
Abstract. Several formulations of correlation-based
Hebbian learning are reviewed. On the presynaptic side,
activity is described either by a firing rate or by
presynaptic spike arrival. The state of the postsynaptic
neuron can be described by its membrane potential, its
firing rate, or the timing of backpropagating action
potentials (BPAPs). It is shown that all of the above
formulations can be derived from the point of view of an
expansion. In the absence of BPAPs, it is natural to
correlate presynaptic spikes with the postsynaptic mem-
brane potential. Time windows of spike-time-dependent
plasticity arise naturally if the timing of postsynaptic
spikes is available at the site of the synapse, as is the case
in the presence of BPAPs. With an appropriate choice of
parameters, Hebbian synaptic plasticity has intrinsic
normalization properties that stabilizes postsynaptic
firing rates and leads to subtractive weight normaliza-
tion.

1 Introduction

Over the last 50 years, a large body of experimental and
theoretical work on synaptic plasticity and learning has
been inspired by Hebb’s postulate: ‘‘When an axon of
cell A is near enough to excite cell B or repeatedly or
persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is
increased’’ (Hebb 1949). Today this famous postulate is
often rephrased in the sense that modifications in the
synaptic transmission efficacy are driven by the correla-
tions in the firing activity of the pre- and the postsy-
naptic neuron. Even though the idea of learning through
correlations dates further back in the past (James 1890),

correlation-based learning rules are now generally called
Hebbian learning.
Hebb formulated his principle on purely theoretical

grounds. He realized that such a principle would help to
stabilize specific neuronal activity patterns in the brain.
If neuronal activity patterns correspond to behavior,
then stabilization of specific patterns implies learning of
specific behaviors (Hebb 1949). Even though Hebb’s
statement was essentially a theoretical one, he did not
formulate it himself in mathematical terms. In this paper
we review several mathematical formulations of Heb-
bian learning. We start in Sect. 2 with rate-based de-
scriptions and turn then in Sect. 3 to spike-based models
of Hebbian plasticity. In both cases we focus on a single
synapse wij that transmits signals from a presynaptic
neuron j to a postsynaptic neuron i (Fig. 1). Large
portions of the text of the present paper are based on a
recent book on spiking neuron models (Gerstner and
Kistler 2002).

2 Rate-based Hebbian learning

In rate-based neuron models, the activity of a given
neuron i is described by its firing rate mi which is related
to the membrane potential ui by a nonlinear monoton-
ically increasing function g:

mi ¼ gðuiÞ : ð1Þ

The membrane potential in turn can be calculated from
the presynaptic firing rates mj and the synaptic weights
wij, i.e., ui ¼

P
j wijmj. In the following we assume that

the firing rates mi and mj of the pre- and the postsynaptic
neuron are constant during one trial of an experiment.
For several classical experiments on long-term potenti-
ation (LTP) this is a reasonable assumption (for reviews
see Brown et al. 1989; Bliss and Collingridge 1993). LTP
can, for example, be introduced by high-frequency trains
of presynaptic pulses at several synapses that are
maintained over a time T. In such a situation the
temporal resolution is rather coarse, and a description of
pre- and postsynaptic activity by fixed rates is appro-
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priate. Time-dependent stimulation paradigms will be
treated in the context of the spike-based formulation
outlined in Sect. 3.
We consider the weight change Dwij during one

learning trial. Since the total weight change during a trial
depends on the duration of the trial, we focus on the rate
of change dwij=dt ¼ Dwij=T.

2.1 Model requirements

According to Hebb’s postulate, the weight should
increase if, during an experimental trial, both neurons
are active together. Can we give a more precise
mathematical description of Hebb’s ideas? Our aim is
to formulate the weight change during Hebbian learning
as a function of the activity of the pre- and the
postsynaptic neuron. From our point of view, at least
six aspects are important for the formulation of a useful
plasticity model, as described in Sects. 2.1.1–2.1.6.

2.1.1 Locality. The learning rule for the synapse wij
connecting neuron j to neuron i should depend only on
the activity of j and i and not on the state of other
neurons k 6¼ i; j. In a rate model the state of neuron i is
fully characterized by its firing rate mi. Given mi, the
membrane potential ui follows from (1), i.e., ui ¼ g�1ðmiÞ,
where g�1 denotes the inverse of the transfer function g.
The only other variable in a rate model that is locally
available at the synapse is the present value wij of the
synaptic efficacy itself. Mathematically, we may there-
fore write

d

dt
wij ¼ F ðwij; mi; mjÞ ð2Þ

where F is a yet-unknown function (Sejnowski and
Tesauro 1989; Brown et al. 1991; Kohonen 1984).
Hebb’s formulation is clearly consistent with the locality
requirement.

2.1.2 Cooperativity. Hebb’s formulation ‘takes part in
firing it’ implies that both the pre- and the postsynaptic
neuron must be active to induce a weight increase. It
furthermore suggests a causal relationship between the
firings. We will return to an implementation of causality
in Sect. 3. At the moment we restrict ourselves to the

requirement of simultaneous activity of the pre- and the
postsynaptic neuron. How can we implement this
information in the function F in (2)? Since F is a
function of the rates mi and mj, we may expand F about
mi ¼ mj ¼ 0. An expansion to second order in the rates
yields

d

dt
wij � ccorr2 ðwijÞmimj þ cpost2 ðwijÞm2i þ cpre2 ðwijÞm2j

þ cpre1 ðwijÞmj þ cpost1 ðwijÞmi þ c0ðwijÞ
þ OðmÞ : ð3Þ

The first term on the right-hand side of (3) picks up the
correlations between pre- and postsynaptic activity. In
fact, it is this bilinear term mimj – namely, a term that is
sensitive to the correlations between pre- and postsy-
naptic activity – which makes Hebbian learning a useful
concept. The simplest implementation of Hebbian
plasticity would be to require ccorr2 > 0 and set all other
parameters in the expansion (3) to zero:

d

dt
wij ¼ ccorr2 ðwijÞmimj : ð4Þ

Equation (4) with fixed parameter ccorr2 > 0 is the
prototype of Hebbian learning. A learning rule with
ccorr2 < 0 is usually called anti-Hebbian. We note that, if
we continue the expansion on the right-hand side of (3),
more and more complex learning rules can be construct-
ed. The next terms would be of order m3: terms of the
form mim2j , mjm2i , etc.

