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Abstract. A weighted graph is a graph in which each edge e is assigned a non-negative
number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its
edges. The weighted degree d"(v) of a vertex v is the sum of the weights of the edges
incident with v. In this paper, we prove the following result: Suppose G is a 2-connected
weighted graph which satisfies the following conditions: 1. max{d"(x),d"(y) |
d(x,y) =2} > ¢/2; 2. w(xz) = w(yz) for every vertex z € N(x) N N(y) with d(x,y) = 2; 3. In
every triangle 7 of G, either all edges of T have different weights or all edges of T have the
same weight. Then G contains either a Hamilton cycle or a cycle of weight at least c¢. This
generalizes a theorem of Fan on the existence of long cycles in unweighted graphs to
weighted graphs. We also show we cannot omit Condition 2 or 3 in the above result.
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1. Introduction

We use Bondy and Murty [5] for terminology and notation not defined here and
consider finite simple graphs only.

Let G = (V,E) be a simple graph. G is called a weighted graph if each edge e is
assigned a non-negative number w(e), called the weight of e. For any subgraph H
of G, V(H) and E(H) denote the sets of vertices and edges of H, respectively. The
weight of H is defined by
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For each vertex v € V, Ny (v) denotes the set, and dy(v) the number, of vertices in
H that are adjacent to v. We define the weighted degree of v in H by

dy(v) = Z w(vh).

hENH(D)

When no confusion occurs, we will denote Ng(v),dg(v) and d(v) by N(v),d(v)
and d"(v), respectively. An (x,y)-path is a path connecting the two vertices x and
y. The distance between two vertices x and y, denoted by d(x, y), is the length of a
shortest (x,y)-path. If u and v are two vertices on a path P, P[u,v] denotes the
segment of P from u to v.

An unweighted graph can be regarded as a weighted graph in which each edge
e is assigned weight w(e) = 1. Thus, in an unweighted graph, d"(v) = d(v) for
every vertex v, and the weight of a cycle is simply the length of the cycle.

In [3] and [4], Bondy and Fan began the study on heavy cycles by generalizing
to weighted graphs several classical theorems of Dirac and of Erdés and Gallai on
the existence of long cycles. Later, two other theorems on the existence of long
cycles were generalized to weighted graphs in [2] and [7], respectively.

The following result due to Fan [6] is well-known.

Theorem A (Fan [6]). Let G be a 2-connected graph such that max{d(x),
d(y) | d(x,y) =2} > ¢/2. Then G contains either a Hamilton cycle or a cycle of
length at least c.

A natural question is whether this theorem also admits an analogous gen-
eralization for weighted graphs. This leads to the following problem.

Problem 1. Let G be a 2-connected weighted graph such that max{d"(x),
d¥(y) | d(x,y) =2} > ¢/2. Is it true that G contains either a Hamilton cycle or a
cycle of weight at least ¢?

Unfortunately, the answer to the question of Problem 1 is negative. This can
be shown by the 2-connected graph in Figure 1. In this graph, if we assign weight
1 to the edge vpv3, weight 7 to v4ve and v7v9, and weight 5 to all the remaining
edges, then it is easy to check that max{d"(x),d"(y) | d(x,y) = 2} > 22, whereas
the graph contains no Hamilton cycle and the heaviest cycle of the graph is of
weight 40.

Let G = (V,E) be a weighted graph with weight function w : E — R. Suppose
that there exists a function w' : ¥ — R such that, for every edge uv of G,

W' (u) + w'(v)

7 .
Then we say that the edge weight function w is induced (by the vertex weight
function w'). If w’ can be chosen in such a way that w'(v) > 0 for all v € V, then we
call w positive-induced. If we regard an unweighted graph as a weighted graph with
weight 1 on each edge, then it is positive-induced. The answer to the question of
Problem 1 is negative even when the edge weight function of the graph is

w(uv) =
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1

Fig. 1

supposed to be positive-induced. This can also be shown by the graph in Figure 1.
If we assign weight 4 to the edges v4vs, V506, v70g and vgvg, and weight 5 to all the
other edges, then the resulting weighted graph is still a counter-example to Pro-
blem 1, and the weight function is positive-induced. We leave the details to the
reader.

