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Abstract

Let G be a nontrivial connected and vertex-colored graph. A vertex subset

X is called rainbow if any two vertices in X have distinct colors. The graph G

is called rainbow vertex-disconnected if for any two vertices x and y of G, there

exists a vertex subset S such that when x and y are nonadjacent, S is rainbow

and x and y belong to different components of G−S; whereas when x and y are

adjacent, S+x or S+y is rainbow and x and y belong to different components

of (G − xy) − S. For a connected graph G, the rainbow vertex-disconnection

number of G, rvd(G), is the minimum number of colors that are needed to

make G rainbow vertex-disconnected.

In this paper, we prove for any K4-minor free graph, rvd(G) ≤ ∆(G) and

the bound is sharp. We show it is NP -complete to determine the rainbow

vertex-disconnection number for bipartite graphs and split graphs. Moreover,

we show for every ϵ > 0, it is impossible to efficiently approximate the rainbow

vertex-disconnection number of any bipartite graph and split graph within a

factor of n
1
3
−ϵ unless ZPP = NP .

Keywords: vertex-coloring, rainbow vertex-cut, rainbow vertex-disconnection

number, complexity, inapproximability

AMS subject classification 2010: 05C15, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G =

(V (G), E(G)) be a nontrivial connected graph with vertex set V (G) and edge set
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E(G). The order of G is denoted by n = |V (G)|. For a vertex v ∈ V , the open

neighborhood of v in G is the set NG(v) = {u ∈ V (G)|uv ∈ E(G)} and dG(v) =

|NG(v)| is the degree of v in G, and the closed neighborhood in G is the set NG[v] =

NG(v) ∪ {v}. The minimum and maximum degree of G are denoted by δ(G) and

∆(G), respectively. Let Pn be a path with order n. We follow [2] for graph theoretical

notation and terminology not defined here.

In graph theory, there are two ways (path and cut) to study the connectivity

of graph. For colored graphs, there are many concepts, such as rainbow connection

coloring, proper connection coloring and so on, which study colored connectivity

from colored paths. Chartrand et al. [3] studied the rainbow edge-cut by introducing

the concept of rainbow disconnection of graphs. They first researched the colored

connectivity from the perspective of colored edge-cut.

Based on it, Bai et al. [1] researched the colored connectivity from the per-

spective of colored vertex-cut. They introduced the concept of the rainbow vertex-

disconnection number, which can be applied to frequency assignment problem and

the interception of goods.

For a connected and vertex-colored graph G, let x and y be two vertices of G. If

x and y are nonadjacent, then an x-y vertex-cut is a subset S of V (G) such that x

and y belong to different components of G− S. If x and y are adjacent, then an x-y

vertex-cut is a subset S of V (G) such that x and y belong to different components

of (G− xy)− S. A vertex subset S of G is rainbow if no two vertices of S have the

same color. An x-y rainbow vertex-cut is an x-y vertex-cut S such that if x and y

are nonadjacent, then S is rainbow; if x and y are adjacent, then S + x or S + y is

rainbow.

A vertex-colored graph G is called rainbow vertex-disconnected if for any two

vertices x and y of G, there exists an x-y rainbow vertex-cut. In this case, the vertex-

coloring c is called a rainbow vertex-disconnection coloring of G. For a connected

graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the

minimum number of colors that are needed to make G rainbow vertex-disconnected.

A rainbow vertex-disconnection coloring with rvd(G) colors is called an rvd-coloring

of G.

An injective coloring of graph G is a vertex-coloring of graph G so that the colors

of any two vertices with a common neighbor are different. The injective chromatic

number χi(G) of a graph G is the minimum number of colors such that there is an

injective coloring. The injective coloring was first introduced by Hahn et al. in 2002

[8] and originated from the complexity theory on Random Access Machines.
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According to [11], we have

δ(G) ≤ rvd(G) ≤ χi(G) ≤ ∆(G)(∆(G)− 1) + 1.

A minor of a graph G is any graph obtainable from G by means of a sequence of

vertex and edge deletions and edge contractions. We call G H-minor free if G does

not have H as a minor. A split graph is a graph whose vertices can be partitioned

into a clique and an independent set.

Chen et al. [4] proved that every K4-minor free graph G with maximum degree

∆ ≥ 1 has χi(G) ≤ ⌈3
2
∆⌉. Jin et al. [9] considered the complexity of injective

coloring. They also showed if ZPP ̸= NP , then for every ϵ > 0, it is not possible

to efficiently approximate χi(G) within a factor of n
1
3
−ϵ for any bipartite graph G.

For rainbow vertex-disconnection colorings of graphs, Chen et al. [5] showed that it

is NP-complete to decide whether a given vertex-colored graph G is rainbow vertex-

disconnected, even though the graph G has ∆(G) = 3 or is bipartite. But how about

the complexity of determining rvd(G)?

Inspired by these, the paper is organized as follows. In Section 2, we consider the

rainbow vertex-disconnection numbers of K4-minor free graphs. We prove for any

K4-minor free graph, rvd(G) ≤ ∆(G) and the bound is sharp. It shows that there is

a certain gap between rvd(G) and χi(G) even if G is K4-minor free. In Section 3, we

prove it is NP -complete to determine the rainbow vertex-disconnection number for

bipartite graphs and split graphs. Moreover, we show for every ϵ > 0, it is impossible

to efficiently approximate the rainbow vertex-disconnection number of any bipartite

graph and split graph within a factor of n
1
3
−ϵ unless ZPP = NP .

2 Graphs with K4-minor free

Lemma 2.1 [1] Let G be a nontrivial connected graph. Then rvd(G) = 1 if and only

if G is a tree.