2.1.3 Synaptic depression. Hebb’s original proposal
gives no rule for a decrease of synaptic weights, but
only refers to the conditions under which a strengthen-
ing of synapses should occur. It is clear, however, that a
system where synapses can only increase and never
decrease is bound to be useless. An option for decreasing
the weights (synaptic depression) is therefore a necessary
requirement for any useful learning rule. This can be
achieved, for example, by a weight decay, i.e., we take
the parameter c0 in (3) as

c0ðwijÞ ¼ �c0wij ð5Þ

with c0 > 0. Synaptic depression can also be implement-
ed by several other combinations of the factors cpost1 , cpre1 ,
and c0. For example, the rule d

dt wij ¼ ðmi � mhÞmj could be
implemented by the choice ccorr2 ¼ 1; cpre1 ¼ �mh < 0, and
all other parameters equal to zero. Such a rule is called
presynaptically gated, since presynaptic activity is a
necessary requirement for any change; the activity level
of the postsynaptic neuron determines the direction
of the change. An overview of various possibilities of
implementing synaptic depression in the framework of
(3) is given in Table 1.

2.1.4 Boundedness. In realistic rules, weights at excit-
atory synapses should remain bounded in a range
0 � wij � wmax, where wmax is the maximal weight value
that is sustainable by the biochemical machinery
implementing the synaptic connection. To achieve

Fig. 1. The change at synapse wij depends on the states of the
presynaptic neuron j and the postsynaptic neuron i, and the present
efficacy wij, but not on the state of other neurons k
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boundedness, we make use of the dependence of the
parameters in (3) upon wij. Since F on the right-hand
side of (2) is a function of wij, the expansion coefficients
ccorr2 ; cpost2 ; cpre2 ; cpost1 ; cpre1 , and c0 will also depend on the
weight wij. A suitable choice of the wij dependence of the
positive parameters guarantees that the weight cannot
become larger than an upper bound wmax; similarly, a
suitable choice of the negative parameters assures that
the wij cannot decrease below a minimum value of zero
(Oja 1982; Kohonen 1984; Miller and MacKay 1994).
In a simple formulation of a ‘saturating’ weight

dependence, we take the parameter ccorr2 in (3) as

ccorr2 ðwijÞ ¼ g0ðwmax � wijÞ ð6Þ

with a constant g0 > 0. The factor ðwmax � wijÞ can be
seen as an implementation of ‘soft’ bounds. The closer a
weight is to its maximum, the smaller the effect of an
experimental trial with an LTP-induction protocol. As a
modeling alternative to the ‘soft’ bounds, we can instead
use ‘hard’ bounds: growth of the synaptic weights has a
constant factor ccorr2 as long as wij < wmax and stops if
wij ¼ wmax. Hence, hard bounds correspond to the
replacement ðwmax � wijÞ �! Hðwmax � wijÞ, where
Hð
Þ denotes the Heaviside step function. Similarly, in
a hard-bound formulation the weight decrease would
simply stop at wij ¼ 0, whereas in the soft-bound
formulation all negative factors would be taken as
proportional to wij.

2.1.5 Competition. A further useful feature of learning
rules is competivity. If someweights grow, they do so at the
expense of others that must decrease. Ideally, competivity
should be a consequence of the learning rule (3) and should
not require any additional assumptions. One specific
implementation of competivity relies on the normaliza-
tion of the set of weights wij of all synapses converging
onto the same postsynaptic neuron. While, at a first
glance, such a normalization step would seems to violate
the requirement of locality, it can in fact be replaced by
purely local rules. An example is Oja’s rule (Oja, 1982)
which is found from (3) if we take cpost2 ¼ �g0wij,
ccorr2 ¼ g0 > 0, and set all other parameters to zero:
c0 ¼ cpre1 ¼ cpre2 ¼ cpost1 ¼ 0.

2.1.6 Long-term stability. Most of the learning theories
concentrate on the induction of weight changes. Once the
‘learning session’ is over, weights are taken as fixed
parameters. Most neural systems, however, are subject

to constantly changing input. If systems continue to
remain adaptive, care must be taken that previously
learned information is not lost. Grossberg has coined the
term ‘stability–plasticity dilemma’ for this problem
(Carpenter and Grossberg 1987; Grossberg 1987). A
simple overwriting of previously stored information,
sometimes called the ‘palimpsest property,’ should be
avoided.
To approach this problem, Fusi et al. (2000) have

studied the problem of the consolidation of weights.
They argue that consolidation of previously learned
items is possible with a weight dynamics that converges
to binary weight values wij ¼ 0; 1. In our framework,
such a dynamics can be implemented by setting

c0ðwijÞ ¼ �cwijð1� wijÞðwh � wijÞ ð7Þ

where 0 < wh < 1 and c > 0. Small weights wij < wh
decay to 0; large weights wij > wh increase towards 1.
If (7) is inserted into (3), then the effects of learning

persist (or are even increased) after the end of a learning
trial. A combination of (7) with other linear and second-
order terms in the plasticity equation (3) can therefore be
considered as a model of consolidation of synaptic
plasticity. In most current formulations of synaptic
plasticity, the problem of weight consolidation is disre-
garded.

2.2 Discussion: relation to other approaches

While the requirements listed in Sects. 2.1.1–2.1.6 pose a
number of constraints for the formulation of learning
rules, the framework sketched in (3) is general enough to
classify various well-known learning rules. The Bienen-
stock–Cooper–Monroe (BCM) rule, for example,

d

dt
wij ¼ g/ðmi � mhÞmj ð8Þ

is obtained if we expand the function F in (2) to linear
order in the presynaptic rate mj while keeping all higher-
order terms in the postsynaptic variable mi. The function
/ can in fact be identified with dF =dmj evaluated at
mj ¼ 0. In the BCM theory, / and mh are chosen so that
/ð0Þ ¼ 0 and /0ð0Þ > 0; that is, /ðxÞ has a zero crossing
at x ¼ 0 with positive slope (e.g., /ðxÞ ¼ x� x3 þ . . .). It
is easy to demonstrate that an output rate mi ¼ mh is an
unstable fixed point under the dynamics (8). To see this,
we simply note that for fixed input rates mj > 0 and

Table 1. The change d
dt wij of a synapse from j to i for various Hebb

rules as a function of pre- and postsynaptic activity. ON indicates a
neuron firing at maximal rate (m ¼ mmax), whereas OFF means an
inactive neuron (m ¼ 0). From left to right: standard Hebb rule,

Hebb with decay, presynaptic gating, postsynaptic gating, and
covariance rule. The parameters are 0 < mh < mmax and
0 < c0 < ðmmaxÞ2. Angular brackets denote an expectation value

