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Abstract

Let G be a graph embedded in a surface and let F be a set of even faces of G (faces bounded
by a cycle of even length). The resonance graph of G with respect to F, denoted by R(G;J), is a
graph such that its vertex set is the set of all perfect matchings of G and two vertices M; and M, are
adjacent to each other if and only if the symmetric difference M; & M is a cycle bounding some face
in &F. It has been shown that if G is a matching-covered plane bipartite graph, the resonance graph
of G with respect to the set of all inner faces is isomorphic to the covering graph of a distributive
lattice. It is evident that the resonance graph of a plane graph G with respect to an even-face set F
may not be the covering graph of a distributive lattice. In this paper, we show the resonance graph
of a graph G on a surface with respect to a given even-face set F can always be embedded into a
hypercube as an induced subgraph. Furthermore, we show that the Clar covering polynomial of G
with respect to F is equal to the cube polynomial of the resonance graph R(G;J), which generalizes

previous results on some subfamilies of plane graphs.
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1 Introduction

Unless stated otherwise, the graphs considered in this paper are simple and finite. Let G be a graph with
vertex set V(G) and edge set F(G). A perfect matching of G is a set of independent edges of G which
covers all vertices of G. In other words, the edge induced subgraph of a perfect matching is a spanning
1-regular subgraph, also called I-factor. Denote the set of all perfect matchings of a graph G by M(G).

A surface in this paper always means a closed surface which is a compact and connected 2-dimensional
manifold without boundary. An embedding of a graph G in a surface ¥ is an injective mapping which
maps G into the surface ¥ such that a vertex of G is mapped to a point and an edge is mapped to a simple
path connecting two points corresponding to two end-vertices of the edge. Let G be a graph embedded
in a surface X. For convenience, a face of G is defined as the closure of a connected component of ¥\G.
The boundary of a face f is denoted by df and the set of edges on the boundary of f is denoted by E(f).

An embedding of G is a 2-cell or cellular embedding if every face is homomorphic to a close disc. Note
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that, every connected graph admits a 2-cell embedding in a closed surface. A cellular embedding of G on
Y is a strong embedding (or closed 2-cell embedding) if the boundary of every face is a cycle. Denote the
set of all faces of a graph G on a surface by F(G). A face f of G is even if it is bounded by an even cycle
and a set of even faces is also called an even-face set. A cycle is a facial cycle of G if it is the boundary of
a face. If there is no confusion, a graph G on a surface always means an embedding of G in the surface,
and a face sometime means its boundary cycle.

Let G be a graph embedded in a surface ¥ with a perfect matching M. A cycle C of G is M-
alternating if the edges of C' appear alternately between M and E(G)\M. Moreover, a face f of G is
M -alternating if 0f is an M-alternating cycle. For a given set of even faces F C F(G), the resonance
graph of G with respect to F (or Z-transformation graph of G [27]), denoted by R(G;F), is a graph with
vertex set M(G) such that two vertices My and My are adjacent if and only if the symmetric difference
My & My = (M1 U M3)\ (M7 N Ms) is the boundary of a face f € F, i.e. E(f) = My ® Mo.

Resonance graph was first introduced for hexagonal systems (also called benzenoid systems) which
are plane bipartite graphs with only hexagons as inner faces in [I3], and reintroduced by Zhang, Guo and
Chen [27] in the name Z-transformation graph, and has been extensively studied for hexagonal systems
[15] 22| 23] 28]. Later, the concept was extended to all plane bipartite graphs by Lam and Zhang [16] 26]
and fullerenes [9, 25].

A graph G is elementary if the edges of G contained in a perfect matching induce a connected subgraph
(cf. [I1]). An elementary bipartite graph is also matching-covered (or 1-extendable), i.e., every edge is
contained in a perfect matching. It is known that a matching-covered graph is always 2-connected [20]. So
is an elementary bipartite graph. It has been shown in [31] that a plane bipartite graph G is elementary

if and only if each face boundary of G is an M-alternating cycle for some perfect matching M of G .

Theorem 1.1 (Lam and Zhang, [16]). Let G be a plane elementary bipartite graph and F be the set of
all inner faces of G. Then R(G;JF) is the covering graph of a distributive lattice.

