
Graphs of Non�crossing Perfect Matchings�

C� Hernando� F� Hurtado� M� Noy�

Abstract

Let Pn be a set of n � �m points that are the vertices of a convex polygon� and let Mm

be the graph having as vertices all the perfect matchings in the point set Pn whose edges
are straight line segments and do not cross� and edges joining two perfect matchings M�

and M� if M� � M� � �a� b� � �c� d� � �a� d� � �b� c� for some points a� b� c� d of Pn� We
prove the following results about Mm� its diameter is m � 	
 it is bipartite for every m

the connectivity is equal to m� 	
 it has no Hamilton path for m odd� m � �
 and �nally
it has a Hamilton cycle for every m even� m � 
�

Keywords� Perfect matching� Non�crossing con�guration� Gray code�

Introduction

Given a graph G� one can consider an associated graph M�G� whose vertices are the perfect
matchings of G and where two perfect matchings are adjacent if their symmetric di�erence is a
cycle C of G� In this case one says that C is an alternating cycle for the two matchings� This
de�nition is closely related to the matching polytope M�G� of G� a polytope whose vertices
are the incidence vectors of all the matchings in G� since two perfect matchings are adjacent in
M�G� if� and only if� they are adjacent in the graph of M�G� �	
�

The graphs M�G� have been studied in the past and some general results are known� like
the fact that they are always Hamiltonian ��
� Particular attention has been paid to the case
in which G is a plane bipartite graph� a situation of particular interest in the study of chemical
compounds ��
� ��
� Another noteworthy instance is when G � Kn�n� and in this case M�Kn�n�
is the graph of the so called assignment polytope ��� �
�

In this paper we study a geometric version of the problem� Let Pn be a set of n � �m points
that are the vertices of a convex polygon� and let us consider matchings in the point set Pn
whose edges are straight line segments� A perfect matching in Pn is said to be non�crossing

if no two of its edges intersect� The points of Pn are labeled� consequently two matchings are
considered equal only if they have exactly the same set of edges� We de�ne the graphMm as the
graph having as vertices the non�crossing perfect matchings of Pn and edges joining M� and M�

if M� �M� � �a� b�� �c� d� � �a� d� � �b� c� for some points a� b� c� d of Pn �see Fig� ��� Observe
that in this case the symmetric di�erence of M� andM� is a cycle of length four� This de�nition
is adopted so that two adjacent matchings di�er as little as possible� namely only in two edges�

The graph M� is depicted in Fig� �� Some relevant properties can be observed� the graph
is bipartite �this is indicated by black and white vertices�� it is Hamiltonian� and every vertex
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Figure �� Adjacent matchings in M��

has another vertex at maximum distance �� Moreover� it has minimum degree � and it can be
checked that it is ��connected� The aim of this paper is to establish these properties in general�

In Section � we show how to obtain a shortest path inMm between any two vertices� in fact�
our results provide a linear time algorithm for �nding shortest paths� As a corollary� we prove
that every vertex ofMm has eccentricity equal to m� � and� as a consequence� the diameter of
Mm is m� �� In Section � we show that Mm is a bipartite graph for every m� and in Section �
we prove that the minimum degree and the connectivity of Mm are equal to m� �� Finally� we
show in Section � that Mm has no Hamilton path for m odd� m � �� and� drawing on previous
work by Ruskey and Proskurowski ���
� we show that Mm is Hamiltonian for every m even�
m � ��

Figure �� The graph M��

A result we wish to emphasize is that shortest paths can be easily constructed� which gives as
a corollary the determination of the exact value of the diameter for everym� These problems are
usually di�cult and have been only partly solved in related graphs like graphs of triangulations
��� ��
� and graphs of non�crossing spanning trees ��� �
�

On the other hand� it is well�known that Mm has Cm vertices� where Cm � �
m��

�
�m
m

�
is

a Catalan number� In the paper we make use of several bijections between matchings in Mm
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and other combinatorial objects counted by the Catalan numbers� like plane trees and balanced
binary strings� In addition� in our study of Mm we have found a bijection between matchings
in Mm an certain permutations of length m� This fact has an interesting combinatorial conse�
quence� it produces a new family of permutations counted by the Catalan numbers� not de�ned
in terms of one forbidden subsequence of length three �see ���
��

From now on a non�crossing perfect matching will be called simply a matching� The graph
Mm does not depend on the exact position of the points of Pn and� to �x ideas� we take Pn as
the set of vertices of a regular n�gon� Edges corresponding to the sides of the polygon are called
boundary edges�

