
Basis Partitions

Jennifer M. Nolan∗

Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27695-8206

Carla D. Savage†

Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27695-8206

Herbert S. Wilf‡

Department of Mathematics
University of Pennsylvania

Philadelphia, PA 19104-6395

Abstract

We study basis partitions, introduced by Hansraj Gupta in 1978. For this family of
partitions, we give a recurrence, a generating function, identities relating basis partitions
to more familiar families of partitions, and a new characterization of basis partitions.

1 Introduction

In a 1978 paper [1], Hansraj Gupta introduced an interesting class of integer partitions called basis
partitions. An integer partition is a basis partition if, in the class of all partitions with its rank
vector (see below), its weight is minimum. A partition π of a positive integer n is a sequence of
positive integers (π1, π2, . . . , πl) satisfying π1 ≥ π2 ≥ . . . ≥ πl and π1 + π2 + . . . + πl = n. We will
call n the weight of π, and will write n = |π|. We write P (n) for the set of all partitions of n, where
P (0) contains only the empty partition, λ.

For a partition π = (π1, . . . , πl), the associated Ferrers graph is the array of l rows of dots, where
row i has πi dots and rows are left justified. Let π′ denote the conjugate partition π′ = (π′

1, . . . , π
′
m)

where m = π1 and π′
i is the number of dots in the i-th column of the Ferrers graph of π. The

Durfee square of π is the largest square subarray of dots in the Ferrers graph of π. Let d(π) denote
the size (number of rows) of the Durfee square of π. As in [1], define the rank vector of π,

r(π) = [π1 − π′
1, π2 − π′

2, . . . , πd(π) − π′
d(π)]
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(10) (4,4,1,1)
(8,2) (3,3,3,1)
(7,3) (3,3,1,1,1,1)
(6,2,2) (2,2,2,2,2)
(6,4) (2,2,2,2,1,1)
(5,5) (2,2,2,1,1,1,1)
(4,3,3) (2,2,1,1,1,1,1,1)
(4,2,2,2) (1,1,1,1,1,1,1,1,1,1)

Figure 1: The basic partitions of 10.

to be the vector of length d(π) whose entries are what Atkin [2] calls the successive ranks of π.
Note that a given rank vector is associated with infinitely many partitions. For example, the

partitions α = (13, 7, 7, 6, 4, 3, 3, 2, 2, 1) and β = (12, 6, 5, 5, 3, 2, 2, 2, 1) of 48 and 38, respectively,
both have rank vector [3,−2, 0, 1]. However, Gupta shows in [1] that for every rank vector, r,
there is a unique partition π, for which |π| is minimum over all partitions with rank vector r.
This partition is called the basis partition of r. For example, the basis partition of [3,−2, 0, 1] is
(10, 5, 5, 5, 3, 2, 2).

Call a partition π of n basic if it is the basis partition of its associated rank vector and let B(n)
be the set of all basic partitions of n. Of the 42 partitions of 10, only 16 are basic and these are
shown in Fig. 1. We consider the empty partition to be a basic partition of n = 0.

In the next section, we review some results on basis partitions from [1] and use them to derive
a generating function and recurrence for b(n, d), the number of basis partitions of n with Durfee
square of size d. In Section 3, we give an alternative characterization of basis partitions, as well as
identities describing B(n) in terms of more familiar families of partitions.

2 A Generating Function for Basis Partitions

For a partition π, note that if d = d(π), then the Ferrers graph of π (and hence π itself) is
completely specified by the first d rows (π1, π2, . . . πd) and the first d columns (π′

1, π
′
2, . . . π

′
d). It

will be convenient to view π as a 2 × d array

π = [x,y]d =

[
x1 . . . xd

y1 . . . yd

]

where for 1 ≤ i ≤ d, xi = πi and yi = π′
i.

We focus first on the existence and uniqueness of basis partitions.

Theorem 1 (Gupta) Among all partitions with the same rank vector r = [r1, . . . , rd], there is just
one with minimum weight.
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Proof. If π = [x,y]d has rank vector r, then since r = x− y,

|π| =
d∑

i=1

(xi + yi) − d2 = 2
d∑

i=1

xi −
d∑

i=1

ri − d2. (1)

The key to minimizing |π|, then, for fixed r, is to minimize
∑

xi. Since x,y must satisfy x1 ≥ x2 ≥
, . . . ,≥ xd ≥ d and y1 ≥ y2 ≥, . . . ,≥ yd ≥ d,

xi ≥
{

max(xi+1, xi+1 + ri − ri+1) if 1 ≤ i < d
max(rd + d, d) if i = d.

