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Abstract

For graphs F , G, and H , we write F → (G,H) if every red-blue coloring of the
edges of F produces a red copy of G or a blue copy of H . The graph F is said
to be (G,H)-minimal if it is subgraph-minimal with respect to this property.
The characterization problem for Ramsey-minimal graphs is classically done for
finite graphs. In 2021, Barrett and the second author generalized this problem
to infinite graphs. They asked which pairs (G,H) admit a Ramsey-minimal
graph and which ones do not. We show that any pair of star forests such that
at least one of them involves an infinite-star component admits no Ramsey-
minimal graph. Also, we construct a Ramsey-minimal graph for a finite star
forest versus a subdivision graph. This paper builds upon the results of Burr et
al. in 1981 on Ramsey-minimal graphs for finite star forests.

Key words: Ramsey-minimal graph, infinite graph, graph embedding, star
forest, subdivision graph
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1. Introduction

All our graphs are simple and undirected, and we allow uncountable graphs.
We start by stating basic definitions. For graphs F , G and H , we write F →
(G,H) if every red-blue coloring of the edges of F produces a red copy of G or
a blue copy of H . A red-blue coloring of F is (G,H)-good if it produces neither
a red copy of G nor a blue copy of H . If F → (G,H) and every subgraph
F ′ of F is such that F ′ 6→ (G,H), then F is (G,H)-minimal. The collection
of all (G,H)-minimal graphs is denoted by R(G,H). A pair (G,H) admits a
Ramsey-minimal graph if R(G,H) is nonempty.

If G and H are both finite, then a (G,H)-minimal graph exists. Indeed,
we can delete finitely many vertices and/or edges of Kr(G,H) until it is (G,H)-
minimal. This observation does not necessarily hold when at least one of G
and H is infinite, even though there exists a graph F such that F → (G,H) in
the countable case by the Infinite Ramsey Theorem [20] and in general by the
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Erdős–Rado Theorem [14]. In fact, a pair of countably infinite graphs almost
never admits a Ramsey-minimal graph—see Proposition 2.4. In 2021, Barrett
and the second author [1] introduced a characterization problem for pairs of
graphs according to whether or not they admit a minimal graph.

Main Problem ([1]). Determine which pairs (G,H) admit a Ramsey-minimal
graph and which ones do not.

The primary motivation for posing the main problem is the classic problem
of determining whether there are finitely or infinitely many (G,H)-minimal
graphs. This problem was first introduced in 1976 [11, 17], and it was studied
for finite graphs in general by Nešetřil and Rödl [18, 19] and for various classes of
graphs by Burr et al. [5, 6, 7, 9, 12]. A result by Burr et al. on Ramsey-minimal
graphs for finite star forests is relevant to our discussion.

Theorem 1.1 ([8]). The pair of star forests (
⋃s

i=1 Sni
,
⋃t

j=1 Smj
) admits in-

finitely many Ramsey-minimal graphs for n1 ≥ · · · ≥ ns ≥ 2 and m1 ≥ · · · ≥
mt ≥ 2 when s ≥ 2 or t ≥ 2.

The formulation of the main problem is also motivated by the more recent
work of Stein [23, 24, 25] on extremal infinite graph theory. It is a subfield
of extremal graph theory that developed after the notion of end degrees was
introduced a few years prior [4, 22].

Barrett and the second author mainly studied the main problem for pairs
(G,H) in general. The following is one of the main results presented in their
paper.

Theorem 1.2 ([1]). Let G and H be graphs, and suppose that F is a (possibly
infinite) collection of graphs such that:

1. For all F ∈ F , we have F → (G,H).

2. For every graph Γ with Γ → (G,H), there exists an F ∈ F that is contained
in Γ.

The following statements hold:

(i) If F is a (G,H)-minimal graph, then F ∈ F and F is non–self-embeddable.

(ii) Suppose that any two different graphs F1, F2 ∈ F do not contain each
other. A graph F is (G,H)-minimal if and only if F ∈ F and F is non–
self-embeddable.

This paper instead focuses on pairs (G,H) involving a star forest—a union
of stars. Our first main result shows that any pair of star forests such that at
least one of them involves an infinite-star component admits no Ramsey-minimal
graph.