Lemma 2.2 [1] If Cn is a cycle of order n ≥ 3, then rvd(Cn) = 2.

Lemma 2.3 [1] Let G be a nontrivial connected graph, and let B be a block of G

such that rvd(B) is maximum among all blocks of G. Then rvd(G) = rvd(B).

Lemma 2.4 [1] Let G be a nontrivial connected graph, and let u and v be two vertices

of G having at least two common neighbors. Then u and v receive different colors in

any rvd-coloring of G.
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In fact, Lemma 2.4 holds true for any rainbow vertex-disconnection coloring of

G. For convenience, we think Lemma 2.4 is for any rainbow vertex-disconnection

coloring of G.

Let SG(x, y) be an x-y rainbow vertex-cut in G. Let DG(x, y) be the rainbow

vertex set such that if x, y are adjacent, then SG(x, y)+x ⊆ DG(x, y) or SG(x, y)+y ⊆
DG(x, y) and DG(x, y) is rainbow; if x, y are not adjacent, then SG(x, y) ⊆ DG(x, y)

and DG(x, y) is rainbow. In order to prove that a vertex-coloring of G is a rainbow

vertex-disconnection coloring, for any two vertices x, y of G, we only need to find

DG(x, y). Every K4-minor free graph contains a vertex with degree at most two[6].

We call v a k-vertex if dG(v) = k. Define TG(u) = {x|dG(x) ≥ 3 such that either

ux ∈ E(G), or there exists a 2-vertex z satisfying uz, zx ∈ E(G)}. Let tG(u) =

|TG(u)|. Let x and y be two vertices of graph G. The set of all the 2-vertices which

are adjacent to both x and y is denoted by MG(x, y). Let mG(x, y) = |MG(x, y)|. Let
u ∼ v (u ̸∼ v) denote that vertex u and vertex v are adjacent (not adjacent) in G.

Lih et al. [12] proved the following Lemma.

Lemma 2.5 [12] Let G be a K4-minor free graph. Then one of the following holds:

(i) δ(G) ≤ 1;

(ii) there exist two adjacent 2-vertices;

(iii) there exists a vertex u with dG(u) ≥ 3 such that tG(u) ≤ 2.

To contract an edge e of a graph G is to delete the edge and then identify its

ends. The resulting graph is denoted by G/e.

Lemma 2.6 Let G be a 2-connected graph with order n ≥ 4 and two adjacent 2-

vertices u, v. Then rvd(G) ≤ rvd(G/uv), where uv is an edge of G.

Proof. Let NG(u) = {u1, v} and NG(v) = {v1, u}. Since G is 2-connected, we consider

u1 ̸= v1. For convenience, regard G/uv as the graph H obtained from graph G by

deleting the vertex v and adding the edge uv1. Since H is also 2-connected, we have

rvd(H) ≥ 2. Let cH be an rvd-coloring of H and |cH | be the number of colors.

Consider there exist at least two colors in {u, u1, v1} under cH . We extend cH

to a vertex-coloring cG of graph G as follows. If cH(u) ̸= cH(v1), color v different

from cH(u1) and color V (G) \ {v} with the same colors from cH . If cH(u) = cH(v1),

let cG(u) = cH(u1), cG(v) = cH(v1) and color V (G) \ {u, v} with the same colors

from cH . Obviously, NG(u) and NG(v) are rainbow. Now we claim cG is a rainbow

vertex-disconnection coloring of G. Let x and y be two vertices of graph G. If
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x ∈ {u, v}, then DG(x, y) = NG(x). By symmetry, consider x, y ∈ V (G) \ {u, v}. If

u ∈ DH(x, y), then DG(x, y) = DH(x, y) or DH(x, y) ∪ {v} \ {u}. If u ̸∈ DH(x, y),

then DG(x, y) = DH(x, y). So rvd(G) ≤ |cG| = |cH | = rvd(H).

Consider cH(u) = cH(u1) = cH(v1) under cH . Then u1 ̸∼ v1 in H and G. We

extend cH to a vertex-coloring cG of graph G as follows. Color v different from cH(u)

and color V (G) \ {v} with the same colors from cH . Let x and y be two vertices of

graph G. If x = u, then DG(x, y) = NG(x). By symmetry, consider x, y ∈ V (G)\{u}.
We have DG(v, u1) = DH(u1, v1). If x = v and y ∈ V (G)\{u, v, u1}, then DG(x, y) =

DH(u, y). By symmetry, consider x, y ∈ V (G)\{u, v}. We have DG(x, y) = DH(x, y).

So cG is a rainbow vertex-disconnection coloring of G and rvd(G) ≤ rvd(H). □

Theorem 2.7 Let G be a K4-minor free graph. Then rvd(G) ≤ ∆(G) and the bound

is sharp.

Proof. When ∆(G) ≤ 2, the graph G is a path or cycle. By Lemmas 2.1 and 2.2, we

have rvd(G) ≤ ∆(G). So consider ∆(G) ≥ 3.

We prove the result by induction on the order of graph G. When n = 4, the graph

G is K4 − e or a triangle with one pendant edge or K1,3. Obviously, rvd(G) ≤ 3.

Assume n ≥ 5 and the theorem holds for any K4-minor free graph G̃ with |G̃| < |G|.
By Lemma 2.3, we only need to consider that G is 2-connected and δ(G) ≥ 2. If G

has two adjacent 2-vertices u and v, then rvd(G) ≤ rvd(G/uv) ≤ ∆(G/uv) ≤ ∆(G)

by Lemma 2.6 and induction hypothesis. So by Lemma 2.5, consider that G has no

adjacent 2-vertices and there exists a vertex u with dG(u) ≥ 3 such that tG(u) ≤ 2.