Post Pre d
dt wij / d

dt wij / d
dt wij / d

dt wij / d
dt wij /

i j mimj mimj � c0 ðmi � mhÞmj miðmj � mhÞ ðmi � hmiiÞðmj � hmjiÞ
ON ON + + + + +
ON OFF 0 – 0 – –
OFF ON 0 – – 0 –

OFF OFF 0 – 0 0 +
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monotonic gain function g, all weights increase without
bounds if mi > mh. In order to avoid unlimited growth of
weights, mh is therefore taken in the BCM theory as an
adaptive parameter mh ¼ hmii, where hmii is a short-term
average of the output rate. The notion of a running
short-term average goes beyond the current framework,
since it requires some memory, i.e., it is nonlocal in time.
We will see, however, that it can be incorporated in the
more general framework that is developed in Sect. 3 for
spike-based learning rules.
The short-term average plays also a role in the

covariance rule of Sejnowski and Tesauro (1989):

d

dt
wij ¼ mi � hmiið Þ mj � hmji

� �
: ð9Þ

It is based on an expansion of F about a running average
of mi and mj, rather than on an expansion about zero. For
fixed hmji and hmii, an identification with (3) is possible,
which yields c0 ¼ hmiihmji, cpre1 ¼ �hmii, cpost1 ¼ �hmji,
and ccorr2 ¼ 1.
Instead of an expansion in the postsynaptic rate mi, an

expansion in the membrane potential ui would also be
possible. As mentioned in Sect. 2.1.1, ui and mi are re-
lated by (1). Hence, we can define a new function ~FF as

~FF ðwij; ui; mjÞ ¼ F ðwij; gðuiÞ; mjÞ ð10Þ

with Taylor expansion

d

dt
wij ¼ c0 þ cpre1 mj þ bpost1 ui þ bcorr2 uimj þ . . . : ð11Þ

Here we have assumed that the voltage scale is chosen so
that the resting potential is at ui ¼ 0. The idea of an
expansion in the membrane potential will be used again
in Sect. 3.

3 Spike-based learning

The approach taken in this section can be seen as a
generalization of the Taylor expansion in the rate model
of Sect. 2 to the case of spiking neurons. We recall that
we started our formulation of rate-based Hebbian
learning from a general formula

d

dt
wij ¼ F ðwij; mi; mjÞ ð12Þ

where weight changes are given as a function of the
weight wij as well as of the pre- and postsynaptic rates mj
and mi (see Eq. 2). The essential assumption was that
neuronal activity is characterized by firing rates that
change slowly enough to be considered as stationary.
Hebbian rules followed then from a Taylor expansion of
(12). In the following, we keep the idea of an expansion,
but drop the assumption of rate-coded neurons.
A simple model of a spiking neuron is the leaky

integrate-and-fire neuron (Lapicque 1907; Stein 1965).
In its simplest form an integrate-and-fire neuron i con-
sists of a resistor R in parallel with a capacitor C driven
by an external current Ii. The voltage ui across the

capacitor and resistor is interpreted as the membrane
potential. The voltage scale is chosen so that ui ¼ 0 is the
resting potential. The temporal evolution of ui is

sm
dui
dt

¼ �ui þ RIiðtÞ ð13Þ

where sm ¼ RC is the membrane time constant of the
neuron. Spikes are formal events. We say that neuron i
has fired a spike if ui reaches at a time t ¼ tfi a threshold
#. The form of the action potential is not described
explicitly, but to mark the spike we can add a d
function dðt � tfi Þ. Immediately after spike firing, the
potential ui is simply reset to a value ureset < #.
Integration of (13) is then resumed with ureset as the
initial condition.
In a network of neurons, the input Ii to neuron i is

due to the spikes of presynaptic neurons j. In the sim-
plest model of a synapse, each presynaptic spike arrival
evokes a postsynaptic current with a standard time
course a. The total input to neuron i is then

Ii ¼
X
j;f

wijaðt � tfj Þ ð14Þ

where the sum runs over all firing times tfj of all
presynaptic neurons. The factor wij is the synaptic
efficacy of a connection from a presynaptic neuron j to a
postsynaptic neuron i.
Since (13) is a linear equation, the integration can be

performed for each term in the sum of (14) separately.
The total membrane potential is then the sum of all the
postsynaptic potentials caused by presynaptic firing plus
the refractory effect of a negative reset potential. Given
the last firing time t̂ti of neuron i, the result of the inte-
gration is therefore of the form (for t > t̂ti)

uiðtÞ ¼ gðt � t̂tiÞ þ
X
j;f

wij�ðt � t̂ti; t � tfj Þ ð15Þ

where

gðt � t̂tÞ ¼ dðt � t̂tiÞ þ ureset exp½
�ðt � t̂tiÞ

sm
�

and

�ðt � t̂ti; sÞ ¼
Z t�t̂ti

0

aðs� s0Þ expð�s0=smÞds0 :

The firing time t̂ti is updated whenever ui reaches the
threshold # from below. Equation (15) is the equation of
the spike response model (SRM; Gerstner and van
Hemmen 1992a; Gerstner 1995a; Kistler et al. 1997), a
generalization of the leaky integrate-and-fire neuron. In
the general SRM, the function gðt � t̂tiÞ describes the
form of the action potential and the hyperpolarizing
spike afterpotential that induces neuronal refractoriness.
Each term �ðt � t̂ti; t � t fj Þ describes the time course of a
postsynaptic potential caused by presynaptic spike
arrival at time t � tfj . Because of refractoriness, the
postsynaptic potential � has, in the general SRM, a
nontrivial dependence upon the last postsynaptic firing

407



time. In the following we neglect the dependence of the
postsynaptic potential upon t � t̂ti and write

uiðtÞ ¼ gðt � t̂tiÞ þ hiðtÞ ð16Þ

where hiðtÞ ¼
P

j wij�ðt � tfj Þ is the total postsynaptic
potential. Thus, the internal state of spiking neurons is
characterized by the membrane potential u which in turn
depends on the last output spike and the total postsy-
naptic potential (see Fig. 2). Equation (16) defines the
simple spiking model SRM0.
We now return to the problem of Hebbian synaptic

plasticity. As before, we start our formulation of Hebbian
learning with the locality requirement. While the neuro-
nal state of rate neurons was characterized by their firing
rate m, the internal state of spiking neurons is character-
ized by their membrane potential u. The generalization of
(12) to the case of spiking neurons is therefore