Theorem 1.3. Let G and H be star forests. If at least one of G and H contains
an infinite-star component, then no (G,H)-minimal graph exists.
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Figure 1: The graph Fd.

This theorem is in contrast to Theorem 1.1, which states that there are
infinitely many (G,H)-minimal graphs when G and H are disconnected finite
star forests with no single-edge components. Loosely speaking, the existence of
infinitely many finite minimal graphs hence does not give an indication that a
corresponding infinite minimal graph exists.

Similarly, the existence of only finitely many finite minimal graphs does not
imply that there are only finitely many corresponding infinite minimal graphs.
For n ∈ N—where N is the set of positive integers—we denote the n-edge star
by Sn. It is known from [10] that there are only finitely many (nS1, H)-minimal
graphs for n ∈ N and H a finite graph. On the other hand, if Z is the double
ray—the two-way infinite path—then (2S1,Z∪S3) admits infinitely many min-
imal graphs. Indeed, we have 2Fd ∈ R(2S1,Z ∪ S3) for every d ≥ 3, where Fd

is the graph illustrated in Figure 1.
A graph is leafless if it contains no vertex of degree one, and it is non–self-

embeddable if it is not isomorphic to any proper subgraph of itself. Following
[16, p. 79], we denote the subdivision graph of G by S(G), which is a graph
obtained from G by performing a subdivision on each one of its edges. For
example, if Pn denotes the n-vertex path, then S(Pn) = P2n−1 for n ∈ N.

For our second main result, we construct a Ramsey-minimal graph for a
finite star forest versus the subdivision graph of a connected, leafless, non–self-
embeddable graph. In 2020, subdivision graphs were used by Wijaya et al. [26]
to construct new (nS1, P4)-minimal graphs.

Theorem 1.4. Let G be a connected, leafless, non–self-embeddable graph. For
any finite star forest H, there exists a (S(G), H)-minimal graph.

For future investigation, it would be interesting to consider whether every
pair of non–self-embeddable graphs admits a minimal graph. If true, this would
generalize the observation that a pair of finite graphs always admits a minimal
graph, since finite graphs are non–self-embeddable.

Question 1.5. Is it true that every pair (G,H) of non–self-embeddable graphs
admits a Ramsey-minimal graph?

We give an outline of this paper. Section 2 discusses self-embeddable graphs
and their relevance to the study of Ramsey-minimal graphs. In Section 3, we
briefly discuss the Ramsey-minimal properties of (G,H) when H is a union of
graphs. Finally, our two main theorems are proved in Sections 4 and 5.
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2. Self-embeddable graphs

We first provide several preliminary definitions. A graph homomorphism
ϕ : G → H is a map from V (G) to V (H) such that ϕ(u)ϕ(v) ∈ E(H) whenever
uv ∈ E(G). A graph homomorphism is an embedding if it is an injective map
of vertices. Following [2, 3], we write G ≤ H if G embeds into H ; that is, there
exists an embedding ϕ : G → H . Unlike in [2, 3], however, we do not require
that the graph image of ϕ is an induced subgraph of H .

A graph G is self-embeddable if G ∼= G′ for some proper subgraph G′ of G,
and the corresponding isomorphism ϕ : G → G′ is its self-embedding. Examples
of self-embeddable graphs include the ray N—the one-way infinite path—and
a complete graph on infinitely many vertices. On the other hand, finite graphs
and the double ray Z are non–self-embeddable.

Proposition 2.1 provides a necessary and sufficient condition for a graph
to be self-embeddable in terms of its components. This proposition is quite
similar to [21, Theorem 2.5] for self-contained graphs, the “induced” version of
self-embeddable graphs.

Proposition 2.1. A graph G is self-embeddable if and only if at least one of
the following statements holds:

(i) There exists a self-embeddable component of G.

(ii) There exists a sequence of distinct components (Ci)i∈N of G such that
C1 ≤ C2 ≤ · · · .

Proof. The backward direction can be easily proved by defining a suitable self-
embedding of G for each of the two cases; it remains to show the forward
direction.