So, if one wants to generalize Theorem A to weighted graphs, some extra
conditions must be added. In this paper, we prove the following analogue of
Theorem A for weighted graphs, which also generalizes Theorem A.

Theorem 1. Let G be a 2-connected weighted graph which satisfies the following

conditions:

1. max{d"(x),d"(y) | d(x,y) =2} > ¢/2;

2. w(xz) = w(yz) for every vertex z € N(x) NN (y) with d(x,y) = 2;

3. In every triangle T of G, either all edges of T have different weights or all edges of
T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least c.

We postpone the proof of Theorem 1 to the next section.

It should be noted that neither of the last two conditions of Theorem 1 can be
dropped. This can be shown by the graph in Figure 1. If we assign weights to edges
as we did in the first counter-example to Problem 1, then the graph satisfies
Conditions 1 and 2 of Theorem 1, but not Condition 3. On the other hand, if we
assign weight 2 to the edges v4vs and vgvg, weight 2.5 to vsvg and v;7vg, and weight 5
to all the other edges, then it is easy to check that max{d" (x), d"(y) | d(x,y) =2} >
17, whereas the graph contains no Hamilton cycle and the heaviest cycle of the
graph is of weight 30. So the new graph satisfies Conditions 1 and 3 of Theorem 1,
but not Condition 2. This graph is also a counter-example to Problem 1.

We found other counter-examples to Problem 1, based on variants of the
graph in Figure 1, but all these counter-examples have connectivity 2. We con-
clude with the following research problem.
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Problem 2. If G is a 3-connected weighted graph such that max{d"(x),
d¥(y) | d(x,y) =2} > ¢/2, is it true that G contains either a Hamilton cycle or a
cycle of weight at least ¢ ?

2. Proof of Theorem 1

Let G be a 2-connected weighted graph satisfying the conditions of Theorem 1.
Suppose that G does not contain a Hamilton cycle. Then it suffices to prove that G
contains a cycle of weight at least c.

Choose a path P = vjv; --- v, in G such that

(a) P is as long as possible;
(b) w(P) is as large as possible, subject to (a);
(c) d”(v1) 4+ d"(v,) is as large as possible, subject to (a) and (b).

From the choice of P, we can immediately see that N(v;) UN(v,) C V(P).

Claim 1. There exists no cycle of length p.

Proof. Suppose there exists a cycle C of length p. Since G contains no
Hamilton cycle and G is connected, we can find a vertex u € V(G)\V(C) and a
path Q from u to a vertex v € V(C), such that Q is internally disjoint from C.
The subgraph CUQ of G contains a path longer than P, contradicting the
choice of P in (a). ]

Claim 2. vjv, ¢ E(G).

Proof. 1f vjv, € E(G), then we can find a cycle C =vjv,---v,01 of length p,
contradicting Claim 1. O

Claim 3. If v; € N(v1), then v, ¢ N(vp).

Proof. Suppose v; € N(v;) and v,_; € N(v,). Then we can form a cycle
C = v10;Vi41 - - - Up0_1V;—2 - - - 1 With length p, again contradicting Claim 1. O
Now we consider two cases:

Case 1. d"(v;) +d"(v,) < c.

Without loss of generality, we can assume that d"(v;) < ¢/2.

Since G is 2-connected, v; is adjacent to at least one vertex on P other than v;.
Choose v; € N(v1) N V(P) such that k is as large as possible. By Claim 2 it is clear
that 3<k<p-—1.

Claim 4. v\v; € E(G) for all i with 3 <i<k.

Proof. Suppose that vjv,_1 ¢ E(G), hence d(v;,v;—1) = 2. From Condition 2 of
the theorem, we know that w(vivx) = w(vg—1vx). Then vg_1vg_p---vivx -+ v, is
another longest path with the same weight as P. By the maximality of
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d”(v1) + d"(vp), we have d¥(vr—1) < d"(v1) < ¢/2. It follows from Condition 1 of
the theorem that d(vj,vx—1) # 2, a contradiction. Thus, we conclude that
v € E(G). If k = 3, we are done; otherwise, repeating the above arguments,
we can obtain that vv; € E(G) for all i with 3 <i<k. O

Case 1.1. w(vjvi—1) = w(viv;) = w(vi_v;) = w* for all i with 3 <i<k.
Claim 5. d"(v;) < d"(vn) for all i with2 <i<k—1.

