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Abstract

The Borodin-Kostochka Conjecture states that for a graph G, if ∆(G) ≥ 9, then

χ(G) ≤ max{∆(G)−1, ω(G)}. In this paper, we prove the Borodin-Kostochka Conjecture

holding for odd-hole-free graphs.
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1 Introduction

All graphs in this paper are finite and simple. For two graphs G and H, we say that G

contains H if H is isomorphic to an induced subgraph of G. When G does not contain H,

we say that G is H-free. For a family H of graphs, we say that G is H-free if G is H-free for

every graph H ∈ H.

For a graph G, we use χ(G), ω(G) and ∆(G) to denote the chromatic number, clique

number and maximum degree of G, respectively. Evidently, ω(G) ≤ χ(G) ≤ ∆(G) + 1. In

1941, Brooks observed that odd cycles and complete graphs are the only graphs to achieve

the upper bound and strengthened this bound by proving the following result.

Theorem 1.1 (Brooks’ Theorem [2]). Let G be a graph with ∆(G) ≥ 3. Then

χ(G) ≤ max{∆(G), ω(G)}.

In 1977, Borodin and Kostochka [1] conjectured that a similar result holds for ∆(G)− 1

colorings.
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Conjecture 1.2 (Borodin-Kostochka Conjecture). Let G be a graph with ∆(G) ≥ 9. Then

χ(G) ≤ max{∆(G) − 1, ω(G)}.

Cranston, Lafayette and Rabern [7] proved that Conjecture 1.2 fails under either of the

weaker assumptions ∆(G) ≥ 8 or ω(G) ≤ ∆(G)−2. In 1999, Reed [8] proved that Conjecture

1.2 holds for graphs having maximum degrees at least 1014. Recently, the Borodin-Kostochka

Conjecture was proved true for claw-free graphs in [5], for {P5, C4}-free graphs in [7], for {P5,

gem}-free graphs in [4], and for hammer-free graphs in [3].

A cycle is a connected 2-regular graph. Let Pn and Cn denote the path and cycle on n

vertices, respectively. The length of a path or a cycle is the number of its edges. A hole in a

graph is an induced cycle of length at least four. We say a hole C is odd if |V (C)| is odd. For

any odd-hole-free graph G, we have χ(G) ≤ 22
ω(G)+2

by the main result proved by Scott and

Seymour in [9], while Hoáng [10] conjectured that χ(G) ≤ ω(G)2. In this paper, we prove

that the Borodin-Kostochka Conjecture holds for odd-hole-free graphs.

Theorem 1.3. Let G be an odd-hole-free graph with ∆(G) ≥ 9. Then

χ(G) ≤ max{∆(G) − 1, ω(G)}.

In fact, to prove Theorem 1.3, we prove a slightly stronger result.

Theorem 1.4. Let G be an odd-hole-free graph with ∆(G) ≥ 7. Then

χ(G) ≤ max{∆(G) − 1, ω(G)}.

2 Proof of Theorem 1.4

For a graph G and a subset X of V (G), let G − X denote the graph obtained from G by

deleting all vertices in X and let G[X] be the subgraph of G induced by X. Let N(X) be

the set of vertices in V (G) −X that have a neighbour in X. Set N [X] := N(X) ∪X. For

any x ∈ V (G), set dG(x) := |N(x)|. When there is no confusion, subscripts are omitted.

For a vertex u ∈ V (G) −X, we say that u is complete to X if u is adjacent to every vertex

in X. For an positive integer k, a graph G is said to be k-vertex-critical if χ(G) = k and

χ(G− v) ≤ k − 1 for each vertex v of G.

Proof of Theorem 1.4. When ω ≥ ∆(G), the result holds from Theorem 1.1. So we may

assume that χ(G) < ∆(G). Assume that Theorem 1.4 is not true. Let G be a counterexample

to Theorem 1.4 with |V (G)| as small as possible. Then G is connected.

2.0.1. G is ∆(G)-vertex-critical.
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Subproof. By Theorem 1.1, we have ω(G) ≤ ∆(G) − 1 and χ(G) = ∆(G). Let u be an

arbitrary vertex of G. Since χ(G − {u}) ≤ max{ω(G − {u}),∆(G − {u})} ≤ ∆(G) − 1 by

Theorem 1.1, χ(G− {u}) ≤ ∆(G)− 1 < χ(G), implying that G is ∆(G)-vertex-critical.