� Shortest paths� eccentricities and diameter

We recall that the distance d�u� v� between two vertices u and v in a graph is the length r of a
shortest path u � w� � w� � � � � � wr � v connecting them� where � denotes adjacency� The
eccentricity of a vertex v in a graph is the maximum of the distances between v and any other
vertex of the graph� and the diameter is the maximum of the eccentricities�

In this section we show a simple method for �nding shortest paths between any two vertices
in Mm and� as a consequence� we obtain the exact value of the diameter� Before that we need
to introduce some de�nitions and notations� If e is an edge not belonging to a matching M in
Mm� but one of its neighbors M

� contains e� we say that M� is obtained by insertion of e into

M � and we use the notation M � e for the matching M�� If e belongs to M we simply de�ne
M � e �M �

Observe that the insertion of an arbitrary edge e into a given matching is not always possible�
but it is certainly feasible when e is a boundary edge� Also� if M �M � and e is one of the edges
exchanged� then M � e �M � � e� If M �M � but e is not exchanged� then it can be checked that
M � e �M � � e�

The insertion of a sequence of edges is recursively de�ned by

M � �e�� e�� � � � � er� � �M � �e�� e�� � � � � er���� � er�

Lemma ��� Let M � and M �� be in Mm and suppose they share the boundary edge e� Then all

the matchings in any shortest path between M � and M �� contain e�

Proof� Let d�M ��M ��� � d and let

M � �M� �M� � � � � �Md �M ��

be a shortest path between M � and M ��� Suppose that e does not belong to some matching in
the path and let Mi be the �rst one with this property� Consider now the sequence

M � �M� � e �M� � e � � � � �Md � e �M ���

By the previous remarks� consecutive matchings in this sequence are either equal or adjacent�
but Mi�� � e �Mi � e� and this gives a path of length smaller than d� a contradiction� �

Let M be in Mm� Let us consider the set E� of boundary edges in M � and remove the
endpoints of E� both from Pn and from M � This gives a new point set with a new matching�
and we can similarly de�ne the current boundary edges E� and repeat the process� A disassembly

sequence for the matching M is any sequence �e�� � � � � em� consisting of all the edges in M � with
the property that all the edges in E� come �rst� next all the edges in E�� and so on�

Observe that a disassembly sequence �e�� � � � � em� for a matching M can be inserted into any
other matching M �� and that M � � �e�� � � � � em� �M �
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Theorem ��� Let �e�� � � � � em� be a disassembly sequence for a matching M � and let M � be any

other matching� Then

M � �M � � e� �M � � �e�� e�� � � � � �M � � �e�� � � � � em� �M

is a shortest path between M � and M � where it is understood that some of the adjacencies in the

above expression can be equalities�

Proof� Let
M � �M� �M� � � � � �Md �M

be a shortest path P � between M � and M �
Let us assume �rst that e� does not belong to M �� and prove that there is a shortest path

from M � to M in which the �rst step is the insertion of e�� As e� belongs to M but not to
M �� there is an i � 
 such that Mi is the �rst matching in the sequence containing e�� In the
sequence

M � �M� � e� �M� � e� � � � � �Md � e� �M�

the equality M � � M� from the original path has been replaced by the proper adjacency M � �
M� � e�� but the adjacency Mi�� �Mi has been replaced by the equality Mi�� � e� � Mi � e��
therefore the length remains unchanged and we still have a shortest path�

If e� belongs to M �� the �rst step in the path P � is simply an equality� Henceforth we see
that in any case there is a path from M � to M starting by the insertion of e�� By Lemma ��� we
know that all matchings in shortest paths from M � � e� to M contain e�� The same argument
shows that there is a path from M � � e� to M starting by the insertion of e�� and the repetition
of the process proves the claim� �

Remark that the above result provides in fact a linear time algorithm for �nding shortest
paths� Also� since the shortest path involves no exchange when an edge already in M is to be
inserted� we get the following result�

Corollary ��� If two matchings M and M � in Mm have exactly k edges in common� then

d�M�M �� � m� k � ��

This implies that the diameter is at most m� �� We show now that this is in fact the exact
value of the diameter�

The union M� �M� of two matchings in Mm is the union C� � � � � � Ck of edge disjoint
cycles� in which the edges from M� and the edges from M� alternate in each cycle �an edge e in
both M� and M� gives a �double� edge in M� �M�� which we consider as a cycle of length ���
This decomposition is closely related to the distance between the two matchings�

Theorem ��� If M� and M� are such that M� �M� � C� � � � �� Ck then

d�M��M�� �
�

�

kX

i��

�length�Ci�� ���

Proof� The result is obvious for m � �� for m � � we distinguish two cases�
If M� and M� share a boundary edge e� we remove the endpoints of e from the point set