If tG(u) = 0, all the neighbors of u are 2-vertices and there exist adjacent 2-

vertices. It is a contradiction. If tG(u) = 1, assuming that TG(u) = {u1}, then all the

neighbors of u are u1 or some neighbors of u1. Since G is 2-connected, G is K2,n−2

or K2,n−2 + {uu1}. Obviously, rvd(G) = ∆(G).

So tG(u) = 2 and any vertex v with degree at least 3 has tG(v) ≥ 2. Assume that

TG(u) = {u1, u2}. Then all the neighbors of u are u1, u2 or some neighbors of u1 or

u2.

Let S = {v|dG(v) ≥ 3 and tG(v) = 2}. For any vertex v ∈ S, let TG(v) = {v1, v2}.

Claim 2.8 There exists a vertex v in S satisfying that if v1 ∼ v2, then tG(v1) ∈ {2, 3}
or tG(v2) ∈ {2, 3}; if v1 ̸∼ v2, then tG(v1) = 2 or tG(v2) = 2.

Proof. Suppose not. For any vertex v ∈ S, if v1 ∼ v2, then tG(v1) ≥ 4 and tG(v2) ≥ 4;

if v1 ̸∼ v2, then tG(v1) ≥ 3 and tG(v2) ≥ 3. We construct a new graph H from G. Let
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V (H) = {v|dG(v) ≥ 3} and E(H) = {xy|x, y ∈ V (H) and y ∈ TG(x)}. Obviously,

for any 2-vertex v in H, if v1 ∼ v2, then dH(v1) ≥ 4 and dH(v2) ≥ 4; if v1 ̸∼ v2, then

dH(v1) ≥ 3 and dH(v2) ≥ 3. For every 2-vertex v in H, contract the edge vv1 in H.

We obtain a new graph H ′ from H with minimum degree at least three. Then H ′ is

not K4-minor free. It is a contradiction. □

Reselect vertex u with tG(u) = 2 satisfying Claim 2.8. Without loss of generality,

assume that tG(u1) ∈ {2, 3} for u1 ∼ u2 and tG(u1) = 2 for u1 ̸∼ u2. Consider u1 ∼ u2

and tG(u1) = 2. If tG(u2) ≥ 3, then u2 is a cut vertex, which is a contradiction. If

tG(u2) = 2, then the graph G is as shown in figure 1. We give a vertex-coloring

cG of G as follows. Let cG(u) = 1, cG(u1) = 2 and cG(u2) = 3. Color MG(u1, u2)

different from u, u2 and rainbow. If u ̸∼ u1, color MG(u, u1) different from u2 and

rainbow; otherwise, color MG(u, u1) different from u, u2 and rainbow. If u ̸∼ u2, color

MG(u, u2) different from u1 and rainbow; otherwise, color MG(u, u2) different from

u, u1 and rainbow. Obviously, cG is a rainbow vertex-disconnection coloring of G

with at most ∆(G) colors. So rvd(G) ≤ ∆(G). Thus, tG(u1) = 3 for u1 ∼ u2 and

tG(u1) = 2 for u1 ̸∼ u2.

u

u1 u2

Figure 1: The graph with tG(u2) = 2.

Let s1 ∈ TG(u1) and s1 ̸= u, u2. Let Qu be the set of neighbors of u with degree

two. Since dG(u) ≥ 3, there exists at least one neighbor of u with degree two. Let

H be the graph obtained from G by deleting Qu and adding edges to ensure u ∼ u1

and u ∼ u2.

Claim 2.9 There exists a rainbow vertex-disconnection coloring cH of H with at most

∆(H) colors such that at least two vertices from {u, u1, u2} have different colors.

Proof. Assume, to the contrary, we have c(u) = c(u1) = c(u2) for any rainbow

vertex-disconnection coloring c of H with at most ∆(H) colors. Then u1 ̸∼ u2 and

mH(u1, u2) = 1 by Lemma 2.4. Let cH be a rainbow vertex-disconnection coloring of

H with at most ∆(H) colors. We construct a new coloring cH′ of H as follows. Let
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cH′(v) = cH(v) for v ∈ V (H) \ {u}. Color u such that cH′(u) ̸= cH(u1), cH(s1). We

denote the new colored graph by H ′. Now claim cH′ is a rainbow vertex-disconnection

coloring of H ′.

Let x and y be two vertices of graphH ′. We haveDH′(u, u1) = {u, u2},DH′(u, u2) =

{u, u1} and DH′(u1, u2) = {u, s1}. When x = u1 and y ∈ V (H ′) \ {u, u1, u2}, if u ∈
DH(x, y), then DH′(x, y) = DH(x, y) ∪ {u2} \ {u}; otherwise, DH′(x, y) = DH(x, y).

By symmetry, consider x, y ∈ V (H ′) \ {u1} and {x, y} ≠ {u, u2}. If u ∈ DH(x, y),

then DH′(x, y) = DH(x, y) ∪ {u1} \ {u}; otherwise, DH′(x, y) = DH(x, y). So cH′

is a rainbow vertex-disconnection coloring of H ′ with at most ∆(H ′) colors and

cH′(u) ̸= cH′(u1). It is a contradiction.

□

Claim 2.10 Let u1 ̸∼ u2 and cH be a rainbow vertex-disconnection coloring of H

from Claim 2.9. If there exists a vertex ui from {u1, u2} satisfying mG(u, ui) ≤ 1 and

cH(u) = cH(ui), then cH can be extended to a rainbow vertex-disconnection coloring

cG of G with at most ∆(G) colors.

