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Weak Dynamic Coloring of Planar Graphs

Caroline Accurso1,5, Vitaliy Chernyshov2,5, Leaha Hand3,5, Sogol Jahanbekam2,4,5, and Paul Wenger2

Abstract

The k-weak-dynamic number of a graph G is the smallest number of colors we need to color the
vertices of G in such a way that each vertex v of degree d(v) sees at least min{k, d(v)} colors on its
neighborhood. We use reducible configurations and list coloring of graphs to prove that all planar graphs
have 3-weak-dynamic number at most 6.

Keywords: coloring of graphs and hypergraphs, planar graphs
MSC code: 05C15, 05C10.

1 Introduction

A proper coloring of G is a vertex coloring of G in which adjacent vertices receive different colors. The
chromatic number of G, written as χ(G), is the smallest number of colors needed to find a proper coloring
of G. For notation and definitions not defined here we refer the reader to [14].

A k-dynamic coloring of a graph G is a proper coloring of G in such a way that each vertex sees at least
min{d(v), k} colors in its neighborhood. The k-dynamic chromatic number of a graph G, written as χk(G),
is the smallest number of colors needed to find an k-dynamic coloring of G. Dynamic coloring of graphs was
first introduced by Montgomery in [11].

Montgomery [11] conjectured that χ2(G) ≤ χ(G) + 2, for all regular graphs G. Montgomery’s conjecture
was shown to be true for some families of graphs including bipartite regular graphs [1], claw-free regular
graphs [11], and regular graphs with diameter at most 2 and chromatic number at least 4 [2]. For all integers
k, Alishahi [2] provided a regular graph G with χ2(G) ≥ χ(G) + 1 and χ(G) = k. In [3], Alishahi proved
that χ2(G) ≤ 2χ(G) for all regular graphs G. Later Bowler et al. [6] disproved the Montgomery’s conjecture
by showing that Alishahi’s bound is best possible. For all integers n with n ≥ 2, they found a regular graph
G with χ(G) = n but χ2(G) = 2χ(G). Other upper bounds have also been determined for the k-dynamic
chromatic number of regular graphs and general graphs. See for example [3, 7, 9, 12].

In this paper we look at a weaker form of dynamic coloring in which we do not look at the constraint
that the coloring must be proper. We refer to this type of coloring as a weak-dynamic coloring. Therefore
a k-weak-dynamic coloring of a graph G is a coloring of the vertices of G in such a way that each vertex v

sees at least min{d(v), k} colors in its neighborhood. We define k-weak-dynamic number of G, written as
wdk(G), to be the smallest number of colors needed to obtain a k-weak-dynamic coloring of G.

By an observation in [9] we have χk(G) ≤ χ(G)wdk(G), because we can associate to each vertex of G an
ordered pair of colors in which the first color comes from a proper coloring of G and the second color comes
from a k-weak-dynamic coloring of G, to obtain a k-dynamic coloring of G.

A proper coloring of a hypergraph is a coloring of its vertices in such a way that each hyperedge sees at
least two different colors. For a graph G, let H be the hypergraph with vertex set V (G) whose edges are

1Department of Mathematics, DeSales University, Center Valley, PA ; ca3070@desales.edu.
2School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY; vac4329@mail.rit.edu,

sxjsma@rit.edu, pswsma@rit.edu.
3Department of Mathematics, Boise State University, Boise ID; leahahand@u.boisestate.edu.
4Research supported in part by NSF grant CMMI-1727743.
5Research supported in part by NSF grant REU-1659075.

1

http://arxiv.org/abs/1802.05953v1


the vertex neighborhoods in G. When δ(G) ≥ 2, any 2-weak-dynamic coloring of G corresponds to a proper
coloring of H and vice versa.

In this paper we study weak-dynamic coloring of planar graphs. Kim et al. [10] proved that χ2(G) ≤ 4 for
all planar graphs G with no C5-component. Note also that we can find a 2-weak-dynamic coloring of C5 using
only 3 colors. Therefore the inequality wd2(G) ≤ χ2(G) implies that all planar graphs have 2-weak-dynamic
coloring at most 4. We also know that the upper bound 4 for the 2-weak-dynamic coloring of planar graphs
is best possible, as wd2(G) = 4 when G is a subdivision of K4. Our aim in this paper is to obtain an upper
bound for wd3(G) when G is a planar graph. We prove the following theorem.

Theorem 1. Any planar graph G satisfies wd3(G) ≤ 6.

In order to prove Theorem 1, we first study an edge-minimal counterexample G to the statement of the
theorem. In Section 2 we provide some tools we need during our proofs. In Section 3 we determine some
configurations that do not exist in G; we call these reducible configurations. In Section 4 we use the reducible
configurations we obtain in Section 3 and the the tools we introduce in Section 2 to obtain a 3-weak-dynamic
coloring of G using 6 colors, which gives us a contradiction showing that no counterexample exists.

2 Preliminary Tools

A d-vertex in G is a vertex of degree d in G. A d+-vertex in G is a vertex of degree at least d in G and
a d−-vertex in G is a vertex of degree at most d in G. A d-neighbor of a vertex v in G is a neighbor of v
having degree d. Similarly, d+-neighbors of v have degree at least d, and d−-neighbors of v have degree at
most d. For a vertex v, NG(v) (or simply N(v)) is the set of neighbors of v in G. We define N2(v) to be the
set of vertices in G having a common neighbor with v. Let c be a vertex coloring of G and A ⊆ V (G). We
define c(A) to be the set of colors on vertices in A.

During the proof of Theorem 1, we correspond an edge-minimal counterexample graph G to an auxiliary
graph H having the same vertex set as G but with different set of edges. We build H in such a way that any
proper coloring of H corresponds to a 3-weak-dynamic coloring of G. Hence for the rest of the proof, our
aim would be to find a proper coloring of H using 6 colors. To fulfill the aim we use the following results on
proper coloring of graphs and on planar graphs.

Theorem 2 (Four-Color Theorem, Appel and Haken [4]). Any planar graph has chromatic number at most

4.

Theorem 3 (Wagner’s Theorem, Wagner [13]). A graph G is planar if and only if K3,3 and K5 are not

minors of G.

For each vertex v in a graph G, let L(v) denote a list of colors available at v. A list coloring of G is a
proper coloring f such that f(v) ∈ L(v) for each vertex v of G. We say that G is L-choosable if it has a list
coloring under L. We say that G is degree-choosable if G has a list coloring for all lists L with |L(v)| = d(v).
A graph G is 2-connected if it is connected and the removal of any vertex from G leaves it connected. A
block of G is a maximal 2-connected subgraph of G or a cut-edge. Not all graphs are degree-choosable. For
example, odd cycles and complete graphs are not degree choosable. The following result classifies all graphs
G that are degree-choosable.

Theorem 4 (Borodin [5] and Erdős, Rubin, and Taylor [8]). Let G be a connected graph having a block that

is not an odd cycle nor a complete graph. The graph G is degree-choosable.

Theorem 4 implies the following Corollary.

Corollary 1. Let G be a connected graph and L be a list assignment on the vertices x ∈ G such that

|L(x)| ≥ d(x) for all x. If there each vertex v ∈ V (G) such that |L(v)| > d(v), then G is L-choosable.
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Proof. Add a vertex u, an edge uv to G, and add a pendant even cycle C to u in this graph. Give all vertices
of C a list of size 3 and keep the list L on other vertices of G. Let H be the resulting graph and L′ be the
list we defined on vertices of H . Since C is a block of H , by Theorem 4 the graph H is L′-choosable, which
implies that G is L-choosable.

The following propositions are known results on proper list coloring of complete graphs and odd cycles.

Proposition 1. Let L be a list assignment on the vertices of the complete graph Kn with vertex set

{v1, . . . , vn} in such a way that |L(vi)| = n− 1 for each i and L(v1) 6= L(vk). The graph Kn is L-choosable.

Proof. First color v1 by a color in L(v1) − L(vn). Now choose appropriate colors for vertices v2, . . . , vn−1

from their lists respectively in such a way that adjacent vertices get different colors. At each step the vertex
vi must have a color different from the color of at most n− 2 other vertices. Having |L(vi)| = n− 1, we are
able to choose these colorings. Finally since the color of v1 does not belong to L(vn), it is enough to choose
a color for vn to be a color in L(vn) and different from the colors of v2, . . . , vn−1 to obtain a proper coloring
of Kn.

