Borodin-Kostochka Conjecture holds for odd-hole-free graphs

Rong Chen, Kaiyang Lan, Xinheng Lin, Yidong Zhou
Center for Discrete Mathematics, Fuzhou University

Fuzhou, P. R. China
October 12, 2023

Abstract

The Borodin-Kostochka Conjecture states that for a graph G, if $\Delta(G) \geq 9$, then $\chi(G) \leq \max \{\Delta(G)-1, \omega(G)\}$. In this paper, we prove the Borodin-Kostochka Conjecture holding for odd-hole-free graphs.

Key Words: chromatic number; odd holes.

1 Introduction

All graphs in this paper are finite and simple. For two graphs G and H, we say that G contains H if H is isomorphic to an induced subgraph of G. When G does not contain H, we say that G is H-free. For a family \mathcal{H} of graphs, we say that G is \mathcal{H}-free if G is H-free for every graph $H \in \mathcal{H}$.

For a graph G, we use $\chi(G), \omega(G)$ and $\Delta(G)$ to denote the chromatic number, clique number and maximum degree of G, respectively. Evidently, $\omega(G) \leq \chi(G) \leq \Delta(G)+1$. In 1941, Brooks observed that odd cycles and complete graphs are the only graphs to achieve the upper bound and strengthened this bound by proving the following result.

Theorem 1.1 (Brooks' Theorem [2]). Let G be a graph with $\Delta(G) \geq 3$. Then

$$
\chi(G) \leq \max \{\Delta(G), \omega(G)\} .
$$

In 1977, Borodin and Kostochka [1] conjectured that a similar result holds for $\Delta(G)-1$ colorings.

[^0]Conjecture 1.2 (Borodin-Kostochka Conjecture). Let G be a graph with $\Delta(G) \geq 9$. Then

$$
\chi(G) \leq \max \{\Delta(G)-1, \omega(G)\} .
$$

Cranston, Lafayette and Rabern [7] proved that Conjecture 1.2 fails under either of the weaker assumptions $\Delta(G) \geq 8$ or $\omega(G) \leq \Delta(G)-2$. In 1999, Reed [8] proved that Conjecture 1.2 holds for graphs having maximum degrees at least 10^{14}. Recently, the Borodin-Kostochka Conjecture was proved true for claw-free graphs in [5], for $\left\{P_{5}, C_{4}\right\}$-free graphs in [7], for $\left\{P_{5}\right.$, gem\}-free graphs in [4], and for hammer-free graphs in [3].

A cycle is a connected 2-regular graph. Let P_{n} and C_{n} denote the path and cycle on n vertices, respectively. The length of a path or a cycle is the number of its edges. A hole in a graph is an induced cycle of length at least four. We say a hole C is odd if $|V(C)|$ is odd. For any odd-hole-free graph G, we have $\chi(G) \leq 2^{2^{\omega(G)+2}}$ by the main result proved by Scott and Seymour in [9], while Hoáng [10] conjectured that $\chi(G) \leq \omega(G)^{2}$. In this paper, we prove that the Borodin-Kostochka Conjecture holds for odd-hole-free graphs.

Theorem 1.3. Let G be an odd-hole-free graph with $\Delta(G) \geq 9$. Then

$$
\chi(G) \leq \max \{\Delta(G)-1, \omega(G)\} .
$$

In fact, to prove Theorem 1.3, we prove a slightly stronger result.
Theorem 1.4. Let G be an odd-hole-free graph with $\Delta(G) \geq 7$. Then

$$
\chi(G) \leq \max \{\Delta(G)-1, \omega(G)\} .
$$

2 Proof of Theorem 1.4

For a graph G and a subset X of $V(G)$, let $G-X$ denote the graph obtained from G by deleting all vertices in X and let $G[X]$ be the subgraph of G induced by X. Let $N(X)$ be the set of vertices in $V(G)-X$ that have a neighbour in X. Set $N[X]:=N(X) \cup X$. For any $x \in V(G)$, set $d_{G}(x):=|N(x)|$. When there is no confusion, subscripts are omitted. For a vertex $u \in V(G)-X$, we say that u is complete to X if u is adjacent to every vertex in X. For an positive integer k, a graph G is said to be k-vertex-critical if $\chi(G)=k$ and $\chi(G-v) \leq k-1$ for each vertex v of G.

Proof of Theorem 1.4. When $\omega \geq \Delta(G)$, the result holds from Theorem 1.1. So we may assume that $\chi(G)<\Delta(G)$. Assume that Theorem 1.4 is not true. Let G be a counterexample to Theorem 1.4 with $|V(G)|$ as small as possible. Then G is connected.
2.0.1. G is $\Delta(G)$-vertex-critical.