Proof. Assume that cH(u1) = cH(u) ̸= cH(u2). IfmG(u, u1) = 1, then letMG(u, u1) =

{t}. We extend cH to a coloring cG of G as follows. Let cG(v) = cH(v) for v ∈ V (H).

Color t different from u1, u2. Color MG(u, u2) different from NG(u) \ MG(u, u2)

and rainbow. Then cG has at most ∆(G) colors. Now we claim that cG is a

rainbow vertex-disconnection coloring of G. Let x and y be two vertices of graph

G. If x ∈ {u} ∪ MG(u, u2), then DG(x, y) = NG(x). By symmetry, consider

x, y ̸∈ {u} ∪ MG(u, u2). Assume that x = t. We have DG(t, u1) = {u, t} and

DG(t, u2) = DH(u1, u2). If y ̸∈ {u, t, u1, u2} ∪ MG(u, u2), DG(t, y) = {u1, u2}. By

symmetry, assume that x, y ̸∈ {u, t} ∪MG(u, u2). We have DG(x, y) = DH(x, y). So

cG is a rainbow vertex-disconnection coloring of G with at most ∆(G) colors.

If mG(u, u1) = 0, it is similar to the above coloring cG without t. The case

cH(u2) = cH(u) ̸= cH(u1) will not be repeated here. □

By Claim 2.9, there are four cases under cH in H.

Case 1. {u, u1, u2} is rainbow.

We extend cH to a vertex-coloring cG of G as follows. Let cG(v) = cH(v) for

v ∈ V (H). Color Qu different from NG(u) \ Qu and rainbow. Now we claim that

cG is a rainbow vertex-disconnection coloring of G. Let x and y be two vertices

of graph G. If x ∈ {u} ∪ Qu, then DG(x, y) = NG(x). By symmetry, consider
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x, y ∈ V (G) \ {{u} ∪ Qu}. Then DG(x, y) = DH(x, y). So cG is a rainbow vertex-

disconnection coloring of G with at most ∆(G) colors.

Case 2. cH(u1) = cH(u2) ̸= cH(u).

We extend cH to a vertex-coloring cG of G as follows. Let cG(v) = cH(v) for

v ∈ V (H). If u ∼ u1, color MG(u, u1) different from u, u2 and rainbow; otherwise,

color MG(u, u1) different from u2 and rainbow. If u ∼ u2, color MG(u, u2) different

from u, u1 and rainbow; otherwise, color MG(u, u2) different from u1 and rainbow.

Then cG uses at most ∆(G) colors.

Now we claim that cG is a rainbow vertex-disconnection coloring of G. Let x and

y be two vertices of graph G. If x ∈ Qu, then DG(x, y) = NG(x). By symmetry,

consider x, y ∈ V (G) \ Qu. Consider x = u. We have DG(u, u1) = MG(u, u1) ∪ {u2}
or MG(u, u1) ∪ {u, u2} and DG(u, u2) = MG(u, u2) ∪ {u1} or MG(u, u2) ∪ {u, u1}. If

y ̸∈ Qu∪{u, u1, u2}, then DG(u, y) = DH(u, y). By symmetry, consider x, y ∈ V (G)\
{{u} ∪ Qu}. Then DG(x, y) = DH(x, y). So cG is a rainbow vertex-disconnection

coloring of G with at most ∆(G) colors.

Claim 2.11 Assume that cH(u) = cH(u1) ̸= cH(u2) or cH(u) = cH(u2) ̸= cH(u1). If

mH(u1, u2) ≥ 2, then there exists a rainbow vertex-disconnection coloring of G with

at most ∆(G) colors.

Proof. Assume that cH(u) = cH(u1) ̸= cH(u2). If there exists a vertex u0 ∈
MH(u1, u2) with the color different from cH(u1) and cH(u2), by symmetry, we re-

gard u0 as u. It belongs to Case 1. So mH(u1, u2) = 2 and MH(u1, u2) has the same

colors with u1 and u2. Then u1 ̸∼ u2. By Claim 2.10, mG(u, u1) ≥ 2. So ∆(G) ≥ 4,

otherwise u2 is a cut vertex, which is a contradiction. Let MH(u1, u2) = {u, u′}.
We give a new vertex-coloring cH′ of H by recoloring u. If cH(s1) = cH(u1) or

cH(u2), we regard the vertex from MH(u1, u2) with the same color of s1 as vertex

u and color u different from u1, u2. Otherwise, color u different from u1, u2, s1. We

denote the new colored graph by H ′. Then cH′ uses at most ∆(H ′) colors. Now

we claim that cH′ is a rainbow vertex-disconnection coloring of H ′. Let x and y

be two vertices of graph H ′. If x ∈ {u, u′}, then DH′(x, y) = NH′(x). We have

DH′(u1, u2) = {u, u′, s1}. For x = u1 and y ̸∈ {u, u′, u1, u2}, if {u, u′} ⊆ DH(x, y),

then DH′(x, y) = DH(x, y)∪ {u2} \ {u, u′}; otherwise, DH′(x, y) = DH(x, y) \ {u, u′}.
When {x, y} is other pairs of vertices, if {u, u′} ⊆ DH(x, y), then DH′(x, y) =

DH(x, y) ∪ {u1} \ {u, u′}; otherwise, DH′(x, y) = DH(x, y) \ {u, u′}. So cH′ is a rain-

bow vertex-disconnection coloring of H ′ with at most ∆(H ′) colors, where {u, u1, u2}
is rainbow. It belongs to Case 1. The case cH(u) = cH(u2) ̸= cH(u1) will not be

repeated here. □
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Case 3. cH(u) = cH(u1) ̸= cH(u2).