Let u ∈ V (G) such that d(u) = ∆(G). Set NG(u) := {u1, u2, . . . , u∆(G)} and G′ :=

G − {u}. Then G′ has a proper (∆(G) − 1)-coloring ϕ : V (G′) → {1, 2, . . . ,∆(G) − 1} by

2.0.1. If, in this coloring of G′, one of the ∆(G)−1 colors is not assigned to a neighbour of u,

we may assign it to u, thereby extending the proper (∆(G)− 1)-coloring ϕ of G′ to a proper

(∆(G)− 1)-coloring of G, which is a contradiction. We may therefore assume that the ∆(G)

neighbours of u receive all ∆(G)− 1 colors. Without loss of generality, let ϕ(ui) = i for each

1 ≤ i ≤ ∆(G) − 1 and ϕ(u∆(G)) = ∆(G) − 1. Set Vi := {ui} for 1 ≤ i ≤ ∆(G) − 2 and

V∆(G)−1 := {u∆(G)−1, u∆(G)}. That is, Vi is the set consisting of the vertices of N(u) which

are assigned color i.

2.0.2. [Vi, Vj ] 6= ∅ for any 1 ≤ i < j ≤ ∆(G)− 1, where [Vi, Vj ] denotes the set of edges in G

that has one end in Vi and other end in Vj .

Subproof. Suppose for a contradiction that there exist Vi, Vj such that [Vi, Vj ] = ∅. Denote by

Gij the subgraph of G′ induced by all vertices assigned colors i or j. Let C be the component

of Gij that contains ui. Then V (C) ∩ Vj 6= ∅. If not, by interchanging the colors i and j

in C, we obtain a new (∆(G) − 1)-coloring of G′ in which only ∆(G) − 2 colors (all but i)

are assigned to the neighbours of u, which is a contradiction. Therefore, at least one vertex

of Vj is contained in C. Let Pij be a shortest induced path in C linking ui and a vertex in

Vj . Clearly P has odd length. Since [Vi, Vj ] = ∅, we have that P has length at least 3, so

G[V (P ) ∪ {u}] is an odd hole, which is a contradiction.

2.0.2 implies that G[{u, u1, u2, . . . , u∆(G)−2} is a (∆(G)− 1)-clique.

Let ϕ′ be another proper (∆(G)− 1)-coloring of G′. By the symmetry between ϕ and ϕ′,

there exist exactly two vertices x, y ∈ NG(u) with ϕ′(x) = ϕ′(y).

2.0.3. V∆(G)−1 = {x, y}.

Subproof. Assume not. Since xy /∈ E(G), by 2.0.2, we have |V∆(G)−1 ∩ {x, y}| = 1. Without

loss of generality, we may assume that x = u∆(G). By 2.0.2 and symmetry again, u∆(G)−1

is complete to NG[u]− {y, u∆(G)−1, u∆(G)}. Since y is not adjacent to u∆(G), it follows from

2.0.2 that yu∆(G)−1 ∈ E(G). Hence, NG[u]−{u∆(G)} induces a clique of size ∆(G), which is

a contradiction.

2.0.4. For any 1 ≤ i ≤ ∆(G), there are at most a pair of vertices in NG′(ui) that can be

assigned the same color.

Subproof. When 1 ≤ i ≤ ∆(G)− 2, since ∆(G)− 2 ≤ dG′(ui) ≤ ∆(G)− 1 and ui has at most

one non-neighbour in NG[u]− {ui} by 2.0.2, ui has at most one neighbour in V (G)−NG[u].
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Moreover, if ui is complete to V∆(G)−1, then NG[ui] = NG[u]. So 2.0.4 holds when 1 ≤ i ≤

∆(G) − 2. Hence, we may assume that ∆(G) − 1 ≤ i ≤ ∆(G)}. By symmetry it suffices to

show that 2.0.4 holds when i = ∆(G). Suppose not. Then there must exists a color, say j,

assigned to no vertex in NG′ [u∆(G)] as ∆(G) − 2 ≤ dG′(u∆(G)) ≤ ∆(G) − 1. Hence, we can

recolor u∆(G) by j to obtain a new proper (∆(G)−1)-coloring of G′, which is a contradiction

to 2.0.3.

By2.0.2 and the Pigeonhole Principle, without loss of generality we may assume that

{u1, u2, u3} ⊆ NG(u∆(G)) as ∆(G) ≥ 7. Moreover, since G has no ∆(G)-clique, there exists

some 4 ≤ i ≤ ∆(G) − 2 such that uiu∆(G) /∈ E(G). So ui is complete to NG[u] − {u∆(G)}

by 2.0.2. By 2.0.4 and symmetry we may assume that u1 is the unique vertex in NG′(ui) ∪

NG′(u∆(G)) assigned color 1. By 2.0.4 again, either ∆(G)− 1 or i, say i, is used exactly once

in NG′(u1). Hence, we can recolor ui, u∆(G) by 1 and u1 by i to obtain a proper coloring of

G′, which is a contradiction to 2.0.3. This completes the proof of Theorem 1.4.
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