Subproof. By Theorem 1.1. we have $\omega(G) \leq \Delta(G)-1$ and $\chi(G)=\Delta(G)$. Let u be an arbitrary vertex of G. Since $\chi(G-\{u\}) \leq \max \{\omega(G-\{u\}), \Delta(G-\{u\})\} \leq \Delta(G)-1$ by Theorem 1.1, $\chi(G-\{u\}) \leq \Delta(G)-1<\chi(G)$, implying that G is $\Delta(G)$-vertex-critical.

Let $u \in V(G)$ such that $d(u)=\Delta(G)$. Set $N_{G}(u):=\left\{u_{1}, u_{2}, \ldots, u_{\Delta(G)}\right\}$ and $G^{\prime}:=$ $G-\{u\}$. Then G^{\prime} has a proper $(\Delta(G)-1)$-coloring $\varphi: V\left(G^{\prime}\right) \rightarrow\{1,2, \ldots, \Delta(G)-1\}$ by 2.0.1. If, in this coloring of G^{\prime}, one of the $\Delta(G)-1$ colors is not assigned to a neighbour of u, we may assign it to u, thereby extending the proper $(\Delta(G)-1)$-coloring φ of G^{\prime} to a proper $(\Delta(G)-1)$-coloring of G, which is a contradiction. We may therefore assume that the $\Delta(G)$ neighbours of u receive all $\Delta(G)-1$ colors. Without loss of generality, let $\varphi\left(u_{i}\right)=i$ for each $1 \leq i \leq \Delta(G)-1$ and $\varphi\left(u_{\Delta(G)}\right)=\Delta(G)-1$. Set $V_{i}:=\left\{u_{i}\right\}$ for $1 \leq i \leq \Delta(G)-2$ and $V_{\Delta(G)-1}:=\left\{u_{\Delta(G)-1}, u_{\Delta(G)}\right\}$. That is, V_{i} is the set consisting of the vertices of $N(u)$ which are assigned color i.
2.0.2. $\left[V_{i}, V_{j}\right] \neq \emptyset$ for any $1 \leq i<j \leq \Delta(G)-1$, where $\left[V_{i}, V_{j}\right]$ denotes the set of edges in G that has one end in V_{i} and other end in V_{j}.

Subproof. Suppose for a contradiction that there exist V_{i}, V_{j} such that $\left[V_{i}, V_{j}\right]=\emptyset$. Denote by $G_{i j}$ the subgraph of G^{\prime} induced by all vertices assigned colors i or j. Let C be the component of $G_{i j}$ that contains u_{i}. Then $V(C) \cap V_{j} \neq \emptyset$. If not, by interchanging the colors i and j in C, we obtain a new $(\Delta(G)-1)$-coloring of G^{\prime} in which only $\Delta(G)-2$ colors (all but i) are assigned to the neighbours of u, which is a contradiction. Therefore, at least one vertex of V_{j} is contained in C. Let $P_{i j}$ be a shortest induced path in C linking u_{i} and a vertex in V_{j}. Clearly P has odd length. Since $\left[V_{i}, V_{j}\right]=\emptyset$, we have that P has length at least 3 , so $G[V(P) \cup\{u\}]$ is an odd hole, which is a contradiction.
2.0.2 implies that $G\left[\left\{u, u_{1}, u_{2}, \ldots, u_{\Delta(G)-2}\right\}\right.$ is a $(\Delta(G)-1)$-clique.

Let φ^{\prime} be another proper $(\Delta(G)-1)$-coloring of G^{\prime}. By the symmetry between φ and φ^{\prime}, there exist exactly two vertices $x, y \in N_{G}(u)$ with $\varphi^{\prime}(x)=\varphi^{\prime}(y)$.

2.0.3. $V_{\Delta(G)-1}=\{x, y\}$.

Subproof. Assume not. Since $x y \notin E(G)$, by 2.0.2, we have $\left|V_{\Delta(G)-1} \cap\{x, y\}\right|=1$. Without loss of generality, we may assume that $x=u_{\Delta(G)}$. By 2.0 .2 and symmetry again, $u_{\Delta(G)-1}$ is complete to $N_{G}[u]-\left\{y, u_{\Delta(G)-1}, u_{\Delta(G)}\right\}$. Since y is not adjacent to $u_{\Delta(G)}$, it follows from 2.0.2 that $y u_{\Delta(G)-1} \in E(G)$. Hence, $N_{G}[u]-\left\{u_{\Delta(G)}\right\}$ induces a clique of size $\Delta(G)$, which is a contradiction.
2.0.4. For any $1 \leq i \leq \Delta(G)$, there are at most a pair of vertices in $N_{G^{\prime}}\left(u_{i}\right)$ that can be assigned the same color.

