Borodin-Kostochka Conjecture holds for odd-hole-free graphs

Rong Chen, Kaiyang Lan, Xinheng Lin, Yidong Zhou

Center for Discrete Mathematics, Fuzhou University Fuzhou, P. R. China

October 12, 2023

1

Abstract

The Borodin-Kostochka Conjecture states that for a graph G, if $\Delta(G) \geq 9$, then $\chi(G) \leq \max{\{\Delta(G) - 1, \omega(G)\}}$. In this paper, we prove the Borodin-Kostochka Conjecture holding for odd-hole-free graphs.

Key Words: chromatic number; odd holes.

1 Introduction

All graphs in this paper are finite and simple. For two graphs G and H, we say that G contains H if H is isomorphic to an induced subgraph of G. When G does not contain H, we say that G is H-free. For a family \mathcal{H} of graphs, we say that G is \mathcal{H} -free if G is H-free for every graph $H \in \mathcal{H}$.

For a graph G, we use $\chi(G)$, $\omega(G)$ and $\Delta(G)$ to denote the chromatic number, clique number and maximum degree of G, respectively. Evidently, $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$. In 1941, Brooks observed that odd cycles and complete graphs are the only graphs to achieve the upper bound and strengthened this bound by proving the following result.

Theorem 1.1 (Brooks' Theorem [2]). Let G be a graph with $\Delta(G) \geq 3$. Then

$$\chi(G) \le \max\{\Delta(G), \omega(G)\}.$$

In 1977, Borodin and Kostochka [1] conjectured that a similar result holds for $\Delta(G) - 1$ colorings.

¹Mathematics Subject Classification: 05C15, 05C17, 05C69.

Emails: crlwchg@163.com (R. Chen), kylan95@126.com (K. Lan), 602503578@qq.com (X. Lin), zoed98@126.com (Y. Zhou).

Conjecture 1.2 (Borodin-Kostochka Conjecture). Let G be a graph with $\Delta(G) \geq 9$. Then

$$\chi(G) \le \max\{\Delta(G) - 1, \omega(G)\}.$$

Cranston, Lafayette and Rabern [7] proved that Conjecture 1.2 fails under either of the weaker assumptions $\Delta(G) \geq 8$ or $\omega(G) \leq \Delta(G) - 2$. In 1999, Reed [8] proved that Conjecture 1.2 holds for graphs having maximum degrees at least 10¹⁴. Recently, the Borodin-Kostochka Conjecture was proved true for claw-free graphs in [5], for $\{P_5, C_4\}$ -free graphs in [7], for $\{P_5, gem\}$ -free graphs in [4], and for hammer-free graphs in [3].

A cycle is a connected 2-regular graph. Let P_n and C_n denote the path and cycle on n vertices, respectively. The *length* of a path or a cycle is the number of its edges. A *hole* in a graph is an induced cycle of length at least four. We say a hole C is *odd* if |V(C)| is odd. For any odd-hole-free graph G, we have $\chi(G) \leq 2^{2^{\omega(G)+2}}$ by the main result proved by Scott and Seymour in [9], while Hoáng [10] conjectured that $\chi(G) \leq \omega(G)^2$. In this paper, we prove that the Borodin-Kostochka Conjecture holds for odd-hole-free graphs.

Theorem 1.3. Let G be an odd-hole-free graph with $\Delta(G) \geq 9$. Then

$$\chi(G) \le \max\{\Delta(G) - 1, \omega(G)\}\$$

In fact, to prove Theorem 1.3, we prove a slightly stronger result.

Theorem 1.4. Let G be an odd-hole-free graph with $\Delta(G) \geq 7$. Then

$$\chi(G) \le \max\{\Delta(G) - 1, \omega(G)\}.$$

2 Proof of Theorem 1.4

For a graph G and a subset X of V(G), let G - X denote the graph obtained from G by deleting all vertices in X and let G[X] be the subgraph of G induced by X. Let N(X) be the set of vertices in V(G) - X that have a neighbour in X. Set $N[X] := N(X) \cup X$. For any $x \in V(G)$, set $d_G(x) := |N(x)|$. When there is no confusion, subscripts are omitted. For a vertex $u \in V(G) - X$, we say that u is *complete* to X if u is adjacent to every vertex in X. For an positive integer k, a graph G is said to be k-vertex-critical if $\chi(G) = k$ and $\chi(G - v) \leq k - 1$ for each vertex v of G.