d

dt
wijðtÞ ¼ F ½wijðtÞ; uposti ðt0Þ; uprej ðt00Þ� ð17Þ

where F is now a functional of the time course of the pre-
and postsynaptic membrane potentials at the location of
the synapse. Our notation with t0 and t00 is intended to
indicate that the weight changes do not only depend on
the momentary value of the pre- and postsynaptic
potentials (at time t), but also on their history for
t0 < t and t00 < t. The weight value wij and the local
values of pre- and postsynaptic membrane potentials are
the essential variables that are available at the site of the
synapse to control the up- and downregulation of
synaptic weights. In detailed neuron models, F would
depend not only on the weight wij and membrane
potentials, but also on all other variables that are locally
available at the site of the synapse. In particular, there
could be a dependence upon the local calcium concen-
tration. In the following we adopt the point of view that
the calcium concentration is largely determined by the
previous firing history, so that there is no need to
introduce an additional explicit variable for calcium.
In analogy to the approach taken in Sect. 2, we now

expand the right-hand side of (17) about the resting state
uposti ¼ uprej ¼ urest. For the sake of simplicity we shift the

voltage scale so that urest ¼ 0. A Volterra expansion of
(17) yields

dwij

dt
¼ c0ðwijÞ þ

Z 1

0

apre1 ðwij; sÞuprej ðt� sÞds

þ
Z 1

0

apost1 ðwij; s0Þuposti ðt� s0Þds0

þ
Z 1

0

Z 1

0

acorr2 ðwij; s; s0Þuprej ðt� sÞuposti ðt� s0Þds0ds

þ . . . : ð18Þ

The next terms would be quadratic in uposti or uprej , and
have been neglected. Equation (18) is the central result
of this section. It provides a framework for the
formulation of spike-based learning rules and may be
seen as the generalization of the general rate-based
model that we have derived in Sect. 2. The consider-
ations summarized in the points discussed in
Sects. 2.1.3–2.1.6 apply also to the case of spike-based
learning rules, and will not be repeated here.
In order to establish a connection with various other

formulations of spike-based learning rules, we consider
the time course of the pre- and postsynaptic membrane
potentials in more detail. At the presynaptic terminal,
the membrane potential is most of the time at rest, ex-
cept when an action potential arrives. Since the duration
of each action potential is short, the presynaptic mem-
brane potential can be approximated by a train of d
functions:

uprej ðtÞ ¼
X
f

dðt � tfj Þ ð19Þ

where tfj denotes the spike arrival times at the presy-
naptic terminal.
The situation at the postsynaptic site is somewhat

more complicated. For the simple spike response model
SRM0, the membrane potential can be written as

uposti ðtÞ ¼ gðt � t̂tiÞ þ hiðtÞ ð20Þ

where t̂ti is the last postsynaptic firing time. In contrast to
the usual interpretation of terms on the right-hand side
of (20), the function g is now taken as the time course of
the backpropagating action potential (BPAP) at the
location of the synapse. Similarly, hiðtÞ is the local
postsynaptic potential at the synapse.
For a further simplification of (18), we need to make

some approximations. Specifically we will explore two
different approximation schemes. In the first scheme, we
suppose that the dominating term on the right-hand side
of (20) is the BPAP, while in the second scheme we ne-
glect g and consider h as the dominant term. Let us
discuss both approximations in turn.

3.1 Sharply peaked backpropagating action potential

We assume that the BPAP is sharply peaked, i.e., it has a
large amplitude and short duration. In this case, the
membrane potential of the postsynaptic neuron is

Fig. 2. The membrane potential of a spiking neuron
uðtÞ ¼ hðtÞ þ gðt � t̂tÞ can be seen as a superposition of the total
postsynaptic potential hðtÞ generated by presynaptic spike arrival and
the action potentials of the postsynaptic neuron. The time course of
the action potential is gðt � t̂tÞ, where t̂t is the firing time of the last
output spike. A backpropagating action potential could convey
information about postsynaptic spike firing to the site of the synapse
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dominated by the BPAP, and the term hðtÞ in (20) can be
neglected. Furthermore g can be approximated by a d
function. The membrane potential at the postsynaptic
site reduces then to a train of pulses

uposti ðtÞ ¼
X
f

dðt � tfi Þ ð21Þ

where tfi denotes the postsynaptic firing times. Equa-
tion (21) is a sensible approximation for synapses that
are located on or close to the soma, for which the full
somatic action potential is ‘felt’ by the postsynaptic
neuron. For neurons with active processes in the
dendrite that keep the BPAP well focused, (21) is also
a reasonable approximation for synapses that are
further away from the soma. A transmission delay for
backpropagation of the spike from the soma to the site
of the synapse can be incorporated at no extra cost.
If we insert (19) and (21) into (18), we obtain

dwij

dt
¼ c0ðwijÞ þ

X
tfj

apre1 ðwij; t � tfj Þ

þ
X
tfi

apost1 ðwij; t � tfi Þ

þ
X
tfj

X
tfi

acorr2 ðwij; t � tfi ; t � tfj Þ þ . . . : ð22Þ

We emphasize that weight changes are continuous. An
isolated presynaptic spike at time tfj , for example, will
cause a weight change that builds up during some time
after t fj ; the time course of the weight change dwij=dt is
described by apre1 ðwij; t � tfj Þ. The total weight change
that accumulates for t ! 1 is therefore
Dwij ¼

R1
0 apre1 ðwij; sÞds. Similarly, a single postsynaptic

spike causes a weight change dwij=dt with time course
apost1 ðwij; t � tfi Þ. Finally, a combination of pre- and
postsynaptic spikes within a short interval induces an
additional weight change acorr2 ðwij; t � tfi ; t � tfj Þ.
In typical plasticity experiments, the synaptic weight

is monitored every few hundred milliseconds, so that the
exact time courses of the functions apre1 , apost1 , and acorr2
are not measured. We now assume that the weight
changes are rapid compared to the time scale of weight
monitoring. In other words, we make the replacements

apre1 ðwij; t � tfj Þ �! cpre1 ðwijÞdðt � tfj Þ ð23Þ

apost1 ðwij; t � tfi Þ �! cpost1 ðwijÞdðt � tfi Þ ð24Þ

where

cpre1 ðwijÞ ¼
Z 1

0

apre1 ðwij; sÞds

cpost1 ðwijÞ ¼
Z 1

0

apost1 ðwij; sÞds

are the accumulated weight changes. Note that we have
chosen the same symbols cpre1 and cpost1 as in (3). The
reason is that, if pre- and postsynaptic spike trains are
generated by Poisson processes with rates mj and mi,

respectively, then the expected weight change, (calculat-
ed from Eq. 18 without the correlation term or higher-
order terms) is

hdwij=dti ¼ c0ðwijÞ þ cpre1 ðwijÞmj þ cpost1 ðwijÞmi þ . . .

which is identical to the corresponding terms in (3).
For the correlation term we exploit the invariance

with respect to time translation, i.e., the final result
should only depend on the time difference tfj � tfi . The
weight update occurs at the moment of the postsynaptic
spike if t fj < t fi , and at the moment of the presynaptic
spike if t fj > t fi . Hence, the assumption of instantaneous
update yields two terms:

acorr2 ðwij; t � tfi ; t � tfj Þ �!
W ðwij; t

f
j � tfi Þdðt � tfj Þ for tfi < tfj

W ðwij; t
f
j � tfi Þdðt � tfi Þ for tfi � tfj .