The above result was also obtained independently by Propp [21I]. Similar operations on other combi-
natorial structures such as, spanning trees, orientations and flows have been discovered to have similar
properties [11} 21]. Moreover, such distributive lattice structure is also established on the set of all perfect
matchings of open-ended carbon nanotubes [24]. However, if G is not plane bipartite graph, the reso-
nance graph of G with respect to some set of even faces may not be the covering graph of a distributive
lattice (cf. [25]). It was conjectured in [25] that every connected component of the resonance graph of a
fullerene is a median graph and these graphs are a family of well-studied graphs (see [7,[8, [14]), containing
the covering graphs of distributive lattices. Median graphs are a subfamily of cubical graphs [11 12, [18],
which are defined as subgraphs of hypercubes, and have important applications in coding theory, data
transmission, and linguistics (cf. [12] [18]).

In this paper, we consider the resonance graphs of graphs embedded in a surface in a very general

manner. The following is one of the main results.

Theorem 1.2. Let G be a graph embedded in a surface and let F # F(G) be an even-face set. Then

every connected component of the resonance graph R(G;F) is an induced cubical graph.

A 2-matching of a graph G embedded in a surface is a spanning subgraph consisting of independent

edges and cycles. A Clar cover of G is a 2-matching in which every cycle is a facial cycle. It has been



evident that the enumeration of Clar covers of a molecular graph has physical meaning in chemistry and
statistical physics. The Clar covering polynomial or Zhang-Zhang polynomial of graph G embedded in a
surface is a polynomial used to enumerate all Clar covers of G. Zhang-Zhang polynomial was introduced
in [30] for hexagonal systems. A definition of Zhang-Zhang polynomial will be given in the next section.
Zhang et al. [29] demonstrate the equivalence between the Clar covering polynomial of a hexagonal system
and the cube polynomial of its resonance graph, which is further generalized to spherical hexagonal
systems by Berli¢ et al. [4] and to fullerenes [25]. In this paper, we show the equivalence between the
Zhang-Zhang polynomial of a graph G embedded in a surface and the cube polynomial of its resonance

graph as follows.

Theorem 1.3. Let G be a graph embedded in a surface and let F # F(G) be a set of even faces. Then
the Zhang-Zhang polynomial of G with respect to F is equal to the cube polynomial of the resonance graph
R(G; F).

The paper is organized as follows: some detailed definitions are given in Section 2, the proofs of
Theorem and Theorem [[.3] are given in Section 3 and Section 4, respectively. We conclude the paper

with some problems as Section 5.

2 Preliminaries

Let G be a graph and let u, v be two vertices of G. The distance between u and v, denoted by dg(u,v)
(or d(u,v) if there is no confusion) is the length of a shortest path joining u and v. A median of a triple
of vertices {u,v,w} of G is a vertex x that lies on a shortest (u,v)-path, on a shortest (u,w)-path and
on a shortest (v, w)-path. Note that x could be one vertex from {u,v,w}. A graph is a median graph if
every triple of vertices has a unique median. Median graphs were first introduced by Avann [2]. Median
graphs arise naturally in the study of ordered sets and distributive lattices. A lattice is a poset such that
any two elements have a greatest lower bound and a least upper bound. The covering graph of a lattice
L is a graph whose vertex set consists of all elements in £ and two vertices x and y are adjacent if and
only if either = covers y or y covers x. A distributive lattice is a lattice in which the operations of the
join and meet distribute over each other. It is known that the covering graph of a distributive lattice is
a median graph but not vice versa [10].

The n-dimensional hypercube @Q,, with n > 1, is the graph whose vertices are all binary strings of
length n and two vertices are adjacent if and only if their strings differ exactly in one position. For
convenience, define Qg9 to be the one-vertex graph. The cube polynomial of a graph G is defined as

follows,

C(G,x) = Zai(G):vi,

i>0
where «;(G) denotes the number of induced subgraphs of G that are isomorphic to the i-dimensional
hypercube. The cube polynomials of median graphs have been studied by Bresar, Klavzar and Skrekovski
7, 8].

