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On Restricted Intersections and the Sunflower Problem

Jeremy Chizewer∗

Abstract

A sunflower with r petals is a collection of r sets over a ground set X such that every

element in X is in no set, every set, or exactly one set. Erdős and Rado [5] showed

that a family of sets of size n contains a sunflower if there are more than n!(r−1)n sets

in the family. Alweiss et al. [1] and subsequently Rao [7] and Bell et al. [2] improved

this bound to (O(r log(n))n.

We study the case where the pairwise intersections of the set family are restricted.

In particular, we improve the best-known bound for set families when the size of the

pairwise intersections of any two sets is in a set L. We also present a new bound for

the special case when the set L is the nonnegative integers less than or equal to d using

the techniques of Alweiss et al. [1].

1 Introduction

A set family F over a finite set X is a collection of subsets of X . We say a set family is

n-uniform if every set in the family has size n.

Definition 1.1 (Sunflower). An r-sunflower is a collection of sets S1, . . . , Sr such that

Si ∩ Sj = S1 ∩ S2 ∩ · · · ∩ Sr = K for all i 6= j.

We call the set K the core and the sets Si\K the petals.

Erdős and Rado [5] originally referred to sunflowers as ∆-systems and proved that given

an n-uniform set family F with |F| = n!(r − 1)n there exists an r-sunflower contained in

F . Sunflowers were renamed by Deza and Frankl in [4], and the term sunflower is now more

popular. The sunflower problem has been studied in several papers including [5, 3, 4, 1, 7, 6].
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Erdős and Rado conjectured that a stronger bound holds than the one they proved in

the initial paper.

Conjecture 1.2 (Erdős and Rado [5]). Let F be an n-uniform set family. There exists some

constant C = C(r) depending only on r such that F contains an r-sunflower whenever

|F| > C n.

Recently, Alweiss et al. [1], and subsequently Rao [7] and Bell et al. [2], made progress to-

ward this bound by showing there exists some constant C such that F contains an r-sunflower

whenever |F| > [Cr log(n)]n. We study the Sunflower Problem with added restrictions on

the pairwise intersections.

Definition 1.3. Let F be a set family. We call F an L-intersecting family, if there exists

a set L ⊂ N such that

|Fi ∩ Fj | ∈ L for every Fi, Fj ∈ F , with i 6= j.

The problem of sunflowers in L-intersecting set families was first studied in [6]. They

show that given an L-intersecting set family F with |L| = s, the family F contains a 3-

sunflower whenever |F| > (n2 − n + 1)8s−12(1+
√
5/5)n(s−1). We improve their bound, and

extend the result to all r ≥ 3 in the following theorem, which is one of our main results.

Theorem 1.4. Let F be an L-intersecting, n-uniform set family, for some set L ⊂ N with

|L| = s ≥ 1. Let m = max{r − 1, n2 − n+ 1}. Then F contains an r-sunflower whenever

|F| > 2n log
2
(s+1)+s log

2
(m).

We also consider the special case where L = {0, 1, . . . , d} for some d ∈ N. In this case,

we call the set family d-intersecting. Using the techniques of [1, 7] we achieve the following

bound, our second main result.

Theorem 1.5. Let F be a d-intersecting, n-uniform set family. There exists an absolute

constant C such that for every r, n ≥ 3, the family F contains an r-sunflower whenever

|F| > (4r)n[Cr log(rd)]d.

Corollary 1.6. For any C > 1, there exists c = c(r) > 0 depending only on C and r such

that if F is an n-uniform, r-sunflower free family with |F| ≥ (C4r)n for 3 ≤ r ≤ log n then

there exists F1, F2 ∈ F such that

|F1 ∩ F2| ≥ cn/ log log n.
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Corollary 1.6 follows immediately from Theorem 1.5 by setting d = cn/ log log n. The fol-

lowing question naturally arises.

Question 1.7. Do there exist constants C, c > 0 depending only on r and possibly each other

such that if F is an n-uniform, r-sunflower free family of size |F| ≥ C n, then there exist

F1, F2 ∈ F such that |F1 ∩ F2| ≥ cn?

