}(C) ∪N{i−1,i,i+2}(C) ∪N{i−1,i,i+1,i+2}(C).

(d) χ(G−N{1,2,3,4,5}(C)−M(C)) ≤ 5.

Proof. Suppose that, for some i ∈ {1, 2, 3, 4, 5}, N{i,i+2}(C)∪N{i,i+1,i+2}(C) has a vertex u

that is not complete to S. If u is anticomplete to S, then G[{u, v, w, vi, vi+4}] = K1+(K1∪

K3). Otherwise, there exists an edge, say vw in S, such that uv ∈ E(G) and uw /∈ E(G).

Then G[{u, v, w, vi+3 , vi+4}] = K1 + (K1 ∪K3). Both are contradictions.
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Suppose that N{i,i+2}(C) is not independent for some i ∈ {1, 2, 3, 4, 5}. Choose an

edge xy in G[N{i,i+2}(C)], and let z be an arbitrary vertex of S. Then xz ∈ E(G) and

yz ∈ E(G), and so G[{x, y, z, vi, vi+3}] = K1 + (K1 ∪K3), a contradiction. Therefore, (a)

holds.

Let xy be an edge of S, and v ∈ N{i,i+1,i+3}(C)∪N{i,i+1,i+2,i+3}(C). If vx /∈ E(G) and

vy /∈ E(G), then G[{v, x, y, vi+3, vi+4}] = K1 + (K1 ∪K3). Therefore, (b) holds.

Suppose that (c) is not true for some i ∈ {1, 2, 3, 4, 5}. Let v ∈ N{i,i+2}(C) and

u ∈ N{i−1,i,i+1}(C)∪N{i−1,i,i+2}(C)∪N{i−1,i,i+1,i+2}(C) such that uv ∈ E(G). By (a) and

(b), we observe that there exists a vertex w ∈ N{1,2,3,4,5}(C) such that wu ∈ E(G) and

wv ∈ E(G), which implies that G[{v, u,w, vi , vi+3}] = K1 + (K1 ∪ K3). Therefore, (c) is

true.

By (a), (c) and Lemma 3.1(a), we have thatN{i,i+2}(C)∪N{i−1,i,i+1}(C)∪N{i−1,i,i+2}(C)∪

N{i−1,i,i+1,i+2}(C) is independent for each i ∈ {1, 2, 3, 4, 5}. By coloring {vi+3}∪N{i,i+2}(C)∪

N{i−1,i,i+1}(C) ∪ N{i−1,i,i+2}(C) ∪ N{i−1,i,i+1,i+2}(C) with color i, we get a 5-coloring of

G−N{1,2,3,4,5}(C)−M(C). This proves (d), and completes the proof of Lemma 3.2.

Lemma 3.3 [11] Let C = v1v2v3v4v5v1 be a 5-hole of G. Then G[N3(C)] is K3-free, and
N2(C) can be partition into two parts A and B such that both G[A] and G[B] are K3-free.

Lemma 3.4 Let C = v1v2v3v4v5v1 be a 5-hole of G, and S be a component of G[N{1,2,3,4,5}(C)].
If N(S) ∩N2(C) 6= ∅, then N(x) ∩N2(C) = N(y) ∩N2(C) for any x, y ∈ S.

Proof. Suppose that N(S) ∩ N2(C) 6= ∅. We apply induction on |S|. The lemma holds

trivially if |S| = 1. Suppose that |S| = k ≥ 2, and the lemma holds on all components of

G[N{1,2,3,4,5}(C)] of size less than k. There must be a vertex, say x, in S such that S − x

is connected, and N(S − x) ∩ N2(C) 6= ∅. Let y be a neighbor of x in S. To prove the

lemma, we only need to verify that N(x)∩N2(C) = N(y)∩N2(C). Suppose that it is not

the case. Then, we may assume, without loss of generality, that u ∈ N(x) ∩ N2(C) and

u /∈ N(y) ∩N2(C), which implies that G[{x, y, u, v1, v2}] = K1 + (K1 ∪K3). This leads to

a contradiction and proves the lemma.