Let H and G be two graphs. A function ¢ : V(H) — V(G) is called an embedding of H into G if £
is injective and, for any two vertices x,y € V(H), {(z)¢(y) € E(G) if zy € E(H). If such a function £

exists, we say that H can be embedded in G. In other words, H is a subgraph of G. Moreover, if ¢ is an



embedding such that for any two vertices z,y € V(H), {(z)¢(y) € E(G) if and only if zy € E(H), then
H can be embedded in G as an induced subgraph. An embedding ¢ of graph H into graph G is called
an isometric embedding if for any two vertices z,y € V(H) it holds dy(z,y) = dg(¢(z),£(y)). A graph
H is (induced) cubical if H can be embedded into @, for some integer n > 1 (as an induced subgraph),
and H is called a partial cube if H can be isometrically embedded into @,, for some integer n > 1. For
more information and properties on cubical graphs, readers may refer to [I, Bl [6) 12]. It holds that a
median graph is a partial cube (in fact, even stronger result is true, i.e. median graphs are retracts of

hypercubes, see [3]). Therefore, we have the nested relations for these interesting families of graphs:
{covering graphs of distributive lattices} C {median graphs} C {partial cubes} C

C {induced cubical graphs} C {cubical graphs}.

In the following, let G’ be a graph embedded in a surface ¥ and let f be a face bounded by a cycle
of G. If G has two perfect matchings M; and M, such that the symmetric difference M; & Ms is a
cycle which bounds face f, then we say that M; can be obtained from Ms by rotating the edges of f.
Therefore, two perfect matchings M; and My of G are adjacent in the resonance graph R(G; %) if and
only if M; can be obtained from Mj by rotating the edges of some face f € F. We sometimes also say
that edge My Ms corresponds to face f or face f corresponds to edge My Ms.

A Clar cover of G is a spanning subgraph S of G such that every component of S is either the
boundary of an even face or an edge. Let F C F(G) be an even-face set. The Zhang-Zhang polynomial
of G with respect to F (also called the Clar covering polynomial, see [30]) is defined as follows,

ZZ?(Ga I) = Z Zk(Ga ?)Ika
k>0
where 2 (G, F) is the number of Clar covers of G with exact k faces and all the k faces belong to F. Note
that zo(G, F) equals the number of of perfect matchings of G, i.e., the number of vertices of the resonance
graph R(G;J).

3 Resonance graphs and cubical graphs

Let G be a graph embedded in a surface and let F be a set of even faces of G such that F # F(G). In
this section, we investigate the resonance graph R(G;¥F) and show that every connected component of
R(G;J) is an induced cubical graph.

Lemma 3.1. Let G be a graph embedded in a surface and let F # F(G) be an even-face set. Assume that
C = MoM ... M;_1 My is a cycle of the resonance graph R(G;F). Let f; be the face of G corresponding
to the edge M;M;11 for i € {0,1,..,t — 1} where subscripts take modulo t. Then every face of G appears

an even number of times in the face sequence (fo, f1,.., ft—1)-

Proof. Let f be a face of G, and let §(f) be the number of times f appears in the face sequence
(fo, fis---, fi—1). It suffices to show that §(f) = 0 (mod 2). Since C = MoM; ... M;_1 My is a cy-
cle of R(G;J) and f; is the corresponding face of the edge M; M1, it follows that M; & M; 11 = E(f;)
for i € {0,1,....,t — 1}. So

E(fo) ® E(f1) ®...® E(fi-1) = ®;Zg(M; ® Mi11) =0 (1)



where all subscripts take modulo .

Let f and g be two faces of G such that E(f)NE(g) # 0, and let e € E(f)NE(g). Since e is contained
by only f and g, and the total number of faces in the sequence (fo, f1,..., ft—1) containing e is even by
(1), it follows that 6(f) 4+ d(¢g) = 0 (mod 2). So §(f) = d(g) (mod 2). Therefore, all faces f of G have
the same parity for §(f).

Note that F # F(G). So G has a face g ¢ F. Hence g does not appear in the face sequence. It follows
that §(g) = 0. Hence 6(f) = d(g) =0 (mod 2) for any face f of G. This completes the proof. O

The following proposition follows immediately from Lemma 311

Proposition 3.2. Let G be a graph embedded in a surface, and let F # F(G) be a set of even faces.
Then the resonance graph R(G;F) is bipartite.