Pn� and from both M� and M�� then apply induction to the resulting point set and matchings�
Otherwise� let e be a boundary edge in M� but not in M�� We know from Theorem ��� that
there is a shortest path between M� and M� in which we �rst move from M� to M� � e� The
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cycle in M� �M� containing e becomes in �M� � e� �M� the double edge e plus a cycle with
length equal to length�C�� �� we now apply the previous case to M� � e and M�� �

The preceding result is now applied to a special situation� which gives as a consequence the
lower bound for the diameter� De�ne the rotation of an edge �i� j� as the edge �i � �� j � ���
addition being modulo �m� Given a matching M 	 Mm� its rotation M� is the matching
consisting of all the edges of M rotated�

Theorem ��� Let M 	Mm and let M� be its rotation� Then d�M�M�� � m� ��

Proof� Let r be an oriented line� non crossed by any edge in M � and let i� i��� � � � � i� p be the
points in Pn to the left of r� We claim that the union of the edges in M to the left of r� together
with its rotations� is an alternating path starting at i� going through all the points to the left of
r� and ending in i� p � � �Fig� �a�� Observe that applying the claim to the edges to the right
of r we get a similar path from i� p � � to i� The concatenation of the two paths shows that
M �M� is a single cycle of length n � �m� and Theorem ��� implies the result�

The claim is obvious when p � �� and we proceed by induction on p� If �i� i� p� is an edge
in M � we can take a line parallel to r leaving exactly the points i � �� � � � � i � p � � to its left�
by induction this gives by rotation a path from i� � to i� p� which can be concatenated with
the edge �i� i� p� and its rotation �i� �� i� p� ��� If �i� i� p� is not an edge in M we can �nd
a number q and two oriented lines r� and r��� non crossed by any edge of M � such that r� has
exactly the points i� � � � � i� q to its left and r�� the points i� q ��� � � � � i� p �Fig� �b�� Now we
apply induction to these two portions and concatenate the two resulting paths� �

Corollary ��� The eccentricity of every vertex in Mm is equal to m � �� and the diameter of

Mm is equal to m� ��
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i+q+1
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i+p
i+p+1

r’

r’’

(a) (b)

Figure �� Edges in M are continuous� edges in the rotate matching M� are dashed�
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� Mm is a bipartite graph

In this section we show that Mm is a bipartite graph for all m� To this end we use a classical
bijection between non�crossing perfect matchings and plane trees� Given a matching M in Mm

de�ne a plane tree tM with m� � nodes as follows� there is a node of tM for every edge of M �
plus a root � that is placed outside the edge ��� �m�� Join � to all the nodes corresponding to
edges visible from � and proceed recursively �see Fig� �� where the edges of tM are dashed and
the root is in grey��

1
2

3

2m

2m-1

ρ

Figure �� Plane tree associated to a matching�

Recall that the path length of a tree is the sum of the heights of all its nodes� Let us denote
the path length of a tree t by ��t�� For instance� ��tM � � �
 in the matching of Fig� ��

Lemma ��� If M and M � are adjacent in Mm� then the path lengths of tM and tM � have

di�erent parity�

Proof� Suppose M � �M �ab� cd�ad� bc� and suppose the node in tM corresponding to �c� d�
is a descendant of the node corresponding to �a� b�� If we let C be the set of vertices of Pn to
the right of the edge �c� d�� then it is straightforward to check that

��tM �� ��tM � � � � � �jCj�

The other cases are treated similarly� �

As a corollary we have�

Corollary ��� The graph Mm is bipartite for every m�

Let us mention a di�erent proof of this result� Label the points of Pn as f�� ��� �� ��� � � � �m�m�g
in circular order� and let M be any �non�crossing perfect� matching� Then� because of parity
considerations� any point i in f�� � � � �mg has to be matched inM with a point j� in f��� � � � � �m�g�
If we set �i � j� this de�nes a permutation � � ��M� of n letters� It is easy to check that if
M and M � are adjacent in Mm then ��M� and ��M �� di�er in a single trasposition �but not
conversely�� hence they have di�erent parity� This establishes the bipartition�

This proof has an interesting consequence� It is well known that the number of non�crossing
perfect matchings of Pn is the Catalan number �

m��

�
�m
m

�
� The above correspondence then

gives a family of permutations that is counted by the Catalan numbers� All the families of
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permutations we know with this property are de�ned in terms of one forbidden subsequence of
length three ���
� Our family is not of this kind since the only forbidden subsequence for m � �
is ��� but it appears in the permutation ���� that does come from a matching� Hence we have
found what appears to be a new family of permutations counted by the Catalan numbers�

� Connectivity

We begin this section with a simple lemma�

Lemma ��� The minimum degree of Mm is equal to m� ��

Proof� LetM be inMm� and let G be the graph having a vertex for every edge in M � and where
two edges uv and u�v� are adjacent if they see each other� i�e�� if there is a straight�line segment
connecting them and touching no other segment� Then the degree of M in Mm is equal to the
number of edges in G� But G has m vertices and is clearly connected� so that it has at least
m� � edges� �

We are now ready for the main result�

Theorem ��� The connectivity of Mm is equal to m� ��

Proof� By the above lemma we only need to show that Mm is �m � ���connected� The proof
is by induction on m� starting with the case m � �� which is clear since M� is the graph K����
Suppose then m � ��

By Menger�s theorem� given M � and M �� in Mm it is enough to prove that there are m� �
paths from M � to M �� internally disjoint� We consider three cases�

��M � andM �� have a common boundary edge e � �i� i���� Removing the endpoints of e� by
induction there are m� � internally disjoint paths from M � to M �� all of them containing e� If
e� � �i��� i���� we know there exists a path P from M � � e� to M �� � e� such that all its vertices
contain e�� Since e and e� cannot both be contained in a matching� concatenating P with the
adjacenciesM � �M � � e� and M �� � e� �M �� we obtain a path from M � to M �� internally disjoint
with the previous ones�

�� M � and M �� have no common boundary edge and none of them has all its edges on the
boundary� Then� without of loss of generality� we can assume that there exist boundary edges
e � �i� i� �� and e� � �i� �� i� �� such that

e 	M ��� e 
	M �� e� 
	M �� e� 
	M ���

By Lemma ���� M � has at least m � � di�erent neighbors M�� � � � �Mm��� Only one of them
contains e� assume it is M�� and only one of them contains e�� assume it is M�� A simple check
shows that the matchings M� � e� � � � �Mm�� � e are all di�erent� Observe also that

M� � e
� 
�Mi� i � �� � � � �m� ��

since Mm does not have triangles �Corollary ����� and that

M� � e
� 
�Mi � e� i � �� � � � �m� ��

since e and e� cannot both be in a matching�
By induction� and by a consequence of Menger�s theorem �see ��� p�	�
�� there are m � �

internally disjoint paths between M �� and M� � e� � � � �Mm�� � e� all of them containing e� By
induction again� there arem�� internally disjoint paths betweenM��e� andM ���e�� all of them
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containing e�� Take one of them not containing M� �by assumption m� � � �� and concatenate
it with M � �M� �M� � e� and M �� � e� �M ��� in this way we have an additional path from M �

and M �� internally disjoint with the former ones�
�� The only case left is M � � fe�� e�� � � � � e�m��g and M �� � fe�� e�� � � � � e�mg� where ei �

�i� i���� i � �� � � � � �m� Let Mi be the matching obtained from M � by exchanging e� and e�i���
that is�

Mi �M � � ��� ��� ��i� �� �i� � ��� �i� �� � ��i� ��� i � �� � � � �m� ��

These are m � � matchings adjacents to M �� none of them containing e� nor e�m� Now M� �
e�m� � � � �Mm�� � e�m are all di�erent and none of them contains e�� as in the former case� there
arem�� internally disjoint paths connecting them toM ��� Now take a path fromM � toM ���e��
all of whose vertices contain e�� and concatenate it with M �� � e� �M ��� obtaining m�� disjoint
paths form M � to M ��� �

� Hamiltonian properties

Let Em be the number of matchings M in Mm such that the path length of tM is even� and let
Om be the number of matchings in Mm such that the path length of tM is odd� We next show
that jEm�Omj � � for m odd and� as a consequence of Lemma ���� that Mm has no Hamilton
path� We make use of the fact that the generating function C�z� �

P
m�� Cmz

m of the Catalan
numbers satis�es the quadratic equation

zC�z�� � C�z� � � � 
�

Lemma ��� jEm �Omj � � for m odd� m � ��

Proof� Let tm�k be the number of plane trees with m nodes and path length k� and let Q�u� z� �P
tm�ku

kzm be the corresponding bivariate generating function� It is a standard fact ���
 that
Q satis�es the functional equation

Q�u� z� �
�

��Q�u� zu�
�

We are interested in D�z� �
P

dmz
m � Q���� z�� since the coe�cient of zm in this series is the

di�erence between the number of plane trees with even path length and odd path length� Taken
into account that Em �Om � dm�� we only need to consider the even part of D�z�

P �z� �
D�z� �D��z�

�
�

Straightforward manipulation of the equations Q��� z� � �����Q��� z� and Q���� z� � �����
Q�����z�� gives