Lemma 3.5 Let C = v1v2v3v4v5v1 be a 5-hole of G, and T be a component of G[N2(C)].
Suppose that N (3,2)(C) ∪ N (4)(C) 6= ∅. Then

(a) T is a single vertex adjacent to N{1,2,3,4,5}(C) if N(T ) ∩ (N (3,2)(C) ∪ N (4)(C)) 6= ∅
and ω(G[N{1,2,3,4,5}(C)]) ≥ 2, and

(b) T is K3-free if N(T ) ∩ (N (3,2)(C) ∪N (4)(C)) = ∅.

Proof. Let Q = N (3,2)(C) ∪ N (4)(C).

Firstly, we prove (a). Suppose that N(T ) ∩Q 6= ∅ and ω(G[N{1,2,3,4,5}(C)]) ≥ 2. Since

N(T ) ∩Q 6= ∅, we have that, for some i ∈ {1, 2, 3, 4, 5}, N{i,i+1,i+3} ∪N{i,i+1,i+2,i+3} has a

vertex u that is complete to T , otherwise an induced P5 appears in G. By Lemma 3.2(b), u

has a neighbor, say v, in N{1,2,3,4,5}(C). If v is anticomplete to T then G[{u, v, vi, vi+1, z} =
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K1 + (K1 ∪K3) for any vertex z ∈ T . This proves that N(T )∩N{1,2,3,4,5}(C) 6= ∅, that is,

T is adjacent to N{1,2,3,4,5}(C).

Suppose that |V (T )| ≥ 2, and let xy be an edge of T . Since G is P5-free, we have that,

for some i ∈ {1, 2, 3, 4, 5}, N{i,i+1,,i+3}(C) ∪N{i,i+1,i+2,i+3}(C) has a vertex, say u, that is

complete to T . Particularly, {ux, uy} ⊆ E(G). By Lemma 3.2(b), we may choose a neighbor

v of u in N{1,2,3,4,5}(C). If {vx, vy} ⊆ E(G) then G[{u, v, vi+4, x, y} = K1 + (K1 ∪ K3).

Otherwise, we may assume by symmetry that vx 6∈ E(G), then G[{u, v, vi, vi+1, x}] =

K1 + (K1 ∪K3). Therefore, (a) holds.

Suppose to the contrary of (b) that N(T )∩Q = ∅ and T has a K3, say w1w2w3w1. Let

u be a vertex in Q, and suppose that uv1, uv2 ∈ E(G) by symmetry. Since N (3,1)(C) is

anticomplete to N2(C) by Lemma 1.1(a), we may choose a vertex, say x, in N{1,2,3,4,5}(C),

and let x′ be a neighbor of x in T . To avoid a K1 + (K1 ∪ K3) on {u, v1, v2, x, x
′}, we

have that ux 6∈ E(G). If x is complete to T , then G[{v1, w1, w2, w3, x}] = K1 + (K1 ∪K3).

Otherwise, there must be an edge y1y2 in T such that xy1 ∈ E(G) and xy2 6∈ E(G), and

so uv1xy1y2 is an induced P5. This proves (b) and Lemma 3.5.

Let A be an antihole with V (A) = {v1, v2, · · · , vk}. We enumerate the vertices of A

cyclically such that vivi+1 /∈ E(G) and simply write A = v1v2 · · · vk. Here the summations

of subindex are taken modulo k and we set k + 1 ≡ 1.

Suppose that G induces an antihole A = v1v2 · · · vk with k ≥ 6. We use S(A) to denote

the set of vertices which are complete to A, and let T (A) = N(A)\S(A). Note that T (A) is

not complete to A. For each i ∈ {1, 2, . . . , k}, we define Ti(A) to be the subset of T (A) such

that for each vertex x of Ti(A), i is the minimum index with xvi ∈ E(G) and xvi−1 6∈ E(G).

Clearly, T (A) = ∪1≤i≤kTi(A), and Ti(A)∩Tj(A) = ∅ if i 6= j. Since G is K1+(K1∪K3)-

free, we have that G[S(A)] is K1 ∪ K3-free, and G[Ti(A)] is K1 ∪ K3-free for each i ∈

{1, 2, . . . , k}.

The following lemma was proved in [11] without using the notations Ti(A). Here we

present its short proof.