Proof. Let C = MoM; ... M;_1My be a cycle of R(G;JF) and let f; be the face corresponding to the
edge M;M; 1 for i € {0,...,t — 1} (subscripts take modulo t). By Lemma B.1] every face f of G appears

an even number of times in the sequence (fo, f1,..., fi—1). So C is a cycle of even length. Therefore,
R(G;F) is a bipartite graph. O
fi M,
S f2 f2 S
Mooy 0B
G R(G; F(G))

Figure 1: A non-bipartite resonance graph where the double edges of G form M.

The above proposition shows that the resonance graph R(G;J) is bipartite if F # F(G). However,
if ¥ = F(G), then R(G;J) may not be bipartite. For example, the graph G on the left in Figure [l is
a plane graph with three faces f1, fo and f3. If F = {fi1, fa, f3}, then its resonance graph R(G;T) is a
triangle as shown on the right in Figure [l

It is known that a resonance graph R(G;F) may not be connected [25]. In the following, we focus on
a connected component H of R(G;¥), and always assume {f1,..., fr} to be the set of all the faces that
correspond to the edges of H, which is a subset of . Denote the set of all the edges of H that correspond
to the face f; by E; for i € {1,...,k}. In the rest of this section, H\ E; denotes the graph obtained from
H by deleting all the edges from F;.

Lemma 3.3. Let R(G;JF) be the resonance graph of a graph G on a surface with respect to a set of even
faces F # F(QG), and let H be a connected component of R(G;F). Assume that M1 My € E; where E;
is the set of all the edges of H corresponding to some face f; € F. Then My and My belong to different
components of H\F;.

Proof. Suppose to the contrary that My and M belong to the same component of H\ E;. Then H\F; has
a path P joining M7 and Ms. In other words, H has a path P joining M; and Ms such that E(P)NE; = (.



Let C = PU{M1M>} be a cycle of H. Then f appears exactly once in the face sequence corresponding
to the edges in the cycle C, which contradicts Lemma [3.1l The contradiction implies that M; and M,
belong to different components of H\E;. O

By Lemma [33] the graph H\E; is disconnected for any face f; of G which corresponds to the edges in
E;. Define the quotient graph H; of H with respect to f; to be a graph obtained from H by contracting all
edges in E(H)\F; and replacing any set of parallel edges by a single edge. So a vertex of H; corresponds

to a connected component of H\E;.

Lemma 3.4. Let R(G;F) be the resonance graph of a graph G on a surface with respect to an even-face
set F # F(G). Moreover, let f; be a face of G that corresponds to some edge of a connected component
H of R(G;F). Then the quotient graph 3(; with respect to f; is bipartite.

Proof. Suppose to the contrary that H; has an odd cycle. Then H has a cycle C' which contains an odd
number of edges corresponding to the face f;. In other words, the face f; appears an odd number of
times in the face sequence corresponding to edges of C, which contradicts Lemma [3.Il Therefore, H; is
bipartite. O

Recall that {f1,..., fr} is the set of all the faces that correspond to the edges of a connected component
H of R(G;F), and H; is the quotient graph of H with respect to the face f; for i € {1,...,k}. By
Lemma B4 let (A;, B;) be the bipartition of H;, and let My, and Mp, be the sets of perfect matchings
of G which are vertices of connected components of H\E; corresponding to vertices of H; in A; and B;,

respectively. Define a function ¢; : V(H) — {0, 1} as follows, for any M € V(H),

0; MEMAi
1; MEMBi.

Li(M) =

Further, define a function ¢ : V(H) — {0, 1}* such that, for any M € V(H),
(M) = (L(M), ..., £ (M)). (2)

Theorem 3.5. Let G be a graph embedded in a surface, and let H be a connected component of the
resonance graph R(G;F) of G with respect to an even-face set F # F(G). Then the function £: V(H) —
{0,1}F defines an embedding of H into a k-dimensional hypercube as an induced subgraph.