Proof. Suppose that d"(v;) > d"(v;) for some j with 2 <j<k—1. Since
w(v1vj41) = w(v;v;41) and viv; € E(G) by Claim 4, vv,_1 -+ 01041042 -+~ U, 1S
another longest path with the same weight as P. Then
d"(vj) +d"(vp) > d"(v1) +d"(v,), which contradicts the maximality of
d"(vi) +d"(v,) in (c). O

Claim 6. dw(l)kJrl) > dw(lil).

Proof. Note that vjv.11 ¢ E(G) by the choice of vy, and the path vyvgvgy is of
length 2, so d(vy,ve41) = 2. Using Condition 1 of the theorem we know that
max{d"(v1),d" (vg+1)} > ¢/2.  Since  d"(v1) <c¢/2, we  must have
dw(l)k_H) > 6/2 > dw(l)l). O

For every i with 2 <i < k — 1, v; can not be adjacent to any vertex outside P.
Otherwise, there will be a path of length greater than p, contradicting the choice of
P in (a). Since G is 2-connected, there must be an edge v;v, € E(G) with j < k <.
Choose v;v, € E(G) such that j < k < s and s is as large as possible.

Case 1.1.1. s > k + 2 (see Figure 2).

First note that d(v;,v,) = 2 by Claim 4 and the choice of v;. This implies that
w(v;vg) = w(viv;) = w*. We can prove that v;v,_; € E(G). Otherwise, from Con-
dition 2 of the theorem we have w(v,_jv5) = w(vv;) = w*. Then the path
Us—1Us—2 *** Vjp1V] = - UV - - - U, is another longest path with the same weight as P.
By the choice of P in (c), we know that d"(v,_1) < d"(v;) < ¢/2. On the other
hand, from Condition 1 of the theorem and d(vj,v,_1) =2 we then get
d*(v;) > ¢/2 > d"(v1), contradicting Claim 5. So, we must have v;v,_; € E(G). If
s—1>k+1, we have another longest path v, ov,_3-- 04101 VjUs—1 -~ Vp.
Repeating the process above, we obtain that v;v,_» € E(G). Consequently, it is not
difficult to prove that vv; € E(G) and w(vv;) = w(viv;) = w* for all i with
k+ 1 <i <s. Using Conditions 2 and 3 we also have that w(v;_v;) = w* for all i
with £+ 1 <i<s.

In particular, vjvr2 € E(G) since s>k +2. This means that there is
another longest path vj qvg - - V4101 -+ - UjUgq2 - - - U - - - U, With the same weight as
P. Tt follows from the choice of P in (c) that d"(ves1) < d¥(v;), contradicting
Claim 6.
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U1 Vj Vi (3 Vk+1 Vk42 Vs—1 Vs Up
Fig. 2

O

U Ui Ui+l Vg Uk41 Uk42 V1 Ut Up
Fig. 3

Case 1.1.2. s=k+1 (see Figure 3).

First, note that vxvg_y - - vj4101 - - - V;Uk41 - - - Up 1S another longest path with the
same weight as P, and so by the choice of P in (c) we have d"*(v;) < d"(v1) < ¢/2.

By Claim 1 we may assume that k + 1 < p. From the 2-connectedness of G and
the choice of vy, there must be an edge v;v, € E(G) such that ¢ > k + 2. From
Condition 2 of the theorem, we have w(v,v,) = w(vivr) = w*. We can prove that
vpv—1 € E(G). Otherwise, d(vg, v,—1) = 2. This implies that w(v,_jv,) = w(vgv,) =
w(vivg) = w*. So, the path v,_1v,5- - Vg1V~ - VIVj41 -~ Ul -~ -V, s another
longest path with the same weight as P. By the choice of P in (c), d(v,—1) <
d"(v1) < ¢/2. On the other hand, we have max{d" (v),d" (v;—1)} > ¢/2 by the fact
d(vg,v—1) = 2, a contradiction. With the same argument as before, we can prove
that vzv; € E(G) and w(v;—1v;) = w(vgv;) = w(vjvg) = w* foralliwithk+ 1 <i <.

In particular, vzvr2 € E(G) since ¢ > k 4+ 2. Hence, there is another longest
path vg v« 01041 -+ Vglgga - - - Uy - - - U, With the same weight as P. This implies
that d"(vk41) < d"(v1) < ¢/2, contradicting Claim 6.