Lemma 3.6 Let G be a (P5, C5,K1 + (K1 ∪K3))-free graph, A = v1v2 · · · vk an antihole
of G with k ≥ 6. Then Ti(A) is independent for each i ∈ {1, 2, . . . , k}, and N2(A) = ∅.

Proof. Let i ∈ {1, 2, . . . , k}. Firstly, for each vertex v of Ti(A),

vvi+2 ∈ E(G), (3)

as otherwise either vvivi+2vi−1vi+1 is an induced P5 when vvi+1 6∈ E(G) or vvivi+2vi−1vi+1v

is a 5-hole when vvi+1 ∈ E(G).

Suppose that Ti(A) is not independent. Let x and x′ be two adjacent vertices of Ti(A).

Then G[{vi−1, vi, vi+2, x, x
′}] = K1+(K1∪K3) by (3). Therefore, Ti(A) is an independent

set.

Suppose that N2(A) 6= ∅. Let v be a vertex in N(A) that has a neighbor, say x, in

N2(A). If v ∈ S(A) then G[{v, v1, v3, v5, x}] = K1+(K1∪K3). Otherwise, we may assume
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that v ∈ T1(A) by symmetry. By (3), G[{v, v1, v3, v5, x}] = K1 + (K1 ∪K3) if vv5 ∈ E(G),

and a P5 = xvv1v5v2k+1 appears if vv5 6∈ E(G). Therefore, N2(A) = ∅.

Proof of Theorem 1.5. Let G be a {P5,K1 + (K1 ∪ K3}-free graph with ω(G) = h.

We may suppose that G is connected, contains no clique cutset, and is not perfect. Thus,

h ≥ 2 as G must induce a 5-hole or an odd antihole with at least 7 vertices by the Strong

Perfect Graph Theorem [8].

When h ∈ {2, 3}, the theorem follows immediately from Theorems 1.1 and 1.2. Suppose

that h ≥ 4, and the theorem holds for all {P5,K1+(K1∪K3}-free graphs with clique number

less than h.

Since G is P5-free, it is certain that N4(S) = ∅ for any subset S of V (G).

Let γ = 2h − 5. We distinguish two cases depending on the existence of 5-holes in G,

and will use two color sets C1 = {α1, α2, α3, α4, α5} and C2 = {β1, β2, · · · , βγ} to color G.

Firstly, suppose that G induces no 5-holes. Then, G must induce an antihole of size at

least 6. Let A = v1v2 · · · vk, where k ≥ 6, be an antihole of G. Let S be the set of vertices

that are complete to A, and let T = V (G)\(A ∪ S). It is clear that G[S] is K1 ∪K3-free.

By Lemma 3.6, V (G) = A ∪ S ∪ T .

For integer i ∈ {1, 2, . . . , k}, let Ti be the subset of T such that for each vertex x of Ti,

i is the minimum index with xvi ∈ E(G) and xvi−1 6∈ E(G). By Lemma 3.6, Ti ∪ {vi−1} is

an independent set.

If S 6= ∅, then χ(G[A∪T ]) ≤ k by Lemma 3.6, and so χ(G) ≤ k+(2(h−⌊k2 ⌋)−1) ≤ 2h

by induction. Therefore, we suppose that S = ∅.

We further suppose that A has the least number of vertices under the assumption

that k ≥ 6. Notices that k
2 ≤ h if k is even and k−1

2 ≤ h if k is odd. If k ≤ 15, then

χ(G) ≤ k ≤ 15 by Lemma 3.6. If h > ⌊k2⌋ then χ(G) ≤ 2⌈k2 ⌉ ≤ 2h. So, we suppose that

h = ⌊k2⌋ ≥ 8.

Since S = ∅, for each vertex v ∈ T , there must exist an integer i such that vvi ∈ E(G)

and vvi−1 6∈ E(G). For integer i ∈ {1, 2, . . . , k}, let Ti be the subset of T such that for each

vertex x of Ti, i is the minimum index with xvi ∈ E(G) and xvi−1 6∈ E(G). By Lemma 3.6,

Ti ∪ {vi−1} is an independent set.

If k is even, then by coloring the vertices in Ti∪{vi−1} with color i, we get a 2h-coloring

of G. Therefore, we suppose that k is odd.