Proof. If G has no perfect matching, the result holds trivially. So, in the following, assume that G has a
perfect matching.

First, we show that the function ¢ : V(H) — {0, 1}* defined above is injective, i.e., for any My, My €
V(H), it holds that ¢(M;) # ¢(Ms) if My # My. Let P = M1X;...X;_1M; be a shortest path of H
between M; and Ms,. Moreover, let gi1,...,g: be the faces corresponding to the edges of P such that
g; corresponds to X,;_1X; for j € {1,...,¢t} (where Xo = M; and X; = M>). Note that, some faces g;
and g; may be the same face for different i,j € {1,...,¢}. If every face of G appears an even number of
times in the sequence (g1, ...,gs), then My = My ® E(g1) ® E(g2) ® ... ® FE(gs) = M, contradicting
that My # Ms. Therefore, there exists a face appearing an odd number of times in the face sequence
(91,--.,9s). Without loss of generality, assume the face is f;. By Lemma[B.3] two end-vertices of an edge

in E; belong to different connected components of H\FE;. Since the face f; appears an odd number of



times in the face sequence (g1, ..., ¢s), it follows that if we contract all edges of P not in E;, the resulting
walk P’ of H; joining the two vertices corresponding to the two components containing M; and Ms has
an odd number of edges. Note that H; is bipartite by Lemma[34l So one of M; and Ms belongs to M4,
and the other belongs to Mp,. So ¢;(M;) # £;(Msz). Therefore, (M) # £(My).

Next, we show that ¢ defines an embedding of H into a k-dimensional hypercube. It suffices to
show that for any edge M1M, € E(H), it holds that ¢(M;) and ¢(Ms) differ in exactly one position.
Assume that M;Ms corresponds to a face f; € F. In other words, the symmetric difference of two
perfect matchings M; and Ms is the boundary of the face f;. For any j € {1,...,k} and j # i, the
edge MM, € E(H\Ej) because M 1M, € E; and E; N Ej = (). Therefore My and M, belong to the
same connected component of H\E;. Hence ¢;(M7) = ¢;(Ms) for any j € {1,...,k}, j # i. Since
0(My) # £(My), it follows that £(M;) and £(Ms) differ in exactly one position, the i-th position. Hence,
¢ defines an embedding of H into a k-dimensional hypercube.

Finally, we are going to show that £ embeds H in a k-dimensional hypercube as an induced subgraph.
It suffices to show that, for any My, M, € V(H), MiM, € E(H) if £(M7) and ¢(Ms) differ in exactly
one position. Without loss of generality, assume that ¢;(M;) = 0 and ¢;(M2) = 1 but £;(M;) = ¢;(M>)
for any j € {1,...,k}\{i}. By the definition of the function ¢, we have My € My, and My € Mp,. Let P
be a path of H joining M; and M>. Then contract all edges of P not in F; and the resulting walk P’ of
JH; joins two vertices from different partitions of H;. So P’ has an odd number of edges. In other words,
|P N E;| is odd. But, for any j € {1,...,k} and j # i, contract all edges of P not in E; and the resulting
walk P” joins two vertices from the same partition of H;. So [P N E;| =0 (mod 2). Therefore, for any
e € E(G), the edge e is rotated an odd number of times along path P if e € E(f;), but an even number
of times if e ¢ E(f;). It follows that M; & My = E(f;), which implies MMy € E(G). This completes
the proof. O

Our main result, Theorem [[.2] follows directly from Theorem

4 Clar covers and the cube polynomial

In this section, we show that the Zhang-Zhang polynomial (or Clar covering polynomial) of a graph G on a
surface with respect to an even-face set F # F(G) is equal to the cube polynomial of the resonance graph
R(G;F), which generalizes the main results from papers [29, 4, 25] on benzenoid systems, nanotubes
(also called tubulenes), and fullerenes. The proof of the equivalence of two polynomials, our main result
Theorem [[3] combines ideas from [29, [4] 25] and [22]. However, this general setting of our result requires
some new ideas and additional insights into the role and structure of the resonance graph. The following

essential lemma generalizes a result of [29] originally proved for benzenoid systems.