(2)

If [x1, . . . xd] is chosen so that equality holds in (2) and if yi = xi − ri, then π = [x,y]d actually is
a partition, necessarily with rank vector r, and by (1), |π| is minimum. Since after minimizing the
xi, the yi are determined, this π is the unique minimum. 2

The following simple test will determine whether a partition is basic.

Lemma 1 A partition π = [x,y]d is basic if and only if both
(i) xd = d or yd = d and
(ii) for 1 ≤ i < d, (xi > xi+1) implies (yi = yi+1).

Proof. From the proof of Theorem 1, a partition π is basic if and only if equality holds in (2) and
y = x − r, that is, if and only if:

xi =

{
max(xi+1, xi+1 + (xi − yi) − (xi+1 − yi+1) if 1 ≤ i < d
max(xd − yd + d, d) if i = d.

For 1 ≤ i < d, note that since π is a partition, xi ≥ xi+1 ≥ d. Thus, equality in this case above
occurs if and only if whenever xi > xi+1, we have

xi = xi+i + (xi − yi) − (xi+1 − yi+1),

that is, yi = yi+1. Equality in case i = d occurs if and only if xd = d or if xd = xd − yd + d, that
is, yd = d. 2

Finally, Gupta [1] notes the following bijection, where p(n, d) denotes the number of partitions
of n into at most d parts.

Theorem 2 [Gupta] Let r = [r1, . . . rd] and let π = [x,y]d be the basis partition of r. The number
of partitions of n with rank vector r is p(m,d) where m = (n − |π|)/2.

3



Proof. If z1 ≥ z2 ≥ . . . ≥ zd is a partition in the set counted by p(m,d), then [x + z,y + z]d is a
partition of n with rank vector r. Conversely, if partition σ = [u,v]d of n has rank vector r, then
by the proof of Theorem 1, for 1 ≤ i ≤ d we have ui ≥ xi, vi ≥ yi, and zi = ui − xi = vi − yi ≥ 0.
If xi = xi+1, then zi − zi+1 = ui − ui+1 ≥ 0. Otherwise, by Lemma 1 (ii), yi ≥ yi+1 and then
zi − zi+1 = vi − vi+1 ≥ 0. Thus, z1 ≥ z2 ≥ . . . ≥ zd ≥ 0 and the nonzero terms in this sequence
form a partition of (n − |π|)/2. 2

Let B(n, d) be the set of basic partitions of n which have a rank vector of length d, that is,
Durfee square of size d, and let b(n, d) = |B(n, d)|. The empty partition is the sole element of
B(0, 0). A partition can be classified according to the length of its rank vector r and the weight n0

of the basis partition associated with r. Combining this with Theorem 2 gives the following.

Corollary 1 The number pd(n) of partitions of n with Durfee square of size d satisfies

pd(n) =
n∑

n0=0

b(n0, d)p((n − n0)/2, d),

in which it is understood that p(n, d) = 0 if n is not an integer.

From this, we can derive the generating function for b(n, d).

Corollary 2 For d ≥ 0 the generating function Ψd(q) for b(n, d) is

Ψd(q) =
∑

n≥d2

b(n, d)qn =
(1 + q)(1 + q2)...(1 + qd)
(1 − q)(1 − q2)...(1 − qd)

qd2
. (3)

Proof. Letting Φk(q) denote the well-known generaing function for p(n, k),

Φk(q) =
1

(1 − q) . . . (1 − qk)
,

we have from Corollary 1 that
qd2

[Φd(q)]2 = Ψd(q)Φd(2q).

This gives

Ψd(q) =
(1 − q2)(1 − q4)...(1 − q2d)
(1 − q)2(1 − q2)2...(1 − qd)2

qd2
=

(1 + q)(1 + q2)...(1 + qd)
(1 − q)(1 − q2)...(1 − qd)

qd2
. (4)

2

From the partial fraction expansion of (3), for fixed d, we have b(n, d) ∼ 2dnd−1/(d − 1)!, for
large n, compared with n2d−1/(d!2(2d − 1)!), for the number of all partitions of n whose Durfee
square has size d.
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We can obtain from (3) a recurrence for b(n, d). since

Ψd(q) =
(1 + qd)
(1 − qd)

qd2−(d−1)2Ψd−1(q),

or equivalently,
(1 − qd)Ψd(q) = (q2d−1 + q3d−1)Ψd−1(q),

the following recurrence results from comparing the coefficients of qn on both sides.

Corollary 3 We have b(0, 0) = 1, and b(n, d) = 0 if otherwise n or d is nonpositive, and finally,
if n and d are both positive, then

b(n, d) = b(n − d, d) + b(n − 2d + 1, d − 1) + b(n − 3d + 1, d − 1).

