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Abstract. We pose and answer several questions concerning the number
of ways to fold a polygon to a polytope, and how many polytopes can be
obtained from one polygon; and the analogous questions for unfolding
polytopes to polygons. Our answers are, roughly: exponentially many, or
nondenumerably infinite.

1 Introduction

We explore the process of folding a simple polygon by gluing its perimeter shut to
form a convex polyhedron, and its reverse, cutting a convex polyhedron open and
flattening its surface to a simple polygon. We restrict attention to convex polyhe-
dra (henceforth, polytopes), and to simple (i.e., nonself-intersecting, nonoverlap-
ping) polygons (henceforth, polygons). The restriction to nonoverlapping poly-
gons is natural, as this is important to manufacturing applications [O’R00]. The
restriction to convex polyhedra is made primarily to reduce the scope of the
problem. See [BDD+98] and [BDEK99] for a start on unfolding nonconvex
polyhedra.

We enumerate foldings and unfoldings based on two criteria of indistinguisha-
bility: geometric congruence, and combinatoric equivalence. The latter especially
will need further specification to become precise, but to presage our results
crudely, we show that both the number of foldings and the number of unfold-
ings can be exponential in the number of vertices n of the polygon/polytope.
Similarly, we show that polygons may fold and polytopes unfold to an infinite
number of incongruent polytopes/polygons. We obtain sharper results when at-
tention is restricted to convex polygons. Proofs and details not provided here
may be found in [DDLO00].

We will use P throughout the paper for a polygon, and Q for a polytope, ∂P
and ∂Q respectively for their boundaries, and n for the number of their vertices.

2 Aleksandrov’s Theorem

A key tool in our work is a far-reaching generalization of Cauchy’s rigidity theo-
rem proved by Aleksandrov [Ale58] that gives simple conditions for any folding
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to a polytope. A gluing maps ∂P to ∂P in a length-preserving manner, as fol-
lows. ∂P is partitioned by a finite number of distinct points into a collection
of open intervals whose closure covers ∂P . Each interval is mapped one-to-one
(i.e., glued) to another interval of equal length. Corresponding endpoints of glued
intervals are glued together (i.e., identified). Finally, gluing is considered transi-
tive: if points a and b glue to point c, then a glues to b. Aleksandrov proved that
any gluing that satisfies these two conditions corresponds to a unique polytope:

1. No more than 2π total face angle is glued together at any point; and
2. The complex resulting from the gluing is homeomorphic to a sphere.

We call a gluing that satisfies these conditions an Aleksandrov gluing. Although
an Aleksandrov gluing of a polygon forms a unique polytope, it is an open prob-
lem to compute the three-dimensional structure of the polytope [O’R00]. Hence-
forth we will say a polygon folds to a polytope whenever it has an Aleksandrov
gluing.

We should mention two features of Aleksandrov’s theorem. First, the poly-
tope whose existence is guaranteed may be flat, that is, a doubly-covered convex
polygon. We use the term “polytope” to include flat polyhedra. Second, con-
dition (2) specifies a face angle ≤ 2π. The case of equality with 2π leads to a
point on the polytope at which there is no curvature, i.e., a nonvertex. We make
explicit what counts as a vertex below.

3 Geometrical Congruence

In this section we address these two natural questions:

1. How many geometrically different polytopes may be folded from one poly-
gon?

2. How many geometrically different polygons may be unfolded from one poly-
tope?

Here “geometrically different” means incongruent. Although we mentioned the
rough answer to both question is ‘infinite,’ there are several nuances in the
details. For example, the answer to the first question is: ‘sometimes infinite,’
whereas the answer to the second is: ‘always infinite.’

3.1 Congruence: Folding

We start with a natural and easily proved claim:

Lemma 1. Some polygons cannot be folded to any polytope.

An example is shown in Fig. 1.
It is natural to wonder what the chances are that a random polygon could

fold to a polytope. This is difficult to answer without a precise definition of
“random,” but we feel any reasonable definition would lead to the same answer:
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zero. We provide support for this conjecture in [DDLO00]. Despite this evidence
for the rare ability to fold, convex polygons are fertile in their folding, as we now
demonstrate.

Let x ∈ ∂P be an arbitrary point on the boundary of P , and let y ∈ ∂P be
the midpoint of perimeter L around ∂P measured from x. Let (x, y) be the open
interval of ∂P counterclockwise from x to y. Define a perimeter-halving gluing
as one which glues (x, y) to (y, x). A consequence of Aleksandrov’s theorem is:

See Fig. 2 for an example.

a

b

c

Fig. 1. An unfoldable polygon.
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Fig. 2. A perimeter-halving fold of
a pentagon. The gluing mappings of
vertices v1 and v3 are shown.

