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Abstract

Let F} and F5 be two disjoint graphs. The union F} U F5 is a graph with vertex set
V(F1) UV (F3) and edge set E(Fy)UE(F3), and the join Fy + F» is a graph with vertex
set V(F1) U V(F,) and edge set E(Fy) U E(Fy) U{ay | x € V(Fy) and y € V(F2)}.
In this paper, we present a characterization to (Ps, K1 U K3)-free graphs, prove that
X(G) < 2w(G@)—1if G is (Ps, K1 UK3)-free. Based on this result, we further prove that
X(G) <max{2w(G), 15} if G is a (Ps, K1 + (K1 U K3))-free graph. We also construct a
(Ps, K1 + (K1 U K3))-free graph G with x(G) = 2w(G).
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AMS 2000 Subject Classifications: 05C15, 05C78

1 Introduction

All graphs considered in this paper are finite and simple. Let G be a graph. The vertex
set of a complete subgraph of G is called a clique of G, and the clique number w(G) of G
is the maximum size of cliques of G. We use P, and C}, to denote a path and a cycle on k
vertices respectively.

Let G and H be two vertex disjoint graphs. The union G U H is the graph with
V(GUH) =V(G)UV(H) and E(GUH) = E(G)UE(H). Similarly, the join G+ H is the
graph with V(G+H) = V(G)UV (H) and E(G+H) = E(G)UE(H)U{xy|for each pair x €
V(G) and y € V(H)}.

For a subset X C V(G), let G[X] denote the subgraph of G induced by X. A hole of
G is an induced cycle of length at least 4, and a k-hole is a hole of length k. A k-hole is
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said to be an odd (even) hole if k is odd (even). An antihole is the complement of some
hole. An odd (resp. even) antihole is defined analogously.

We say that G induces H if G has an induced subgraph isomorphic to H, and say that
G is H-free if G does not induce H. Let H be a family of graphs. We say that G is H-free
if G induces no member of H.

A coloring of GG is an assignment of colors to the vertices of G such that no two adjacent
vertices receive the same color. The minimum number of colors required to color G is called
the chromatic number of G, and is denoted by x(G). Obviously we have that x(G) > w(G).
However, determining the upper bound of the chromatic number of some family of graphs
G, especially, giving a function of w(G) to bound x(G) is generally very difficult. A family
G of graphs is said to be x-bounded if there is a function f such that x(G) < f(w(G))
for every G € G, and if such a function f does exist to G, then f is said to be a binding
function of G [16]. A graph G is said to be perfect if x(H) = w(H) for each induced
subgraph H. Thus the binding function for perfect graphs is f(x) = z. The famous Strong
Perfect Graph Theorem [§] states that a graph is perfect if and only if it is (odd hole, odd
antihole)-free. Erdés [13] showed that for any positive integers k and [, there exists a graph
G with x(G) > k and without cycles of length less than /. This result motivates the study
of the chromatic number of H-free graphs for some H. Gyarfas [16,[17], and Sumner [27]
independently, proposed the following conjecture.

Conjecture 1.1 [I727] For every tree T, T-free graphs are x-bounded.

Interested readers are referred to [20,23L25] for more information on Conjecture [L]
and related problems. Gyarfas [I7] proved that y(G) < (k— 1D)“D! for k > 4 if G is
Py-free and w(G) > 2. Then the upper bound was improved to (k — 2)“’(G)_1 by Gravier
et al. [18]. The problem of determining whether the class of P;-free graphs (¢t > 5) admits
a polynomial y-binding function remains open.

Problem 1.1 [2I] Are there polynomial functions fp, for k > 5 such that x(G) <
Ip.(w(Q)) for every Py-free graph G?

Since Py-free graphs are perfect, finding an optimal binding function for Ps-free graphs
attracts much attention. Esperet et al. [I4] proved that x(G) < 5 x 3¥(@)=3 for Ps-free
graphs.

Theorem 1.1 ( [14]) x(G) < 5-3“E)=3 for Ps-free graphs G with w(G) > 3.

This bound is sharp for w(G) = 3. In 2007, Choudum, Karthick and Shalu conjectured
that Ps-free graphs have a quadratic binding function.

Conjecture 1.2 [7] There is a constant ¢ such that x(G) < cw?(G) if G is Ps-free.



Conjecture has been verified for many classes of Ps-free graphs, and tight linear
binding functions are obtained for some (Ps, H)-free graphs with |V (H)| < 5, see [3H7,0-
M2/15,T9,21]. Very recently, Scott, Seymour and Spirkl [26] provided a near polynomial
binding function for Ps-free graphs stating that y(G) < w(G)!92%(&) if G is Ps-free.

Let F and H be two graphs. We say that F'is a blow up of H if F' can be obtained
from H by replacing each vertex with an independent set and then replacing each edge
with a complete bipartite graph. A 5-ring is a blow up of a 5-hole. In [27] (see also [14]),
Sumner characterized the structure of (Ps, K3)-free graphs.

Theorem 1.2 ( [27]) A connected (Ps, K3)-free graph is either bipartite or a 5-ring.

By Theorems [[LT] and [[L2, we have that each (Ps, Ky)-free graph is 5-colorable. The
graph K7+ (K1UK3) can be obtained from K, by adding a new vertex joining to one vertex
of the K. So, K4-free graphs must be (K7 + (K7 UK3))-free. Motivated by Theorem [IT] we
study the chromatic number of (K; + (K7 U K3))-free graphs. Among other results on the
chromatic number of Ps-free graphs, we proved in [11] that if G is (Ps, K1 + (K1 U K3))-free
then x(G) < 3w(G) + 11. In this paper, we present a characterization to (Ps, K1 U K3)-free
graphs, and prove that each (Ps, K1 U K3)-free graph is (2w(G) — 1)-colorable. Based on
this, we get a tight upper bound for the chromatic number of (Ps, K1 + (K7 U K3))-free
graphs.