Suppose that G has a self-embedding ϕ that embeds G into G−p, where p is
either a vertex or an edge of G, and G contains no self-embeddable component.
Let C0 be the component of G containing p. We write v ≃ w if the vertices v and
w belong to the same component, and we denote ϕk as the k-fold composition
of ϕ.

We claim that if u ∈ V (C0), then for 0 ≤ i < j, we have ϕi(u) 6≃ ϕj(u). We
use induction on i. Let i = 0, and suppose to the contrary that u and ϕj(u),
where j > 0, both belong to C0. If v ≃ u, we then have

ϕj(v) ≃ ϕj(u) ≃ u,

so ϕj(v) ∈ V (C0) for every v ∈ V (C0). Also, since ϕ embeds G into G − p,
the map ϕj also embeds G into G− p. Hence ϕj carries C0 into C0 − p, which
contradicts the non–self-embeddability of C0. Now suppose i ≥ 1, and suppose
to the contrary that ϕi(u) and ϕj(u), where j > i, both belong to the same
component C. If v ≃ ϕi(u), we then have

ϕj−i(v) ≃ ϕj(u) ≃ ϕi(u),
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so ϕj−i(v) ∈ V (C) for every v ∈ V (C). We now prove that ϕj−i carries C
into C−ϕi(u); this would contradict the non–self-embeddability of C. Suppose
that ϕj−i(v) = ϕi(u) for some vertex v. We have ϕj−i−1(v) = ϕi−1(u) by
injectivity. By the induction hypothesis, we also have ϕi−1(u) 6≃ ϕj−1(u), so
ϕj−i−1(v) 6≃ ϕj−1(u). It follows that v 6≃ ϕi(u), and since ϕi(u) ∈ V (C), we
infer that v /∈ V (C). Therefore, ϕi(u) cannot be the image of a vertex of C
under ϕj−i, as desired.

Let u ∈ V (C0). Define a sequence (Ci)i∈N such that Ci is the component
containing ϕi(u). This sequence consists of pairwise distinct components by the
previous claim. It is clear that ϕ carries Ci to Ci+1, so Ci ≤ Ci+1 for i ∈ N,
and we are done.

Proposition 2.1 implies, as an example, that the union of finite paths is self-
embeddable, but the union of finite cycles with different lengths is not. Also,
we obtain the following corollary.

Corollary 2.2. A star forest is self-embeddable if and only if it is infinite.

For nonempty graphs G, a stronger property than self-embeddability is the
property that G ≤ G − e for all e ∈ E(G). The ray and an infinite complete
graph, for example, enjoy this stronger property. On the other hand, the disjoint
union N ∪ Z is self-embeddable, but does not embed into N ∪ (Z − e), where e
is any edge of Z. Thus N ∪ Z does not possess this stronger property.

Proposition 2.3. If G is a nonempty graph such that G ≤ G − e for all
e ∈ E(G), then no (G,H)-minimal graph exists for any graph H.

Proof. We will prove that for every graph F such that F → (G,H), we have
F − e → (G,H) for some e ∈ E(F ). This would show that (G,H) admits no
minimal graph.

Let F be a graph, and let e be any one of its edges. Set F ′ = F −e. Suppose
that F ′ 6→ (G,H)—there exists a (G,H)-good coloring c′ of F ′. We show that
F 6→ (G,H). Define a coloring c on F such that c ↾E(F ′)= c′ and e is colored
red. By this definition, no blue copy of H is produced in F . We claim that c
does not produce a red copy of G either. Suppose to the contrary that a red
copy of G, say Ĝ, is produced in F . Since Ĝ ≤ Ĝ − e, we can choose a red
copy of G in F that does not contain e; that is, there exists a red copy of G
in F ′. This contradicts the (G,H)-goodness of c′. As a consequence, c is a
(G,H)-good coloring of F , and thus F 6→ (G,H).

We note that Proposition 2.3 does not hold for self-embeddable graphs G in
general—see Example 3.3.

If R is the Rado graph, then R−e is also the Rado graph for every e ∈ E(R)
via [13, Proposition 2(b)]. As a result, the Rado graph satisfies the hypothesis
of Proposition 2.3. Consequently, by [15], the following holds.