3 An Alternative Characterization of Basis Partitions

Let D(n, d) be the number of partitions of n into distinct parts of size at most d. Since D(n, d) has
generating function (1 + q)(1 + q2) . . . (1 + qd), Corollary 2 gives:

b(n, d) =
∑
j≥0

|D(j, d)|p(n − d2 − j, d). (5)

This would suggest that when the d × d Durfee square is removed from the Ferrers graph of a
basis partition, what remains is a partition into distinct parts together with an ordinary partition.
However, this is not the case, for example, for π = (7, 6, 6, 4, 4, 4, 2, 2). In this section we present
another way to view basis partitions which will make (5) clear.

For a partition π = [x,y]d, let ρ and σ denote the partitions

ρ = (x1 − d, x2 − d, . . . , xd − d)

and
σ = (y1 − d, y2 − d, . . . , yd − d),

where parts of size 0 are ignored. Then ρ and σ represent the partitions east and south, respectively,
of the Durfee square in the Ferrers graph A of π, oriented as shown in Fig. 2. So, π can be
represented as the triple π = (d, ρ, σ).

For convenience below, let ρi = σi = 0 if i > d.

Theorem 3 The partition π = (d, ρ, σ) is basic if and only if the conjugate partitions ρ′ and σ′

have no common parts.
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d × d
• • • • • • • | ρ1 • • • •
• • • • • • • | ρ2 • • •
• • • • • • • | ρ3 • • •
• • • • • • • | ρ4

• • • • • • • | . etc.
• • • • • • • | .
• • • • • • • | .
—————————————
σ1 σ2 σ3 σ4 ...
• • • •
• • •
• • •
• •

etc.

Figure 2: Representation of a partition π with Durfee square of size d as a triple (d, ρ, σ).

Proof. Interpreting Lemma 1 in terms of ρ and σ, π = (d, ρ, σ) is basic if and only if for 1 ≤ i ≤ d,

(ρi > ρi+1) ⇒ (σi = σi+1).

We show that ρi > ρi+1 if and only if ρ′ contains a part of size i (and similarly for σ′ if σi > σi+1.)
It follows that ρ′ and σ′ each contain a part of size i if and only if both ρi > ρi+1 and σi > σi+1,
that is, π is not basic.

To complete the proof, if ρi > ρi+1, then ρ′ contains a part of size i, namely, ρ′k = i for k = ρi−d.
Conversely, if ρ′ contains a part of size i, let j be the position of the last i in ρ′. Then ρi = d + j
and ρi > ρi+1. 2

We now give a bijective proof of (5). Define a mapping

Θ : B(n, d) −→
n−d2⋃
j=0

(D(j, d) × P (n − d2 − j, d))

for π = (d, ρ, σ) ∈ B(n, d) by Θ((d, ρ, σ)) = (α, β) where (α′, β′) is obtained from (ρ′, σ′) by moving
all but one copy of each part of ρ′ to σ′. For example, Θ(12, 9, 6, 6, 3) = Θ(4, (8, 5, 2, 2), (3)) =
((3, 2, 1, 1), (4, 3, 2, 2, 1, 1, 1)). Since by Theorem 3, ρ′ and σ′ had no common part, (d, ρ, σ) can be
recovered from (α, β) by moving from α′ to β′ all parts of α′ which occur in β′.
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Let q(n, k, d) be the number of partitions of n (into an arbitrary number of parts) that have
exactly k distinct parts, and all of those parts are at most d. In view of Theorem 3 we can associate
a partition π in q(n − d2, k, d) with a basic partition (d, ρ, σ) in 2k ways, according to the number
of ways to allocate the k distinct parts of π among ρ′ and σ′. Thus we have

b(n, d) =
∑
k≥0

q(n − d2, k, d)2k . (6)

From (6) we have that the number of basis partitions of n, b(n), is even or odd depending, resp.,
on whether n is not or is a square. Thus, although for most of the famous partition functions of
number theory, the discovery of simple parity tests is a very difficult problem, for the number of
basis partitions of n it is easy.

We remark further that it is simple to prove this parity result bijectively. By Lemma 1 it
follows that the only self-conjugate basis partitions are the ones whose Ferrers graphs are square
and that the conjugate of a basis partition is basic. Hence the pairing of each basic partition with
its conjugate completes the proof.

References

[1] H. Gupta, The rank-vector of a partition, Fibonacci Quarterly 16, No. 6 (1978) 548-552.

[2] A. O. L. Atkin, A note on ranks and conjugacy of partitions, Quart. J. Math. 17, No. 2 (1966)
335-338.

7