Proposition 2. Let L be a list assignment on the vertices of an odd cycle C with vertices v1, . . . , vk so that

|L(vi)| = 2 for each i ∈ [k] and L(v1) 6= L(vk). The cycle C is L-choosable.

Proof. First color v1 by a color in L(v1)−L(vk). Now choose appropriate colors for vertices v2, . . . , vk−1 from
their lists respectively in such a way that adjacent vertices get different colors. At each step the vertex vi
must have a color different from the color of vi−1. Having |L(vi)| = 2, we are able to choose these colorings.
Finally choose a color for vk to be a color in L(vk) and different from the color of vk−1 to obtain a proper
coloring of C.

The following Proposition is an excercie in [14].

Proposition 3. Let W be a closed walk of a graph G in such a way that no edge is repeated immediately in

W . The graph G contains a cycle.

Proof. We prove the assertion by applying induction on the length of W . Note that such a closed walk W

cannot have length 1 or 2. If W has length 3, then it is a triangle, which is a cycle, as desired. Now suppose
W is a walk of length at least 4 in which no edge is repeated immediately. If there is no vertex repetition
other than the first vertex, then W is a cycle, as desired. Hence suppose there is some other vertex repetition.
Let W ′ be the portion of W between the instances of such a repetition. In case we have several options for
W ′, we choose one to be the shortest such portion. The walk W ′ is a shorter closed walk than W and has
the property that no edge is repeated immediately, since W has this property. By the induction hypothesis,
the subgraph of G over the edges of W ′ has a cycle, and thus G contains a cycle.

3 Reducible Configurations

To prove Theorem 1 we show that no counterexample exists to the statement of the theorem. Therefore we
start by studying an edge-minimal counterexamples G of the theorem. If there are several such counterex-
amples, we choose G to be a graph with the smallest number of vertices.

During the proofs of the lemmas in this section, we look at a particular configuration that exists in G. We
use deletion of edges and vertices, and sometimes contracting edges to obtain a new graph H with smaller
number of edges than G. As a result, the graph H is not a counterexample any more. Hence wd3(H) ≤ 6.
To obtain a contradiction, we use a 3-weak-dynamic coloring of H to find a 3-weak-dynamic coloring of G
using 6 colors.

In a partial coloring of the vertices of a graph G, once a vertex has satisfied the requirements for a
3-weak-dynamic coloring (it sees at least three different colors in its neighborhood) we say the vertex is
satisfied.

In the following we determine a set of reducible configurations via different lemmas.
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Lemma 1. The edge-minimal graph G with wd3(G) > 6 satisfies δ(G) ≥ 2. Moreover G has no 2-vertex
with a 3−-neighbor.

v1 v2

Figure 1: A 2-vertex adjacent to a 3-vertex.

Proof. By the choice of G the graph G is connected. Therefore it has no isolated vertex. If G has a vertex u

of degree 1, then wd3(G−u) ≤ 6, as G−u has fewer edges than G. Therefore there exists a 3-weak-dynamic
coloring of G−u with colors {1, . . . , 6}. Extend this coloring by giving u a color in {1, . . . , 6} that is different
from two colors in the second neighborhood of u. This new coloring is a 3-weak-dynamic coloring of G, a
contradiction. Hence δ(G) ≥ 2.

Now we prove that G has no 2-vertex v1 having a 3−-neighbor v2. We prove d(v2) = 3 gives us a
contradiction. The proof of the case that d(v2) = 2 is similar. Hence we suppose d(v2) = 3. Let H =
G − {v1v2}. Since H has fewer edges than G, by the choice of G we have wd3(H) ≤ 6. Therefore, there
exists c : V (H) → {1, . . . , 6} that is a 3-weak-dynamic coloring of H . We recolor v1 and v2 in c to obtain a
3-weak-dynamic coloring of G.

Let u1 be the other neighbor of v1 in G and let u2 and u3 be the other neighbors of v2 in G. Choose
a color in {1, . . . , 6} for v1 that satisfies v2 and u1. Satisfying v2 and u1 requires at most four restrictions.
Therefore a desired color for v1 exists. Similarly, choose a color in {1, . . . , 6} for v2 to be different from c(u1)
and to satisfy u2 and u3. We have at most five restrictions for the coloring of v2. With six available colors,
a desired coloring for v2 exists. Hence this new coloring is a 3-weak-dynamic coloring of G with six colors,
which is a contradiction.

Lemma 2. The edge-minimal graph G with wd3(G) < 6 has no pair of adjacent vertices of degree at least 4.

Proof. Suppose uv ∈ E(G) with d(u), d(v) ≥ 4. By the choice of G, we have wd3(G − uv) ≤ 6. But any
3-weak-dynamic coloring of G−uv is also a 3-weak-dynamic coloring of G, so we obtain a contradiction.

Lemma 3. The edge-minimal graph G with wd3(G) > 6 does not contain distinct vertices v1, v2, v3, v4, v5, v6
such that v1v2, v2v3, v3v4, v2v5, v3v6 ∈ E(G), d(v1) ≥ 4, d(v4) ≥ 4 and d(v2) = d(v3) = d(v5) = d(v6) = 3

v1 v2 v3

v5 v6

v4

Figure 2: Adjacent 3-vertices with 3-neighbors and 4+-neighbors.

Proof. On the contrary suppose G contains this configuration. Let H = G − {v2, v3}. Since H has fewer
edges than G, we have wd3(H) ≤ 6. Thus there exists c : V (H) → {1, . . . , 6} that is a 3-weak-dynamic
coloring of H . We use c to find a 3-weak-dynamic coloring of G. To obtain this new coloring, we first recolor
c(v5) and c(v6) and then choose appropriate colors for v2 and v3.

Let N(v5) = {v2, v
′

5, v
′′

5} and N(v6) = {v3, v
′

6, v
′′

6 }. By Lemma 1, the vertices v′5, v
′′

5 , v
′

6, v
′′

6 have degree
at least 3 in G. We first redefine c(v5) to be a color in {1, . . . , 6} and different from c(v1), different from
two distinct colors on N(v′5), and different from two distinct colors on N(v′′5 ). Since we require at most five
restrictions for v5, such a coloring for v5 exists. Next, we redefine c(v6) to to be a color in {1, . . . , 6} and
different from c(v4), different from two distinct colors on N(v′6), and different from two distinct colors on
N(v′′6 ). Since we require at most five restrictions for v6, such a coloring for v6 exists. We have not colored
v2 and v3 yet, but we know that vertices v1 and v4 are already satisfied, because they have degree at least 3
in H and they are satisfied in H .
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We then choose c(v2) to be a color in {1, . . . , 6} different from c(v4), c(v6), c(v
′

5), c(v
′′

5 ). Since we have four
restrictions for c(v2), such a coloring for v2 exists. Last, we choose c(v3) to differ from c(v1), c(v5), c(v

′

6), c(v
′′

6 ).
Therefore we obtain a 3-weak-dynamic coloring of G using six colors, which is a contradiction.

Lemma 4. The edge-minimal graph G with wd3(G) > 6 does not contain a 3-face with vertices v1, v2, v3
adjacent to a 3-face with vertices v1, v3, v4, where d(v1) = d(v3) = 3.

v1

v2

v3

v4

Figure 3: Two adjacent triangles.

Proof. On the contrary suppose G contains this configuration. Contract the edge v1v3 into a single vertex
v1,3 and let H be the resulting graph. Since H has fewer edges than G, it follows that wd3(H) ≤ 6. Therefore
there exists c : V (H) → {1, . . . , 6} that is a 3-weak-dynamic coloring of H . To obtain a contradiction, we
use c to find a 3-weak-dynamic coloring of G. Note that the neighbors of the vertex v1,3 in H are v2 and v4,
therefore we know c(v2) 6= c(v4).

By Lemma 1, we have dG(v2) ≥ 3 and dG(v4) ≥ 3. First suppose that dG(v2) ≥ 4 and dG(v4) ≥ 4. In this
case each of the vertices v2 and v4 has degree at least 3 in H . Hence v2 sees at least three different colors on
its neighborhood in H . As a result, v2 sees at least two different colors on NH(v2)− {v1,3}. Let’s call these
two colors c1 and c2. Similarly, suppose c3 and c4 are two different colors that appear on NH(v4) − {v1,3}.
We use the coloring of c over V (H)− {v1,3} and then extend it to a 3-weak-dynamic coloring of G.