Before introducing the main results of this paper, we need some new notations. Let
v € V(G), and let X be a subset of V(G). We use Nx(v) to denote the set of neighbors
of v in X. We say that v is complete to X if Nx(v) = X, and say that v is anticomplete
to X if Nx(v) = (. For two subsets X and Y of V(G), we say that X is complete to Y if
each vertex of X is complete to Y, say that X is anticomplete to Y if each vertex of X is
anticomplete to Y.

Let d(v, X) = mingex d(v, ) and call d(v, X) the distance of a vertex v to a subset X.
Let i be a positive integer and N4 (X) = {y € V(G)\X|d(y, X) = i}. We call N§(X) the
i-neighborhood of X and simply write N&(X) as Ng(X). If no confusion may occur, we
write N'(X) instead of N5 (X), and N*({v}) is denoted by N’(v) for short. A set D is said
to be a dominating set of G if V(G) = D U N(D).

Suppose that C' = vjvavgvavsvy is a 5-hole of G. Let M (C) =V (G) \ (V(C)UN(C)).
For a subset T' C {1,2,3,4,5}, we define

Np(C)={z |z € N(C), and v;x € E(G) if and only if i € T'}.

It is easy to check that for k € {1,2,3,4,5} and | =k + 2, Ny} 42 (C) = Ny 43 (C) and
Ny gr2,e+31(C) = Ny 41,433 (C), where the summation of subindex is taken modulo 5 (in
this paper, the summations of subindex are always taken modulo some integer h and we
always set h + 1 = 1). We define

N®(C) = Ur<i<sNjiiray (O),

N () = Ut<i<s (Vi it1,i+2) (C) U Ng ig1,i431(C)),
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and
NW(C) = Ur<i<sNiiv1iv2i3 (O).

Let C1 = x1xox3x42521 and Cy = y192y3y4ysy1 be two disjoint 5-cycles. Let F be the
graph obtained from C; U Cy by adding edges Ui<i<s{ZiVi, Ti¥i+1, TiYit3}. 1t is easy to
verify that each independent set of F has size at most 3, and x(F) = 4.

Figure 1: The graph F

The purpose of this paper is to prove the following

Theorem 1.3 Let G be a connected (Ps, K1 U K3)-free graph. Suppose that G has non-
dominating 5-holes. Then, for each non-dominating 5-hole C' = vivovzvgvsv1, V(G) can
be partitioned into 4 subsets V(C) UNP(C), NO(C), N1 2345)(C) and M(C) with the
following properties:
(a) GIV(C)UN®P(C)] is a blow up of C, and G[V(C) UNP(C)UNG(C)] is a blow
up of a subgraph of F,

(b) M(C)UV(C)UNB(C) is complete to Nij23.45(C), and

(¢) M(C) is anticomplete to V(C) U NP (C) but complete to N®(C), and M(C) is
independent if N'®)(C') # 0.

Theorem 1.4 If G is (P5, K1 U K3)-free then x(G) < 2w(G) — 1.

Theorem 1.5 If G is a (P5, K1 + (K1 U K3))-free graph then x(G) < max{2w(G), 15},
and there exists a (Ps, K1 + (K1 U K3))-free graph G with x(G) = 2w(Q).

The proof of Theorem is heavily relied on Theorem [[.4l The upper bound of
Theorem [[.4]is clearly tight as C5 and its blow up are extremal graphs. We can construct
a (Ps, K1+ (K1 UK3))-free graph G with x(G) = 2w(G). Let C' = vjvavsvvsv1 be a 5-hole.
Let H be the graph obtained from C by replacing each vertex v; of C' by a 5-hole C?, for
1 < i < 5, such that a vertex of C* and a vertex of C7 are adjacent in H if and only if v;
is adjacent to v; in C.

It is certain that H is (Ps, K1+ (K1 UK3))-free and w(H) = 4. We claim that x(H) = 8.
Without loss of generality, for each coloring ¢ of H, we can always suppose that ¢(V (C1)) =
{1,2,3} and ¢(V(C?)) = {4,5,6}. Let ¢(V(C?)) = {1,7,8}, o(V(C?*)) = {3,4,5} and
d(V(C?)) = {6,7,8}. We see that y(H) < 8. If x(H) < 7, then we may assume by
symmetry that ¢(V(C?)) = {1,2,7}, but now we only have five colors {3,4,5,6,7} that
can be used to color V(C4) U V/(C®), a contradiction. Therefore, x(H) = 8 = 2w(H).

The following lemma, which is devoted to the structure of Ps-free graphs, will be used
frequently in our proof. Here the summation of subindexes is taken modulo 5.



Lemma 1.1 ( [I1l[14]) Let G be a Ps-free graph with a 5-hole C = vivovsvsvsvy. Then

(a) fori€{1,2,3,4,5}, Niip(C) = Njip3(C) = 0, and Ny i403(C) U Ny ig1,i423(C) is
anticomplete to N%(C),

(b) if x € N(C) and N*(z) N N3(C) # 0 then x € Ny 9545(C), and

(c) for each vertex x € N*(C) and each component B of G[N3(C)], z is either complete
or anticomplete to B.

The next section is devoted to the proofs of Theorem [[.3]and Theorem [[.4l Theorem [I.5]

is proved in Sections 3.

2 (Ps, Kj U K3)-free graphs

This section is aimed to prove Theorem and Theorem [[4l In this section, we always
suppose that G is a (Ps, K1 U K3)-free graph. If G has a 5-hole, we always use C' =
v102V3V40V5V1 to denote a 5-hole in G. Recall that we define M (C) = V(G)\ (V(C)UN(C)).

Lemma 2.1 If G has a 5-hole, then the followings hold for each i € {1,2,...,5}.
(a) N{i,i+1,i+2}(c) = N{i,i+1,i+2,i+3}(c) =0.

(b) Both Ny;;12)(C) and Ny;iv1,i131(C) are independent, and Ny; 42y (C) is complete to
Nig1,i43)(C) U Npig1,i14y (O).

(¢) NO(C) is complete to Ngi,2,345(C), and NBN(C) is complete to M(C).

