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Abstract specific patterned lateral connections that could implement
) o o ) such rules exist in the visual cortex (Bosking et|al. 1997;
Contour integration in low-level vision is believed to occur k7 atrick et all 1994), Grossberg and Williamson (2001)
based on lateral interaction between neurons with similar ori- h d . Ivh hl I - Id
entation tuning. How such interactions could arise in the brain showe Computatlona y how SU(_: aterz_i Cor!negtlons cou
has been an open question. Our model suggests that the inter- adapt to achieve stable contour Integration with fixed recep-
actions can béearnedthrough input-driven self-organization, tive fields.

I.e. through the same mechanism that underlies many otherde- 4, yever, it is currently unknown how such detailed affer-
velopmental and functional phenomena in the visual cortex. ’

The model also shows how synchronized firing mediated by ent and lateral connection patterns could emerge during de-
these lateral connections can represent the percept of a con- Velopment. Furthermore, since the models are based on rules
tour, resulting in performance similar to that of human con- uniformly applied over the whole model cortex, they do not
tour integration. The model further demonstrates that contour - explain differences in contour integration performance across
integration performance can differ in different parts of the vi- - yiterent areas of the visual field. For example, contour in-
sual field, depending on what kinds of input distributions they . . .
receive during development. The model thus grounds an im- tgg'ratlon has been fqund to be absent |n human peripheral
portant perceptual phenomenon onto detailed neural mecha- Vision (Hess and Dakin 1997), and convexity of illusory con-
nisms, so that various structural and functional properties can tours are harder to discriminate in the upper hemifield com-
be measured, and predictions can be made to guide future ex- pared to the lower hemifield (Rubin et/al. 1996). The goal of
periments. this paper is to show that all these phenomena can be due to
input-driven self-organization of the visual cortex. This way,
1 Introduction contour integration can be seen as a necessary effect of the
Contour integration in low-level vision means forming a co- same developmental process that is responsible for the orga-
herent percept out of a discontinuous sequence of line sedpization, plasticity, and several functional phenomena of the
ments (figure 1). Contour integration is a special case of peiisual cortex.
ceptual grouping; it takes place early on in the visual process- Several models of self-organization have been proposed
ing system and lends itself to precise psychophysical meao explain how the orientation maps in the cortex could
surements. Thus, understanding the neural mechanisms uform (Bartsch and van Hemmean 2001; Burger and l.ang 1999;
derlying contour integration can give us insights into how per-Goodhill and Cimponeriu 2000; Kohonzn 1931, 1982, 1995;
ceptual grouping in general can be implemented. Miller 1994; Obermayer et &l. 1990; von der Malsburg 1973;
Psychophysical experiments (Field et al. 1993; Geislessee Swindale 1996 for a review). In most of these mod-
et al| 1999, 2001; Pettet et|al. 1998), neurophysiological obels, only the afferent connections self-organize while the lat-
servations | (Gilbert and Wiesezl 1990; Bosking et al. 1997:eral interactions are represented as a fixed, uniform inter-
Fitzpatrick et al| 1994), and computational models (Geisleaction kernel. In those models where the lateral connec-
et al| 1999, 2001; Grossberg and Williamson Z001; Li 1998tions adapt as well, the final connectivity pattern is elon-
Ross et all 2000; VanRullen et al. 2001; Yen and Finkelgated, but not patchy like the patterns in the visual cortex.
1997, 1993) suggest that contour integration in the visual corTherefore, such models cannot account for functional phe-
tex may be due to lateral interaction of neurons with sim-nomena that depend on the specific patterns of lateral con-
ilar orientation tuning. In the preceding models, such in-nections. With this goal in mind, we recently developed
teractions are hard-coded based on specific association coa-model with explicit self-organizing lateral connections
straints (Li 1998; Ross et al. 2000; VanRullen et al. 2001), esshowing that patches of strong lateral connections develop
predetermined set of rules such as relative orientation differbetween neurons with similar orientation preference, and that
ence, distance, curvature, and change in curvature (Yen arilese connections can serve as a foundation for segmenta-
Finkel 1997, 1998). The models match experimental datdion and binding (RF-SLISSOM, or Receptive Field Spik-
quite well. Neurophysiological observations have shown thaing Laterally Interconnected Synergetically Self-Organizing
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/ — | — | — integration performance of the model closely matches psy-
N —/ \ /= chological data. This way, the model (1) shows how the cir-
~ | =\ \ - cuitry _for contour integration could arise from ge_zneral self-
N / organization mechanisms in the brain, (2) provides further
| o~ — — / computational evidence for synchronization as the substrate
/1 A\~ ~\ for segmentation and binding, (3) grounds an important per-
N — \ / ~\ ceptual grouping phenomenon on a detailed neural architec-
- = (VRN ture, where various functional properties can be measured,
and predictions made to guide future experiments.
Figure 1:Contour Integration Task. This figure shows a typical 2 Model Description