Proof of Theorem 1.4. When $\omega \ge \Delta(G)$, the result holds from Theorem 1.1. So we may assume that $\chi(G) < \Delta(G)$. Assume that Theorem 1.4 is not true. Let G be a counterexample to Theorem 1.4 with |V(G)| as small as possible. Then G is connected.

2.0.1. G is $\Delta(G)$ -vertex-critical.

Subproof. By Theorem 1.1, we have $\omega(G) \leq \Delta(G) - 1$ and $\chi(G) = \Delta(G)$. Let u be an arbitrary vertex of G. Since $\chi(G - \{u\}) \leq max\{\omega(G - \{u\}), \Delta(G - \{u\})\} \leq \Delta(G) - 1$ by Theorem 1.1, $\chi(G - \{u\}) \leq \Delta(G) - 1 < \chi(G)$, implying that G is $\Delta(G)$ -vertex-critical. \Box

Let $u \in V(G)$ such that $d(u) = \Delta(G)$. Set $N_G(u) := \{u_1, u_2, \dots, u_{\Delta(G)}\}$ and $G' := G - \{u\}$. Then G' has a proper $(\Delta(G) - 1)$ -coloring $\varphi : V(G') \to \{1, 2, \dots, \Delta(G) - 1\}$ by 2.0.1. If, in this coloring of G', one of the $\Delta(G) - 1$ colors is not assigned to a neighbour of u, we may assign it to u, thereby extending the proper $(\Delta(G) - 1)$ -coloring φ of G' to a proper $(\Delta(G) - 1)$ -coloring of G, which is a contradiction. We may therefore assume that the $\Delta(G)$ neighbours of u receive all $\Delta(G) - 1$ colors. Without loss of generality, let $\varphi(u_i) = i$ for each $1 \leq i \leq \Delta(G) - 1$ and $\varphi(u_{\Delta(G)}) = \Delta(G) - 1$. Set $V_i := \{u_i\}$ for $1 \leq i \leq \Delta(G) - 2$ and $V_{\Delta(G)-1} := \{u_{\Delta(G)-1}, u_{\Delta(G)}\}$. That is, V_i is the set consisting of the vertices of N(u) which are assigned color i.

2.0.2. $[V_i, V_j] \neq \emptyset$ for any $1 \le i < j \le \Delta(G) - 1$, where $[V_i, V_j]$ denotes the set of edges in G that has one end in V_i and other end in V_j .

Subproof. Suppose for a contradiction that there exist V_i, V_j such that $[V_i, V_j] = \emptyset$. Denote by G_{ij} the subgraph of G' induced by all vertices assigned colors i or j. Let C be the component of G_{ij} that contains u_i . Then $V(C) \cap V_j \neq \emptyset$. If not, by interchanging the colors i and j in C, we obtain a new $(\Delta(G) - 1)$ -coloring of G' in which only $\Delta(G) - 2$ colors (all but i) are assigned to the neighbours of u, which is a contradiction. Therefore, at least one vertex of V_j is contained in C. Let P_{ij} be a shortest induced path in C linking u_i and a vertex in V_j . Clearly P has odd length. Since $[V_i, V_j] = \emptyset$, we have that P has length at least 3, so $G[V(P) \cup \{u\}]$ is an odd hole, which is a contradiction.

2.0.2 implies that $G[\{u, u_1, u_2, \ldots, u_{\Delta(G)-2}\}$ is a $(\Delta(G) - 1)$ -clique.

Let φ' be another proper $(\Delta(G) - 1)$ -coloring of G'. By the symmetry between φ and φ' , there exist exactly two vertices $x, y \in N_G(u)$ with $\varphi'(x) = \varphi'(y)$.

2.0.3. $V_{\Delta(G)-1} = \{x, y\}.$

Subproof. Assume not. Since $xy \notin E(G)$, by 2.0.2, we have $|V_{\Delta(G)-1} \cap \{x,y\}| = 1$. Without loss of generality, we may assume that $x = u_{\Delta(G)}$. By 2.0.2 and symmetry again, $u_{\Delta(G)-1}$ is complete to $N_G[u] - \{y, u_{\Delta(G)-1}, u_{\Delta(G)}\}$. Since y is not adjacent to $u_{\Delta(G)}$, it follows from 2.0.2 that $yu_{\Delta(G)-1} \in E(G)$. Hence, $N_G[u] - \{u_{\Delta(G)}\}$ induces a clique of size $\Delta(G)$, which is a contradiction.