Proposition 2.4. For H a fixed graph, almost all countably infinite graphs G
produce a pair (G,H) which admits no Ramsey-minimal graph.

5



3. Graph unions

Before we focus on star forests proper, we provide a quick background on
graph unions in general. Consider graphs G, H1, and H2; let Fi ∈ R(G,Hi) for
i ∈ {1, 2}. Possible candidates for a (G,H1 ∪ H2)-minimal graph include F1,
F2, and F1 ∪ F2.

Although F1 ∪ F2 → (G,H1 ∪ H2), it not necessarily true that F1 ∪ F2 ∈
R(G,H1 ∪H2). Indeed, let us take H1 = H2 = S1. For G connected, we have
2G ∈ R(G, 2S1) provided that G ∈ R(G,S1). This was discussed in [1] but also
follows from Proposition 3.1. On the other hand, if G is disconnected, we have
3Z ∈ R(2Z, 2S1)—not 4Z—even though 2Z ∈ R(2Z, S1).

Proposition 3.1. Let G and H be nontrivial, connected graphs, and let n ∈ N.
If Fi ∈ R(G,H) for 1 ≤ i ≤ n, then

n⋃

i=1

Fi ∈ R(G,nH).

Consequently, the existence of a (G,nH)-minimal graph is assured provided that
a (G,H)-minimal graph exists.

Proof. The arrowing part is obvious, so we only show the minimality of
⋃n

i=1 Fi.
It is clear that Fi 6→ (G, 2H), since otherwise we would have Fi /∈ R(G,H). Let
e be an edge of Fk for some 1 ≤ k ≤ n. Color Fk − e by a (G,H)-good coloring
and Fi, for i 6= k, by a (G, 2H)-good coloring. This coloring on (

⋃n
i=1 Fi)− e is

easily shown to be (G,nH)-good from the connectivity of G and H . Since e is
arbitrary, the proposition is proved.

In contrast to Proposition 3.1, the following proposition considers Fi as a
candidate for being in R(G,H1 ∪ H2). A sufficient condition is provided for a
(G,H1)-minimal graph to be (G,H1 ∪H2)-minimal.

Proposition 3.2. Let G, H1, and H2 be graphs, and let F ∈ R(G,H1). If

F −V (Ĥ1) → (G,H2) for every Ĥ1 a copy of H1 in F , then F ∈ R(G,H1∪H2).

Proof. We first prove that F → (G,H1 ∪ H2). Suppose c is a coloring on F
that produces no red copy of G. It follows from F → (G,H1) that c produces

a blue copy of H1, say Ĥ1, in F . Let F ′ = F − V (Ĥ1). Since F ′ → (G,H2)

and F ′ contains no red copy of G, there exists a blue copy of H2, say Ĥ2, in
F ′. We observe that Ĥ1 and Ĥ2 are disjoint, so c produces a blue copy of
H1 ∪ H2. Hence F → (G,H1 ∪ H2). Its minimality follows immediately from
the (G,H1)-minimality of F .

Example 3.3. Let

G = 2S1,

H1 = Z,

H2 = N, and

F = 2Z.
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The graph 2Z is (2S1,Z)-minimal, and Z → (2S1,N), so we can conclude by
Proposition 3.2 that 2Z ∈ R(2S1,Z ∪ N). This serves as an example of a
pair (G,H) involving a self-embeddable graph that admits a minimal graph.
We note, however, that no (S1,Z ∪ N)-minimal graph exists since Z ∪ N is
self-embeddable. Thus it is possible that a (2G,H)-minimal graph exists even
though no (G,H)-minimal graph exists.

4. Proof of Theorem 1.3

We fix star forests G and H such that at least one of them contains a star
component on infinitely many vertices. We prove in this section that (G,H)
admits no Ramsey-minimal graph.

Suppose that F → (G,H). Since one of G and H contains a vertex of
infinite degree, there exists a vertex v of infinite degree in F . We choose an
arbitrary edge e at v. We prove that F ′ → (G,H), where F ′ = F − e. Toward a
contradiction, suppose that F ′ admits a (G,H)-good coloring c′. Since deg(v)
is infinite, there are two possible cases: v is incident to infinitely many red edges
or infinitely many blue edges under the coloring c′.