(d) Niiig1,i433(C) is anticomplete to Ny;;y3y(C) U N i43)(C). Moreover, if M(C) #
0, then Ny, iy1,i13)(C) ds anticomplete to Ny iy0:431(C) U Nyig1 43,441 (C), and is
either complete or anticomplete to Ng;_1;49y(C) U Nyjqy iy2,i+43(C) whenever both
N{i—l,i,i—l—Q}(C) and N{i+1,i+2,i+4}(c) are not empty

(e) Ifw(G[Np12345(C)]) =w(G)—2 or M(C) # 0 then GIV(C)UNP(C)] is a 5-ring.

Proof. Suppose that Ny; ;11401 (C)UN 4142431 (C) # 0 for some i € {1,2,...,5}. Let
v € Ngiv1,i42)(C) U Ngignigo,ir3)(C). Then G[{v,vip1,vit2,viya}t] = K1 U K3. Hence
(a) holds.

Next we prove (b). Suppose, for some 4, Ny; ;193(C) is not independent. Let uv be
an edge in G[Ny;;101(C)]. Then G[{u,v,v;,vi13}] = K1 U K3, a contradiction. Simi-
larly, if Ny;i41,i433(C) is not independent, let uv be an edge of G[Ny; i41,i131(C)], then
G[{u,v,v;,viy2}] = K1 U K3, which leads to a contradiction. If Ny; ;101 (C) is not complete
to Nyiy1,i43)(C) for some 4, choose u € Ny; ;101(C) and v € Ny 545, (C) with uv ¢ E(G),
then uwv;v;14v;13v is an induced P5 of G. A similar contradiction occurs if N{i7i+2}(0) is
not complete to N1 143 (C). Therefore, (b) holds.

If there exist u € Ny193451(C) and v € Ny; ;10 with uv ¢ E(G) for some i, then
G[{u,v,vi13,viy4}] = K1 U K3. If for some i, there exist u € M(C) and v € Ny 11,43}
such that uv € E(G), then G[{u,v,v;,viy1}] = K1 U K3. This proves (c).



If the first statement of (d) is not true, then we may choose u € Ny; ;11,43 (C) and v €
Nyiipay (C)UNgi11 433 (C) with uv € E(G) such that G[{u, v, v, viy2}] = K1UK3 when v €
Nyiipay(C), and that G[{u, v, vit1,viya}] = K1UK3 when v € Ny ;,33(C). Suppose that
M(C) # 0, and let = € M(C). Note that M(C) is complete to N3 (C) by the statement
(). If there exist u € Ny 41,131 (C) and v € Ny; 105431 (C) U Nyigq 543,443 (C) with uv €
E(G), then G[{u,v,vi4,7}] = K1 U K3 when v € Ny; i19,131(C), and G[{u,v,v;y2,7}] =
K1UK3 when v € Ny 43,443 (C). Supposethat Ng;_1;493(C) # 0 and Ny q 54944y (C) #
(. By symmetry, assume that u € Ny;;41,433(C) is adjacent to v € Ng_q;19)(C) and
not adjacent to w € N1 42443 (C). Then vw ¢ E(G) and G[{u,v,v;, w}] = K1 U K3, a
contradiction. Therefore, (d) holds.

By the statement (b), to prove that N?)(C) U V(C) induces a 5-ring, we only need to
check that Ny; ;1 0y(C) is anticomplete to Ny; 131 (C) U Niyo 141 (C).

By LemmallI(a), we observe that M (C') is anticomplete to N (CYUV (C). If M(C) #
0, then Ny; ;191 (C) must be anticomplete to Ny; ;133 (C)UN{; 49443 (C), otherwise a K1UK3
oceurs.

Finally, suppose that w(G[Ny 2345 (C)]) = w(G) — 2, and let K C Nyj 9345 (C) be
a clique of size w(G) — 2. Assume by symmetry that Ny ;101(C) is not anticomplete to
Nyig,i+a3(C). Let u € Ny ;401(C) and v € Nyjig;443(C) be an adjacent pair. Then K is
complete to {u,v,v;+2} by statement (c), and so G contains a clique of size w(G) + 1. This
leads to a contradiction and completes the proof of Lemma 211 |

From Lemma 2.1(a), we observe that
N(C) = N1 9345 (C) UNP(C)UNO(C),

and it follows from Lemma 2.I(d) that if M(C) # 0 and Ny 11,44(C) # 0 for each
1 <i <5, then N®)(C) is either independent or induces a 5-ring in G.

Proof of Theorem Suppose that G has a non-dominating 5-hole C' = v1v9v3v4v501,
that is, M(C) = V(G) \ (V(C)UN(C)) # 0. Let A1 = V(C)UNB(C), A, = NO)(C),
and Az = N12345;(C).

By Lemma 2.1I(b) and (d), we observe that G[A;] is a 5-ring which is a blow up of C,
and G[A; U A;] is a blow up of a subgraph of F.

By Lemma 2.T](c), we have that Ay is complete to As. To prove the second statement,
we only need to verify that Ag is complete to M (C'). If it is not the case, choose u € Az and
v € M(C) with wv € E(G), then G[{u,v,v1,v2}] = Kj U K3, a contradiction. Therefore,
(b) is true.

By Lemma [2](c), we observe that M (C') is anticomplete to A; and complete to As.
Suppose that Ay # (), and let x € Ny;;4q,43)(C) for some i € {1,2,3,4,5}. If the third
statement is not true then there must be an edge wv in G[M(C)| and so G[{u,v,viy2,2}| =
K, U K3. This leads to a contradiction and proves (c¢), and also completes the proof of
Theorem |



Now we turn to prove Theorem [[L4 The following two colorings will be used in the
proof of Theorem [1.4]
By Lemma 2.1](d), we can construct a 5-coloring 1 of G[V(C) U N(C)| — Ny1.2.34,53(C)

as below: )

(1) = Ni2,43(C) U Ny 2,43(C) U {ws},

Y~1(2) = N3 51(C) U Npg 3.5 (C){va},

Pp1(3) = Ni1,43(C) U Ny 413 (C) U {wa, 05}, (1)
¢7H(4) = Nig 5 (C) U Ny 5,23 (C) U {1},

¢71(5) = Np1,33(C) U Nis 153 (O0).