(
ð25Þ

Thus, for sharply peaked BPAPs and rapid weight
changes, we arrive at the notion of a time window W
for Hebbian synaptic plasticity (see Fig. 3). Such a
‘learning window’ has been used in numerous models of
spike-time-dependent plasticity (Gerstner et al. 1993,
1996; Kempter et al. 1999; Roberts 1999; Kistler and van
Hemmen 2000; Roberts and Bell 2000; van Rossum et al.
2000; Song et al. 2000; Rubin et al. 2001) and also been
measured in experimental preparations (Bell et al. 1997;
Magee and Johnston 1997; Markram et al. 1997; Bi and
Poo 1998, 1999; Debanne et al. 1998; Zhang et al. 1998).
Time windows have also been used in rate-based models
with time-dependent firing rates (Herz et al. 1989; Minai
and Levy 1993; Abbott and Blum 1996; Gerstner and
Abbott 1997). The relevance of the learning window
W ðt fj � t fi Þ is discussed in Sects. 4 and 5.
To explore the relation between the learning window

and the correlation term in the rate equation (3), we
assume that the firing times of the pre- and the postsy-
naptic neuron are generated by independent Poisson
process with constant rates mj and mi, respectively. The
expected weight evolution is then

hd
dt

wiji ¼ c0ðwijÞ þ cpre1 ðwijÞmj þ cpost1 ðwijÞmi

þ
Z 1

0

W ðsÞds
� 	

mimj : ð26Þ

Thus, the integral over the learning window plays the
role of the correlation parameter ccorr2 in (3).

3.2 No backpropagating action potential

In the second approximation scheme, we assume that the
membrane potential at the location of the synapse is
dominated by the slowly varying potential hiðtÞ. This is,
for example, a valid assumption in voltage-clamp
experiments where the postsynaptic neuron is artificially
kept at a constant membrane potential hpost. This is also
a good approximation for synapses that a located far
away from the soma on a passive dendrite, so that the
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backpropagation of somatic action potentials is negligi-
ble.
Let us consider a voltage-clamp experiment where

hiðtÞ is kept at a constant level hpost. As before, we
suppose that weight changes are rapid. If we insert

uprej ðtÞ ¼
P

f dðt � tfj Þ and uposti ðtÞ ¼ hpost into (18), we
obtain

dwij

dt
¼ c0ðwijÞ þ

X
f

cpre1 ðwijÞdðt � tfj Þ

þ bpost1 ðwijÞhpost

þ bcorr2 ðwijÞhpost
X
f

dðt � tfj Þ þ . . . ð27Þ

where

cpre1 ðwijÞ ¼
Z 1

0

apre1 ðwij; sÞds

bpost1 ðwijÞ ¼
Z 1

0

apost1 ðwij; sÞds

bcorr2 ðwijÞ ¼
Z 1

0

Z 1

0

acorr2 ðwij; s; s0Þds ds0:

Equation (27) is the starting point of the theory of spike-
based learning of (Fusi et al. 2000). Weight changes are
triggered by presynaptic spikes, and the direction and
value of the weight update depends on the postsynaptic
membrane potential. We note the close relation to (11).
In our framework, (27) is a special case of the slightly
more general (18).

4 Analysis of Hebbian learning

It is well known that rate-based learning rules are
sensitive to the spatial correlations in the input (Hertz

et al. 1991). If the postsynaptic neuron is modeled as a
linear unit:

miðtÞ ¼
X
k

wikmkðtÞ ð28Þ

then the standard Hebbian learning rule dwij=dt
¼ ccorr2 mimj yields an expected weight evolution

hd
dt

wiji ¼ ccorr2

X
k

wikhmkðtÞmjðtÞi ð29Þ

which is in the direction of the principal eigenvector of
the spatial correlation matrix

Cjk ¼ hmkðtÞmjðtÞi : ð30Þ

Angular brackets denote an expectation value. If
learning is slow,1 then the actual weight vector in fact
stays close to the expected one so that the angular
brackets on the left-hand side of (29) can be dropped.
We may introduce a vector wi for the set of synapses

that converge on the postsynaptic neuron i. The corre-
lation between presynaptic neurons can be denoted by a
matrix C with components Cjk. In matrix notation, (29)
is

d

dt
wi ¼ ccorr2 Cwi : ð31Þ

Since the correlation matrix is positive definite, the
weight vector grows exponentially for in standard
Hebbian learning (ccorr2 > 0).

Fig. 3A–C. Learning window. The change Dwij of the synaptic
efficacy depends on the timing of pre- and postsynaptic spikes. A The
solid line indicates a rectangular time window as it is often used in
standard Hebbian learning. The synapse is increased if the pre- and
the postsynaptic neuron fire simultaneously with a temporal
resolution Dt. The dashed–dotted line shows an asymmetric learning
window useful for sequence learning (Herz et al. 1989; Gerstner and
van Hemmen 1993). The synapse is strengthened if the presynaptic
spike arrives slightly before the postsynaptic one, and is therefore

partially ‘causal’ in firing it. B An asymmetric biphasic learning
window as introduced in model studies of delay selection (Gerstner
et al. 1996). A synapse is strengthened (long-term potentiation, LTP)
if the presynaptic spike arrives slightly before the postsynaptic one,
but is decreased (long-term depression, LTD) if the timing is reversed.
The biphasic learning window is sensitive to the temporal contrast in
the input. C Experimental results have confirmed the existence of
biphasic learning windows. Data points redrawn after the experiments
of Bi and Poo (1998)