Let v be a vertex in Ti for some i.

If vvi+2 6∈ E(G), then G[{v, vi−1, vi, vi+1, vi+2}] is a C5 or P5 depending on vvi+1 ∈

E(G) or not. So, vvi+2 ∈ E(G). We will show that

if {vvi, vvi+2} ⊆ E(G), then vvi+1 ∈ E(G) and vvi−2 6∈ E(G). (4)

First suppose vvi+1 /∈ E(G). If vvi+4 ∈ E(G), then G[{v, vi, vi+1, vi+2, vi+4}] = K1 +

(K1 ∪ K3). If vvi+4 /∈ E(G), then G[{v, vi+1, vi+2, vi+3, vi+4}] is a C5 or P5 depending

on vvi+3 ∈ E(G) or not. Both are contradictions. This shows that vvi+1 ∈ E(G). If

vvi−2 ∈ E(G), then G[{v, vi−2, vi−1, vi, vi+2}] = K1 + (K1 ∪K3). Therefore, (4) holds.
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Without loss of generality, we suppose that {vv1, vv2, vv3} ⊆ E(G) and vvk /∈ E(G).

By (4) and by symmetry, vvk−1 /∈ E(G).

If vv4 /∈ E(G), then vv5 /∈ E(G) by (4) and by symmetry, and hence vvj ∈ E(G) for

all j ∈ {6, . . . , k − 2} to avoid an induced K1 + (K1 ∪K3) on {v, v2, v4, vj , vk}. But then

G[{v, v5, v6, . . . , vk−1}] is an antihole with less vertices, which contradicts the choice of A.

Therefore, vv4 ∈ E(G).

If vv5 /∈ E(G), then G[{v, v1, v2, v3, v4, v5, vk}] is an antihole with less vertices, which

is contradiction to the choice of A. So, vv5 ∈ E(G). Repeating this argument, we have

vvj ∈ E(G) for all j ∈ {1, 2, . . . , k − 3}.

If vvk−2 ∈ E(G), then we have a clique of size at leat ⌊k2⌋ + 1, which contradicts

h = ⌊k2⌋. Thus, vvk−2 /∈ E(G). Consequently, we have, by symmetry, that each vertex in

T is nonadjacent to exactly three consecutive vertices of A.

Suppose that there exist x1 ∈ T1 and xk ∈ Tk with x1xk ∈ E(G). Then, {x1, xk} is

complete to V (A) \ {vk, vk−1, vk−2, vk−3}. Since k is odd, we have that {v1, v3, . . . , vk−4}

induces a Kk−3

2

, which together with {x1, xk} induces a Kh+1. Therefore, we may suppose

by symmetry that Ti is anticomplete to Ti+1 for any i ∈ {1, 2, . . . , k}. Thus, G is a subgraph

of a blow up of A by Lemma 3.6, which implies χ(G) = h+ 1 < 2h.

This shows that Theorem 1.5 holds if G does not induce 5-holes. From now on to the

end of this paper, we always assume that G induces a 5-hole, and

let C = v1v2v3v4v5v1 be a 5-hole of G that minimizes ω(G[N{1,2,3,4,5}(C)]). (5)

Recall that we can partition N(C) into 5 subsets: N (2) = ∪1≤i≤5N{i,i+2}(C), N (3,1) =

∪1≤i≤5N{i,i+1,i+2}(C), N (3,2) = ∪1≤i≤5N{i,i+1,i+3}(C), N (4) = ∪1≤i≤5N{i,i+1,i+2,i+3}(C),

and N{1,2,3,4,5}(C).

By Lemma 3.3, N3(C) is K3-free, and N
2(C) can be partitioned into two subsets each

of which induces a K3-free subgraph. Thus by Theorem 1.2, we have that χ(G[N2(C)]) ≤ 6

and χ(G[N3(C)]) ≤ 3.