Lemma 4.1. Let G be a graph embedded in a surface. If the resonance graph R(G;F) of G with respect
to an even-face set F # F(G) contains a 4-cycle MoMyMoMsMy, then Mo & My = My @& M3 and
My & M3 = My & Ms. Further, the two faces bounded by My @® My and My @& Ms are disjoint.

Proof. Since MyM;MsMs3Mj is a 4-cycle in the resonance graph R(G;F), let f; be the face of G such
that E(f;) = M; @ M;41 where ¢ € {0,1,2,3} and subscripts take modulo 4. Note that

E(fo) ® E(f1) ® E(f2) ©@ E(f3) = (Mo @ M) @ (My © M) @ (My @ M3) & (M3 @ Mo) = 0. (3)



Since M; # M, o, it follows that f; # fit+1, where i € {0,1,2,3} and subscripts take modulo 4. So
fi # fix1 and f; # fi_1. By @), every edge on f; appears on another face f; with j # i. It follows that
E(fi) CUjxE(f;) for i,j € {0,1,2,3}. If f; is distinct from f; for any j # ¢, then all these faces together
form a closed surface, which means that F(G) = F, contradicting F # F(G). Therefore, f; = fito for
1 € {0,1,2,3}. So it follows that fo = fo and f1 = f35. In other words, My ® M; = Ms & M3 and
Mo ® M3z = My © Mo.

To finish the proof, we need to show that the faces fy and f; are disjoint. Suppose to the contrary
that dfo N Of1 # 0. Note that fo # fi. So every component of dfy N df; is a path on at least two
vertices. Let v be an end vertex of some component of dfy N df;. Therefore, v is incident with three
edges e1,es and e3 such that e1,es € E(fp) but e1,e3 € E(f1). Since both fy and f; are M;-alternating,
it follows that e; € M;. Note that My = My @ E(fo). So e; ¢ My. Since f1 = f3, both fy and f3 = f1
are Mpy-alternating. Hence e; € My, contradicting e; ¢ My. This completes the proof. o

Remark. Lemma [£1] does not hold if F = F(G). For example, the resonance graph R(G;F(G)) of
the plane graph in Figure 2] (left) has a 4-cycle My MyMsM4M; which does not satisfy the property of
Lemma [A1] where F(G) = {f1, ..., fa}.

M,
fa
f2 f1
fi fa I3 M, M,
Ja f3
M;
G
R(G; F(G))

Figure 2: The resonance graph where the double edges of G form M;.

Now, we are going to prove Theorem

Proof of Theorem [I.3l Let G be a graph on a surface and let R(G;F) be the resonance graph of G
with respect to F. If G has no perfect matching, then the result holds trivially. So, in the following, we
always assume that G has a perfect matching.

For an nonnegative integer k, let Z(G,F) be the set of all Clar covers of G with exactly k faces such
that all these faces are included in F, and let Qi (R(G; F)) be the set of all labeled subgraphs of R(G; F)
that are isomorphic to the k-dimensional hypercube. For a Clar cover S € Zy(G; F), let My, Ma, ..., M,
be all the perfect matchings of G such that all faces in S are M;-alternating and all isolated edges of S
belong to M; for all i € {1,...,t}. Define a mapping

my : Zk(G,fF) — Qk(R(G;g'))

such that mg(S) is the subgraph of R(G;%F) induced by the vertex set {Mi, Ma,..., M;}. Since the
subgraph induced by {Mji,..., M;} is unique, the mapping my, is well-defined, which follows from the

following claim.



Claim 1. For each Clar cover S € Z;(G;F), the image my(S) € Qp(R(G; F)).