Choose c(v1) to be a color in {1, . . . , 6} − {c(v2), c(v4), c1, c2}. Then choose c(v3) to be a color in
{1, . . . , 6} − {c(v2), c(v4), c3, c4}. The coloring v1 is in such a way that the vertex v2 gets satisfied and the
coloring of v3 is picked in such a way that v4 becomes satisfied. Since the neighbors of v1 get different colors
and the neighbors of v3 get different colors, this extension is indeed a 3-weak-dynamic coloring of G.

Now suppose that dG(v2) = 3. Let c1 be the color of the neighbor of v2 in H that is different from v1,3.
We use the coloring of c over V (H)− {v1,3} and then extend it to a 3-weak-dynamic coloring of G.

Let c2 and c3 be colors on NH(v4) − v1,3. We choose c2 to be different from c3, when dG(v4) ≥ 4.
Otherwise c2 = c3. Now choose c(v3) to be a color in {1, . . . , 6}− {c(v2), c(v4), c1, c3, c4}. Then choose c(v1)
to be a color in {1, . . . , 6} − {c(v2), c(v3), c(v4), c1, c3}. These assignments satisfy the vertices v2 and v4.
Since the neighbors of v1 get different colors and the neighbors of v3 get different colors, this extension is a
3-weak-dynamic coloring of G.

Lemma 5. The edge-minimal graph G with wd3(G) > 6 does not contain a triangle with vertices v1, v2, v3,

where d(v1) = d(v2) = d(v3) = 3.

Proof. On the contrary suppose G contains this configuration. For each i, let NG(vi) − {v1, v2, v3} = {v′i}.
By Lemma 4 the vertices v′1, v

′

2, v
′

3 are distinct. Let H = G − {v1, v2, v3}. Since H has fewer edges than G,
we have wd3(H) ≤ 6. Thus there exists c : V (H) → {1, . . . , 6} that is a 3-weak-dynamic coloring of H . We
use c to find a 3-weak-dynamic coloring of G. By Lemma 1 we have dG(v

′

1) ≥ 3, dG(v
′

2) ≥ 3, and dG(v
′

3) ≥ 3.
We consider two cases.
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Case 1: dG(v
′

1) = dG(v
′

2) = dG(v
′

3) = 3. Let NG(v
′

i) − {vi} = {wi, w
′

i}. We recolor v′1, v
′

2, v
′

3 and find
appropriate colors for v1, v2, v3. We will call the set of vertices that we plan to color or recolor S.
Thus, S = {v1, v2, v3, v′1, v

′

2, v
′

3}.

Now we study the restrictions we must consider for the coloring on S to make sure that a 3-weak-
dynamic coloring of G is obtained. We must choose c(v′1) to be a color different from c(v2), c(v3), as
well as two distinct colors in NG(w1)−{v′1}, and also two distinct colors in NG(w

′

1)− {v′1}. Similarly,
c(v′2) must be a color different from c(v1), c(v3), and at most four other colors from vertices outside
of S, and c(v′3) must be a color different from c(v1), c(v2), and at most four other colors from vertices
outside of S.

We must also choose c(v1) to differ from c(v2), c(v3), c(v
′

2), c(v
′

3) and also different from c(w1) and c(w′

1).
Similarly, c(v2) must be different from c(v1), c(v3), c(v

′

1), c(v
′

3) and also different from c(w2), c(w
′

2), and
c(v3) must be different from c(v1), c(v2), c(v

′

1), c(v
′

2), c(w3), c(w
′

3).

For each vertex u in S let R(u) be the set of those colors we need to avoid for c(u) that come from
vertices outside S. By the above argument we have |R(u)| ≤ 2 when u = vi and |R(u)| ≤ 4 when
u = v′i for each i. For each vertex u in S define L(u) = {1, . . . , 6} −R(u).

Now we form a graph D that represents the dependencies among the vertices of S. D has vertex set
S. Two vertices of S are adjacent in D if we require them to have different colors.

First suppose that no pair of vertices in {v′1, v
′

2, v
′

3} have a common neighbor. See Figure 4. In this
case, in D each vi has degree 4 and each v′i has degree 2. Consider the list of colors L(u) we defined
on each vertex u of S. Each vertex u has a list of size at least its degree in D. Note that D has
one component which is 2-connected and it is not an odd cycle or a complete graph. Therefore by
Theorem 4 the graph D is L-choosable. Such a coloring for the vertices of S extends c over H − S to
a 3-weak-dynamic coloring of G.

If one or the three pair of vertices in {v′1, v
′

2, v
′

3} have common neighbors in G, then in D we will have
one, two, or the three edges v′1v

′

2, v
′

1v
′

3, v
′

2v
′

3 present, while still each vertex has a list of size at least its
degree. Similar to the above argument, Theorem 4 implies that D is L-choosable, as desired.

v1

v2v3

v′1

v′2v′3

(a) G

v1

v2v3

v′1

v′2v′3

(b) D(S)

Figure 4: A triangle with all 3-vertices.

Case 2: dG(v
′

1) ≥ 4.

Since dG(v
′

1) ≥ 4, we have dH(v′1) ≥ 3. Hence under the coloring c in H , the vertex v′1 sees at least
three different colors on its neighborhood. Therefore when trying to extend the coloring c to a 3-weak-
dynamic coloring of G, the vertex v′1 is already satisfied. In this case we keep the colors on all vertices
of H . We then choose c(v1), c(v2), and c(v3) to extend c to a 3-weak-dynamic coloring of G.

First choose c(v2) to be a color in {1, . . . , 6} that is different from c(v′1), c(v
′

3), and different from two
distinct colors on vertices in NG(v

′

2)−{v2}. We then choose c(v3) to be a color in {1, . . . , 6}, different

6



from c(v2) ,c(v′1), and c(v′2), and different from two distinct colors on vertices in NG(v
′

3)−{v3}. Finally,
considering the fact that v′1 is already satisfied, we choose c(v1) to be a color in {1, . . . , 6} and different
from c(v2), c(v3), c(v′1), and c(v′2). It is easy to see that this extension provides a 3-weak-dynamic
coloring of G, which is a contradiction.

Lemma 6. The edge-minimal graph G with wd3(G) > 6 contains no triangle with vertices v1, v2, v3 adjacent

to a triangle with vertices v1, v3, v4 such that d(v2) = d(v3) = d(v4) = 3 and d(v1) ≥ 4.

v1

v2

v3

v4
v5v6

Figure 5: Two adjacent triangles.

Proof. On the contrary suppose G contains this configuration. Let NG(v2) = {v1, v3, v5} and NG(v4) =
{v1, v3, v6}. Let H = G − {v3}. Since H has fewer edges than G, we have wd3(H) ≤ 6. Therefore, there
exists c : V (H) → {1, . . . , 6} that is a 3-weak-dynamic coloring of H . To find a 3-weak-dynamic coloring of
G, we recolor vertices v2 and v4 and find an appropriate color for v3.

Let c1 and c2 be two different colors on NH(v5)−{v2}, let c3 and c4 be two different colors on NH(v6)−
{v4}, and let c5 be a color on NH(v1)− {v2, v4}.

We first recolor v2 to be a color in {1, . . . , 6} − {c(v1), c1, c2, c5}. Now choose c(v3) to be a color in
{1, . . . , 6} − {c(v1), c(v2), c(v5), c(v6), c5}. Note that the vertex v1 becomes satisfied at this stage. Finally
recolor v4 to be a color in {1, . . . , 6} − {c(v1), c(v2), c3, c4}. Since each of the vertices v1, v2, v3, v4, v5, and
v6 become satisfied with these assignments of colors and since c satisfies all other vertices of H , we obtain a
3-weak-dynamic coloring of G.

Lemma 7. The edge-minimal graph G does not contain a triangle with vertices v1, v2, v3, where d(v1) =
d(v2) = 3 and d(v3) = 4 such that each of v1 and v2 has only one 4+-neighbor.

v6 v7

v4 v5

v1 v2

v3

Figure 6: A triangle with a vertex of degree 4.

Proof. On the contrary suppose, G contains this configuration. Let NG(v1) − {v2, v3} = {v4}, NG(v2) −
{v1, v3} = {v5}, and NG(v3)−{v1, v2} = {v6, v7}. Since each of v1 and v2 has only one 4+-neighbor, Lemma
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1 implies that dG(v4) = dG(v5) = 3. Moreover Lemma 2 implies that dG(v6) ≤ 3 and dG(v7) ≤ 3. We may
suppose that dG(v6) = dG(v7) = 3, because degree 3 vertices provide more restrictions on the coloring.