2.0.4. For any $1 \leq i \leq \Delta(G)$, there are at most a pair of vertices in $N_{G'}(u_i)$ that can be assigned the same color.

Subproof. When $1 \le i \le \Delta(G) - 2$, since $\Delta(G) - 2 \le d_{G'}(u_i) \le \Delta(G) - 1$ and u_i has at most one non-neighbour in $N_G[u] - \{u_i\}$ by 2.0.2, u_i has at most one neighbour in $V(G) - N_G[u]$.

Moreover, if u_i is complete to $V_{\Delta(G)-1}$, then $N_G[u_i] = N_G[u]$. So 2.0.4 holds when $1 \leq i \leq \Delta(G) - 2$. Hence, we may assume that $\Delta(G) - 1 \leq i \leq \Delta(G)$. By symmetry it suffices to show that 2.0.4 holds when $i = \Delta(G)$. Suppose not. Then there must exists a color, say j, assigned to no vertex in $N_{G'}[u_{\Delta(G)}]$ as $\Delta(G) - 2 \leq d_{G'}(u_{\Delta(G)}) \leq \Delta(G) - 1$. Hence, we can recolor $u_{\Delta(G)}$ by j to obtain a new proper ($\Delta(G) - 1$)-coloring of G', which is a contradiction to 2.0.3.

By2.0.2 and the Pigeonhole Principle, without loss of generality we may assume that $\{u_1, u_2, u_3\} \subseteq N_G(u_{\Delta(G)})$ as $\Delta(G) \geq 7$. Moreover, since G has no $\Delta(G)$ -clique, there exists some $4 \leq i \leq \Delta(G) - 2$ such that $u_i u_{\Delta(G)} \notin E(G)$. So u_i is complete to $N_G[u] - \{u_{\Delta(G)}\}$ by 2.0.2. By 2.0.4 and symmetry we may assume that u_1 is the unique vertex in $N_{G'}(u_i) \cup N_{G'}(u_{\Delta(G)})$ assigned color 1. By 2.0.4 again, either $\Delta(G) - 1$ or i, say i, is used exactly once in $N_{G'}(u_1)$. Hence, we can recolor $u_i, u_{\Delta(G)}$ by 1 and u_1 by i to obtain a proper coloring of G', which is a contradiction to 2.0.3. This completes the proof of Theorem 1.4.

3 Acknowledgments

This research was partially supported by grants from the National Natural Sciences Foundation of China (No. 11971111).

References

- O. Borodin and A. Kostochka, On an upper bound of a graph's chromatic number, depending on the graph's degree and density, J. Combin. Theory Ser. B 23 (1997) 247–250.
- [2] R. Brooks, On colouring the nodes of a network, Math. Proc. Cambridge Phil. Soc., vol. 37, Cambridge University Press, 1941, pp. 194-197.
- [3] R. Chen, K. Lan, X. Lin, Coloring hammer-free graphs with $\Delta 1$ colors, submitted, 2023
- [4] D. Cranston, H. Lafayette, and L. Rabern, Coloring $\{P_5, \text{gem}\}$ -free graphs with $\Delta 1$ colors, J. Graph Theory 100 (2022) 633-642.
- [5] D. Cranston and L. Rabern, Coloring claw-free graphs with Δ 1 colors, SIAM J. Disc. Math. 27 (2013) 534–549.
- [6] G. Dirac, Note on the colouring of graphs, Math. Z. 54 (1951) 347–353.
- [7] U. Gupta and D. Pradhan, Borodin-Kostochka's conjecture on $\{P_5, C_4\}$ -free graphs, J. Appl. Math. Comput. 65 (2021) 877–884.
- [8] B. Reed, A strengthening of Brooks' theorem, J. Comb. Theory Ser. B 76 (1999) 136–149.

- [9] A. Scott and P. Seymour, Induced subgraphs of graphs with large chromatic number. I. Odd holes, J. Comb. Theory Ser. B 121 (2016) 68–84.
- [10] A. Scott and P. Seymour, A survey of χ -boundedness, J. Graph Theory **95** (2020) 473–504.