1 The weight vector should change only by a small amount during
the time needed to obtain a representative sample of the input
statistics. This can always be achieved by taking ccorr2 � 1. We say
in this case that the time scale of learning and that of the input are
separated.
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To avoid unlimited growth of weights and to intro-
duce competivity between the synapses converging onto
the same postsynaptic neuron, (29) is usually combined
with a suitable normalization procedure (Oja 1982;
Miller and MacKay 1994). As an example, we consider
subtractive normalization (Miller and MacKay 1994).
To see how this works, we assume that during a single
trial of duration T, the standard Hebbian rule
dwij=dt ¼ ccorr2 mimj would yield a ‘raw’ weight change
D~wwij. In order to guarantee that the sum of the weightsP

k wik does not change, all weights are reduced a pos-
teriori by an amount N�1P

k D~wwik where N is the num-
ber of synapses converging onto the same postsynaptic
neuron i. Overall the two steps (i.e., ‘raw’ change and
subsequent reduction) amount to a new learning rule:

d

dt
wij ¼ ccorr2 mimj � N�1ccorr2 mi

XN
k¼1

mk : ð32Þ

The first term on the right-hand side of (32) is the
standard learning rule, and the second term the sub-
tractive normalization term. If we write the postsynaptic
rate as mi ¼

P
k wikmk and take as before the ensemble

average, we find

d

dt
w ¼ ccorr2 ðC� CÞw ð33Þ

where C is a matrix with components Ckj ¼
P

n Cnj.
Equation (33) is the analog of (31) for the case of
subtractive weight normalization. It is usually combined
with hard bounds 0 � wij < wmax.
Note that the rule (32) is nonlocal, since the weight

change at the synapse from j to i depends on the firing
rate of other neurons k. We show in Sect. 2 that implicit
subtractive normalization can also be achieved by local
rules via a stabilization of postsynaptic firing rates.

4.1 Spike-based learning

An analogous argument can be developed for spike-
based learning. The linear rate model in (28) is replaced
by a stochastically spiking neuron model with instanta-
neous firing rate:

miðtÞ ¼
X
k

wik

X
f

�ðt � tfk Þ

¼
X
k

wik

Z 1

0

�ðsÞSkðt � sÞds ð34Þ

where tfk denotes the time of presynaptic spike arrival at
the synapse from neuron k to neuron i. SkðtÞ
¼

P
f dðt � tfk Þ is the presynaptic spike train. The time

course of the postsynaptic potential is described by the
function �, which is normalized to

R1
0 �ðsÞds ¼ 1. We im-

plicitly assume that the right-hand side of (34) is positive
(which is guaranteed if wik � 0 and � � 0). The left-hand
side can then be taken as the instantaneous rate (or
stochastic intensity) of an inhomogeneous Poisson
process. We call (34) a linear Poisson neuron.

We assume that input spike trains have stationary
statistics with known mean and correlations. Specifi-
cally, input spikes at a given synapse j are generated by a
doubly stochastic point process. Spikes are generated by
an inhomogeneous Poisson process with instantaneous
rate mjðtÞ. The rate itself is drawn from a distribution
with constant expectation value hmjðtÞi ¼ mpre and cor-
relations hmjðtÞmkðt0Þi ¼ Cjkðt � t0Þ. We suppose that all
presynaptic spike trains have identical properties. In
particular, we require that hmjðtÞi ¼ mpre independent of
j, and N�1PN

k¼1 CikðsÞ ¼ CðsÞ independent of i. Since
the expected input rates are constant, the expected out-
put rate mpost � hmiðtÞi ¼ mpre

P
j wijðtÞ is a slow function

of time which changes only as the synaptic efficacies
adapt.
In order to discuss the weight dynamics we start from

the general spike-based learning equation that has been
developed in Sect. 3 for the case of sharply peaked
BPAPs (see Eq. 22). Throughout the following we as-
sume that weight changes Dwij=jwijj are small during the
time that is necessary to approximately sample the input
statistics. In this case we can separate the time scale of
learning from that of the neuronal dynamics. The right-
hand side of (22) is then ‘self-averaging’ (Kempter et al.
1999), so that the evolution of the weight vector (22) is
given by (Kempter et al. 1999; Kistler and van Hemmen
2000; Roberts 2000c)

d

dt
wijðtÞ ¼ c0 þ cpre1 hhSjðtÞii þ cpost1 hhSiðtÞii

þ
Z1
�1

W ðsÞhhSjðtÞSiðt � sÞiids : ð35Þ

Here we have introduced

cpre1 ðwijÞ ¼
Z 1

0

apre1 ðwij; sÞds

cpost1 ðwijÞ ¼
Z 1

0

apost1 ðwij; sÞds

and

W ðwij; t
f
j � tfi Þ ¼

Z 1

maxðtfi ;t
f
j Þ

acorr2 ðwij; t0 � tfi ; t
0 � tfj Þdt0

ð36Þ

The double angular brackets in (35) denote the average
over the input statistics. The notation with double
angular brackets emphasizes that the underlying process
is a doubly stochastic one: we first have to calculated the
expected number of spikes, given the rates; and then we
have to average over the rates. The double angular
brackets on the left-hand side have been dropped,
because of the self-averaging property.
For an interpretation of (35) we start with the terms

that are linear in the spike trains. We first calculate the
expected number of spikes given the rates and take then
the expectation of the rates:

hhSjðtÞii ¼ hmjðtÞi ¼ mpre ð37Þ
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hhSiðtÞii¼ hmiðtÞi ¼
X
j

wij

Z 1

0

�ðsÞhhSjðt � sÞiids

¼
X
j

wijðtÞmpre ¼ mpostðtÞ ð38Þ

Finally, the term hSjSii on the right-hand side of (35)
describes the correlation between input and output at the
level of spikes. We may summarize (35) by saying that
the evolution of the weight vector is driven by the
expected firing rates and by correlations on the time scale
of the learning window.
The correlation term depends not only on the input

statistics, but also on the dynamics of the neuron model
under consideration. Since we have assumed that
learning is a slow process, the correlation term can be
evaluated for constant weights wij, 1 � i � N . For the
linear Poisson neuron model, the correlations between
pre- and postsynaptic spike trains can be written as
(Kempter et al. 1999)

hhSjðtÞSiðt � sÞii ¼ hmiðt � sÞmjðtÞi þ hmjiwijðtÞ�ð�sÞ
ð39Þ

with a postsynaptic firing rate miðtÞ given by (34).
Substituting (37)–(39) into (35) we obtain