Corollary 1.6 is of interest because the statement in Question 1.7 is equivalent to Con-

jecture 1.2.

The remainder of the paper is organized as follows. Theorem 1.4 will be proved in

Section 2, and Theorem 1.5 in Section 3. We briefly discuss the results Section 4.

2 Proof of Theorem 1.4

We proceed using similar ideas to the original proof of Erdős and Rado [5], beginning with

the following lemma.

Lemma 2.1 (Deza [3]). Let F be an L-intersecting, n-uniform set family where L = {t} for

some 0 ≤ t < n. If F ≥ n2 − n + 2 then F is a sunflower.

Lemma 2.1 provides the base case for our induction argument. We also state the following

definition, which will be useful in this section and the next one.

Definition 2.2. Given a family F over X, and a set T ⊆ X the “link” of F at T , denoted

FT , is defined as

FT = {F \ T : F ∈ F , T ⊆ F}.

Proof of Theorem 1.4. We prove using induction a slightly stronger statement than that of

the theorem.

Claim 2.3. Let F be an L-intersecting, n-uniform set family for L = {ℓ1, . . . , ℓs} with

0 ≤ ℓ1 < ℓ2 < · · · < ℓs < n and s ≥ 1. Let m = max{r − 1, n2 − n + 1}. Then F contains

an r-sunflower whenever

|F| >
n!ms

(ℓ1 + 1)!(ℓ2 − ℓ1)!(ℓ3 − ℓ2)! · · · (ℓs − ℓs−1)!(n− ℓs − 1)!
. (1)

Proof of claim. Fix m as above. We proceed by induction on s. Indeed, for s = 1, we apply

Lemma 2.1 to get the result immediately. Suppose the result holds for 0 < j < s, and let F

be an n-uniform, L-intersecting family (with L as above) with |L| = s ≥ 2. Suppose that F

satisfies Inequality (1). Let S ⊆ F be a maximal subset of F such that for every Si, Sj ∈ S,

if i 6= j, then |Si ∩ Sj | = ℓ1. If |S| > m then, by Lemma 2.1, S (and hence F) contains an
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r-sunflower. Thus, without loss of generality, we can assume that |S| ≤ m. By maximality

of S, every set in F intersects at least one set of S in at least ℓ1 + 1 elements. Let S ∈ S be

the set which intersects the most elements of F in at least ℓ1 + 1 elements, and let

F ′ = {F ∈ F : |F ∩ S| ≥ ℓ1 + 1}.

By the pigeonhole principle |F ′| ≥ |F|/m. There are
(

n
ℓ1+1

)

subsets of S of size ℓ1 + 1, and

every set in F ′ contains at least one such subset, so again by the pigeonhole principle there

exists a set S ′ ⊆ S such that |S ′| = ℓ1 + 1 and the link at S ′ in F ′ satisfies

|F ′
S′| ≥

|F|

m
(

n
ℓ1+1

) >
(n− ℓ1 − 1)!ms−1

(ℓ2 − ℓ1)!(ℓ3 − ℓ2)! · · · (ℓs − ℓs−1)!(n− ℓs − 1)!
. (2)

Let L′ = {ℓ2 − ℓ1 − 1, . . . , ℓs − ℓ1 − 1}. We observe that F ′
S′ is an (n − ℓ1 − 1)-uniform,

L′-intersecting family, and |L′| = s− 1. Thus, by Inequality (2) and induction F ′
S′ contains

an r-sunflower (note that m still satisfies the requirements of the induction hypothesis).

Let F1, . . . , Fr ∈ F ′
S′ be an r-sunflower, then taking F1 ∪ S ′, . . . , Fr ∪ S ′ ∈ F gives an

r-sunflower.

Theorem 1.4 follows immediately from Claim 2.3 using the bound
(

n
m1,...,mk

)

≤ kn for multi-

nomial coefficients.

3 Proof of Theorem 1.5

We proceed using a similar argument to the main theorem of [1]. We start by stating some

definitions from [1], so that we may apply the results.