input image used in psychophysical experiments on contour integra- L .
tion. Human subjects are instructed to find the longest continuoug.1 Motivation and Overview

contour consisting of separate line segments embedded in a baolfhe contour integration model is based on the RF-SLISSOM
ground of randomly oriented distractors. In this example, the con-

four consists of six segments, running diagonally from middle-leftModel of self-organization and segmentation in the primary
to bottom-right. visual cortex (Choe and Miikkulain2n 1998). In this model,
each cortical neuron receives afferent connections from the
input layer and lateral excitatory and inhibitory connections
Map; Bednar and Miikkulainen 2000b; Choe and Miikkulai- from neighboring neurons in the cortex. The connection
neri 1993; Miikkulainen et al. 1997; Sirash 1995; Sirosh et a|.strengths self-organize based on correlations in the activity.
1996; Sirosh and Miikkulainen 1997). Self-organization of |n the final ordered map, the lateral excitation has a short
laterally connected maps is the first main principle of the conrange, and causes neurons responding to the same connected
tour integration model presented in this paper. input object to fire synchronously, effectively binding the
Patterned lateral interactions are strongly believed to conspikes into a single coherent representation. The lateral in-
tribute to contour integration, but how does the visual sys+ibitory connections have a long range, and establish compe-
tem represent a contour as a coherent object with its neurgtion between representations of different objéctseurons
activity? A separate line of research has produced a possiepresenting different objects fire at different times, and the
ble answer to this question. Experiments have shown thahput is thereby segmented into different objects.
feature binding and segmentation in the visual system may This previous model showed how self-organization and
be based on temporal coding produced by synchronous angbgmentation can be achieved in a single unified framework.
desynchronous population activity (Eckhorn el al. 1988; En-The lateral interactions play a crucial role in both behav-
gel et al. 1991; Gray and Singer 1987; Gray €t al. 1989; sepyrs: they establish competition that drives self-organization,
Singer and Gray 1995, Gray 1999, and Singer 1999 for and they establish desynchronization that drives segmenta-
review). Locally synchronous firing has been observed fotion. The model did not include any long-range excitatory
example in the visual cortex of cats and monkeys. Recordconnections because they were not found necessary to model
ings of single-unit activities, multi-unit activities (MUA), and the above behaviors. However, it turns out that such a parsi-
local field potentials (LFP) in different areas of the visual monious model cannot account for filling-in phenomena such
cortex were taken, and neurons with non-overlapping recepas contour integration. The network has to be able to bind
tive fields were found most likely to be synchronized whentogether representations that are separated by gaps: that is,
the receptive field properties were similar, or when the firingit has to have long-range excitatory connections that link to-
represented global stimulus properties Computational modelgether the representations of the different segments of a frag-
also demonstrated that such a behavior can be obtained inpgented contour.
network of neurons with temporal dynamics (Eckhorn et al. The model is extended in this paper with such long-range
1990; Gerstner 1993; Grossberg and Grunewald 1997; Horexcitatory connections (figure 2). The extended model is
and Opher 199€; Reitboeck et al. 1993; von der Malsburgalled PGLISSOM (or Perceptual Grouping LISSOM; Choe
1986, 1987; von der Malsburg and Buhmann 1€92; Wan®p(01). The cortical network is divided into two separate com-
1995, 1996, 2000). Therefore, segmentation and binding bgonents: MAP1 and MAP2. MAP1 is similar to the RF-
synchronized firing is the second main principle of our con-s| |ISSOM cortex with short-range excitatory and long-range
tour integration model. inhibitory connections. This map has the task of driving the
In this paper, the above two principles are unified intoa—
single model. We demonstrate that the orientation map and * Although long-range connections in the cortex appear to be