Proof of Claim 1. 1t is sufficient to show that my(S) is isomorphic to the k-dimensional hypercube Q.
Let fi1, fo,..., fx be the faces in the Clar cover S. Then {fi,..., fx} € F. So each f; with ¢ € {1,...,k}
is even and hence has two perfect matchings labelled by “0” and “1” respectively. For any vertex M
of my(S), let b(M) = (b1,ba,...,br), where b; = o if M N E(f;) is the perfect matching of 0f; with
label o € {0,1} for each i € {1,2,...,k}. It is obvious that b : V(my(S)) — V(Qy) is a bijection. For
M'" € V(my(S)), let b(M') = (b7,b5,...,b)). If M and M’ are adjacent in my(S) then M & M’ = E(f;)
for some i € {1,2,...,k}. Therefore, b; = b; for each j # i and b; # b}, which implies (b, bz, ..., bx) and
(01,05, ...,b}) are adjacent in Q. Conversely, if (b1, ba,...,b;) and (b}, b5,...,b)) are adjacent in Q, it
follows that M and M’ are adjacent in my(S). Hence b is an isomorphism between my(S) and Q. This

completes the proof of Claim 1.

In order to show ZZy (G, z) = C(R(G; F), z), it suffices to show that mapping my, is bijective for any
k. Note that in the case of k =0, a Clar cover S is a perfect matching of G and hence my(S) is a vertex
of R(G;J). So the mapping my is obviously bijective for £ = 0. In the following, assume that k is a
positive integer.

First, we show that my, is injective. Let S and S’ be two different Clar covers from Zy(G;F). If
SNF =5 NTF, then the isolated edges of S and S’ are different. So a perfect matching of S is different
from a perfect matching of S’. Therefore, the vertex sets of m(S) and m(S’) are disjoint. Hence
my(S) and my(S’) are disjoint induced subgraphs of R(G;F). So my(S) # my(S’). Now suppose that
SNF £S5 NTF. Note that |SNF| = [S"NTF| =k. So SNTF has a face f ¢ S’ NTF. Note that the faces
adjacent to f do not all belong to S’ since the faces in S’ are independent. Hence the face f contains
at least one edge e which does not belong to S’. From the definition of the function my, the edge e
does not belong to those perfect matchings of G that correspond to the vertices of my(S’). For any
perfect matching M corresponding to a vertex of my(S), the face f is M-alternating. Hence either M
or M’ = M @ E(f) contains e. Without loss of generality, assume that e € M’'. So M’ is not a vertex
of My (S”). Since both M and M’ are perfect matchings of S, both M and M’ are vertices of mg(S). So
my(S) # my(S’). This shows that my, is injective.

In the following, we are going to show that my is surjective. Let Q € Qx(R(G;¥)), isomorphic to a
k-dimensional hypercube. Then every vertex u of ) can be represented by a binary string (u1,us, ..., ug)
such that two vertices of ) are adjacent in @ if and only if their binary strings differ in precisely one
position. Label the vertices of Q by M° = (0,0,0,...,0), M! = (1,0,0,...,0), M? = (0,1,0,...,0), ...,
M* =(0,0,0,...,1). So M°M? is an edge of R(G;J) for every i € {1,...,k}. By definition of R(G;J),
the symmetric difference of perfect matchings M® and M? is the boundary of an even face in F, denoted
by fi;. Then we have a set of faces {f1,..., fx} C F. Note that f; # f; for i,5 € {1,...,k} and ¢ # j
since M® # M. Hence, all faces in {f1,... fx} are distinct. In order to show that my is surjective, it is
sufficient to show that G has a Clar cover S such that SNF = {f1,..., fi}.

Claim 2. All faces in {f1,..., fx} are pairwise disjoint.

Proof of Claim 2: Let f;, f; € {f1,..., fx} with i # j and let W be a vertex of @ having exactly two 1’s
which are in the i-th and j-th position. Then MOM*W M7 M? is a 4-cycle such that E(f;) = M° & M?
and E(f;) = M° & M7. Then by Lemma L] it follows that f; and f; are disjoint.



By Claim 2, we only need to show that G — UX_,V(f;) has a perfect matching M so that S =
M U{f1,..., fr} is a Clar cover of G. Consider the perfect matching M° corresponding to the vertex of
Q labelled by the string with k zero’s. Recall that E(f;) = M°® M* and hence every f; is M -alternating
for any i € {1,2,...,k}. Therefore, M := M°\(UX_, E(f;)) is a perfect matching of G — UX_,V(f;). So
S =MU{f1,..., fx} is a Clar cover of G such that my(S) = Q. This completes the proof of that my(G)
is surjective.