By Lemma 3.1(a), we have that, for each i ∈ {1, 2, 3, 4, 5}, G[N{i,i+2}(C)] is K3-

free, and {vi+4} ∪ N{i,i+1,i+2}(C) ∪N{i,i+1,i+3}(C) ∪N{i,i+1,i+2,i+3}(C) is independent. If

G[N1,3(C) ∪N1,4(C)] is not K3-free, let xyzx be a triangle in G[N1,3(C) ∪N1,4(C)], then

G[{v1, v5, x, y, z}] = K1 + (K1 ∪ K3), a contradiction. So, we have by symmetry that

G[N1,3(C)∪N1,4(C)] and G[N2,4(C)∪N2,5(C)] are both K3-free. Hence we may conclude

that χ(G[V (C)∪N (3,1)∪N (3,2)∪N (4)∪N3(C)]) ≤ 5, and χ(G[N (2)∪N2(C)]) ≤ 9 as N (2)

is anticomplete to N2(C) by Lemma 1.1.

If N{1,2,3,4,5}(C) is independent, then χ(G) ≤ χ(G[V (C) ∪ N (3,1) ∪ N (3,2) ∪ N (4) ∪

N3(C)]) + χ(G[N (2) ∪ N2(C)]) + χ(G[N{1,2,3,4,5}(C)]) ≤ 5 + 9 + 1 = 15. Hence, we may

assume that

2 ≤ ω(G[N{1,2,3,4,5}(C)]) ≤ ω(G)− 2 = h− 2.

Let Q = N (3,1) ∪ N (3,2) ∪ N (4).
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We claim that if Q 6= ∅ then

N2(C) is anticomplete to each non-isolated component of G[N{1,2,3,4,5}(C)]. (6)

If it is not the case, then let xy be an edge of some non-isolated component ofG[N{1,2,3,4,5}(C)].

By Lemma 3.4, N2(C) has a vertex, say u, complete to {x, y}. By Lemma 3.2(b) and by

symmetry, Q has a vertex, say v, adjacent to x. Without loss of generality, we may as-

sume that {vv1, vv2} ⊆ E(G). Thus G[{u, v, v1, v2, x}] = K1 + (K1 ∪K3), a contradiction.

Therefore, (6) holds.

3.1 Suppose that 2 ≤ ω(G[N{1,2,3,4,5}(C)]) ≤ h− 3

In this case, we have that h ≥ 5. Let ω(G[N{1,2,3,4,5}(C)]) = t. Note that by Lemma 3.2

χ(G−N{1,2,3,4,5}(C)−N2(C)−N3(C)) ≤ 5, and by Theorem 1.4 χ(G[N{1,2,3,4,5}(C)]) ≤

2t− 1 as G[N{1,2,3,4,5}(C)] is K1 ∪K3-free.

If N2(C) = ∅, then χ(G) ≤ 5 + (2t− 1) < 2h by induction. Thus we may assume that

N2(C) 6= ∅, and without loss of generality, G[N2(C)] is connected.

Recall that χ(G[N{1,2,3,4,5}(C)]) ≤ 2h − 7 by induction, and χ(G[N2(C) ∪ V (C) ∪

N (2)]) ≤ 6 by Lemma 3.3.

If Q = ∅, then color V (C)∪N (2)∪N2(C) with C1∪{β1} and color N{1,2,3,4,5}(C)∪N3(C)

with C2 \ {β1}. Thus, we obtain a 2h-coloring of G.

Therefore, we further suppose that Q 6= ∅.

Let N2,0(C) ⊆ N2(C) be the set of vertices anticomplete to Q. If Q is anticomplete

to N2(C), that is, N2(C) = N2,0(C), then N2(C) is anticomplete to all non-isolated

components of G[N{1,2,3,4,5}(C)] by (6), which implies that N3(C) = ∅. We can color

V (C)∪N(C) with C1∪C2 such that all isolated vertices of G[N{1,2,3,4,5}(C)] receive the same

color β1, and color N2(C) with C1∪C2\{β1} (this is certainly reasonable as χ(G[N2(C)]) ≤ 6

by Lemma 3.3).