Lemma 2. Every convex polygon folds to a polytope via perimeter halving for
every x ∈ ∂P .

This result can be strengthened:

Theorem 1. Any convex polygon P folds, via perimeter halving, to a nondenu-
merably infinite number of noncongruent polytopes.

Using a different type of folding, we can show that every rectangle folds to a
continuum of tetrahedra. See Fig. 3.

3.2 Congruence: Unfolding

Although it is a long-standing open problem to determine whether every poly-
tope may be cut along polytope edges and unfolded to a polygon, without the
“along edges” restriction it is easy to see that every polytope may be cut open
to a continuum of noncongruent polygons. To avoid trivial zigzaging of the cuts,
it makes sense to restrict the cuts to be geodesics, which unfold (or “develop”)
to straight lines, or restrict even further to shortest paths, geodesics which are
in addition shortest paths between their endpoints. Still this holds:

Lemma 3. Every polytope Q may be cut via shortest paths to unfold to a non-
denumerably infinite number of noncongruent polygons.
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Fig. 3. Tetrahedra formed by folding a rectangle.

Proof: (Sketch) This may be accomplished via the star-unfolding [AAOS97],
which cuts along the shortest paths from a source point s to every vertex of
Q. For any point p in the interior of a “ridge-free region” of ∂Q, every s in a
neighborhood of p yields a distinct star-unfolding. ✷

4 Combinatorial Equivalence

Although a natural counterpart to our geometric enumerations would count
combinatorially distinct polygons and polytopes, the former class is uninteresting
and the latter class seems difficult to capture.1 Instead we focus on the process
of folding and unfolding, and ask:

1. How many combinatorially different foldings of a polygon lead to a polytope?
2. How many combinatorially different cuttings of a polytope lead to polygon

unfoldings?

It requires some care to define an appropriate notion of “combinatorially differ-
ent” for both questions.

4.1 Combinatorics: Folding

We capture the combinatorics of a polygon folding via its “gluing tree.” Let
a polygon P have vertices v1, . . . , vn, labeled counterclockwise, and edge ei,
i = 1, . . . , n the open segment of ∂P after vi. The combinatorial gluing tree TG

is a labeled tree representing the identification of ∂P with itself. Any point of ∂P

1 Some results for convex unfoldings were obtained by Shephard [She75].
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Fig. 4. (a) A polygon, with fold creases shown dotted; (b) A gluing tree TG

[folding away] corresponding to the crease pattern.

that is identified with more or less than one other distinct point of ∂P becomes
a node of TG, as well as any point to which a vertex is glued. (Note that this
means there may be nodes of degree 2.) So every vertex of P maps to a node
of TG; each node is labeled with the set of all the elements (vertices or edges)
that are glued together there. A point of ∂P in the interior of a polygon edge
that glues only to itself, i.e., where a crease folds the edge in two, we call a fold
point. Points x and y in Fig. 2 are fold points. A fold-point correspond to a
leaf of TG, and is labeled by the edge label only. Every nonleaf node has at least
one vertex label, and at most one edge label. An example is shown in Fig. 4.
The polygon shown folds to a tetrahedron by creasing as illustrated in (a). All
four tetrahedron vertices are fold points. The corresponding gluing tree is shown
in (b) of the figure. The two interior nodes of TG have labels {v1, v6, e1} and
{v2, v5, e5}.

We start with a characterization of the structure of gluing trees, which will
form the basis of our enumeration results. Several combinatorial tree structures
play a special role, and to which we assign symbols:

1. |: a path.

2. Y: a tree with a single degree-3 node.

3. I: a tree with two degree-3 nodes connected by an edge (e.g., Fig. 4b).

4. +: a tree with single degree-4 node.

Next, define a belt in a gluing tree to be a path between two leaf fold points;
for example, between the e1 and e3 fold points in Fig. 4b. A belt is a rolling belt
if there is a nonzero-length interval I ⊂ e such that for every x ∈ I, the belt
folded at x is an Aleksandrov gluing. (A belt could instead have a finite number
of distinct gluings, perhaps just one.)
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Our characterization shows that gluing trees are fundamentally discrete struc-
tures, with one or two rolling belts, and two such belts only in very special
circumstances:

Theorem 2. Gluing trees satisfy these properties:

1. At any gluing tree point of degree d 6= 2, at most one point of ∂P in the
interior of an edge may be glued, i.e., at most one nonvertex may be glued
there.

2. At most four leaves of the gluing tree can be fold points, i.e., points in the
interior of an edge of ∂P . The case of four fold-point leaves is only possible
when the tree has exactly four leaves, with the combinatorial structure ‘+’ or
‘I’.

3. A gluing tree can have at most two rolling belts.

4. A gluing tree with two rolling belts must have the structure ‘I’, and result
from folding a polygon that can be viewed as a quadrilateral with two of its
opposite edges replaced by complimentary polygonal paths.