d

dt
wijðtÞ ¼ c0 þ cpre1 mpre þ cpost1 mpostðtÞ

þ
Z1
�1

W ðsÞds

2
4

3
5mpostðtÞmpre

þ
XN
k¼1

wikðtÞ Qjk þ djkm
pre

Z0
�1

W ðsÞ�ð�sÞds

2
4

3
5
ð40Þ

where

Qjk ¼
Z1
�1

dsW ðsÞ
Z1
0

ds0�ðs0ÞC0jkðsþ s0Þ : ð41Þ

The important factor in (41) is the spatiotemporal input
covariance function

C0jkðsÞ ¼ h½mjðtÞ � mpre�½mkðt � sÞ � mpre�i ð42Þ

which is convolved with the learning window W and the
postsynaptic potential �. Thus the correlations between
pre- and postsynaptic neuron in (35) has been trans-
formed into spatiotemporal correlations in the input.
To summarize this section, we have solved the dy-

namics of spike-time-dependent plasticity under the as-
sumption that learning is slow compared to the
variations in the input. For the linear Poisson neuron,
i.e., a stochastically spiking neuron model, the spike-to-
spike correlations between pre- and postsynaptic firings
can be evaluated. The final result is a learning equation
where weight changes are driven by the expected input

rates as well as the spatial and temporal correlations of
the input.

4.2 Implicit subtractive weight normalization

In this section we want to show that, for a suitable
choice of parameters, synaptic plasticity leads to an
intrinsic stabilization of the postsynaptic firing rate and,
hence, to a normalization of weights that is akin to
subtractive normalization (Kempter et al. 1999, 2001;
Song et al. 2000). To do so we proceed in two steps (in
Sects. 4.2.1 and 4.2.2). As a ‘warm up’ we focus in a first
step on Poisson spike trains without correlations and
show that for a suitable choice of parameters the rate of
the postsynaptic neuron is stabilized. In a second step,
we extend this result to the more interesting case
including correlations in the input and show that rate
stabilization implies subtractive weight normalization.

4.2.1 No correlations. First, we show that for a suitable
choice of parameters, the output rate approaches a
stable fixed point. To do so, we consider a linear Poisson
neuron that receives input from N presynaptic neurons
with spike activity described by independent Poisson
processes with rate mpre. The postsynaptic neuron is thus
firing at a rate mpostðtÞ ¼ mpre

PN
j¼1 wijðtÞ. Since the input

is described as independent Poisson processes, the
correlations Qjk in (40) vanish, so we obtain

d

dt
wijðtÞ ¼ c0 þ cpre1 mpre þ cpost1 mpostðtÞ

þ W mprempostðtÞ
þ wijðtÞmpreW� ð43Þ

where W ¼
R1
�1 W ðsÞds and W� ¼

R1
0 x�ðsÞW ð�sÞds. In

this particularly simple case the weight dynamics is
characterized by a fixed point for the postsynaptic firing
rate mpostðtÞ ¼ mFP. To see this we multiply (43) by mpre

and sum over j. The left-hand side becomes dmpost=dt,
which we set equal to zero to find the fixed point:

mFP ¼ � c0 þ cpre1 mpre

cpost1 þ mpreW þ N�1W�
: ð44Þ

This fixed point is attractive if the denominator is
negative. Since mpost is a firing rate, we have the additional
requirement that mFP � 0. Altogether we thus have two
conditions for the parameters of the learning rule: (i)
cpost1 þ mpreW þ N�1W� < 0, and (ii) c0 þ cpre1 mpre � 0.
Note that we would obtain – apart from the term
ðN�1W�Þ – a completely analogous result from the rate
formulation in (3) if we identify ccorr2 ¼ W . Furthermore,
note that the linearity is not essential for the stabilization
of the postsynaptic rate. Any model where the output
rate is a monotonous function of the sum of the synaptic
weights yields qualitatively the same result.

4.2.2 Input correlations. We now extend the above
results and show that output rate stabilization implies
weight normalization even in the presence of input
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correlations. As before we introduce the notations

W ¼
R1
�1 W ðsÞds and W� ¼

R0
�1

W ðsÞ�ð�sÞds. We ex-

pand and reorder the terms on the right-hand side of
(40) into the following form:

d

dt
wijðtÞ ¼ c0 þ cpre1 mpre þ cpost1 mpostðtÞ

�
þ W mprempostðtÞ þ W�N�1mpostðtÞ

þQ
mpostðtÞ

mpre

�

þ W� wijðtÞmpre � N�1mpostðtÞ
� �

þ
X
k

wik Qkj � Q
� �

: ð45Þ

Here Q ¼ N�1P
k Qik with Qik given by (41). For a

discussion of (45), let us first consider the expected
postsynaptic rate mpostðtÞ ¼

P
j wijðtÞmpre. Its temporal

derivative can be found by taking the sum over j on the
right-hand side of (45) and multiplying by mpre. The
terms outside the curly braces in (45) cancel each other
after summation, and the terms inside the braces yield a
linear equation

dmpostðtÞ
dt

¼ cðmpost � mFPÞ ð46Þ

with a fixed point

mFP ¼ � c0 þ cpre1 mpre

cpost1 þ mpreW þ N�1W� þ QðmpreÞ�1
: ð47Þ

The fixed point of the mean postsynaptic rate is found to
be stable if

c ¼ cpost1 þ mpreW þ N�1W� þ QðmpreÞ�1 < 0 : ð48Þ

To proceed with the analysis let us suppose that c � 0.
This can always be achieved if either cpost1 or W is
sufficiently negative. In this case, the effective time
constant seff ¼ �1=c is short, so that the fixed point is
attained rapidly. After convergence towards the fixed
point, the summed weights

P
j wij remain constant and

the terms within the curly brackets in (45) cancel each
other. The remaining terms on the right-hand side of
(45) determine the evolution of the weight vector. If we
switch to matrix notation we have

d

dt
w ¼ Q�Q

� �
wþ W� mprew� N�1mFPn

� �
ð49Þ

where n ¼ ð1; 1; . . . ; 1ÞT and Q denotes the matrix where
all elements have the same value Q. The result is similar
to subtractive weight normalization (see Eq. 33) with a
few specific differences – the spatial correlation matrix C
that appears in rate-formulations of Hebbian learning
(Miller and MacKay 1994), has been replaced by the
matrix Q that describes the spatiotemporal covariance
on the time scale of the learning window and postsy-
naptic potential. Thus, the learning rule behaves similar
to Sejnowski’s covariance rule (see Eq. 9). The

additional spike-to-spike correlations that appear in
spiking neuron models give rise to the second term on
the right-hand side of (49). This tends to stabilize
synapses that have large weights, and decrease synapses
with small weights. If we neglect the spike-to-spike
correlations, the dynamics of the weight vector is
dominated by the eigenvector of the matrix Q�Q with
the largest eigenvalue. Equation (49) can be seen as the
generalization of the simple Hebbian learning rule (31)
to the case of spike-based learning.
We recall that the coefficients c0, c

pre
1 , and cpost1 , and

the learning window W depend, in general, on the cur-
rent weight value wij. In the above derivation we have
assumed that these values are constant. It is, however,
possible to set upper and lower bounds for the synaptic
efficacies wij (i.e., weight changes are zero) if wij > wmax

or wij < 0. It is straightforward to extend the above
arguments to this case (Kempter et al. 1999). More re-
alistically, we could also assume an explicit weight de-
pendence where all positive terms have a saturating
factor ðwij � wmaxÞ and all negative terms a decay factor
wij. With these dependencies it is again possible to to
analyze the weight dynamics (Kistler and van Hemmen
2000; van Rossum et al. 2000; Rubin et al. 2001; Kistler
2002).