Definition 3.1. We say that an n-uniform family F over X is κ-spread if |F| ≥ κn and for

all T ⊆ X with |T | ≤ n we have |FT | ≤ κ−|T ||F|

We introduce weight functions, so that we can deal with multiset families (this is not

strictly necessary, but it makes it easier to apply the results of Alweiss et al. [1]).

Definition 3.2. A function σ : F → Q is a weight function on a set family F if it maps

each set in F to a rational weight, such that not all sets have weight zero. Moreover we

define σ(S) =
∑

S∈S σ(S) for a set family S ⊆ F .

Our next definition generalizes the idea of κ-spread using weight functions.

Definition 3.3. We say that a set family F over X, and corresponding weight function

(F , σ), is s-spread if s = (s0; s1, . . . , sn) satisfies s0 ≥ s1 ≥ · · · ≥ sn ≥ 0 with σ(F) ≥ s0 and

for every set T ⊆ X the subfamily T = {F ∈ F : T ⊆ F}, satisfies σ(T ) ≤ s|T |.
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Now we define (α, β)-satisfying families, for the probabilistic arguments that follow. We

write R ∼ U(X,α) whenever R ⊆ X is generated by taking each element of X uniformly

and independently at random with probability 0 ≤ α ≤ 1.

Definition 3.4. Let 0 < α, β < 1. A family F is (α, β)-satisfying if given R ∼ U(X,α),

PR(∃S ∈ F , S ⊆ R) > 1− β.

Finally, we say that a family F is s-spread if there exists a weight function σ such that

(F , σ) is s-spread, and a weight profile s is (α, β)-satisfying if any s-spread family F is

(α, β)-satisfying. Using these definitions, we can now state the following lemmas.

Lemma 3.5 ([1, Lemma 1.6]). If F is a (1/r, 1/r)-satisfying family, and ∅ /∈ F , then F

contains r pairwise disjoint sets.

Lemma 3.6 ([7, Lemma 4]). Let 0 < α, β < 1/2. There exists a universal constant C > 1

such that if κ = κ(n, α, β) = C log(n/β)/α and a multiset family F over X is a κ-spread,

n-uniform family then F is (α, β)-satisfying.

The next lemma, which is the main technical result of this section, will allow us to use

Lemma 3.6 on sets of size d for a d-intersecting family.

Lemma 3.7. Let F be a d-intersecting, n-uniform set family that is s-spread, such that

s := (|F|; s1, . . . , sd, 1, . . . , 1). Let p, δ > 0, and suppose that s′ = ((1 − δ)|F|; s1, . . . , sd) is

(α′, β ′)-satisfying. Then F is (α, β)-satisfying for

α = p+ (1− p)α′, and β = β ′ + (2/p)n/(δ|F|)

Before proving Lemma 3.7, we define a notion of “good” and “bad” set pairs. Bounding

the number of bad pairs is the key idea in this proof.

Definition 3.8. Let F be an n-uniform family over X and let W ⊆ X. Given S ∈ F and

w ∈ [n] we call the set pair (W,S)w good if there exists a set S ′ ∈ F (possibly with S ′ = S)

such that

S ′ \W ⊆ S \W , and |S ′ \W | ≤ w

We call S ′ a witness to the goodness of (W,S)w. We call a set bad otherwise.

We use Definition 3.8 with w = d for our purposes.

Proof of Lemma 3.7. Let F be a d-intersecting, n-uniform set family over X , with |X| = x.

We begin by bounding the number of bad set pairs using an encoding inspired by [1]. Suppose
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(W,S)d is a bad pair for W ⊆ X where |W | = px and S ∈ F . First, we consider all possible

sets W ∪ S. Since |S| = n and |W | = px, we know that px ≤ |W ∪ S| ≤ px + n. Hence,

there are

n
∑

i=0

(

x

px+ i

)

≤
n

∑

i=0

(

1− p

p

)i (
x

px

)

≤

(

1− p

p
+ 1

)n (
x

px

)

= p−n

(

x

px

)

possible sets for W ∪ S. Let W ∪ S be the first piece of information in the encoding. There

are 2n possible values for W ∩S since |S| = n. Let W ∩S be the second piece of information

in the encoding. Now we claim that given these two pieces of information and the additional

information that the corresponding set pair (W,S)d is bad, we can reconstruct (W,S)d.