Suppose that v is incident to infinitely many red edges. Define a coloring c
on F such that c ↾E(F ′)= c′ and e is colored red. This coloring produces no blue

copy of H , so by F → (G,H) it produces a red copy of G, say Ĝ, in F . There

exists a star component S of Ĝ that contains e since otherwise, Ĝ ⊆ F ′, which
contradicts the (G,H)-goodness of c′.

If S is infinite, then F ′ clearly contains a red copy of G by removing e from
Ĝ. On the other hand, let us suppose that S has n vertices. We can pick a
red star S′ on n vertices that is centered on v but does not contain e, since v
is incident to infinitely many red edges. The graph F ′ can then be shown to
contain a red copy of G by exchanging S from Ĝ for S′. In both cases, we obtain
a contradiction.

The case when v is incident to infinitely many blue edges can be handled
similarly, so our proof of Theorem 1.3 is complete.

5. Subdivision graphs vs. star forests

5.1. Bipartite graphs

Recall that a graph is bipartite if its vertex set can be partitioned into two
parts such that each part is an independent set. Let K be a bipartite graph
with bipartition {A,B} such that deg(u) 6= ∞ for all u ∈ A. Before we work on
subdivision graphs S(G), we construct for n ∈ N, a graph Γ(K,A, n) such that
Γ(K,A, n) → (K,Sn).

We define Γ(K,A, n) by adding additional vertices and edges toK. For every
u ∈ A, we add vertices u1, ..., um(n−1)—each not already in V (K)—to K, where
m = deg(u). We then insert an edge between each ui and a vertex v of K if uv
exists in K. We denote the resulting graph by Γ(K,A, n). Also, for each u ∈ A,
we define Au as the set {u, u1, ..., um(n−1)}. As a result, Γ(K,A, n) admits a

7
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(a) Z

A0 A2 A4

(b) Γ(Z, A = the set of even vertices, 3)

Figure 2: The construction of Γ(K,A, n) for K = Z and n = 3.

bipartition {
⋃

u∈A Au, B}. Figure 2 shows the result of this construction when
K = Z and n = 3.

There is a natural projection π : Γ(K,A, n) → K that is also a homomor-
phism. It is defined as

π(v) =

{
u, v ∈ Au for some u ∈ A,

v, v ∈ B.
(1)

Proposition 5.1. Let K be a bipartite graph with bipartition {A,B} such that
deg(u) 6= ∞ for all u ∈ A. For n ∈ N, we have Γ(K,A, n) → (K,Sn). Conse-
quently for k ∈ N,

k⋃

i=1

Γ(K,A, ni) →

(
K,

k⋃

i=1

Sni

)
,

where n1, . . . , nk ∈ N.

Proof. Suppose that c is a coloring on Γ(K,A, n) that produces no blue copy of
Sn. We prove that c produces a red copy of K.

We claim that for all u ∈ A, there exists vu ∈ Au such that vu is incident to
red edges only. By construction, the vertices in Au share the same neighborhood
N of m vertices, and |Au| = m(n− 1) + 1. If every vertex in Au is incident to
at least one blue edge, then the vertices in N in total are incident to at least
m(n − 1) + 1 blue edges. Since |N | = m, there exists a vertex in N that is
incident to at least n blue edges by the Pigeonhole Principle. This is impossible
since Γ(K,A, n) does not contain a blue copy of Sn. Therefore, Au must contain
a vertex that is incident to only red edges.

Hence we can define an embedding ϕ : K → Γ(K,A, n) as

ϕ(u) =

{
vu, u ∈ A,

u, u ∈ B.

8



The graph image of ϕ is a red copy of K in Γ(K,A, n), as desired.

The graph Γ(K,A, n) is not necessarily (K,Sn)-minimal in general. For
example, let us take K = Sk and A as the set of leaf vertices of Sk. We have
Γ(Sk, A, n) = Skn, which is not (Sk, Sn)-minimal for k, n ≥ 2 since Sk+n−1 ∈
R(Sk, Sn). However, we potentially have Γ(K,A, n) ∈ R(K,Sn) when K =
S(G) for some graph G as stated in Theorem 1.4.