Contract the edge v1v2 to a single vertex v1,2 and let H be the resulting graph. Since H has fewer edges
than G, we have wd3(H) ≤ 6. Therefore there is c : V (H) → {1, ..., 6} that is a 3-weak-dynamic coloring
of H . We aim to reach a contradiction by using c to extend the coloring of H to G. Let c1 and c2 be two
distinct colors in c(NH(v4) − {v1,2}), and let c3 and c4 be two distinct colors in c(NH(v5) − {v1,2}). Note
that c(v6) 6= c(v7), because v3 has degree 3 in H .

We consider three cases.

Case 1: |{c1, c2, c(v6), c(v7), c(v3), c(v5)}| < 6.

In this case, we keep the coloring of c over all vertices of V (H) − {v1,2}. Choose c(v1) to be a color
in {1, . . . , 6} − {c1, c2, c(v6), c(v7), c(v3), c(v5)} that satisfies v2, v3, and v4. Then assign v2 a color in
{1, . . . , 6}−{c3, c4, c(v3), c(v4)} that satisfy v1 and v5. Therefore we obtain a 3-weak-dynamic coloring
of G with at most six colors.

Case 2: |{c3, c4, c(v6), c(v7), c(v3), c(v4)}| < 6.

In this case, we keep the coloring of c over all vertices of V (H) − {v1,2}. Choose c(v2) to be a color
in {1, . . . , 6} − {c3, c4, c(v6), c(v7), c(v3), c(v4)}, satisfying v1, v3, and v5. Then assign v1 a color in
{1, . . . , 6} − {c1, c2, c(v3), c(v5)} to satisfy v2 and v4. Therefore we obtain a 3-weak-dynamic coloring
of G with at most six colors.

Case 3: {c1, c2, c(v6), c(v7), c(v3), c(v5)} = {c3, c4, c(v6), c(v7), c(v3), c(v4)} = {1, . . . , 6}.

Therefore we have {c1, c2, c(v5)} = {c3, c4, c(v4)}. Since v4 and v5 have a common 3-neighbor in H , we
have c(v4) 6= c(v5). Hence we may suppose that c(v4) = c1, c(v5) = c3, and c2 = c4. As a result, we
may suppose that c1 = c(v4) = 1, c2 = c4 = 2, c3 = c(v5) = 3, c(v3) = 4, c(v6) = 5, and c(v7) = 6.

Let NG(v4) = {v8, v9} and let NG(v5) = {v10, v11}. Let c7 and c8 be two distinct colors on the
neighborhood of v8, and let c9 and c10 be two distinct colors on the neighborhood of v9. Now recolor
v4 to be a color in {1, . . . , 6} different from its current color (color 1) and different from {c7, c8, c9, c10}.
If the new color of v4 is not 4, then choose c(v2) to be equal to 1 to satisfy v1, v3, v5. Then assign v1
a color in {1, . . . , 6} − {1, 2, 3, 4} to satisfy v2 and v4. Therefore we obtain a 3-weak-dynamic coloring
of G with at most six colors.

Hence we may suppose we have recolored v4 and the new color is 4, i.e. c(v4) = 4. By a similar
argument as above, we may also recolor v5 and we can suppose that the new color on v5 is 4 too. Now
recolor v3 to be a color different from 4, different from two distinct colors in c(NG(v6) − {v3}), and
different from two distinct colors in c(NG(v7) − {v3}). Now consider the new coloring on v3, v4, and
v5.

If c(v3) 6= 3, then let c(v1) = 3 and choose c(v2) to be a color in {1, 5, 6} − {c(v3)}. If c(v3) = 3, then
let c(v1) = 5 and c(v2) = 1. In the both cases, c provides a 3-weak-dynamic coloring of G, which is a
contradiction.

Lemma 8. The edge minimal graph G does not contain a triangle with vertices v1, v2, v3, such that d(v1) =
d(v2) = 3, d(v3) ≥ 5, and each of v1 and v2 has only one 4+-neighbor.

Proof. On the contrary suppose G contains this configuration. Let H = G − {v1, v2}. Since H has fewer
edges than G, we have wd3(H) ≤ 6. Therefore there exists c : V (H) → {1, ..., 6} that is a 3-weak-dynamic
coloring of H . Let NG(v1) = {v2, v3, v4} and NG(v2) = {v1, v3, v5}. Since dG(v4) ≤ 3 and dG(v5) ≤ 3,
Lemma 1 implies that d(v4) = d(v5) = 3. Fix the coloring c over the vertices V (G) − {v1, v2, v4, v5}. We
recolor v4 and v5 and then find appropriate colors for v1 and v2 to obtain a 3-weak-dynamic coloring of G.
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v1 v2

v3

v4 v5

Figure 7: A triangle with a vertex of degree at least 5.

Note that v3 was satisfied by the coloring of H since dH(v3) ≥ 3. Therefore, when we color v1 and v2, the
neighbors of v3 do not create any dependencies for them.

We begin by recoloring v4 and v5. We have d(v4) = d(v5) = 3 and therefore, by the coloring of H , we
know that v4 must avoid two colors from the neighborhood of each vertex in N(v4)− {v1}. Additionally v4
must avoid c(v3). Therefore we have only five dependencies on v4 and we are able to choose an appropriate
color for v4 in {1, . . . , 6}. Similarly we have that v5 must avoid at most five colors. Therefore we can recolor
v5 as well.

Now choose c(v1) to be a color in {1, . . . , 6}, different from c(v3) and c(v5), and also different from the
colors of the two vertices in NG(v4) − {v1}. Finally choose c(v2) to be a color in {1, . . . , 6}, different from
c(v3) and c(v4), and also different from the colors of the two vertices in NG(v5)−{v2}. This new coloring is
a 3-weak-dynamic coloring of G, a contradiction.

Lemma 9. The edge-minimal graph G with wd3(G) > 6 contains no cycle C with vertices v1, . . . , vk such

that d(v1) = . . . = d(vk) = 3, and

1. when k is odd, a vertex in {v1, . . . , vk} has no 4+-neighbor, and

2. when k is even, a vertex in {v1, v3, . . . , vk−1} and a vertex in {v2, v4, . . . , vk} both have no 4+-neighbor.

Proof. On the contrary, suppose G contains such a configuration C. We may choose C to be the shortest
such configuration. Hence C has no chord. For each i, let v′i be the neighbor of vi outside C. Note
v′1, . . . , v

′

k are not necessarily distinct vertices, but they are distinct from v1, . . . , vk because C has no chord.
Let H = G − {v1, . . . , vk}. Since H has fewer edges than G, we have wd3(H) ≤ 6. Thus there exists
c : V (H) → {1, . . . , 6} that is a 3-weak-dynamic coloring of H . To obtain a contradiction, we use c to find a
3-weak-dynamic coloring of G.

By Lemma 1 all the vertices v′1, . . . , v
′

k have degree at least 3 in G. By the structure of C, not all vertices
in {v′1, . . . , v

′

k} have degree at least 4. Hence we may suppose that when k is odd, d(v′1) = 3, and when k is
even, d(v′1) = d(v′2) = 3. The proof of the remaining cases is very similar.

Let S = {v1, . . . , vk}. We aim to extend the coloring c to a 3-weak-dynamic coloring of G by choosing
appropriate colors for the vertices in S. Now we study the restrictions we must consider for the coloring on
S to make sure that a 3-weak-dynamic coloring of G is obtained. Let i ∈ {1, . . . , k}. If v′i appears only once
in the multiset {v′1, . . . , v

′

k}, then we choose c(vi) to be different from c(vi+2), c(vi−2), c(v
′

i+1), c(v
′

i−1) as well
as at most two distinct colors in NH(v′i).

If v′i appears twice in the multiset {v′1, . . . , v
′

k}, then in G the vertex v′i is adjacent to two vertices
of C. As a result we choose the color of vi to be different from a color in NH(v′i) and different from
c(vi+2), c(vi−2), c(v

′

i+1), c(v
′

i−1), and different from the color of an additional vertex in C (the vertex vj such
that v′i = v′j).