Thus a generic gluing tree has one rolling belt, with trees hanging off it, and
one of those trees having a fold-point leaf, as depicted in Fig. 5.

Fig. 5. A generic gluing tree: three fold-point leaves (indicated by smooth arcs),
two forming a rolling belt. Vertices indicated by open circles.

We use this characterization to prove bounds on the number of gluings. First,
a lower bound:

Theorem 3. For any even n, there is a polygon P of n vertices that has 2Ω(n)

combinatorially distinct Aleksandrov gluings.
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Fig. 6. (a) Star polygon P , m = 16, n′ = 32, n = 34. (b) Base gluing tree. (c)
A gluing tree after several contractions.
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Proof: (Sketch) The polygon P is illustrated in Fig. 6(a). It is a centrally sym-
metric star, withm vertices,m even, with a small convex angle α ≈ 0, alternating
with m vertices with large reflex angle β < 2π. All edges have the same (say,
unit) length. We call this an m-star. We choose α small enough so that m copies
of α can join with one of β and still be less than 2π. Now we add two vertices
x and y at the midpoints of edges, symmetrically placed so that y is half the
perimeter around ∂P from x. Let n = n′ + 2 be the total number of vertices of
P .

The “base” gluing tree is illustrated in Fig. 6(b). x and y are fold vertices of
the gluing. Otherwise, each α is matched with a β. Because all edge lengths are
the same, and because α+ β < 2π, this path is an Aleksandrov gluing. We label
it T00···0,00···0, where m/2 zeros 00 · · ·0 represent the top chain, and another m/2
zeros represent the bottom chain.

The other gluing trees are obtained via “contractions” of the base tree. A
contraction makes any particular β-vertex not adjacent to x or y a leaf of the
tree by gluing its two adjacent α-vertices together. Label a β-vertex 0 or 1
depending on whether it is uncontracted or contracted respectively. Then a series
of contractions can be identified with a binary string. For example, Fig. 6(c)
displays the tree T010100···,00110···0.

We can bound the number of Aleksandrov gluings resulting from these con-
tractions by Ω(2m/2−1) = 2Ω(n). ✷

It may not be surprising that some polygons have many foldings, but it is
perhaps less intuitive that even simple polygonal shapes have many gluings.
For example, our enumeration program finds that an equilateral triangle has
19 gluings and a square 43 gluings. Of the latter, 10 foldings are distinct when
symmetries are removed: several flat shapes, four tetrahedra, a hexahedron, and
a continuum of octahedra. Hirata [Hir00] has shown that the Latin square, whose
study we initiated in [LO96], has 85 distinct gluings. These lead to 21 distinct
shapes, including several flat quadrangles, tetrahedra, hexahedra (including a
cube), octahedra, and a pentahedron.2 Fig. 7 shows crease patterns for two
gluings.

We may obtain an upper bound in terms of the number of leaves λ of the
gluing tree:

Theorem 4. The number of gluing trees with λ leaves for a polygon P with n
vertices is O(n2λ−2).

This bound is useful when the number of leaves is bounded, which is the case,
for example, with convex polygons. The characterization of Theorem 2 can be
tightened in this case:

Lemma 4. For convex polygons, the gluing tree TG has one of these combina-
torial structures: when n 6= 4, either ‘|’ or ‘Y’; when n = 4, in addition ‘I’ and
‘+’ are possible.3

2 http://daisy.uwaterloo.ca/~eddemain/aleksandrov/cross/ .
3 This lemma is largely due to Shephard [She75].
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Fig. 7. Construction lines for creases to fold a Latin cross to a hexahedron (left)
and a pryramid with a quadrangular base (right).

This leads to a tighter bound for convex polygons:

Theorem 5. A convex polygon P of n vertices folds to at most O(n3) different
gluing trees. Some convex polygons have Ω(n2) gluings.

We leave open the task of closing the gap between quadratic and cubic.

4.2 Combinatorics: Unfolding

Finding the “right” way to count unfoldings is more delicate. We start by defining
cut trees, which then form the basis of our enumerations. It will be useful to
distinguish between a geometric tree T composed of a union of line segments,
and the more familiar combinatorial tree T of nodes and arcs. A geometric cut
tree TC for a polytope Q is a tree drawn on ∂Q, with each arc a polygonal
path, which leads to a polygon unfolding when the surface is cut along T , i.e.,
flattening Q \ T to a plane.

Lemma 5. If a polygon P folds to a polytope Q, ∂P maps to a tree TC ⊂ ∂Q,
the geometric cut tree, with the following properties:

1. TC is a tree.
2. TC spans the vertices of Q.
3. Every leaf of TC is at a vertex of Q.
4. A point of TC of degree d (i.e., one with d incident segments) corresponds

to exactly d points of ∂P . Thus a leaf corresponds to a unique point of ∂P .
5. Each arc of TC is a polygonal path on Q.