5.2. Proof of Theorem 1.4

Fix a connected, leafless, non–self-embeddable graph G. Building upon Sub-
section 5.1, we prove that for n1, . . . , nk ∈ N, we have

k⋃

i=1

Γ(S(G), A, ni) ∈ R

(
S(G),

k⋃

i=1

Sni

)
, (2)

where A is taken as the set of vertices of S(G) that subdivide the edges of G.
We note that deg(u) = 2 for all u ∈ A. First, we show that the three properties
of G transfer to S(G), and that S(G) is C4-free—it contains no 4-cycles. The
following lemma can be verified using elementary means.

Lemma 5.2. Let G and H be connected, bipartite graph with bipartition {A,B}
and {C,D}, respectively. For any isomorphism ϕ : G → H, either ϕ(A) = C
and ϕ(B) = D, or ϕ(A) = D and ϕ(B) = C.

Proposition 5.3. If G is a connected, leafless, non–self-embeddable graph, then
S(G) is also a connected, leafless, non–self-embeddable graph. In addition, S(G)
is C4-free.

Proof. The first two properties obviously transfer, and S(G) is C4-free since G
contains no multiple edges. We now prove that G is self-embeddable given that
S(G) is self-embeddable.

Suppose that ϕ is a self-embedding of S(G). Let A be the set of vertices
of S(G) that subdivide the edges of G, and let B = V (G). Since S(G) is
connected and bipartite with bipartition {A,B}, there are by Lemma 5.2 two
cases to consider.

Case 1: ϕ(A) ⊆ A and ϕ(B) ⊆ B. We claim that ϕ, restricted to V (G),
gives rise to a self-embedding ϕ̂ of G. It is straightforward to show that ϕ̂ is an
embedding, so we only prove that there is an edge of G not in the image of ϕ̂.
Suppose that uv, where u ∈ A and v ∈ B, is an edge of S(G) not in the image
of ϕ, and suppose that u subdivides an edge vw of G.

We prove that vw is not in the image of ϕ̂. Suppose toward a contradiction
that ϕ̂(a) = v and ϕ̂(b) = w for two adjacent vertices a, b ∈ V (G). Let c be
the vertex that subdivides ab. It is apparent that {ϕ(c), v} and {ϕ(c), w} are
edges of S(G). Also, we cannot have ϕ(c) = u since uv is not in the image of ϕ.
But then the vertices in the set {v, u, w, ϕ(c)} induce a 4-cycle on S(G), which
contradicts the fact that S(G) is C4-free.

9



Case 2: ϕ(A) ⊆ B and ϕ(B) ⊆ A. The map ϕ2 is a self-embedding of S(G)
that carries A into A, and B into B. So by appealing to Case 1, we can obtain
a self-embedding of G.

Armed with Proposition 5.3, we are ready to prove Theorem 1.4. But first,
let us provide a straightforward application of the membership statement of (2)
that we will prove later.

Example 5.4. Choose G = Z and H = S3. Since Z is connected, leafless, and
non–self-embeddable, and S(Z) = Z, the graph of Figure 2(b) is (Z, S3)-minimal
by (2).

Proof of Theorem 1.4. First, suppose

H =

k⋃

i=1

Sni
, where 1 ≤ n1 ≤ · · · ≤ nk.

Let A be the set of vertices of S(G) that subdivide the edges of G so that

deg(u) = 2 for all u ∈ A. Define Γi = Γ(S(G), A, ni), and let Γ =
⋃k

i=1 Γi.
Denote the corresponding set to Au that belongs to Γi by Au,i. We have |Au,i| =
2ni−1. If Bi = V (Γi)\

⋃
u∈A Au,i, then Γi admits a bipartition {

⋃
u∈A Au,i, Bi}.

We prove for each e ∈ E(Γ) that there is a (S(G), H)-good coloring of Γ− e.
This, along with Proposition 5.1, would show that Γ ∈ R(S(G), H).

Lemma 5.5. For every e ∈ E(Γ), there exists a coloring c on Γ − e such that
both of the following statements hold:

(i) The coloring c produces no blue copy of H.

(ii) There exists u ∈ A such that for 1 ≤ i ≤ k, every vertex in Au,i is incident
to exactly one red edge.