For any vertex x that appears at least three times in the multiset {v′1, . . . , v
′

k}, choose Sx to consist of
three indices j1, j2, j3 such that x = v′j1 = v′j2 = v′j3 . Then if we choose the colors of the vertices vj1 , vj2 , vj3
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to be different, the vertex x becomes satisfied in G. Therefore if v′i appears three or more times in the
multiset {v′1, . . . , v

′

k}, then we choose the color of vi to be different from c(vi+1), c(vi−2), c(v
′

i+1), c(v
′

i−1) and
moreover if i ∈ Sv′

i
choose c(vi) to be also different from the color of two other vertices in C (the two vertices

other than vi whose indices belong to Sv′

i
). Note that by the way we aim to choose colors for the vertices

v1, . . . , vk, if this extension exists, all the vertices v1, . . . , vk, v
′

1, . . . , v
′

k become satisfied.
Now we form a graph D that represents the dependencies among the vertices of S. The graph D has

vertex set S, and two vertices of S are adjacent in D if we require their colors to be different. For each
vertex w in S, let R(w) be the set of those colors we need to avoid for c(w) that come from vertices outside
of S. Define L(w) = {1, . . . , 6}−R(w). By the above argument each vertex of S has at most six restrictions,
hence |L(w)| is at least the degree of w in D for all w ∈ S. It is enough to show that D is L-choosable,
because then the coloring of vertices of D can be used on the corresponding vertices in G to extend c to a
3-weak-dynamic coloring of G.

In D each vertex vi is adjacent to vi−2, vi+2. When v′i appears more than once in the multiset {v′1, . . . , v
′

k},
the vertex vi might have other neighbors in D as well. As a result when k is odd, D has one component
which is Hamiltonian, and when k is even, D has at most two components.

By Lemma 5, we have k 6= 3. When k = 4 each of the vertices v1, . . . , v4 has at most five restrictions,
which makes their lists larger than their degrees. By Corollary 1, D is L-choosable in this case. Hence
suppose k ≥ 5.

First suppose that D is 2-connected. If D is not a complete graph, an odd cycle, if D has a vertex u with
|L(u)| > dD(u), or if not all vertices of D have the same lists, then by Theorem 4, Corollary 1, Proposition 1,
and Proposition 2 the graph D is L-choosable, as desired. Hence suppose D is an odd cycle or a complete
graph, all its lists are the same, and have size equal to the degrees of the vertices in D. Recall that vertex v′1
has degree 3 in G. Thus the degree of v′1 in H is at most 2. Therefore we can recolor v′1 in H by another color
in such a way that the coloring on H stays 3-weak-dynamic. Let c∗ be the new 3-weak-dynamic coloring of
H . Now repeat the above argument over the coloring c∗ of H .

Since |L(vi)| = dD(vi) for all i, we have v′i+1 6= v′i+1 (otherwise vi has at most five restrictions). Moreover
the choice of C and Lemma 5 imply that v′1 appears at most once in the multiset {v′1, . . . , v

′

k}. Hence by
moving from the coloring c to the coloring c∗, the lists of the vertices v2 and vk change to another list,
while the lists on other vertices stay as before. Therefore not all the lists are the same now. As a result, by
Corollary 1 and Propositions 1 and 2, the graph D is L-choosable, as desired.

Recall that when k is odd, D is Hamiltonian. Hence for the case that k is odd, or k is even but D is
2-connected, the above argument shows that D is L-choosable. Now suppose that k is even and D is not
2-connected. The graph D contains at most two components.

If D has exactly two components C1 and C2, then vertices v1 and v2 belong to different components of D,
because we know that v1v3 . . . vk−1v1 and v2v4 . . . vkv2 are cycles in D. Moreover each of the components is
2-connected, because they are Himiltonian. Since v′1 and v′2 have degree at most 2 in H , a similar argument
as the one we applied above can be applied here independently for C1 and C2 to extend the coloring c (and
change it if necessary) to a 3-weak-dynamic coloring of G.

Hence suppose D is connected, but is not 2-connected. Therefore D has two blocks, one with vertices of
odd indices, say B1, and one with vertices of even indices, say B2. Therefore D has a cut-vertex v. We may
suppose that v belongs to B1.

Now choose colors for vertices of B2 from their lists in such a way that a proper coloring for B2 is
obtained. This is possible because all vertices of B2 have lists of size at least their degrees and at least one
vertex of B2 (the neighbor(s) of v in B2) has a list of size one more than its degree in B2. Note that v is the
only vertex of B1 that has a neighbor in B2, since otherwise v cannot be a cut-vertex of D. Now redefine
L(v) by removing from it the colors that are already picked for the neighbor(s) of v in B2. Now consider the
new list assignment L over the vertices of B1. Each vertex has a list of size at least its degree in B1, and B1

is 2-connected. If B1 is not a complete graph or odd cycle (Theorem 4), if B1 is a complete graph or odd
cycle but the lists on its vertices are not identical (Corollary 1), or if B1 is a complete graph or odd cycle
but it has a vertex u with |L(u)| > dB1

(u) (Propositions 1 and 2), then B1 is L-choosable, as desired.
Hence suppose B1 is a complete graph or odd cycle, and the lists on the vertices of B1 are identical and
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have size equal to the degrees of vertices in B1. Recall that we supposed dG(v
′

2) = 3. Hence in H the vertex
v′2 has degree at most 2. Therefore we can recolor this vertex using a color in {1, . . . , 6} by a different color
in such a way that the new coloring c∗ is still a 3-weak-dynamic coloring of H . Now repeat the same process
as above on defining a list L′ on the vertices of D, but using coloring c∗ in place of color c.

The vertex v′2 appears only once in the multiset {v′1, . . . , v
′

k}, because if v′2 = v′4 or v′2 = v′k, then the
vertex v3 or the vertex vk−1 have lists of size larger than their degrees in D, which is not accepted. If v′2 = v′j
for some j 6∈ {4, k − 1}, then a configuration smaller than C exists in G, which is also not accepted by the
choice of C.

Note that the only difference between colorings c and c∗ is on the color of vertex v′2. By the argument
in the above paragraph, only the list of vertices v1 and v3 are affected by the color of the vertex v′2. Hence
the only difference between L and L′ is on the lists of vertices v1 and v3. Therefore the vertices of B2 get
the same colors as before, because for these vertices L and L′ are the same. Now redefine L′(v) by removing
from it the color of neighbors of v in B2. Now we try to color the vertices of B1 using the list assignment
L′. But exactly two vertices of B1 (the vertices v1 and v3) have different lists than before. Moreover k ≥ 5
implies that B1 has at least three vertices. Therefore not all lists on the vertices of B1 are now the same.
Hence by Corollary 1, Proposition 1, and Proposition 2, B1 is L′-choosable, as desired.

Lemma 10. The edge-minimal graph G with wd3(G) > 6 contains no cycle C with vertices v1, . . . , vk such

that d(v1) = . . . = d(vk) = 3.

Proof. On the contrary suppose G contains such a configuration C. We may choose C to be the shortest
cycle in G that forms this configuration. Therefore C has no chord. For each i, let v′i be the neighbor of vi
outside C. Hence, while v′1, . . . v

′

k are not necessarily distinct vertices, by the choice of C they are distinct
from v1, . . . , vk. By Lemmas 5, 8, and 9, we have v′i 6= v′i+1 for all i. By Lemma 3, d(v′i) ≥ 4 and d(v′i+1) ≥ 4
do not simultaneously happen for all i. Therefore by Lemma 9, k is even. Moreover by Lemma 9, all vertices
in {v′1, v

′

3, . . . , v
′

k−1
} or all vertices in {v′2, v

′

4, . . . , v
′

k} have degree at least 4 in G. By symmetry, suppose all
vertices in {v′1, v

′

3, . . . , v
′

k−1} have degree at least 4 in G. As a result by Lemmas 1 and 3, all vertices in
{v′2, v

′

4, . . . , v
′

k} have degree 3 in G.
Let H = G − {v1, . . . , vk}. Let H ′ be the graph obtained from H by identifying vertices v′1 and v′3 in

H into a single vertex v′1,3. Note that H ′ is still planar and has fewer edges than G. Therefore we have
wd3(H

′) ≤ 6. Thus there exists c : V (H ′) → {1, . . . , 6} that is a 3-weak-dynamic coloring of H . Now give
each vertex v in H the color its corresponding vertex in H ′ has. Also give vertices v′1 and v′3 in H the color
of the vertex v′1,3 in H ′. In the current coloring of H all the vertices of H are satisfied (with respect to
3-weak-dynamic coloring property) except for possibly vertices v′1 and v′3.

If v′1 sees only one color on its neighborhood in H , then choose a neighbor x of v′1 (which we know
has degree at most 3 by Lemma 1). We can recolor x by a different color in {1, . . . , 6} in such a way that
its neighbors in NH(x) − {v′1, v

′

3} stay satisfied. Similarly, we can recolor a neighbor of v′3 in H , when v′3
sees only one color on its neighborhood in H . Let c∗ be the resulting coloring on H . We extend c∗ to a
3-weak-dynamic coloring of G by finding appropriate colors for v1, . . . , vk. We will call the set of vertices
that we want to color S. Thus, S = {v1, . . . , vk}. Now we study the restrictions we must consider for the
coloring on S to make sure that a 3-weak-dynamic coloring of G is obtained.