If M(C) # 0, it follows from Theorem [[3] that we can construct a 4-coloring ¢ of
G[V(C) U N(C)] — N{172’374’5}(C) as below:

(2)
¢71(4) = Nyy5.3(C).

Proof of Theorem [I.4l Let G be a connected (P5, K1 U K3)-free graph with w(G) = h.
Clearly the theorem holds when h = 1. If h = 2, then G is bipartite or a 5-ring by
Theorem and so x(G) < 3 = 2h — 1. Thus we assume that h > 3 and the theorem
holds for all graphs with clique number smaller than h.

If G does not have any 5-hole, then for an arbitrary vertex v, G — N(v) is bipartite
and w(G[N(v)]) < h — 1. Thus by induction x(G) < 2 + x(G[N(v)]) < 2+ (2(h —
1) — 1) = 2h — 1. Otherwise, let C' = vyv9vzvsvsv; be a 5-hole of G. It is certain that
W(G[N{1,2,3,45(C) U N ig1,i431(C)]) < h — 2 for each i € {1,2,3,4,5} as {v;,viq1} is
complete to N1 93453(C) U Ny 11,433 (C).

If Nj1234,51(C) = M(C) = 0, then x(G) < 5 < 2h—1 by the coloring ¢ defined in ().

If Nji2345(C) = 0 and M(C) # 0, then N®)(C) # 0, which implies that M(C)
is independent by Theorem [[3|c). It follows from the coloring ¢ defined in (2)) that
X(G) <5< 2h—1.

Suppose that N12345(C) # 0 and M(C) = 0. If W(G[Ny1234,5(C)]) < h — 3, then
X(G—=Nyi 2345 (C)) <5 by the coloring 1 defined in (), which implies that x(G) < x(G—
Ni12,3451(C)+x(G[Ng1,2,3451(C)]) < 5+(2(h—3)—1) < 2h—1 by induction. So, suppose
that w(G[Ny12,34,51(C)]) = b — 2. By Lemma 2I{d) and (e), we have that Ny 33(C) is
anticomplete to Ny 43(C) U Nyg 4,13 (C) U {va,v5}, and so we can modify the coloring v by
recoloring Ny 33(C) with 3, which implies that x(G — Ny 2345 (C) U Ng51.33(C)) < 4.
Now, we have that x(G) < X(G — Ny12345)(C) U Ng5133(C)) + X(G[N{12,345y(C) U
Nis13(C)]) <4+ (2(h —2) — 1) = 2h — 1 by induction.

Therefore, suppose that Ny 9345(C) # 0 and M(C) # 0. Thus, N @y uv(e)
induces a 5-ring by Lemma 2Ii(d). It is obvious that G[M(C)] is Ks-free, otherwise a
triangle of G[M (C')] together with any vertex of C' induces a K1UK3, and so x(G[M(C)]) <
3 by Theorem



If N®)(C) = 0, then x(G — Np,2,34,5(C)) = 3 as M(C) is anticomplete to N@()
by Lemma [[I[a), and so x(G) < 3+ (2(h —2) — 1) = 2h — 1 by induction. Thus, suppose
that N'®)(C) # (), which implies that M(C) is independent by Theorem [3(c). By the
coloring ¢ defined in (@), G — Ny19345,(C) U Nyy513(C) U M(C) is 3-colorable, and so
G — Ng1234,5}(C) U Ngy511(C) is 4-colorable. Since w(G[Nyi 234,51 (C) U Nygs513(C)]) <
h =2, we have X(G) <4+ x(G[Nj123.45}(C)UN513(C)]) <4+ (2(h—2) - 1) =2h -1
by induction. This completes the proof of Theorem [[41 |

3 (P, Ky + (K7 U Kj3))-free graphs

Before proving Theorem [[5], we first present several lemmas on the structure of (Ps, K1 +
(K1 U K3))-free graphs. From now on, we always suppose that G is a connected (Ps, K1 +
(K1 U K3))-free graph without clique cutset. For two subsets X and Y of V(G), we say
that X is adjacent to Y if N(X)NY # 0.

Let C' = vjvou3v4v5v; be a 5-hole of G. Recall that N®)(C) = Ur<i<s Ny i+ (C),
NO(C) = Ui<ics Niiig1ir2,481(C), and M(C) = V(G) \ (V(C) U N(C)). We further
define N(3’1)(C) = UlSiS5N{i7i+17i+2}(C)7 and N(3’2)(C) = U1§i§5N{i7i+17i+3}(C). By
Lemma [[Tla), we have

N(C) = Ng193.45(C) UNP(C)UNED () uNED (@) uND(0).

Lemma 3.1 ( [II]) Let C = vyvovzvgvsvy be a 5-hole of G, and T be a component of
G[N?*(C)]. Then the followings hold.

(a) For eachi € {1,2,3,4,5}, G[N(v;)] is (K1 U K3)-free, G[Ny; i10(C)] is K3-free, and
Niir1,i+2)(C) U Ngiii1,i431 (C) U Nigig1,i42,43y (C) s independent.

(b) If no vertex in N(C) dominates T, then there exist two non-adjacent vertices u and
v in N(C) such that both Np(u) and Np(v) are not empty.

Lemma 3.2 Let C = vivav3vavsv1 be a 5-hole of G, S be a component of G[Nyy 2345, (C)]
with w(S) > 2. Then for each i € {1,2,3,4,5}, the followings hold.

(@) Niiigoy(C)U Ny 41,423 (C) is complete to S, and Ny; ;49y(C) is independent.

(b) For each edge xy in S, no vertex of Ny; ii1,i4+3) (C)UN{; it1,i42,i+3) (C) is anticomplete
to {z,y}.
(¢) Nyiiv2y(C) is anticomplete to Ni;_1;i413(C) U Ngi—1,4,i423(C) UNg_14i41,i123(C)-

(d) x(G — Np2345(C)—M(C)) <5.