5 Discussion: learning windows

The theoretical framework developed above shows that
time windows of Hebbian synaptic plasticity arise
naturally in spike-time-dependent plasticity. In this
section, we place the learning window into the context
of the experimental and modeling literature. For a
modern review of experiments on Hebbian plasticity, see
Bi and Poo (2001).
In early experimental paradigms neurons were stim-

ulated by bursts of presynaptic spikes, and so the tem-
poral resolution was not sufficient to measure the time
course in detail. Nevertheless, even then it was clear that
there were temporal contiguity requirements for Heb-
bian learning (Levy and Stewart 1983; Gustafsson et al.
1987; Debanne et al. 1994). Recent advances in elec-
trophysiological methods allow intracellular recordings
to be obtained from several neurons simultaneously, so
that the timing windows of Hebbian synaptic plasticity
have been measured with great detail (Bell et al. 1997;
Markram et al. 1997; Magee and Johnston 1997; Bi and
Poo 1998, 1999; Debanne et al. 1998; Zhang et al. 1998).
One of the surprising findings has been that depending
on the exact timing between pre- and postsynaptic
spikes, synaptic weights are either increased or decreased
(Fig. 3C). At excitatory synapses, a presynaptic spike
that arrives slightly before the postsynaptic spike induces
potentiation. This is in agreement with the ‘causality’
that is implicit in Hebb’s formulation: if a presynaptic
spike arrives slightly before a postsynaptic one, it is
likely that this spike ‘takes part in firing’ the postsy-
naptic one. However, a presynaptic spike that arrives
slightly after postsynaptic firing leads to synaptic de-
pression. Thus the learning window W ðtfi � tfj Þ is not
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only asymmetric [which means that the maximum of the
function W ðxÞ is not centered around x ¼ 0] but also
biphasic (which means that it contains both excitation
and depression).
A similar asymmetric biphasic learning window has,

in fact, been introduced in the modeling literature
(Gerstner et al. 1996), well before precise experimental
results have been available (Fig. 3B). Even though bi-
phasic learning windows with LTP and long-term de-
pression (LTD) are not a strict prediction of the theory,
they have several useful properties that make them at-
tractive candidates for modeling. What are these prop-
erties?
It has been recognized early on that asymmetric

learning windows where the maximum is shifted to a
value x < 0 (i.e., synapses are optimally strengthened if
the presynaptic spike arrives slightly before the postsy-
naptic one) are ideally suited to sequence learning (Herz
et al. 1989; Gerstner and van Hemmen 1993; Minai and
Levy 1993; Abbott and Blum 1996). The reason is that
such a shifted learning window implements the ‘causality’
condition (Fig. 3A). If, during learning, neuron j was
systematically firing a few milliseconds before neuron,
the synapse from j to i is strengthened since j ‘takes part
in firing’ neuron i. After learning, the activity of neuron j
helps to induce activity of the postsynaptic neurons i, so
that the sequence ‘first j then i’ is recalled. In these
models the width of the learning window (i.e., the range
of x during which the value W ðxÞ is significantly above
zero) was on the same timescale as the sequence itself. In
rate models where the activity evolves on a timescale of a
few hundred milliseconds, the learning window was
taken to have a width of a hundred milliseconds (Abbott
and Blum 1996); in spiking models where the spatio-
temporal sequence of spike patterns evolves on a time
scale of 1 or 2 ms, the width of the learning window was
taken equal to 1 ms (Gerstner and van Hemmen 1993). If
the width of the learning window were to be taken much
broader, then the learning rule would strengthen not only
the ‘correct’ synapses that help to recall the sequence, but
also many other synapses such that the success of
learning would be weakened or even wiped out.
A biphasic learning rule that contains both potenti-

ation and depression introduces competition between
the synapses (Gerstner et al. 1996, 1997; Kempter et al.
1999; Kistler and van Hemmen 2000; Song et al. 2000).
For an appropriate choice of parameters, only those
synapses that encode the optimal timing between pre-
and postsynaptic neuron are strengthened, while a
‘typical’ synapse is depressed. As a result, the learning
rule is sensitive to temporal structure in the input that
can be fast compared to the width of the positive phase
of the learning window (Gerstner et al. 1996). It is thus
the causality condition (LTP for a timing ‘first pre- then
postsynaptic neuron’) in combination with competition
(induced by LTD for a sequence ‘first post- then presy-
naptic neuron’) that makes biphasic learning windows
attractive candidates for learning.
During the last 5 years, asymmetric Hebbian learning

rules with biphasic learning windows have therefore at-
tracted a large interest in the modeling community

(Kempter et al. 1999; Roberts 1999, 2000; Kistler and
van Hemmen 2000; van Rossum et al. 2000; Song et al.
2000; Xie and Seung 2000; Kempter et al. 2001; Rubin
et al. 2001; Senn et al. 2002). Competition between
synapses has been understood to arise from an intrinsic
stabilization of postsynaptic firing rates (Gerstner et al.
1997b; Roberts 2000; van Rossum et al. 2000; Song et al.
2000; Xie and Seung 2000; Kempter et al. 2001). It has
been shown that a biphasic learning window can be
mapped to rate models where learning is driven by the
derivative of the postsynaptic firing rate (Roberts 1999;
Xie and Seung 2000). Spike-time-dependent plasticity is
thought to play a major role in sensory image cancel-
lation of electric fish (Roberts 2000) and in the tuning of
delay lines in the barn owl auditory system (Gerstner
et al. 1996). While most models of spike-time-dependent
plasticity start with a given form of the learning window,
the time course of the learning window itself can also be
understood in terms of microscopic models (Gerstner
et al. 1998; Senn et al. 2001; Shouval et al. 2002).
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