For each odd i with i 6∈ {1, 3}, if v′i appears only once in the multiset {v′1, . . . , v
′

k}, then v′i is already
satisfied in H . Therefore it is enough to choose c(vi) to be different from c(vi+2), c(vi−2), c(v′i+1), and
c(v′i−1). For such an i, if v′i appears twice in {v′1, . . . , v

′

k}, then we choose c(vi) to be different from c(vi+2),
c(vi−2), c(v

′

i+1), c(v
′

i−1), and different form two colors in NH(v′i).
For any vertex x that appears at least three times in the multiset {v′1, . . . , v

′

k}, choose Sx to be a set
containing three indices j1, j2, j3 such that x = v′j1 = v′j2 = v′j3 . Thus if we choose the colors of the vertices
vj1 , vj2 , vj3 to be different, the vertex x becomes satisfied in G. Therefore, for the case that i is odd and
i 6∈ {1, 3}, if v′i appears three or more times in the multiset {v′1, . . . , v

′

k}, then we choose the color of vi to
be different from c(vi+2), c(vi−2), c(v

′

i+1), and c(v′i−1). If moreover i ∈ Sv′

i
, then choose c(vi) to be different

from c(vi+2), c(vi−2), c(v
′

i+1), and c(v′i−1) and different from the color of two other vertices in C (the two
vertices other than vi whose indices belong to Sv′

i
).
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Now suppose i ∈ {1, 3}. Note that the vertices v′1 and v′3 might not be satisfied in H . If v′i appears
only once in {v′1, . . . , v

′

k}, then choose c(vi) to be different from c(vi+2), c(vi−2), c(v
′

i+1), c(v
′

i−1), and also
different from two colors in NH(v′i). If v′i appears twice in {v′1, . . . , v

′

k}, then we choose c(vi) to be different
from c(vi+2), c(vi−2), c(v

′

i+1), c(v
′

i−1), and different form two colors in NH(v′i). And if v′i appears three or
more times in the multiset {v′1, . . . , v

′

k}, then we choose the color of vi to be different from c(vi+2), c(vi−2),
c(v′i+1), c(v

′

i−1) and when i ∈ Sv′

i
choose c(vi) to be also different from the color of two other vertices in C

(the two vertices other than vi whose indices belong to Sv′

i
).

For each even i, the vertex v′i appears at most twice in the multiset {v′1, . . . , v
′

k}, since otherwise a
configuration smaller than C exists in G. In fact when k 6= 4, the vertex v′i appears at most once in the
multiset {v′1, . . . , v

′

k}, by the same reason. If v′i appears only once in {v′1, . . . , v
′

k}, then choose c(vi) to be
different from c(vi+2), c(vi−2), c(v

′

i+1) ,c(v′i−1), and also different from two colors in NH(v′i). If v′i appears
twice in {v′1, . . . , v

′

k}, i.e. if k = 4 and v′2 = v′4, then we choose c(vi) to be different from c(vi+2), c(vi−2),
c(v′i+1), c(v

′

i−1), and different from the color of the vertex in NH(v′i).
Now we form a graph D that represents the dependencies among the vertices of S. The graph D has

vertex set S and two vertices of S are adjacent in D if we require their colors to be different. For each
vertex w in S, let R(w) be the set of those colors we need to avoid for c(w) that come from vertices outside
S. Define L(w) = {1, . . . , 6} − R(w). By the above argument, each vertex of S has a total of at most six
restrictions. Moreover vertices of indices in {5, 7, . . . , k − 1} have four restrictions. Since c∗(v′1) = c∗(v′3),
the vertex v2 has at most five restrictions, and finally when k = 4, all the vertices of S have at most five
restrictions, because vi+2 and vi−2 are the same vertices in this case.

Hence |L(w)| is at least the degree of w in D for all w ∈ S, and |L(w)| has size more than the degree of
w in D when w ∈ {v2, v5, v7, . . . , vk−1}. Therefore it is enough to show that D is L-choosable, because in
this case the proper coloring we obtain for D would be an extension of c∗ to a 3-weak-dynamic coloring of
G.

Recall that k is even. If k = 4, then since the lists on all vertices have size larger than their degrees in
D the graph D is L-choosable by Corollary 1. Thus suppose k ≥ 6. Since k is even and k ≥ 6, the graph D

contains at most two components and for the case that it contains exactly two components, the vertices v5
and v2 belong to different components of D. Therefore all components of D have vertices with lists larger
than their degrees in D, which implies that D is L-choosable by Corollary 1.

4 Proof of Theorem 1

Proof. Let G be an edge-minimal planar graph with wd3(G) > 6. By Lemma 2, the 4+-vertices of G form
an independent set in G. Let A4 be the set of vertices of degree at least 4 in G. Let A∗

3 be the set of vertices
v of degree 3 in G having neighbors u1, u2, u3 that satisfy the following properties:

• d(u1) = d(u2) = 3;

• each of u1 and u2 has two 4+-neighbors;

• all neighbors of u3 have degree 3.

For each vertex w of G, choose N∗(w) to be min{d(w), 3} vertices on N(w) in such a way that |N(w)∩A∗

3 |
is as small as possible. In case we have several options to choose N∗(w) under this condition, we choose a
set whose induced subgraph in G has the maximum number of edges.

Let G′ be an auxiliary graph of G having the same vertex set as G. For each vertex v in G, make
the vertices in N∗(v) pairwise adjacent in G′. Note that by the structure of G′, any proper coloring of G′

corresponds to a 3-weak-dynamic coloring of G. Thus it is enough to prove that χ(G′) ≤ 6.
Successively remove vertices v in V (G)−(A4∪A∗

3) from G and instead make all vertices in NG(v)∩(A4∪A∗

3)
pairwise adjacent. Let H be the resulting graph. Each of these operations preserves planarity, because it
corresponds to adding cords to two or three faces of a planar graph and then removing a vertex. Also note
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that none of the edges added via this type of operation intersect, because their corresponding cords in G are
non-intersecting. Therefore H is planar.

If u and v are 4+-vertices in G having a common neighbor w, then by the structure of A∗

3 and by Lemma
2 we have w ∈ V (G) − (A∗

3 ∪ A4). Similarly, if u ∈ A4 and v ∈ A∗

3 have a common neighbor w in G, then
w ∈ V (G)− (A∗

3 ∪A4). Hence H contains all the edges of G′ having at least one endpoint in A4.
Since H is planar, by the Four Color Theorem there exists a proper coloring c : V (H) → {1, 2, 3, 4}. For

any vertex v ∈ A4, define c∗(v) = c(v). Since G′[A4] ⊆ H , the coloring c∗ is a proper coloring of G′[A4]. To
finish the proof we aim to extend c∗ to a proper coloring of G′ using colors in {1, . . . , 6}.

For each v in V (G′), let N4(v) = NG′(v) ∩ A4. For each vertex v in V (G′) − A4, we define L(v) =
{1, . . . , 6} − c∗(N4(v)). Note that all vertices in V (G′) − A4 have degree at most 3 in G, and that by the
choice of N∗, each 3-vertex of G has degree at most 6 in G′. We already have a proper coloring of G′[A4] using
four colors {1, 2, 3, 4}. We aim to extend this coloring to a proper coloring of G′. Hence let G′′ = G′ −A4.
Note that if G′′ is L-choosable, then we obtain an extention of the proper coloring of G′[A4] to a proper
coloring of G′ using colors {1, . . . , 6}. Therefore for the remaining of the proof our aim is to prove that G′′

is L-choosable.
Since dG′(v) ≤ 6 for each vertex v in V (G′)−A4, we have |L(v)| ≥ dG′′(v). If any component of G′′ has

a vertex whose list size is greater than its degree, or if it has a block that is not a clique or odd cycle, then
by Theorem 4 and Corollary 1 G′′ is L-choosable, as desired. Therefore let C∗ be a component of G′′ whose
vertices have list size equal to their degrees in G′′ and whose blocks are complete graphs or odd cycles.