Proof. Suppose that, for some i € {1,2,3,4,5}, Ng; 1101 (C)UNy; i41,i423(C) has a vertex u
that is not complete to S. If u is anticomplete to S, then G[{u, v, w,v;, vi44}] = K1+ (K1 U
K3). Otherwise, there exists an edge, say vw in S, such that uv € F(G) and uw ¢ E(G).
Then G[{u,v,w,vi13,vi+4}] = K1 + (K7 U K3). Both are contradictions.



Suppose that Ny;;423(C) is not independent for some i € {1,2,3,4,5}. Choose an
edge xy in G[Ny; i491(C)], and let z be an arbitrary vertex of S. Then 2z € E(G) and
yz € E(G), and so G[{z,y, z,v;, vit3}] = K1 + (K1 U K3), a contradiction. Therefore, (a)
holds.

Let xy be an edge of S, and v € Ny; ;11,i43}(C) U Ny 11,042,433 (C). If vx ¢ E(G) and
vy ¢ E(G), then G[{v,x,y,vi+3,vi+4}] = K1 + (K1 U K3). Therefore, (b) holds.

Suppose that (c) is not true for some i € {1,2,3,4,5}. Let v € Ny ;19,(C) and
u € Nii—1,i413(C)UNG_14,i42) (C) UN(_15i41,i42) (C) such that uv € E(G). By (a) and
(b), we observe that there exists a vertex w € Nyj2345,(C) such that wu € E(G) and
wv € E(G), which implies that G[{v,u,w, v;,vix3}] = K1 + (K1 U K3). Therefore, (c) is
true.

By (a), (c) and Lemmal3.1}(a), we have that Ny; ;403 (C)UNgi_1 ;413 (C)UN{i—1 i1 (C)U
Nyiiz14,i41,i+2}(C) is independent for each i € {1,2,3,4,5}. By coloring {v;3}UN{; ;19 (C)U
Niic1,,i413(C) U Ngi_14,i401(C) U Ny 1,423 (C) with color 4, we get a 5-coloring of
G — Ni1234,51(C) — M(C). This proves (d), and completes the proof of Lemma 1

Lemma 3.3 [11)] Let C = vivouzvavsvy be a 5-hole of G. Then GIN3(C)] is Ks-free, and
N2(C) can be partition into two parts A and B such that both G[A] and G[B] are K3-free.

Lemma 3.4 Let C' = v1vavzvavsvy be a 5-hole of G, and S be a component of G[Nyy 2345, (C)]-
If N(S)NN%(C) # 0, then N(x) N N?(C) = N(y) N N?(C) for any x,y € S.

Proof. Suppose that N(S) N N?(C) # (. We apply induction on |S|. The lemma holds
trivially if |S| = 1. Suppose that |S| = k > 2, and the lemma holds on all components of
G[N{1,2,34,53(C)] of size less than k. There must be a vertex, say z, in S such that S —z
is connected, and N(S — x) N N2(C) # (). Let y be a neighbor of z in S. To prove the
lemma, we only need to verify that N(z) N N?(C) = N(y) N N?(C). Suppose that it is not
the case. Then, we may assume, without loss of generality, that u € N(x) N N%(C) and
u ¢ N(y) N N?(C), which implies that G[{z,y,u,v1,v2}] = K1 + (K1 U K3). This leads to
a contradiction and proves the lemma. |

Lemma 3.5 Let C = vyvv3v4v5v; be a 5-hole of G, and T be a component of GIN?(C)].
Suppose that N2 (C)UN@(C) # 0. Then

(a) T is a single vertex adjacent to Ny 2345)(C) if N(T) N NGE2(C)YUNB(C)) £
and w(G[Nf1,234,5(C)]) > 2, and

(b) T is Kz-free if N(T) N (NG2(C)UNW(C)) = 0.

Proof. Let Q = NG2A(C)uNW(C).

Firstly, we prove (a). Suppose that N(T) N Q # () and w(G[N{1 234,53 (C)]) > 2. Since
N(T)NQ # 0, we have that, for some i € {1,2,3,4,5}, Ng;ii1i43) U Njii1,i42,443) has a
vertex u that is complete to T', otherwise an induced Ps appears in G. By Lemma[3.2(b), u
has a neighbor, say v, in N¢; 93 45)(C). If v is anticomplete to T then G[{u, v, v;, vit1, 2} =



Ky + (K1 UKj3) for any vertex z € T. This proves that N(T') N Ny 2345, (C) # 0, that is,
T is adjacent to Ny 2345 (C).

Suppose that |V (T')| > 2, and let xy be an edge of T'. Since G is Ps-free, we have that,
for some 7 € {1,2,3,4,5}, Nyjiv1,i4+3}(C) U N it1,i42,i+33(C) has a vertex, say u, that is
complete to T'. Particularly, {ux,uy} C E(G). By LemmalB.2(b), we may choose a neighbor
v of uin Nyjo345(C). If {vz,vy} C E(G) then G[{u,v,vit4,2,y} = K1 + (K1 U K3).
Otherwise, we may assume by symmetry that ve ¢ E(G), then G[{u,v,v;,v;41,2}] =
K + (K7 U K3). Therefore, (a) holds.

Suppose to the contrary of (b) that N(T)NQ = () and T has a K3, say wjwowswi. Let
u be a vertex in @, and suppose that wvy,uvy € E(G) by symmetry. Since N(?”l)(C) is
anticomplete to N2(C') by Lemma [[Ia), we may choose a vertex, say x, in Ni1,2,34,5(C),
and let 2’/ be a neighbor of z in T. To avoid a Kj + (K1 U K3) on {u,v,vs,z,2'}, we
have that uz ¢ E(G). If x is complete to T, then G[{vi,w;, ws, ws,x}] = K1 + (K1 U K3).
Otherwise, there must be an edge y1y2 in T such that zy; € E(G) and xys ¢ E(G), and
so uv1xy1y2 is an induced Ps. This proves (b) and Lemma |

Let A be an antihole with V(A) = {v1,v9,--- ,vr}. We enumerate the vertices of A
cyclically such that v;v;11 ¢ E(G) and simply write A = vjvy - - - vx. Here the summations
of subindex are taken modulo k£ and we set £k + 1 = 1.