By Claim 2.11, we have mH(u1, u2) = 1. Consider ∆(G) ≥ 4. Assume that there

exists DH(u1, s1) such that u ̸∈ DH(u1, s1). We give a new vertex-coloring cH′ of H

by recoloring u different from s1, u1, u2. We denote the new colored graph by H ′.

Then cH′ uses at most ∆(H ′) colors. Now we claim that cH′ is a rainbow vertex-

disconnection coloring of H ′. Let x and y be two vertices of graph H ′. If x = u, then

DH′(x, y) = NH′(u). We have DH′(u1, s1) = DH(u1, s1) and DH′(u1, u2) = {u, s1, u1}
or {u, s1, u2}. If x = u1 and y is the neighbor of u1 with degree two, then DH′(u1, y) =

{s1, u1} or {s1, y} or {u2, u1}. If x = u1 and y ̸∈ NH′ [u1]∪{s1, u2}, then DH′(u1, y) =

{u, s1} for u1 ̸∼ u2 and DH′(u1, y) = DH(u1, y) \ {u} for u1 ∼ u2. By symmetry,

consider x, y ̸∈ {u, u1}. If u ∈ DH(x, y), then DH′(x, y) = DH(x, y) ∪ {u1} \ {u};
otherwise, DH′(x, y) = DH(x, y). So cH′ is a rainbow vertex-disconnection coloring

of H ′ with at most ∆(H ′) colors, where {u, u1, u2} is rainbow. It belongs to Case 1.

Assume that u is contained in any u1-s1 rainbow vertex-cut under cH in H. Then

MH(u1, s1) has no color like u under cH and u1 ̸∼ u2. NH(u1) is rainbow. The color

of u2 appears in the colors of MH(u1, s1). Otherwise, let DH(u1, s1) = MH(u1, s1) ∪
{u1, u2} containing no u, which is a contradiction. If u1 ∼ s1, then the color of

s1 is different from the colors of u1 and u2 under cH . Based on cH , we recolor u

different from the colors of NH(u1). We denote the new colored graph by H ′ and

the vertex-coloring by cH′ . Then {u, u1, u2} is rainbow in H ′. By Claim 2.10, we

consider mG(u, u1) ≥ 2. We have ∆(G) ≥ dG(u1) ≥ dH(u1) + 1. So we use at most

∆(G) colors under cH′ . Now we claim that cH′ is a rainbow vertex-disconnection

coloring of H ′. Let x and y be two vertices of graph H ′. If x = u or u1, then

DH′(x, y) = NH′(x). By symmetry, consider x, y ∈ V (H ′) \ {u, u1}. If u ∈ DH(x, y),

then DH′(x, y) = DH(x, y)∪ {u1} \ {u}; otherwise, DH′(x, y) = DH(x, y). So cH′ is a

rainbow vertex-disconnection coloring of H ′. It belongs to Case 1.

Consider ∆(G) = 3. Then dG(u) = 3. If u1 ∼ u2, we have NG[u] ∪ {u1, u2} is a

block and G is not 2-connected. It is a contradiction.

Assume that u1 ̸∼ u2. By Claim 2.10, consider mG(u, u1) = 2. We have dH(u1) =

2. Based on cH , we recolor u different from the colors of NH(u1). We denote the

new colored graph by H ′ and the vertex-coloring by cH′ . Then we use at most three

colors in cH′ and NH′(u1) is rainbow. Now we claim that cH′ is a rainbow vertex-

disconnection coloring of H ′. Let x and y be two vertices of graph H ′. If x = u or

u1, then DH′(x, y) = NH′(x). By symmetry, consider x, y ∈ V (H ′) \ {u, u1}. If u ∈
DH(x, y), then DH′(x, y) = DH(x, y) ∪ {u1} \ {u}; otherwise, DH′(x, y) = DH(x, y).

So cH′ is a rainbow vertex-disconnection coloring of H ′. It belongs to Case 1 or has

cH′(u) = cH′(u2). If cH′(u) = cH′(u2), since mG(u, u2) ≤ 1, there exists a rainbow
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vertex-disconnection coloring cG of G with at most ∆(G) colors by Claim 2.10.

Case 4. cH(u) = cH(u2) ̸= cH(u1).

By Claim 2.11, we have mH(u1, u2) = 1. Assume that u1 ∼ u2. Based on cH ,

we give a new vertex-coloring cH′ of H by recoloring u. If cH(s1) ̸= cH(u2), recolor

u different from s1, u2; otherwise, recolor u different from s1, u1. We denote the new

colored graph by H ′. Then cH′(u) ̸= cH′(u2).

Now we claim that cH′ is a rainbow vertex-disconnection coloring of H ′. Let x

and y be two vertices of graph H ′. If x = u, then DH′(x, y) = NH′(u). By symmetry,

consider x, y ∈ V (H ′) \ {u}. We have DH′(u1, u2) = {u, s1, u1} or {u, s1, u2}. When

{x, y} is other pairs of vertices, if u ∈ DH(x, y), then DH′(x, y) = DH(x, y) \ {u};
otherwise, DH′(x, y) = DH(x, y). So cH′ is a rainbow vertex-disconnection coloring

of H ′. It belongs to Case 1 or 3.

Assume that u1 ̸∼ u2. By Claim 2.10, we consider mG(u, u2) ≥ 2. If mG(u, u1) ≥
1, we can restrict an rvd-coloring of G −MG(u, u1) + {uu1} to H. Then it belongs

to Case 1 or 2 or 3. So mG(u, u1) = 0. Then u ∼ u1 in G. We have mG(u1, s1) ≥ 2.