P �z�� � P �z�� z� � 
�

Comparing this with the equation for C�z� we see that P �z� � z�C�z��� This implies that

dm � ����m��Cm����

for m even� and the result follows� �

As a corollary we have�

	



Theorem ��� The graph Mm has no Hamilton path for m odd� m � ��

For m even� the same proof as before gives Em � Om � 
� thus the necessary condition for
the existence of a Hamilton cycle is ful�lled� Our last result is that Hamilton cycles do exist in
this case�

To this end we use yet another bijection� namely between matchings of Mm and the set Bm

of binary strings consisting of m zeros and m ones� and having the pre�x property� i�e�� in every
pre�x the number of ones it at least the number of zeros� The bijection is illustrated in Fig� ��
where a matching is represented linearly with curved arcs� and an arc going up corresponds
to a � and an arc going down to a 
� It is immediate that the resulting string has the pre�x
property and that this de�nes indeed a bijection between V �Mm� and Bm�

1   2   3   4   5   6   7  8   9  10

M

10
9

8

7

6

5
4

3

2

1

s (M) :1   1   1   0   1   0   1   0   0   0

Figure �� Binary string associated to a matching�

Let b�M� be the binary string associated with the matching M � Then it is easy to check
that two matchings M and M � are adjacent in Mm if� and only if�

b�M� � x�y
z and b�M �� � x
y�z

for some binary word y having the pre�x property� If we impose that y is empty in the above
adjacency rule� that is� if we only allow the interchange of a zero with an adjacent one� we obtain
a spanning subgraph Sm ofMm� This graph was studied in ���
� where the authors showed how
to construct a Hamilton path when m is even� This path cannot be extended to a Hamilton
cycle� since the string �m
m has degree one in Sm� Our goal is to modify this construction
conveniently in order to obtain a Hamilton cycle in the larger graph Mm�

We sketch the construction in ���
 and direct the reader to this reference for full details�
Given s � x�
k 	 Bm� let s � x���
k�� be the set of all strings in Bm�� beginning with x�� Let
us call s the generalized vertex of s� The basic idea is to take two adjacent vertices s and t in
Mm and recursively construct a Hamilton path spanning all the vertices in s � t �Mm��� For
example� Fig� � shows the generalized vertices ���
���
	 and ����
�� and a path connecting all
the vertices�

Generalized vertices always have this grid structure in two dimensions� The two degrees
of freedom correspond to the two �free� ones that can be moved� The paths connecting pairs
of generalized vertices can be seen as a three dimensional object� We use six kinds of paths�
described in Table �� The directions in the last column correspond to the three possible directions
in ��space�

The construction of the Hamilton cycle for m even is by induction on m� starting with the
case m � � �see Fig� ��� We start inductively with a Hamilton path Pm�� in Mm��� then
we substitute each vertex s � x�
t by its generalized vertex sx���
t�� and we build Hamilton
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paths between consecutive generalized vertices according to Table �� In this way we construct
a Hamilton path Pm in Mm� The only caveat is that in order to get a Hamilton cycle� the last
path of type M has to be replaced by a path of type N � This illustrated in Fig� � for m � ��
where the cycle has to be read by columns�

Hence we conclude�

Theorem ��� The graph Mm is Hamiltonian for m even� m � ��
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Figure �� Top� generalized vertices� Bottom� Hamilton path connecting them�
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Path Types

Path Type Pair of g�vertices Initial Final Conditions Direction

A�t� x���
t � x
���
t�� x���
t x
�
��
t�� t even �

X�t� x���
t � y���
t x�
t����

 y�
t����

 
� l

Y �t� x���
t � y���
t x�
��
t�� y�
��
t�� 


Z�t� x���
t � y���
t x�
t����

 y���
t 
� l

M�t� x���
t � y���
t x�
��
t�� y���
t 


N�t� x���
t � y���
t x�
��
t�� y�
t���
�
 t odd 
� l

Table �� Types of paths connecting generalized vertices�

A A X X X Z N
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Figure �� A Hamilton cycle in M��
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� Concluding remarks

We have established a number of signi�cant properties of the graphs Mm� An open problem is
to compute the group of automorphisms� Without loss of generality we can assume that P�m
is the set of vertices of a regular �m�gon� then every symmetry of the polygon acts on the set
of matchings and induces an automorphism of Mm� We conjecture that these are the only
automorphisms of the graph�

Finally� a natural line of research is to extend the study of graphs of non�crossing matchings
to the case of sets of points in the plane that are not necessarily vertices of a convex polygon�
Preliminary results have been obtained recently in this direction ��
�
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