Suppose that G induces an antihole A = vjvy - v with k > 6. We use S(A) to denote
the set of vertices which are complete to A, and let T(A) = N(A)\S(A). Note that T'(A) is
not complete to A. For each i € {1,2,...,k}, we define T;(A) to be the subset of T'(A) such
that for each vertex x of T;(A), 7 is the minimum index with zv; € E(G) and zv,—; ¢ E(G).

Clearly, T(A) = Ui<i<iTi(A), and T;(A)NTj(A) = 0 if i # j. Since G is K1+ (K1 UK3)-
free, we have that G[S(A)] is K1 U Ks-free, and G[T;(A)] is K; U K3-free for each i €
{1,2,...,k}.

The following lemma was proved in [I1] without using the notations T;(A). Here we
present its short proof.

Lemma 3.6 Let G be a (P5,C5, K1 + (K1 U K3))-free graph, A = vivg--- v an antihole
of G with k > 6. Then T;(A) is independent for each i € {1,2,...,k}, and N*(A) = (.

Proof. Let i € {1,2,...,k}. Firstly, for each vertex v of T;(A),
VVj42 € E(G), (3)

as otherwise either vv;v;19v;_1v;41 is an induced P5; when vv; 41 & E(G) or vv;v;420;—10;+10
is a 5-hole when vv;1; € E(G).

Suppose that T;(A) is not independent. Let = and 2’ be two adjacent vertices of T;(A).
Then G[{vi_1,vi, vit2, z,2'}] = K1+ (K1 U K3) by @). Therefore, T;(A) is an independent
set.

Suppose that N2(A) # (. Let v be a vertex in N(A) that has a neighbor, say x, in
N2(A). If v € S(A) then G[{v,v1,v3,vs,2}] = K1+ (K1 UK3). Otherwise, we may assume
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that v € T1(A) by symmetry. By @), G[{v,v1,vs,v5, 2} = K7 + (K1 U K3) if vus € E(G),
and a P5 = 2vv1vsv9k41 appears if vvs € F(G). Therefore, N2(A) = 0. |

Proof of Theorem Let G be a {P5, K1 + (K1 U K3}-free graph with w(G) = h.
We may suppose that G is connected, contains no clique cutset, and is not perfect. Thus,
h > 2 as G must induce a 5-hole or an odd antihole with at least 7 vertices by the Strong
Perfect Graph Theorem [g].

When h € {2,3}, the theorem follows immediately from Theorems[[Tland 22l Suppose
that h > 4, and the theorem holds for all { P, K7+ (K;UK3}-free graphs with clique number
less than h.

Since G is Ps-free, it is certain that N*(S) = 0 for any subset S of V(G).

Let v = 2h — 5. We distinguish two cases depending on the existence of 5-holes in G,
and will use two color sets C; = {1, a2, a3, a4, a5} and Co = {B1, B2, - , B} to color G.

Firstly, suppose that G induces no 5-holes. Then, G must induce an antihole of size at
least 6. Let A = vqvg--- v, where k > 6, be an antihole of GG. Let S be the set of vertices
that are complete to A, and let T'= V(G)\(A U S). It is clear that G[S] is K; U K3-free.
By LemmaB.6] V(G) = AUSUT.

For integer ¢ € {1,2,...,k}, let T; be the subset of T such that for each vertex z of Tj,
i is the minimum index with zv; € E(G) and zv;,—; ¢ F(G). By Lemma0] 7; U{v;_1} is
an independent set.

If S # 0, then x(G[AUT]) < k by Lemma B8] and so x(G) < k+ (2(h—|5])—1) < 2h
by induction. Therefore, we suppose that S = ().

We further suppose that A has the least number of vertices under the assumption
that & > 6. Notices that % < h if k is even and % < hif kis odd. If k < 15, then
X(G) <k <15 by Lemma B8l If h > 4] then x(G) < 2[%4] < 2h. So, we suppose that
h=[5]>8

Since S = (), for each vertex v € T, there must exist an integer 7 such that vv; € E(G)
and vv;—1 € E(G). For integer i € {1,2,...,k}, let T; be the subset of T' such that for each
vertex x of Tj, 4 is the minimum index with zv; € F(G) and zv;,_; ¢ F(G). By Lemma[3.0]
T; U{v;—1} is an independent set.

If k is even, then by coloring the vertices in T; U{v;_1 } with color i, we get a 2h-coloring
of GG. Therefore, we suppose that k is odd.

Let v be a vertex in T; for some 1.

If vui1o € E(G), then G[{v,v;—1,v;,vi11,vi+2}] is a C5 or P5 depending on vv;y; €
E(G) or not. So, vvitg € E(G). We will show that

if {vv;,vv40} C E(G), then vv;41 € E(G) and vv;—9 & E(G). (4)

First suppose vv;1+1 ¢ E(G). If vvipq € E(G), then G[{v,v;,vi+1,vit2,vita}] = K1 +
(K1 UK3). If vvipg ¢ E(GQ), then G[{v,vit1,vit2,vi+3,vi44}] is a C5 or Ps depending
on vvi+3 € E(G) or not. Both are contradictions. This shows that vv,y; € E(G). If
vui—9 € E(G), then G[{v,v;—2,v;—1,v;,vi+2}] = K1 + (K1 U K3). Therefore, () holds.
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Without loss of generality, we suppose that {vvy,vve,vv3} C E(G) and vv, ¢ E(G).
By ) and by symmetry, vvi_1 ¢ E(G).

If vug ¢ E(G), then vvs ¢ E(G) by (@) and by symmetry, and hence vv; € E(G) for
all j € {6,...,k — 2} to avoid an induced Ky + (K7 U K3) on {v,v2,v4,v;,v}. But then
G[{v,vs,v6,...,vk_1}] is an antihole with less vertices, which contradicts the choice of A.
Therefore, vvy € E(G).

If vus ¢ E(G), then G[{v,v1,v2,v3,v4,v5,v;}] is an antihole with less vertices, which
is contradiction to the choice of A. So, vvs € E(G). Repeating this argument, we have
vvj € E(G) for all j € {1,2,...,k —3}.