Suppose that Q is adjacent to N2(C). By Lemma 3.5, each vertex of N2(C) \N2,0(C)

is an isolated component of G[N2(C)]. Since N2,0(C) is anticomplete to Q ∪ (N2(C) \

N2,0(C)), by Lemma 3.2(d) and Lemma 3.3, we can color G − N{1,2,3,4,5}(C) − N3(C)

with C1 ∪ {β1}. Since ω(G[N{1,2,3,4,5}(C)]) ≤ h − 3 and G[N3(C)] is K3-free, we can

color N{1,2,3,4,5}(C) ∪N3(C) with C2 \ {β1} by Theorems 1.2 and 1.4. Therefore, χ(G) ≤

χ(G − N{1,2,3,4,5}(C) − N3(C)) + χ(G[N{1,2,3,4,5}(C) ∪ N3(C)]) ≤ 2h. Thus when 2 ≤

ω(G[N{1,2,3,4,5}(C)]) ≤ h− 3, χ(G) ≤ 2h.

3.2 Suppose that ω(G[N{1,2,3,4,5}(C)]) = h− 2

Now, suppose that ω(G[N{1,2,3,4,5}(C)]) = h− 2. By (5), we have that

ω(G[N{1,2,3,4,5}(C
′)]) = h− 2 for each 5-hole C ′ of G. (7)

Let S be a component of G[N{1,2,3,4,5}(C)] with ω(S) = h− 2.
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By Lemma 3.2(a), N (2) ∪ N (3,1) is complete to S. Hence we have that

N (3,1) = ∅ and V (C) ∪ N (2)(C) induces a 5-ring (8)

as otherwise we can find a clique of size at least ω(G) + 1.

By Lemma 3.2(d), we can define a 5-coloring φ on G−N{1,2,3,4,5}(C)−N2(C)−N3(C)

with color set C1 as followsing:































φ−1(α1) = {v1} ∪N{3,5}(C) ∪N{2,3,5}(C) ∪N{2,3,4,5}(C)

φ−1(α2) = {v2}(C) ∪N{4,1}(C) ∪N{3,4,1}(C) ∪N{3,4,5,1}(C)

φ−1(α3) = {v3} ∪N{5,2}(C) ∪N{4,5,2}(C) ∪N{4,5,1,2}(C)

φ−1(α4) = {v4} ∪N{1,3}(C) ∪N{5,1,3}(C) ∪N{5,1,2,3}(C)

φ−1(α5) = {v5} ∪N{2,4}(C) ∪N{1,2,4}(C) ∪N{1,2,3,4}(C).

(9)

If N2(C) = ∅, then by Theorem 1.4, χ(G) ≤ 5 + 2(h− 2)− 1 = 2h as G[N{1,2,3,4,5}(C)]

is K1 ∪K3-free.

Thus suppose that N2(C) 6= ∅, and without loss of generality, suppose that G[N2(C)]

is connected.

By (8), we have that N (3,1) = ∅, and so Q = N (3,2) ∪ N (4). Let N2,0(C) ⊆ N2(C) be

the set of vertices anticomplete to Q.

We first suppose that Q 6= ∅, and discuss two cases depending upon whether N2(C) is

adjacent to Q.

Case 1. Suppose that Q is anticomplete to N2(C). Then each component of G[N2(C)]

is K3-free by Lemma 3.5, and N2(C) is anticomplete to all non-isolated components of

G[N{1,2,3,4,5}(C)] by (6). Consequently we have that G[N{1,2,3,4,5}(C)] has isolated com-

ponents (as N2(C) 6= ∅) and also has non-isolated components (as ω(G[N{1,2,3,4,5}(C)]) =

h− 2 ≥ 2). If N3(C) 6= ∅, let n3 ∈ N3(C), n2 ∈ N2(C) be a neighbor of n3, s1 an isolated

component of G[N{1,2,3,4,5}(C)] with s1n2 ∈ E(G), and s2s
′
2 be an edge of some compo-

nent of G[N{1,2,3,4,5}(C)], then n3n2s1v1s2 is an induced P5, a contradiction. Therefore,

N3(C) = ∅.

Now, we can color G[N{1,2,3,4,5}(C)] with color set C2 such that such that all isolated

vertices of G[N{1,2,3,4,5}(C)] receive the same color β1 ∈ C2, and color G[N2(C)] with the

colors in C1∪C2\{β1} (this is reasonable as χ(G[N2(C)]) ≤ 6 by Lemma 3.3). This together

with the 5-coloring defined in (9) gives a 2h-coloring of G.