There are several options in defining the combinatorial tree TC for a geometric
TC :

1. Make every segment of TC an arc of TC . Although this is natural, allowing
an arbitrarily complicated polygonal path between any two polytope vertices
leads to an infinite number of different cut trees for any polytope.
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2. Make every point where a path of TC crosses an edge of the polytope a node
of TC . This again leads to trivially infinite numbers of cut trees when a path
of TC zigzags back and forth over an edge of Q.

3. Exclude this possibility by forcing the paths between polytope vertices to
be geodesics, and again make polytope edge crossings nodes of TC . This
excludes many interesting cut trees and destroys symmetry between TC and
TG.

4. Make every maximal path of TC consisting only of degree-2 points a single
arc of TC . A consequence is that polytope vertices in the interior of such a
path disappear from TC .

Threading between these possibilities, we define the combinatorial cut tree
TC corresponding to a geometric cut tree TC as the labeled graph with a node
(not necessarily labeled) for each point of TC with degree not equal to 2, and a
labeled node for each point of TC that corresponds to a vertex of Q (labeled by
the vertex label); arcs are determined by the polygonal paths of TC connecting
these nodes. An example is shown in Fig. 8. Note that not every node of the tree
is labeled, but every polytope vertex label is used at some node. All degree-2
nodes are labeled.

(a) (b)
0

3
2

1

4

7 6

5

0
3 2

1

4

7 6

5

Fig. 8. (a) Geometric cut tree TC on the surface of a cube; (b) The corresponding
combinatorial cut tree TC .

This definition has the consequence that, if all degree-2 nodes are removed
by contraction, TC is isomorphic to the corresponding gluing tree TG. Although
the definition avoids some of the listed pitfalls, it does have the undesirable
consequence of counting different geodesics on ∂Q between two polytope vertices
as the same arc of TC even if one spirals around the polytope twice and the other
once (or not at all).

Before turning to enumeration bounds, we make this straightforward ob-
servation: Every polytope admits at least the n cut trees provided by the star-
unfolding [AO92], one with each vertex as source. So in particular, every polytope
has at least one unfolding to a simple polygon, in contrast to the corresponding
open question for edge-unfoldings (p.3).
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Our main result here is that some polytopes have an exponential number of
unfoldings:

Theorem 6. There is a polytope Q of n vertices that may be cut open with
exponentially many (2Ω(n)) combinatorially distinct cut trees, which unfold to
exponentially many geometrically distinct simple polygons.
Proof: (Sketch) Q is a truncated cone: the hull of two regular n-gons of different
radii, lying in parallel planes and similarly oriented. Two different cuttings are
illustrated in Figs. 9 and 10. The “base” cut tree, which we notate as T0000000,
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Fig. 9. Unfolding via shaded cut tree T0000000.
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11
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Fig. 10. Unfolding via shaded cut tree T1001101.

unfolds Q as shown in Fig. 9. Define a cut tree Tm(n−1)/2···m2m1m0 , where mi

are the digits of a binary number of n/2 − 1 bits, as an alteration of the base
tree T0···0 illustrated by T1001101 shown in Fig. 10. There are 2n/2−1 = 2Ω(n) cut
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trees, and it is not difficult to show that each leads to a distinct simple polygon
unfolding. ✷

We conjecture that there is a polytope with an exponential number of convex
unfoldings, i.e., those that result in convex polygons.

Our upper bound relies on bounds on the number of spanning trees of trian-
gulated planar graphs:

Theorem 7. The maximum number of combinatorially distinct edge-unfolding
cut trees of a polytope of n vertices is 2O(n), and the maximum number of (ar-

bitrary) combinatorially distinct cut trees is 2O(n2).

5 Open Problems

Some of the most interesting open questions in this area are algorithmic:

1. Given an Aleksandrov gluing, compute the 3D structure of the polytope.
This is an algorithmic version of Aleksandrov’s theorem, for which only a
“finite” algorithm is known.4 This problem is closely related to the following
problem, which may be easier because of the additional information:

2. Given an Aleksandrov gluing and the unique crease pattern for the folding
(Cf. Fig. 7), compute the 3D structure of the polytope. This can be viewed
as an algorithmic version of Cauchy’s rigidity theorem.

3. How difficult is it to determine whether a given polytope has a convex un-
folding? (Cf. Lemma 3.)

4. How difficult is it to determine whether a given polygon may be folded to
a polytope? (Cf. Fig. 1.) We have an exponential-time algorithm, but a
polynomial time algorithm is known only for edge-to-edge gluings [LO96].
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