If dG′(v) ≤ 5, then |L(v)| > dG′′(v). Hence C∗ does not contain such a vertex v. This simple observation
implies that:

• C∗ contains no vertex u whose degree is 2 in G;

• C∗ contains no vertex u such that u has a 2-neighbor in G;

• C∗ contains no vertex u that is inside a 4-cycle in G;

• C∗ does not contain a vertex u such that u is a 3-vertex of G, it has a 4+-neighbor u′ in G, and
u 6∈ N∗(u′).

Also note that

• C∗ contains no vertex u of A∗

3,

because otherwise using the fact that c is a proper coloring of H using only 4 colors, we know that the four
vertices in NG′(u)∩A4 have at most three distinct colors under c. As a result, |L(v)| ≥ 3 while dG′′(v) ≤ 2.

Let B be a pendant block of C∗. By the choice of C∗ the block B is a complete graph or an odd cycle.
Note that since each vertex of A4 has a color in {1, 2, 3, 4}, each vertex of G′′ gets a list of size at least 2.
Therefore no vertex in B has degree 1. Hence B contains at least three vertices.

We consider three cases.

Case 1: B is an odd cycle.

Let the cycle B be u1, u2, . . . , ur. Therefore for each pair of vertices ui and ui+1, there exists a vertex
vi in G such that ui and ui+1 are neighbors of vi in G. Therefore u1v1, v1u2, u2v2, v2v3, . . . , urvr, vru1

are all edges in G.

Let r ≥ 5. For each i, if vi has degree at least 4 in G, then by the construction of G′ and since all
neighbors of 4+-vertices in G are 3−-vertices, ui would be inside a triangle in B. Hence all vertices
v1, . . . , vr have degree 3 in G. If r ≥ 4 and vi = vi+1 for some i, then N∗(vi) = {ui, ui+1, ui+2}. As
a result, the vertex ui has neighbors ui−1, ui+1, ui+2 in B. This is a contradiction since B is a cycle.
Otherwise, recall that u1, . . . , ur are distinct vertices. Note that u1v1u2v2 . . . urvru1 is a closed walk in
G. Since uis are distinct and since vi 6= vi+1 for all i, no edge is repeated immediately in the closed walk.
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As a result of Proposition 3, there exists a cycle in G containing a subset of {u1, . . . , ur}∪{v1, . . . , vr}.
Hence we find a cycle C in G all whose vertices have degree 3. This is a contradiction with Lemma 10.

Now suppose r = 3. If v1, v2, and v3 are distinct vertices, then similar to the above argument we
obtain a contradiction by finding a cycle in G all whose vertices have degree 3. Hence suppose v1 = v2.
Therefore v1 is adjacent to u1, u2, and u3 in G. Recall that B is a pendant block of C∗. Therefore at
least two vertices of B have degree 2 in C∗. As a result, at least two vertices in {u1, u2, u3} have four
4+-vertices on their second neighborhood. In fact, those two vertices belong to A∗

3, because each of
them has a neighbor (v1) all of whose neighbors are 3−neighbors and has two other neighbors whose
neighbors are 4+-vertices. This is a contradiction because as we argued above C∗ contains no vertex
of A∗

3.

Case 2: At least one vertex in V (B) is part of a 3-cycle in G.

Let wv1v2 be a triangle in G such that {w, v1, v2} ∩ V (B) 6= ∅. By Lemma 5, we may suppose that
dG(w) ≥ 4 and dG(v1) = dG(v2) = 3. Recall that vertices of B are 3-vertices in G. Hence either v1
and v2 both belong to V (B) or only one of them belongs to V (B). Let NG(v1) − {w, v2} = {v′1} and
NG(v2)− {w, v1} = {v′2}. We consider two subcases.

Subcase 1. v1 ∈ V (B) and v2 ∈ V (B). By Lemmas 7 and 8 we may suppose that dG(v
′

2) ≥ 4. By the
construction of G′′, there exists a neighbor v3 of w such that N∗(w) = {v1, v2, v3}. Lemmas 4 and 6
imply that v′1, v

′

2, and v3 are distinct vertices.

Since dG(v
′

2) ≥ 4 by the construction of G′, the vertex v′2 has two neighbors v4 and v5 in G such that
N∗(v′2) = {v2, v4, v5}. Note that since G has no 4-cycle containing a vertex in C∗, the vertices v4 and
v5 are distinct from v1 and v3.

The vertex v2 is adjacent to v4 and v5 in C∗. If v2 is not a cut-vertex of B or if v4 and v5 belong to B,
then B contains at least 5 vertices ({v1, . . . , v5}). Hence B cannot be a cycle, because v2 is adjacent to
v1, v3, v4, v5 in B. Therefore B is a complete graph. Hence vertices v4 and v5 must be adjacent to v1 in
B. Equivalently, v4 and v5 must have common neighbors with v1 in G. If v4w ∈ E(G) or v5w ∈ E(G),
then v2 belongs to a 4-cycle in G, which is not accepted. Hence we must have v4v

′

1 ∈ E(G) and
v5v

′

1 ∈ E(G). This is a contradiction, because v′2v4v
′

1v5v
′

2 forms a 4-cycle in G.

Hence v2 must be a cut-vertex in C∗. If v4 is a vertex of B, knowing that v4 is not a cut-vertex of B,
then we conclude that v5 belongs to B. But we argued above that the case v4 ∈ V (B) and v5 ∈ V (B)
cannot happen. Hence none of the vertices v4 and v5 belongs to B.

We use a similar argument as above to show that dG(v
′

1) = 3. If dG(v
′

1) ≥ 4, then let N∗(v′1) =
{v1, v6, v7}. Since v1 is not a cut-vertex of C∗, the vertices v6 and v7 belong to B. Hence B contains at
least five vertices ({v1, v2, v3, v6, v7}). Hence B cannot be a cycle, because v1 is adjacent to v2, v3, v6, v7
in B. Therefore B is a complete graph. Hence vertices v6 and v7 must be adjacent to v2 in B.
Equivalently, v6 and v7 must have common neighbors with v2 in G. If v6w ∈ E(G) or v7w ∈ E(G),
then v1 belongs to a 4-cycle in G, which is not accepted. Hence we must have v6v

′

2 ∈ E(G) and
v7v

′

2 ∈ E(G). This is a contradiction, because v′1v6v
′

2v7v
′

1 forms a 4-cycle in G. Hence we have
dG(v

′

1) ≤ 3, and so by Lemma 1, we have dG(v
′

1) = 3.

Since C∗ has no vertex in A∗

3, the vertex v′1 does not have two 4+-neighbors in G, otherwise v1 ∈ A∗

3.
Hence v′1 must have at least one other 3-neighbor v6 beside v1. The vertex v6 is adjacent to v1 in B,
and as a result it must also be adjacent to v2 in B. Therefore v6 must have a common neighbor with
v2 in G that belongs to N∗(v2). That common neighbor is not w, because otherwise we find a 4-cycle
containing v1 in G. Hence v6 must belong to N∗(v′2). In other words v6 = v4 or v6 = v5. But this is a
contradiction, because v6 is a vertex of B while v4 and v5 are not vertices of B.

Subcase 2. v1 ∈ V (B) but v2 6∈ V (B). By the construction of G′, there exist neighbors v3 and v4
of w such that N∗(w) = {v1, v3, v4}. If v3v4 ∈ E(G), then we can repeat Subcase 1 for the triangle
wv3v4. Hence suppose v3v4 6∈ E(G). Therefore by the choice of N∗(w), we have v2 ∈ A∗

3, v3 6∈ A∗

3, and

14



v4 6∈ A∗

3, since otherwise {v1, v2, v3} or {v1, v2, v4} would give us a better option for N∗(w), according
to the choice of N∗(w).

Since v2 ∈ A∗

3, the vertex v′2 has degree 3 in G and has two 4+-neighbors in G. By the same reason
dG(v

′

1) ≥ 4. Let N∗(v′1) = {v1, v5, v6}. Note that we know v1 ∈ N∗(v′1), since otherwise the vertex
v1 has a list of size larger than its degree in G′′. We have {v5, v6} ∩ {v2, v3, v4} = ∅, since otherwise
G contains a 4-cycle containing v1, which is not accepted. Therefore according to the adjacencies we
have determined so far in G, the vertex v1 has neighbors {v′2, v3, . . . , v6} in C∗. Therefore dC∗(v1) = 5.

Let v7 and v8 be the 4+-neighbors of v′2. Since vertex v′2 has two 4+-neighbors and since v′2 belongs to
C∗ (because it is adjacent to v1 in C∗), we must have v′2 ∈ N∗(v7) and v′2 ∈ N∗(v8), since otherwise
the list of v′2 in G′′ has size larger than its degree in G′′, which is not accepted. Therefore dC∗(v′2) = 5.