This completes the proof of Case 1.1.

Case 1.2. There is some vertex v; with 3 <i < k such that w(vv;_1), w(v v;) and
w(v;_v;) are all different.

In this case, choose vertex v; such that w(viv;_1), w(viv;) and w(v,;_ v;) are all
different, and j is as large as possible. Denote the weight of vjv;, v;—v; and vjv;_
by wi, w, and ws, respectively. It follows from Condition 3 that w(v;_iv;)
=wy # w; = w(vvj41), and from Condition 2 of the theorem that v;_jv;4;
€ E(G). If j < k, then the weight of the edge v;_;v;;; is different from the weight
wy of the edge vj;1v;4» since there is a triangle vjv;_jv4v1 and w(uluj,l) =
w3 # wi = w(vvj41). With the same argument, we can prove that v;_v; € E(G)
for all i with j <i < k + 1. By the choice of v, we have that w(v;_jvx41) = wj.

If v € E(G), then d(vl,sz) =2. This shows that W(Uklik+2) =
w(vivg) = wy. From w(vgvgr1) = w(vgvk2) = wi and Condition 3 of the theorem
we know that w(viy1vk42) = wy. Therefore, there must be an edge v;_ x> € E(G)
since the two edges v;_1v41 and vy have different weights. Again, by the fact
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d(v1, vk42) = 2, we obtain that w(v;_1vx2) = w(vivj—1) = ws. This leads to a tri-
angle Vj—1Up+10k4205—1 in which W(l)j;ll)kJr]) = W(Uj;ll)kJrz) = w3 and w(vk+1vk+2) =
wi, contradicting Condition 3 of the theorem.

If vpop2€ E(G), then d(vg,vr2) =2. This implies that w(vgy ves2) =
w(vgves1) = wi. Therefore, there must be an edge v;_jv42 € E(G) and
w(vj_10k42) = ws. This also leads to a triangle v;_jvs11vk20;—1 Which is impossible
by Condition 3 of the theorem.

Case 2. d"(v) +d"(v,) > c.

Similar to the proof of Theorem 4 of [2], we will prove that G contains a cycle
of weight at least c.

Claim 7. If v; € N(vy), then w(vi—iv;) > w(viv;). If  v; € N(vy), then
w(vvj41) = w(vjup).

Proof. 1f v; € N(v1), the path P' = v;_jv;_»---vj0; - - - v, has the same length as P.
So, because of (b), we must have w(P) > w(P'), hence w(v;_1v;) > w(viv;). The
second assertion can be proved similarly. O

Since G is 2-connected, by Lemma 1 of [1], there is a sequence of internally
disjoint paths P, Ps,...,P, such that

(1) Py has end vertices x; and y, and V() N V(P) = {xg, x} for k= 1,2,...,m;
Q) v=x1<0<y<x3<»<xg << Y2 KXy < Yot < Y = Up, Where
the inequalities denote the order of the vertices on P.

By Claim 2, we have m > 2. It is not difficult to see that we can choose these
paths such that
(3) if v; € N(vy), then v; € Plvy,x2] UP[y,x3] for m >3, or v; € Plvy,x]U

Pb/l, Upfl] for m = 2;
(4) if v; € N(vp), then v; € P[yy—2,Xm] U Pym—1,0,-1] for m > 3, or v; € Plvs,x2]U
Pb/],vp_l] for m = 2.

Now denote by Cj the cycle P, U Plxg, ] for k =1,2,...,m, and let C be the
cycle whose edge set is the symmetric difference of the edge sets of these cycles Cy.
By (3), (4) and Claim 3 we have for all v; € N(vi)\{»} and v; € N(v,)\{x,} that
vi—10;, Vo1 € E(C) and v;_1v; # vvj41. Also note that since N(vi) UN(v,) C
V(P), we must have P, = vy, and P,, = x,,v,. Using Claim 7, this shows that

w(C) = Z w(vi-10;) + Z w(vjv41)
veN(e)\{n} 0;EN (0p)\fon }

+w(vyr) + w(xmyp)

> Z w(vv;) + Z w(vvp)
)

v;eN (v v;EN (1)

=d"(v1) +d"(vy) > ¢,

which proves the theorem. O
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