Otherwise, regarding u1 as u, by Claim 2.10 and Case 1 and Case 2, there exists a

rainbow vertex-disconnection coloring cG of G with at most ∆(G) colors. Let G′ be

the graph obtained from G by deleting MG(u, u2), MG(u1, s1), {u, u1} and adding

two new vertices q1, q2, which are the common neighbors of s1 and u2. By induction

hypothesis, there exists a rainbow vertex-disconnection coloring cG′ of G′ using at

most ∆(G′) colors. Obviously, cG′(s1) ̸= cG′(u2).

Assume that s1 ∼ u2. Then {s1, u2, q1} or {s1, u2, q2} is rainbow under cG′ . With-

out loss of generality, assume that {s1, u2, q1} is rainbow. Now we extend cG′ to

a coloring cG of G as follows. Let cG(v) = cG′(v) for v ∈ V (G′) \ {q1, q2}. Let

cG(u1) = cG′(q1). Color u different from s1 and u2. Color MG(u, u2) different from

NG(u) \MG(u, u2) and rainbow. Color MG(u1, s1) different from NG(u1) \MG(u1, s1)

and rainbow. Now we claim that cG is a rainbow vertex-disconnection coloring of G.

Let x and y be two vertices of graph G. If x ∈ {u, u1}∪MG(u, u2)∪MG(u1, s1), then

DG(x, y) = NG(x). By symmetry, consider x, y ̸∈ {u, u1} ∪MG(u, u2) ∪MG(u1, s1).

We have DG(s1, u2) = DG′(s1, u2) ∪ {u1} \ {q1, q2}. When {x, y} is other pairs of

vertices, DG(x, y) = DG′(x, y) \ {q1, q2}. So cG is a rainbow vertex-disconnection

coloring of G using at most ∆(G) colors.

Assume that s1 ̸∼ u2. Then cG′(q1) ̸= cG′(u2) or cG′(q2) ̸= cG′(u2). Without loss of

generality, assume that cG′(q1) ̸= cG′(u2). Now we extend cG′ to a vertex-coloring cG

of G as follows. Let cG(v) = cG′(v) for v ∈ V (G′)\{q1, q2}. Let cG(u) = cG′(q1). Color

u1 different from s1 and u2. Color MG(u, u2) different from NG(u) \ MG(u, u2) and
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rainbow. If u1 ∼ s1, color MG(u1, s1) different from {s1, u2} and rainbow; otherwise,

color MG(u1, s1) different from u2 and rainbow. Then cG uses at most ∆(G) colors.

Now we claim that cG is a rainbow vertex-disconnection coloring of G. Let x and

y be two vertices of graph G. Let T = {u} ∪ MG(u, u2) ∪ MG(u1, s1). If x ∈ T ,

then DG(x, y) = NG(x). By symmetry, consider x, y ̸∈ T . We have DG(u1, u2) =

DG′(s1, u2) ∪ {u} \ {q1, q2} and DG(u1, s1) = NG(u1) ∪ {u2} \ {u}. If x = u1 and

y ̸∈ T ∪ {u1, u2, s1}, we have DG(u1, y) = {s1, u2}. By symmetry, consider x, y ̸∈
T ∪ {u1}. If q1 ∈ DG′(x, y), then DG(x, y) = DG′(x, y) ∪ {u} \ {q1, q2}; otherwise,
DG(x, y) = DG′(x, y) \ {q2}. So cG is a rainbow vertex-disconnection coloring of G

using at most ∆(G) colors.

Thus, we have rvd(G) ≤ ∆(G) for any K4-minor free graph G. The bound is

sharp for G = K2,n−2, which is a K4-minor free graph with ∆(G) = n − 2 and

rvd(G) = n− 2.

□

3 Hardness results

Decide Rainbow Vertex-disconnection Coloring Problem (RVD-Problem)

Instance: A graph G = (V,E) and a positive integer k.

Question: Does G have a rainbow vertex-disconnection coloring using k colors?

A graph G is k-colorable if there exists a vertex-coloring c : V (G) → [k] such that

no two adjacent vertices have the same color. The coloring c is called proper. The

chromatic number χ(G) of G is the minimum k such that G is k-colorable.

Theorem 3.1 RVD-Problem is NP-complete for bipartite graphs.

Proof. Given a fixed k-vertex-coloring c0 of a bipartite graph, it is polynomial time

to vertify whether it is a rainbow vertex-disconnection coloring. So RVD-Problem is

in NP for bipartite graphs.

We give a polynomial reduction from the proper coloring problem of G = (V,E),

which is NP-complete for general graphs. We will construct a graph G̃ from G such

that χ(G) ≤ k if and only if rvd(G̃) ≤ k + 2|E|.
We construct G̃ as follows. For each edge uv in G, add four vertices suv, s

′
uv, tuv, t

′
uv

and replace uv with edges usuv, us
′
uv, vsuv, vs

′
uv. Let Vs = {suv, s′uv : uv ∈ E} and

Vt = {tuv, t′uv : uv ∈ E}. Add E(Vs, Vt). Then we obtain the graph G̃ with V (G̃) =
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V ∪ Vs ∪ Vt and E(G̃) = {usuv, us′uv, vsuv, vs′uv : uv ∈ E} ∪E(Vs, Vt). Obviously, G̃ is

bipartite and we can construct it from G in polynomial time.