If vop_o € E(G), then we have a clique of size at leat |%| + 1, which contradicts
h = |£|. Thus, vup_s ¢ E(G). Consequently, we have, by symmetry, that each vertex in
T is nonadjacent to exactly three consecutive vertices of A.

Suppose that there exist z1 € Ty and xp € Ty with z12, € E(G). Then, {z1,xx} is
complete to V(A) \ {vk, vk_1,Vk—2,vr_3}. Since k is odd, we have that {vy,vs,..., vp_4}
induces a K3, which together with {z1,z;} induces a K} 1. Therefore, we may suppose
by Symmetryzthat T; is anticomplete to T; 41 for any ¢ € {1,2,...,k}. Thus, G is a subgraph
of a blow up of A by Lemma [B:6 which implies x(G) = h + 1 < 2h.

This shows that Theorem holds if G’ does not induce 5-holes. From now on to the
end of this paper, we always assume that G induces a 5-hole, and

let C' = v1v2v3v4v501 be a 5-hole of G' that minimizes w(G[Nyy,2,3.4,5(C)]). (5)

Recall that we can partition N(C) into 5 subsets: N2 = Ut<i<sNyi,i+21(C), NG =
Ut<i<sNisit1,i024(C), NP = Uicics Ny 11,431 (C), N = Urcics Ny ig1it2,i483 (C),
and N{1,2,3,4,5}(C)-

By Lemma B3] N3(C) is K3-free, and N?(C) can be partitioned into two subsets each
of which induces a Kj3-free subgraph. Thus by Theorem [[2] we have that y(G[N?(C)]) < 6
and X(GIN3(C))) < 3.

By Lemma [B}a), we have that, for each i € {1,2,3,4,5}, G[Ny;;423(C)] is Ks-
free, and {viya} U Ngjiv1,i421(C) U Niii1,i433(C) U N iq1,i12,i+3y(C) is independent. If
G[N13(C)U Ny 4(C)] is not Ks-free, let zyzx be a triangle in G[N; 3(C) U N1 4(C)], then
Gl{vi,vs,2,y,2}] = K1 + (K7 U K3), a contradiction. So, we have by symmetry that
G[N13(C)UN;4(C)] and G[N24(C') U No5(C)] are both K3-free. Hence we may conclude
that x(G[V(C)UNGDUNEG2D UNE UN3(C)]) < 5, and x (GNP UNZ(C)]) <9 as N
is anticomplete to N%(C) by Lemma [Tl

If Ni193453(C) is independent, then x(G) < x(G[V(C) U NGO YNNG U NG U
N3(O)]) + x(GIN® U N2(C)) + X(G[N{1,2,3451(C)]) <5+9+1 =15 Hence, we may
assume that

2 <w(G[Np 2345 (C)]) Sw(G) —2=h—2.

Let Q = NGD UNG2 g N&),
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We claim that if Q # ) then
N?(C) is anticomplete to each non-isolated component of G[Ng1 2345 (C)].  (6)

Ifit is not the case, then let 2y be an edge of some non-isolated component of G[Ny; 2 3 45, (C)]-
By Lemma B4 N%(C) has a vertex, say u, complete to {z,y}. By Lemma B.2(b) and by
symmetry, ) has a vertex, say v, adjacent to x. Without loss of generality, we may as-
sume that {vvi,vve} C E(G). Thus G[{u,v,v1,v9,z}] = K7 + (K1 U K3), a contradiction.
Therefore, (@) holds.

3.1 Suppose that 2 < w(G [N 2345 (C)]) <h—3

In this case, we have that h > 5. Let w(G[Ny1,23451(C)]) =t. Note that by Lemma
X(G = N1 9345/(C) — N*(C) = N*(C)) < 5, and by Theorem LA x(G[Np1 2345 (C)]) <
2t — 1 as G[Ny1 9345 (C)] is K1 U K3-free.

If N2(C) =0, then x(G) < 5+ (2t — 1) < 2h by induction. Thus we may assume that
N2(C) # (), and without loss of generality, G[N?(C)] is connected.

Recall that x(G[Nyi234,53(C)]) < 2h — 7 by induction, and X(GIN*)(C)u V(C) U
N®)]) <6 by Lemma B3l

If Q = 0, then color V(C)UN@UN?(C) with C;U{B1} and color Nyj 93453 (C)UN3(C)
with Cy \ {51}. Thus, we obtain a 2h-coloring of G.

Therefore, we further suppose that @Q # 0.

Let N29(C) C N?(C) be the set of vertices anticomplete to Q. If ) is anticomplete
to N2(C), that is, N?(C) = N29(C), then N?(C) is anticomplete to all non-isolated
components of G[Ngj 2345 (C)] by @), which implies that N3(C) = . We can color
V(C)UN(C) with C;UC; such that all isolated vertices of G[ Ny 93 45} (C)] receive the same
color B1, and color N%(C') with C;UCo\ {31} (this is certainly reasonable as x(G[N?(C)]) < 6
by Lemma [B.3)).

Suppose that Q is adjacent to N2(C). By Lemma [B.5 each vertex of N2(C)\ N29(C)
is an isolated component of G[N?(C)]. Since N?9(C) is anticomplete to Q U (N2(C) \
N29(C)), by Lemma B2(d) and Lemma B3, we can color G — Nyj9345(C) — N3(C)
with C; U {f1}. Since w(G[Ng12345(C)])) < h— 3 and G[N?(C)] is Ks-free, we can
color Ny 9345 (C)U N3(C) with Ca \ {#1} by Theorems and [[4l Therefore, x(G) <
X(G = N2345(C) = N*(C)) + x(G[Np1 2,345y (C) U N*(C)]) < 2h. Thus when 2 <
w(G[Np1 23455 (C)]) < h =3, x(G) < 2h.