Subproof. When $1 \leq i \leq \Delta(G)-2$, since $\Delta(G)-2 \leq d_{G^{\prime}}\left(u_{i}\right) \leq \Delta(G)-1$ and u_{i} has at most one non-neighbour in $N_{G}[u]-\left\{u_{i}\right\}$ by 2.0.2, u_{i} has at most one neighbour in $V(G)-N_{G}[u]$.

Moreover, if u_{i} is complete to $V_{\Delta(G)-1}$, then $N_{G}\left[u_{i}\right]=N_{G}[u]$. So 2.0 .4 holds when $1 \leq i \leq$ $\Delta(G)-2$. Hence, we may assume that $\Delta(G)-1 \leq i \leq \Delta(G)\}$. By symmetry it suffices to show that 2.0.4 holds when $i=\Delta(G)$. Suppose not. Then there must exists a color, say j, assigned to no vertex in $N_{G^{\prime}}\left[u_{\Delta(G)}\right]$ as $\Delta(G)-2 \leq d_{G^{\prime}}\left(u_{\Delta(G)}\right) \leq \Delta(G)-1$. Hence, we can recolor $u_{\Delta(G)}$ by j to obtain a new proper $(\Delta(G)-1)$-coloring of G^{\prime}, which is a contradiction to 2.0.3.

By 2.0 .2 and the Pigeonhole Principle, without loss of generality we may assume that $\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq N_{G}\left(u_{\Delta(G)}\right)$ as $\Delta(G) \geq 7$. Moreover, since G has no $\Delta(G)$-clique, there exists some $4 \leq i \leq \Delta(G)-2$ such that $u_{i} u_{\Delta(G)} \notin E(G)$. So u_{i} is complete to $N_{G}[u]-\left\{u_{\Delta(G)}\right\}$ by 2.0.2. By 2.0.4 and symmetry we may assume that u_{1} is the unique vertex in $N_{G^{\prime}}\left(u_{i}\right) \cup$ $N_{G^{\prime}}\left(u_{\Delta(G)}\right)$ assigned color 1. By 2.0.4 again, either $\Delta(G)-1$ or i, say i, is used exactly once in $N_{G^{\prime}}\left(u_{1}\right)$. Hence, we can recolor $u_{i}, u_{\Delta(G)}$ by 1 and u_{1} by i to obtain a proper coloring of G^{\prime}, which is a contradiction to 2.0.3. This completes the proof of Theorem 1.4.

3 Acknowledgments

This research was partially supported by grants from the National Natural Sciences Foundation of China (No. 11971111).

References

[1] O. Borodin and A. Kostochka, On an upper bound of a graph's chromatic number, depending on the graph's degree and density, J. Combin. Theory Ser. B 23 (1997) 247-250.
[2] R. Brooks, On colouring the nodes of a network, Math. Proc. Cambridge Phil. Soc., vol. 37, Cambridge University Press, 1941, pp. 194-197.
[3] R. Chen, K. Lan, X. Lin, Coloring hammer-free graphs with $\Delta-1$ colors, submitted, 2023
[4] D. Cranston, H. Lafayette, and L. Rabern, Coloring $\left\{P_{5}\right.$, gem $\}$-free graphs with $\Delta-1$ colors, J. Graph Theory 100 (2022) 633-642.
[5] D. Cranston and L. Rabern, Coloring claw-free graphs with $\Delta-1$ colors, SIAM J. Disc. Math. 27 (2013) 534-549.
[6] G. Dirac, Note on the colouring of graphs, Math. Z. 54 (1951) 347-353.
[7] U. Gupta and D. Pradhan, Borodin-Kostochka's conjecture on $\left\{P_{5}, C_{4}\right\}$-free graphs, J. Appl. Math. Comput. 65 (2021) 877-884.
[8] B. Reed, A strengthening of Brooks' theorem, J. Comb. Theory Ser. B 76 (1999) 136-149.
[9] A. Scott and P. Seymour, Induced subgraphs of graphs with large chromatic number. I. Odd holes, J. Comb. Theory Ser. B 121 (2016) 68-84.
[10] A. Scott and P. Seymour, A survey of χ-boundedness, J. Graph Theory 95 (2020) 473504.

[^0]: ${ }^{1}$ Mathematics Subject Classification: 05C15, 05C17, 05C69.
 Emails: crlwchg@163.com (R. Chen), kylan95@126.com (K. Lan), 602503578@qq.com (X. Lin), zoed98@126.com (Y. Zhou).