Indeed, if we knew S in addition to this information, we could clearly reconstruct (W,S)d.

Let S ′ ∈ F and suppose that S ′ ⊆ W ∪ S, so that S ′ \W ⊆ S \W . Since (W,S)d is bad,

it must be that |S ′ \W | > d, hence |S ′ ∩ S| > d. Since F is d-intersecting, S ′ = S and

there is a unique set S for a given W ∪ S, which can be computed by taking the unique

set S ⊆ W ∪ S. Since we also know W ∩ S, we can compute W . Therefore, there are at

most (2/p)n
(

x
px

)

bad set pairs. Since there are
(

x
px

)

possible sets W , the expected number of

bad set pairs for a given W is (2/p)n. Let S(W ) = {S ∈ F : (W,S)d is bad}. By Markov’s

inequality, the probability over W drawn uniformly from
(

X
px

)

, the set of subsets of X with

size px, satisfies

PW (|S(W )| ≥ δ|F|) ≤
(2/p)n

δ|F|
(3)

When |S(W )| ≤ δ|F| we define a new d-uniform multiset family F ′ over X \W which is

s′ = ((1 − δ)|F|; s1, . . . , sd)-spread. The rest of the proof follows immediately from the

arguments in Section 2.1 of [1].

Proof of Theorem 1.5. We roughly follow the argument used in [1, 7]. Let F be a d-

intersecting, n-uniform family over X of size |F| > (4r)n[Cr log(rd)]d, for C to be chosen

later. Let T ⊆ X be the largest set with |T | ≤ d (possibly |T | = 0) such that

|FT | ≥ [Cr log(rd)]−|T ||F|.

We claim that FT is κ = Cr log(rd)-spread. Indeed, if |T | = d then FT is a family of pairwise

disjoint sets, and otherwise we can find a link at T ′ ⊆ X \ T such that |T ′| > 0 and

(FT )T ′ ≥ [Cr log(rd)]−|T ′||FT |.
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But then, taking T ′ ∪ T gives a larger set with

|FT∪T ′| ≥ [Cr log(rd)]−|T∪T ′||F|,

a contradiction. Hence, FT is s-spread and (d− |T |)-intersecting for weight profile

s = (|FT |; |FT |/κ, . . . , |FT |/κ
d−|T |, 1, . . . , 1),

taking σ(F ) = 1 for all F ∈ FT . Let s′ = (|FT |/2; |FT |/κ, . . . , |FT |/κ
d−|T |). As in [1],

we observe that if a family is (|FT |/2; |FT |/κ, . . . , |FT |/κ
d−|T |)-spread, then it is also s′′ =

(|FT |; |FT |/κ
′, . . . , |FT |/κ

′(d−|T |))-spread for κ′ = κ/2. By Lemma 3.6, s′′ (and hence also

s′) is ( 1
2r
, 1
2r
)-satisfying for C chosen sufficiently large. Hence, by Lemma 3.7 with δ = 1/2

and p = 1
2r
, we know that s is (1/r, 1/r)-satisfying choosing C sufficiently large according

to the result of the lemma. Therefore, by Lemma 3.5, this implies FT contains r pairwise

disjoint sets. Let F1, . . . , Fr ∈ FT be pairwise disjoint. Then F1 ∪ T, . . . , Fr ∪ T ∈ F is an

r-sunflower.

4 Discussion

It is easy to see that Theorem 1.5 implies a stronger statement than the best known bound

whenever d = o(n). The original bound of Erdős and Rado can be directly applied to d-

intersecting sets families to achieve a bound of (r − 1)d+1n!/(n− d)!. A natural question is

when Theorem 1.5 improves this trivial bound? There is some constant c > 0 such that

(r − 1)d+1n!

(n− d)!
≥

[

(r − 1)n

2

]cn/ log logn

≥ (4r)n[Cr log(rcn/ log logn)]cn/ log logn

for d ≥ cn/ log logn and n sufficiently large. Hence, in this regime, we improve the best

known bound. In particular, this motivates Corollary 1.6 and Question 1.7.
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