3.2 Suppose that w(G[Ng 2345 (C)]) =h —2
Now, suppose that w(G[Ny; 2345 (C)]) = h — 2. By (@), we have that
W(G[Ng1,2,34,5(C")]) = h — 2 for each 5-hole C” of G. (7)

Let S be a component of G[Nyy3345(C)] with w(S) =h — 2.
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By Lemma B2(a), N® UNGY is complete to S. Hence we have that
NG = and V(C) UNP(C) induces a 5-ring (8)

as otherwise we can find a clique of size at least w(G) + 1.
By Lemma B.2(d), we can define a 5-coloring ¢ on G — N1 5345 (C) — N*(C)— N3(C)
with color set C; as followsing:

¢~ (1) = {v1} U Np35,(C) U Npo 351 (C) U Nyg 3451 (O)

¢ () = {v2}(C) U Ny 13(C) U N3.4,13(C) U Ny 4 5,13 (C)

¢~ (ag) = {v3} U Ni5.93(C) U Nya5.01(C) U Npg51.93(C) 9)
¢~ (ay) = {va} U Np1 33(C) U N 1331 (C) U Nys 19,33 (O)

¢~ Has) = {v5} U N2 43(C) UNp12.41(C) U N 2.3.43(C).

If N2(C) = (), then by Theorem [[4, x(G) <5+ 2(h —2) — 1 = 2h as G[N1,2,34,5(C)]
is K1 U Ks-free.

Thus suppose that N?(C) # (), and without loss of generality, suppose that G[N?(C)]
is connected.

By @®), we have that N1 = and so Q = N&2 UN@. Let N29(C) C N?(C) be
the set of vertices anticomplete to Q.

We first suppose that @Q # (), and discuss two cases depending upon whether N2(C) is

adjacent to Q.
Case 1. Suppose that @ is anticomplete to N%(C). Then each component of G[N?(C)]
is K3-free by Lemma (3.5 and N?(C) is anticomplete to all non-isolated components of
G[N{1,2,34,53(C)] by (@). Consequently we have that G[Nyy 23451 (C)] has isolated com-
ponents (as N?(C) # () and also has non-isolated components (as w(G[Ny1 2345 (C)]) =
h—2>2). If N3(C) # 0, let ng € N3(C), ng € N?(C) be a neighbor of n3, s1 an isolated
component of G[Ny; 2345} (C)] with siny € E(G), and ss5 be an edge of some compo-
nent of G[Ny23453(C)], then ngnasivise is an induced Ps, a contradiction. Therefore,
N3(C) = 0.

Now, we can color G[Nyj 2345(C)] with color set C2 such that such that all isolated
vertices of G[Nyj 2345 (C)] receive the same color 81 € Ca, and color G[N?(C)] with the
colors in C;UCo\ {31} (this is reasonable as x(G[N?(C)]) < 6 by Lemma[3.3). This together
with the 5-coloring defined in (@) gives a 2h-coloring of G.

Case 2. Suppose that N?(C) is adjacent to Q. By Lemma 3.5 we have that each com-
ponent of G[N*°(C)] is K3-free, and each of the other components of G[N?(C)] is a sin-
gle vertex. Since w(G[Nyy1,23.451(C) U Nys51.31(C) U N5 1.23(C)]) = h — 2, we have that
X(G[Ng1,2,3.4,5) (C)UN51,3(C)UN5 1 9,33 (C)]) < 2h—5 by induction. Using the 5-coloring
¢ defined in (@), we can construct a 5-coloring of G[V (C)UN?(C)U(N(C)\ (N 2,345 (C)U
N51,3(C) UNg512.3(C))] by coloring all the vertices of N?(C)\ N*(C) by ay, and col-
oring all the vertices of N29(C) by {a1,az, a3} (this is reasonable by Lemma [B.H). Then
by coloring N3(C) with 3 colors used on G[N1,2,34,5(C) U N5.133(C) U Ng5.1231(C)], we
have that x(G) < 5+ (2h — 5) = 2h by induction.
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We have shown that x(G) < 2h when @ # (). Next, we suppose that @ = (.

If N2(C) is adjacent to only isolated component of G[N1,2,34,53(C)], we see that
N3(C) = () by the same argument as that used in Case 1, then we can color G[N1,2,34,5(C)]
with color set Co such that all isolated components receive 31, and color N2(C) with
C1UCs \ {B1} (this reasonable as x(G[N?(C)]) < 6 by Lemma B3l This together with ¢
defined in (@) is certainly a 2h-coloring of G.

So, we suppose that N2(C') is adjacent to some non-isolated components of G[Nf1,2,345(0)],
and let S; be the vertex set of such a component. Let Sy = Nyj2345(C)\S1, T1 =
N(S1) N N?(C), and Ty, = N?(C)\T}. It is obvious that S is anticomplete to T, and is
complete to T} by Lemma 3.4

Therefore, G[T}] is K3-free. Note that G[N?(C)] is connected by our assumption. To
avoid an induced Pj starting from 75 and terminating on C, each component of G[T3] is
dominated by some vertex of 77, and consequently G[T3] is K3-free too. We will show that

T5 is independent. (10)

If it is not the case, let Z be a non-isolated component of G[T»], let t; € T; be a
vertex complete to Z, and sy € S5 be a vertex adjacent to Z. If s5 is not complete to
Z, let z129 be an edge of Z such that syz; € F(G) and s9zo € E(G), then z921s9v181 is
an induced P; for any vertex sy € Sy, a contradiction. Therefore, so is complete to Z. If
sot1 € FE(G), then for any vertices s1 € S1 and 2z € V(Z), C' = s1t1252v181 is a 5-hole with
Np1,2,34,53(C") = 0, a contradiction to (). So, we have further that syt; € E(G). But now,
we have a K7 + (K1 U K3) induced by {ss,%1,v1} together with any two adjacent vertices
of Z. Therefore, ([I0) holds.

Note that G[N{j 234,53 (C)] is (K1 U K3)-free and G[N3(0)] is K3-free by Lemmas [B.1]
and B3] we see that x(G[Nyi23.45(C) UN?*(C)]) < 2h — 5 by Theorems and [[4]
Since Tj is independent by (), we have that y(G[N?(C)UN®(C)UV(C)]) < 5, and
so X(G) < 2h as desired. This completes the proof of Subsection 3.2, and also proves
Theorem |
Acknowledgement: We thank Dr. Karthick for pointing out an error in our
earlier version on the construction of some extremal graphs.
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