Let NG(v3) = {w, v′3, v
′′

3 } and NG(v4) = {w, v′4, v
′′

4}. If the neighbors of v3 in C∗ are only v1 and v4,
then v3 has to be a vertex in A∗

3, which is not accepted. If v3 has at most one more neighbor besides
v1 and v4 in C∗, then we must have dG(v

′

3) = dG(v
′′

3 ) = 3, one vertex in {v′3, v
′′

3} has exactly one
3-neighbor x, and one vertex in {v′3, v

′′

3 } has two 4+-neighbors. When x 6= w we get a contradiction
with Lemma 2 and when x = w we get a contradiction with Lemmas 7 and 8. Therefore dC∗(v3) ≥ 4.
By a similar argument, we have dC∗(v4) ≥ 4, dC∗(v5) ≥ 4, and dC∗(v6) ≥ 4.

By the above arguments, the vertices v1, v
′

2, v3, v4, v5, v5 belong to C∗ and all of them have degree at
least 4 in C∗. We know moreover that NC∗(v1) = {v′2, v3, v4, v5, v6} and the vertex v1 is a vertex of the
block B. Hence B has 5 or 6 vertices. Since v1, v3, v4 and v1, v5, v6 form triangles in C∗, we conclude
that either V (B) = {v1, v′2, v3, v4, v5, v6} or V (B) = {v1, v3, v4, v5, v6}. In the both cases B cannot be
an odd cycle, so it is a complete graph.

Hence v3 and v5 have a common neighbor z in G. Also v3 and v6 have a common neighbor z′ in G.
We have z 6= z′ and {z, z′} ∩ {w, v1, . . . , v6, v′1, v

′

2}, since otherwise a 4-cycle containing a vertex of
B exists in G or Subcase 1 can be applied. Similarly there are disjoint vertices y and y′ in G such
that y is a common neighbor of v4 and v5 in G, y′ is a common neighbor of v4 and v6 in G, and
{y, y′} ∩ {w, v1, . . . , v6, v′1, v

′

2}. We also have {z, z′} ∩ {y, y′} = ∅, since otherwise v3 or v5 is inside a
4-cycle in G.

Now the vertices w, v5, v6 and v1, v3, v4 are the branch vertices of a K3,3-minor in G, which implies G

is not planar, a contradiction.

Case 3: B is a complete graph.

By Case 1 we may suppose B is a complete graph with four, five, six, or seven vertices, as each vertex
in G′′ has degree at most 6. Since B is a pendant block, in G′′ all but at most one vertex of B has all
its neighbors in V (B). Let v be one of the vertices of B all whose neighbors in G′′ are in V (B), i.e. v

is not a cut-vertex of C∗. Let u1, u2, u3 be the neighbors of v in G. By Case 2, {u1, u2, u3} forms an
independent set in G.

We consider three subcases.

Subcase 1. Two of the neighbors of v in B, say w1 and w2, are neighbors of u1 in G, and two of the
neighbors of v in B, say w3 and w4, are neighbors of u2 in G.

By Case 2, we may suppose that {w1, w2, w3, w4}∩{u1, u2, u3} = ∅. Since G is planar, we may suppose
that the vertices w1, . . . , w4 appear in the counterclockwise direction in the drawing of G. Note that
w1, . . . , w4 have degree 3 in G. Since B is a complete graph, the four vertices w1, . . . , w4 are pairwise
adjacent in B, and hence each pair of them must have a common neighbor in G.

Let y1 be the common neighbor of w1 and w3 in G. We have y1 6= w4, since otherwise w3w4 ∈
E(G) and Case 2 can be applied on the triangle u2w3w4. Similarly y1 6= w2. Hence all the vertices
v, u1, u2, w1, w2, w3, w4, y1 are distinct. Now consider the cycle C′ : vu1w1y1w3u2v. Since the vertices
w1, . . . , w4 are in counterclockwise direction, the cycle C′ separates the vertex w2 from the vertex w4

in G. In order to have a common neighbor for w2 and w4 in G, both of w2 and w4 have to be adjacent
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to a vertex x in the cycle C′. We have x 6= v, because the only neighbors of v in G are u1, u2, u3. We
have x 6= u1, x 6= u2, and x 6= y1, since otherwise G contains a 4-cycle containing w2 or w4, which is
not accepted. We have x 6= w1 and x 6= w3, because otherwise Case 2 can be applied. Therefore this
subcase does not happen.

Subcase 2. Two of the neighbors of v in B, say w1 and w2, are neighbors of u1 in G, and one of the
neighbors of v in B, say w3, is a neighbor of u2 in G.

Since G is planar, we may suppose that the vertices w1, w2, w3 appear in the counterclockwise direction
in G. Note that when dB(v) = 6 or dB(v) = 5, Subcase 1 can be applied to get a contradiction. Hence
we may suppose that dB(v) ≤ 4. By Subcase 1, we may also suppose that u2 has a neighbor of degree at
least 4. As a result, dG(u2) = 3. By a similar argument we have dG(u3) = 3. Let z be the 4+-neighbor
of u2.

If dG(u1) ≥ 4, then u1, v, u2, z, u3, w3 form a configuration as of Lemma 3, which is a contradiction.
Therefore we have dG(u1) = 3. The vertices w1 and w3 must have a common neighbor y1 in G. By Case
2, the vertex y1 is different from vertices w2 and z. Therefore the vertices v, u1, u2, w1, w2, w3, z, y1 are
all distinct vertices in G. If dG(y1) ≤ 3, then y1w1u1vu2w3y1 forms a cycle of all 3−-vertices, which
contradicts Lemma 10. Hence dG(y1) ≥ 4.

By the construction of G′′, the vertex y1 has a neighbor w4 in G such that w4 is adjacent to w1 and w3

in B, i.e. N∗(y1) = {w1, w3, w4}. Note that w4 6= w2, since otherwise a 4-cycle containing w2 exists
in G. On the other hand since B is a complete graph, w4 must be in the second neighborhood of v.
Therefore w4 must be adjacent to u3.

If w3 has only one 4+-neighbor in G (the vertex y1), then y1, w3, u2, z form a configuration as the one
in Lemma 2, which is a contradiction. Similarly, if w4 has only one 4+-neighbor in G (the vertex y1),
then the vertices y1, u4, u3, and the 4+-neighbor of u3 form a configuration as the one in Lemma 2,
which is a not accepted. Therefore both of w3 and w4 have two 4+-neighbors in G. As a result, each
of them has degree 5 in C∗. We can repeat Subcase 1 for a vertex in {w3, w4} that is not a cut-vertex
of C∗.

Subcase 3. Exactly one neighbor of v in B, say w1 is a neighbor of u1 in G, exactly one neighbor of
v in B, say w2 is a neighbor of u2 in G, and exactly one neighbor of v in B, say w3 is a neighbor of u3

in G.

Therefore, by Subcases 1 and 2, we may suppose that each of u1, u2, and u3 has a 4+-neighbor in G.
Suppose z1 is the 4+-neighbor of u1 in G, z2 is the 4+-neighbor of u2 in G, and z3 is the 4+-neighbor
of u3 in G. Hence dG(u1) = dG(u2) = dG(u3) = 3. Note that in this case B is a complete graph with
vertices w1, w2, w3, and v. Hence w1 and w2 must have a common neighbor, say y1, in G.

If dG(y1) = 3, then vu1w1y1w2u2v is a cycle in G all whose vertices have degree 3, a contradiction with
Lemma 10. Hence we must have dG(y1) ≥ 4. Since |N∗(y1)| = 3, all vertices in N∗(y1) have degree at
most 3, and since B has only four vertices, the vertex y1 must be adjacent to w3 in G. Recall that at
most one vertex in {w1, w2, w3} is a cut-vertex of C∗. With no loss of generality suppose w1 is not a
cut-vertex of C∗. Now subcase 2 can be applied on w1 to get a contradiction.

5 Future Work

At the moment, we know of no planar graph with 3-weak-dynamic number 6. However, there are planar
graphs with 3-weak-dynamic number 5, as we can see in Figure 8. Therefore the best general upper bound
for 3-weak-dynamic number of planar graphs is either 5 or 6.

Question 1. Are there planar graphs that have 3-weak-dynamic number 6?
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(a) wd3(G) = 5
(b) wd3(G) = 5

Figure 8: Graphs with 3-weak-dynamic number 5.
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