Case 2. Suppose that N2(C) is adjacent to Q. By Lemma 3.5, we have that each com-

ponent of G[N2,0(C)] is K3-free, and each of the other components of G[N2(C)] is a sin-

gle vertex. Since ω(G[N{1,2,3,4,5}(C) ∪ N{5,1,3}(C) ∪ N{5,1,2,3}(C)]) = h − 2, we have that

χ(G[N{1,2,3,4,5}(C)∪N{5,1,3}(C)∪N{5,1,2,3}(C)]) ≤ 2h−5 by induction. Using the 5-coloring

φ defined in (9), we can construct a 5-coloring of G[V (C)∪N2(C)∪(N(C)\(N{1,2,3,4,5}(C)∪

N{5,1,3}(C)∪N{5,1,2,3}(C))] by coloring all the vertices of N2(C) \N2,0(C) by α4, and col-

oring all the vertices of N2,0(C) by {α1, α2, α3} (this is reasonable by Lemma 3.5). Then

by coloring N3(C) with 3 colors used on G[N{1,2,3,4,5}(C)∪N{5,1,3}(C)∪N{5,1,2,3}(C)], we

have that χ(G) ≤ 5 + (2h− 5) = 2h by induction.
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We have shown that χ(G) ≤ 2h when Q 6= ∅. Next, we suppose that Q = ∅.

If N2(C) is adjacent to only isolated component of G[N{1,2,3,4,5}(C)], we see that

N3(C) = ∅ by the same argument as that used in Case 1, then we can color G[N{1,2,3,4,5}(C)]

with color set C2 such that all isolated components receive β1, and color N2(C) with

C1 ∪ C2 \ {β1} (this reasonable as χ(G[N2(C)]) ≤ 6 by Lemma 3.3. This together with φ

defined in (9) is certainly a 2h-coloring of G.

So, we suppose thatN2(C) is adjacent to some non-isolated components ofG[N{1,2,3,4,5}(C)],

and let S1 be the vertex set of such a component. Let S2 = N{1,2,3,4,5}(C)\S1, T1 =

N(S1) ∩ N
2(C), and T2 = N2(C)\T1. It is obvious that S1 is anticomplete to T2, and is

complete to T1 by Lemma 3.4.

Therefore, G[T1] is K3-free. Note that G[N2(C)] is connected by our assumption. To

avoid an induced P5 starting from T2 and terminating on C, each component of G[T2] is

dominated by some vertex of T1, and consequently G[T2] is K3-free too. We will show that

T2 is independent. (10)

If it is not the case, let Z be a non-isolated component of G[T2], let t1 ∈ T1 be a

vertex complete to Z, and s2 ∈ S2 be a vertex adjacent to Z. If s2 is not complete to

Z, let z1z2 be an edge of Z such that s2z1 ∈ E(G) and s2z2 6∈ E(G), then z2z1s2v1s1 is

an induced P5 for any vertex s1 ∈ S1, a contradiction. Therefore, s2 is complete to Z. If

s2t1 6∈ E(G), then for any vertices s1 ∈ S1 and z ∈ V (Z), C ′ = s1t1zs2v1s1 is a 5-hole with

N{1,2,3,4,5}(C
′) = ∅, a contradiction to (7). So, we have further that s2t1 ∈ E(G). But now,

we have a K1 + (K1 ∪K3) induced by {s2, t1, v1} together with any two adjacent vertices

of Z. Therefore, (10) holds.

Note that G[N{1,2,3,4,5}(C)] is (K1 ∪K3)-free and G[N3(C)] is K3-free by Lemmas 3.1

and 3.3, we see that χ(G[N{1,2,3,4,5}(C) ∪ N3(C)]) ≤ 2h − 5 by Theorems 1.2 and 1.4.

Since T2 is independent by (10), we have that χ(G[N2(C) ∪ N (2)(C) ∪ V (C)]) ≤ 5, and

so χ(G) ≤ 2h as desired. This completes the proof of Subsection 3.2, and also proves

Theorem 1.5.

Acknowledgement: We thank Dr. Karthick for pointing out an error in our

earlier version on the construction of some extremal graphs.
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