If χ(G) ≤ k, then we give a proper coloring c of G: V → [k]. Let c̃: V (G̃) →
[k + 2|E|] be a vertex-coloring of G̃ as follows. For v ∈ V , c̃(v) = c(v). Let Vs be

rainbow using colors {k+1, k+2, · · · , k+2|E|} and c̃(tuv) = c̃(suv) for each uv ∈ E.

Then for v ∈ V ∪ Vt, NG̃(v) is rainbow. For suv, s
′
uv ∈ Vs, suv and s′uv have two

neighbors u and v from V in G̃. Since c(u) ̸= c(v), we have c̃(u) ̸= c̃(v). So NG̃(suv),

NG̃(s
′
uv) are rainbow. Thus, c̃ is a rainbow vertex-disconnection coloring of G̃ and

rvd(G̃) ≤ k + 2|E|.
Conversely, assume that rvd(G̃) ≤ k + 2|E|. Let c̃: V (G̃) → [k + 2|E|] be a

rainbow vertex-disconnection coloring of G̃. Since any two vertices in Vt has at least

two common neighbors in Vs, by Lemma 2.4, Vt is rainbow. For any vertex x ∈ V

and any vertex y ∈ Vt, assuming that xz ∈ E, vertices sxz and s′xz in Vs are two

common neighbors of vertices x and y. So the colors of V in G̃ are disjoint with the

colors of Vt in G̃. Let c̃V be the coloring of G by restricting c̃ to V . Then c̃V has at

most k colors. For any two adjacent vertices u and v in G, since u and v have two

common neighbors suv, s
′
uv in G̃, we have c̃V (u) ̸= c̃V (v) by Lemma 2.4. So c̃V is a

proper coloring of G and χ(G) ≤ k. □

A subset S of V (G) is called an independent set of G if no two vertices of S are

adjacent in G. An independent set is maximum if G has no independent set S ′ with

|S ′| > |S|. The number of vertices in a maximum independent set of G is called the

independence number of G and is denoted by α(G).

A k-fold coloring of a graph G is an assignment of sets of size k to vertices of a

graph such that adjacent vertices receive disjoint sets.

The k-fold chromatic number, denoted by χk(G), is the minimum number of colors

to obtain a k-fold coloring of G. The fractional chromatic number of G is defined as

χf (G) = infk
χk(G)

k
. It has been proved that χf (G) ≥ |V (G)|

α(G)
[10].

Theorem 3.2 If ZPP ̸= NP , then, for every ϵ > 0, it is not possible to efficiently

approximate rvd(G) within a factor of n
1
3
−ϵ, for any bipartite graph G.

Proof. For a given graph G and any fixed ϵ > 0, the problem of deciding whether

χ(G) ≤ nϵ or α(G) < nϵ is not possible in polynomial time, unless ZPP = NP ,

where n is the order of G [7].

We replace V in G̃ from Theorem 3.1 with k copies of V , denoted by Vj (j ∈ [k]).

Assume that V = {v1, v2, · · · , vn} and Vj = {vj1, v
j
2, · · · , vjn} (j ∈ [k]). We construct

a new graph H from G = (V,E) with V (H) =
⋃k

j=1 Vj ∪ Vs ∪ Vt and E(H) =
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{ujsuv, u
js′uv, v

jsuv, v
js′uv : uv ∈ E, j ∈ [k]}∪E(Vs, Vt), where Vs = {suv, s′uv : uv ∈ E}

and Vt = {tuv, t′uv : uv ∈ E}. Similarly to the proof of Theorem 3.1, we have

rvd(H) ≤ k · χ(G) + 2|E|.
Let cH be an rvd-coloring of H. Let Quv =

⋃k
j=1 u

j ∪
⋃k

j=1 v
j for uv ∈ E.

Since any two vertices in Quv have two common neighbors suv and s′uv, Quv is

rainbow under cH by Lemma 2.4. Let cG be a vertex-coloring of G such that

cG(vi) = {cH(v1i ), cH(v2i ), · · · , cH(vki )} (i ∈ [n]). Then for uv ∈ E, cG(u) is dis-

joint with cG(v). So cG is a k-fold coloring of G. Since any vertex in
⋃k

j=1 Vj and any

vertex in Vt have two common neighbors in Vs, by Lemma 2.4, the colors of
⋃k

j=1 Vj

are disjoint with the colors of Vt under cH . So cG has at most rvd(H)− 2|E| colors.
We have χk(G) ≤ rvd(H)− 2|E|. Thus, we obtain

kn

α(G)
+ 2|E| ≤ k · χf (G) + 2|E| ≤ χk(G) + 2|E| ≤ rvd(H) ≤ k · χ(G) + 2|E|.

If χ(G) ≤ nϵ, we have rvd(H) ≤ knϵ + 2|E|. If α(G) < nϵ, we have rvd(H) >

kn1−ϵ + 2|E|. Choose k = |E|. For n ≥ 4
1
ϵ , we obtain

kn1−ϵ + 2|E|
knϵ + 2|E|

=
n1−ϵ + 2

nϵ + 2
≥ 1

4
n1−2ϵ ≥ n1−3ϵ ≥ (|E|n+ 4|E|)

1
3
(1−3ϵ) = N

1
3
−ϵ,

where N = |V (H)|.
So if we can efficiently N

1
3
−ϵ-approximate the rvd-coloring of H then it is possible

to efficiently decide whether χ(G) ≤ nϵ or α(G) < nϵ. □

Theorem 3.3 RVD-Problem is NP-complete for split graphs.

Proof. Given a fixed k-vertex-coloring c0 of a split graph, it is polynomial time to

vertify whether it is a rainbow vertex-disconnection coloring. So RVD-Problem is in

NP for split graphs.