Proof. Suppose that e is an edge of some Γj , where 1 ≤ j ≤ k, and that e is at
a vertex v ∈ Au,j for some u ∈ A. We color each edge in every Γi, minus the
edge e when i = j, by the following rules:

Case 1: i < j. Recall that |Au,i| = 2ni − 1 and that all vertices in Au,i

share the same neighborhood {a, b}. Arbitrarily partition Au,i into sets S and
T such that |S| = ni and |T | = ni − 1. Color all the edges in E(S, a) ∪ E(T, b)
blue, where E(S, a) denotes the set of all edges between the vertex set S and
the vertex a; this produces two blue stars of sizes ni and ni − 1, respectively.
Color the rest of Γi red.

Case 2: i = j. As before, let a and b be the vertices adjacent to each vertex
in Au,j . Partition Au,j\v into sets S and T both of size nj − 1. Similarly to
Case 1, we color all the edges in E(S, a)∪E(T, b) blue. This produces two blue
stars of size nj − 1. Color the rest of Γj red.

Case 3: i > j. Let a be a vertex adjacent to each vertex in Au,i. Color
E(Au,i, a) blue; this produces a blue star of size 2ni−1. As previously, we color
the rest of Γi red.

10



Denote the preceding coloring scheme by c. It is obvious from the preceding
construction of c that (ii) holds for our u ∈ A, so it remains to prove that (i)
holds.

Let j′ be the least positive integer such that nj′ = nj . Observe that we only
produce blue stars of size at least nj in Case 3 and, if j′ < j, in Case 1 also.
Every Γi such that j′ ≤ i ≤ k and i 6= j contributes exactly one blue star of
size at least nj, so exactly k− j′ such blue stars are produced in Γ− e in total.
But H contains k − j′ + 1 stars of size at least nj , so no blue copy of H can be
produced in Γ− e by the coloring c.

We take the coloring c of Lemma 5.5. To prove that c is (S(G), H)-good, we
need to show that c does not produce a red copy of S(G) in Γ− e.

Suppose to the contrary that there exists an embedding ξ : S(G) → Γi such
that its graph image is a red copy of S(G). Set ϕ = π ◦ ξ, where π : Γi → S(G)
is a projection that sends each vertex in Au,i to u and is defined similarly to
Eq. (1). We prove that ϕ is a self-embedding of S(G), which would contradict
the non–self-embeddability of S(G). For illustration, we provide the following
commutative diagram of graph homomorphisms:

S(G) Γi

S(G)

ξ

ϕ
π

Suppose that ϕ(a) = b for some vertices a and b of S(G). If b ∈ A, then the
vertex ξ(a) belongs in Ab,i. Recall that deg(a) ≥ 2 since S(G) is leafless. Since
the graph image of ξ is red, ξ(a) needs to be incident to at least two red edges
as a result. We infer that b 6= u, where u ∈ A is taken from Lemma 5.5(ii). This
shows that the vertex u of Lemma 5.5(ii) is not in the image of ϕ.

Since S(G) is C4-free and ξ is an embedding, there cannot be a C4 in the
graph image of ξ. We now prove that ϕ is injective. Let a and b be distinct
vertices of S(G). Since a and b have degree at least two, the vertices ξ(a) and
ξ(b) also have degree at least two. As a result, ξ(a) and ξ(b) cannot both belong
in Au,i for some u ∈ A, since that would create a C4 in the graph image of ξ.
Therefore, ϕ is injective. This completes the proof that ϕ is a self-embedding
and finishes our proof of Theorem 1.4.

References

[1] Barrett, J.M., Vito, V., 2021. On Ramsey-minimal infinite graphs. Elec-
tron. J. Combin. 28, P1.46.

[2] Bonato, A., Tardif, C., 2003. Large families of mutually embeddable vertex-
transitive graphs. J. Graph Theory 43, 99–106.

11



[3] Bonato, A., Tardif, C., 2006. Mutually embeddable graphs and the tree
alternative conjecture. J. Combin. Theory Ser. B 96, 874–880.

[4] Bruhn, H., Stein, M., 2007. On end degrees and infinite cycles in locally
finite graphs. Combinatorica 27, 269.
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