From the above, my is a bijection between the set of all Clar covers of G with k facial cycles and the
set of all labeled subgraphs isomorphic to the k-dimensional hypercube for any integer k. Therefore, we
have ZZ5(G,z) = C(R(G; ¥F),x) and this completes the proof of Theorem O

5 Concluding remarks

Let G be a graph embedded in a surface ¥ and let F be an even-face set. Assume that H is a connected

component of R(G;F). Let Gg be the subgraph of G induced by the faces corresponding to edges of H.

Proposition 5.1. Let G be a graph embedded in a surface ¥ and let F be an even-face set. If a perfect
matching M is a vertex of a connected component H of R(G;F), then M N E(Gpy) is a perfect matching

OfGH.

Proof. Let M be a perfect matching corresponding to a vertex of H. Suppose to the contrary that
MNE(Gpg) is not a perfect matching of Gi. Then Gy has a vertex v which is not covered by MNE(Gp).
Let f € F be a face containing v, which corresponds to an edge of H. Then f is M’-alternating
for some perfect matching M’ which is a vertex of H. Since H is connected, there is a path P of
H joining M and M’. Assume that the faces corresponding to the edges of P are fi,...,fx. Then
M=M@®E(fi)®...®E(fx). Note that E(f;) C E(Gg) for all i € {1,...,k}. So v is incident with an
edge in M N E(Gg), a contradiction. This completes the proof. O

For a connected component H of R(G;¥), if the union of all faces corresponding to edges of H is
homeomorphic to a closed disc, then G with the embedding inherited from the embedding from G in ¥
is a plane elementary bipartite graph. By Theorem [[LTl, we have the following proposition.

Proposition 5.2. Let G be a graph on a surface ¥ and F be an even-face set. Assume that H is a
connected component of R(G;F). If the union of all faces corresponding to edges of H is homeomorphic

to a closed disc, then H is the covering graph of a distributive lattice.

It has been evident in [25] that, if the subgraph induced by faces in F is non-bipartite, a connected
component of R(G;¥F) may not be the covering graph of a distributive lattice. But the condition in
Proposition 5.2 is not a necessary condition. It has been shown in [24] that a connected component of an
annulus graph (a plane graph excluding two faces) could be the covering graph of a distributive lattice. It
is natural to ask what is the necessary and sufficient condition for J so that every connected component
of R(G;¥) is the covering graph of a distributive lattice.

But so far, in all examples we have, a connected component of R(G;JF) is always a median graph.

Therefore, we risk the following conjecture.

Conjecture 5.3. Let G be a graph embedded in a surface and let F # F(G) be an even-face set. Then

every connected component of the resonance graph R(G;F) is a median graph.
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In order to prove the above conjecture or improve Theorem [[.2] some new idea different from what we
have in the proof of Theorem B.5lis required. Also, it would be interesting to show that one can embed

a connected component of R(G;¥F) into a hypercube as an isometric subgraph, which would be a weaker

result.
hs
h3 hs h3 h4
hy
hl hl “ h] hl hl

Figure 3: A plane graph G and the resonance graph R(G; ).

Note that, the embedding function ¢ given in Equation (2)) and used in the proof of Theorem is
not always an isometric embedding. For example, let G be a plane graph as shown on the left in Figure
Bl and let F be the set of all inner faces, i.e. F = {hy,...,h7}. Then the resonance graph R(G;J) is
the graph shown on the right in Figure Let E; be the set of edges of R(G;J) corresponding to the
face h; for i € {1,...,7}. Note that the resonance graph R(G;F)\E; for i € {1,...,6} has exactly two
connected components and the vertices u and v of R(G;J) belong to different connected components.
Therefore, the binary strings (u) and £(v) differ in the first six positions. But the subgraph R(G; F)\ E7;
has three connected components and vertices u and v belong to two components that are not connected
by any edge in the quotient graph. Therefore, the binary strings ¢(u) and ¢(v) have the same number in
the last position. So ¢(u) and £(v) differ exactly in six positions. However, the distance between u and v
in R(G;J) is eight. So the embedding ¢ is not isometric. Therefore, the proof of Theorem may not

be adapted to show that a connected component of R(G;¥) is a partial cube, nor a median graph.
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