We give a polynomial reduction from the proper coloring problem of G = (V,E),

which is NP-complete for general graphs. We will construct a graph G̃ from G such

that χ(G) ≤ k if and only if rvd(G̃) ≤ k + 3|E|.
We construct G̃ as follows. For each edge uv in G, add three vertices suv, s

′
uv, s

′′
uv

and replace uv with edges usuv, us
′
uv, us

′′
uv, vsuv, vs

′
uv, vs

′′
uv. Let Vs = {suv, s′uv, s′′uv :

uv ∈ E}. Add edges such that Vs forms a clique. Then we obtain the graph G̃ with

V (G̃) = V ∪ Vs and E(G̃) = {usuv, us′uv, us′′uv, vsuv, vs′uv, vs′′uv : uv ∈ E}∪ {uv : u, v ∈
Vs}. Obviously, G̃ is a split graph with clique G[Vs] and independent set V . We can

construct it from G in polynomial time.
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If χ(G) ≤ k, then we give a proper coloring c of G: V → [k]. Let c̃: V (G̃) →
[k + 3|E|] be a vertex-coloring of G̃ as follows. For v ∈ V , c̃(v) = c(v). Let Vs be

rainbow using colors {k+1, k+2, · · · , k+3|E|}. Then for v ∈ V , NG̃(v) is rainbow.

For suv ∈ Vs, suv has two neighbors u and v in V . Since c(u) ̸= c(v), we have

c̃(u) ̸= c̃(v). So NG̃(suv) is rainbow. Similarly, NG̃(s
′
uv), NG̃(s

′′
uv) are rainbow. Thus,

c̃ is a rainbow vertex-disconnection coloring of G̃ and rvd(G̃) ≤ k + 3|E|.
Conversely, assume that rvd(G̃) ≤ k + 3|E|. Let c̃: V (G̃) → [k + 3|E|] be a

rainbow vertex-disconnection coloring of G̃. If |E| = 1, assuming the edge is pq in

G, then Vs is a p-q vertex-cut. So Vs is rainbow. Since any two vertices in Vs have

at least two common neighbors in Vs for |E| ≥ 2, by Lemma 2.4, Vs is rainbow. For

any vertex x ∈ V and any vertex y ∈ Vs, assuming that xz ∈ E, there are at least

two common neighbors of x and y from {sxz, s′xz, s′′xz}. So the colors of V in G̃ are

disjoint with the colors of Vs in G̃. Let c̃V be the coloring of G by restricting c̃ to

V . Then c̃V has at most k colors. For any two adjacent vertices u and v in G, since

u and v have three common neighbors suv, s
′
uv, s

′′
uv in G̃, we have c̃V (u) ̸= c̃V (v) by

Lemma 2.4. So c̃V is a proper coloring of G and χ(G) ≤ k. □

Theorem 3.4 If ZPP ̸= NP , then, for every ϵ > 0, it is not possible to efficiently

approximate rvd(G) within a factor of n
1
3
−ϵ, for any split graph G.

Proof. We replace V in G̃ from Theorem 3.3 with k copies of V , denoted by Vj

(j ∈ [k]). Assume that V = {v1, v2, · · · , vn} and Vj = {vj1, v
j
2, · · · , vjn} (j ∈ [k]).

We construct a new graph H from G = (V,E) with V (H) =
⋃k

j=1 Vj ∪ Vs and

E(H) = {ujsuv, u
js′uv, u

js′′uv, v
jsuv, v

js′uv, v
js′′uv : uv ∈ E, j ∈ [k]} ∪ {uv : u, v ∈ Vs},

where Vs = {suv, s′uv, s′′uv : uv ∈ E}. Similarly to the proof of Theorem 3.3, we have

rvd(H) ≤ k · χ(G) + 3|E|.
Let cH be an rvd-coloring of H. Let Quv =

⋃k
j=1 u

j ∪
⋃k

j=1 v
j for uv ∈ E.

Since any two vertices in Quv have three common neighbors suv, s
′
uv and s′′uv, Quv

is rainbow under cH by Lemma 2.4. Let cG be a vertex-coloring of G such that

cG(vi) = {cH(v1i ), cH(v2i ), · · · , cH(vki )} (i ∈ [n]). Then for uv ∈ E, cG(u) is disjoint

with cG(v). So cG is a k-fold coloring of G. Since any vertex in
⋃k

j=1 Vj and any

vertex in Vs have at least two common neighbors in Vs, by Lemma 2.4, the colors of⋃k
j=1 Vj are disjoint with the colors of Vs under cH . So cG has at most rvd(H)− 3|E|

colors. We have χk(G) ≤ rvd(H)− 3|E|. Thus, we obtain

kn

α(G)
+ 3|E| ≤ k · χf (G) + 3|E| ≤ χk(G) + 3|E| ≤ rvd(H) ≤ k · χ(G) + 3|E|.
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If χ(G) ≤ nϵ, we have rvd(H) ≤ knϵ + 3|E|. If α(G) < nϵ, we have rvd(H) >

kn1−ϵ + 3|E|. Choose k = |E|. For n ≥ 6
1
ϵ , we obtain

kn1−ϵ + 3|E|
knϵ + 3|E|

=
n1−ϵ + 3

nϵ + 3
≥ 1

6
n1−2ϵ ≥ n1−3ϵ ≥ (|E|n+ 3|E|)

1
3
(1−3ϵ) = N

1
3
−ϵ,

where N = |V (H)|.
So if we can efficiently N

1
3
−ϵ-approximate the rvd-coloring of H then it is possible

to efficiently decide whether χ(G) ≤ nϵ or α(G) < nϵ. □
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