; 3 ; ; ostly excitatory, their effect can be inhibitory through inhibitory
the lateral connections self-organize so that the funcuonamterneurons (Grinvald et al. 1994; Hata et al. 1988; Hirsch and

statistics of lateral connections become similar to edge CCg;jiper 19971 Weliky et al. 1995). RF-SLISSOM abstracts such in-
occurrence statistics in natural images. These connectiongmeurons and models the overall inhibitory effect as one connec-
mediate synchronized firing of neurons, so that the contoution.
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self-organization of the network into an ordered map. MAP2wherefy,.;. is the base threshold,.s(¢) implements the ab-
performs the task of long-range segmentation and bindingsolute refractory period during which the neuron cannot fire,
with long-range excitatory connections that perform contourd,.,(¢) implements the relative refractory period during which
integration, and long-range inhibitory connections that im-firing is possible but requires extensive input, anid a scal-
plement segmentation of separate objects. The two mapsg constant. The absolute refractory comporg&nt(¢) is
are assumed to be overlaid in one cortical network: such defined as:

functional specialization across laminar layers of the visual { 0o if y(t —i) = 1for anyi < kaps

0 otherwise

cortex is consistent with known neuroanatomical data from fabs(t) = (4)
layers IV, VI, and II/lll of the visual cortex (Grossberg and

Williamsori 2001). In other words, the model is based onwherek,s determines the length of the absolute refractory
the hypothesis that some of the neurons in each cortical coReriod, andy(t) represents whether a spike occurred at time

umn are involved in establishing and maintaining organizat

tion, whereas others perform visual segmentation and bind- y(t) =H(o(t) — 6t — 1)), (5)
ing. where H(-) is the Heaviside step functiong(¢) is the
2.2 Neuron Model weighted input sum (equation 7), addt — 1) is the dy-

namic threshold. The relative refractory comporgat(t) is

Ehehdetans Otf. thg neTrOE ”."'Otde' atre [[Irl]usttrat(?d in figue 2 implemented as an exponentially decayed sum of the output
ach connection 1S a leaky integrator that pertorms exponens'pikes (figure @), i.e. a leaky integrator similar to the leaky

tially decayed summation of incoming spikes (i.e. convolu-

tion with an exponential kernel; Eckhorn et al. 1990): synapses:
; Orer(t) = y(t) + Orar(t — 1)e ™, 6)
—An
s(t) = Z z(t —n)e ", (1) where, is the decay rate.
n=0 Eckhorn et al. (19S0) and Reitboeck et al. (1993) de-
wheres(t) is the current decayed sum at time step(t —  scribed a similar dynamic threshold mechanism, consisting

n) is the input spike (either O or 1) time steps in the past, of 6,,. and#.. only. The absolute refractory period was
and\ is the decay rate. Different types of connections havéncluded to our model to ensure that the neurons do not fire
distinct decay ratesA, for excitatory and\; for inhibitory  too rapidly. An added benefit is that synchronization is more
lateral connections, andl. for intra-columnar connections. robust against noise (Choe 2001).

The sum can be defined in a computationally more practic

form as a recurrence equation, which is used in the curre -3 Network Activation and Learning
implementation: The organization of the network is shown in figure Zhe

_/\ inputo; ;(t) to the spike generator of the cortical neuron (in
s(t) = a(t) + s(t —1)e™7, () each map) at locatiori (j) at time¢ consists of (1) the input
where s(t) and s(t — 1) are the current and previous de- from a fixed-size receptive field in the retfh@entered at the
cayed sumsg(t) is the current input spike anklis the de-  location corresponding to the neuron’s location in the cortical
cay rate(Eckhorn et al. 1990). The leaky integrator modelgietwork, (2) from neurons around the same relative location
the Post-Synaptic Potential (PSP) that decays exponentialiyn the opposite map, and (3) excitation and (4) inhibition from
over time in biological neurons. By adjusting the decay rateneighboring neurons in the same map:
A, the synapse can function as either a coincidence detector

or as a temporal integrator. When the synaptic decay rate is 0ii(t) = 9(7a Z SriraHigirirs
high, the neuron can only fire when there is a sufficient num- e

ber of inputs coming in from many synapses simultaneously. + Y Z C(t = 1)p, paVij,prps
On the other hand, when the decay rate is low, the neuron ac- P1,p2

qumu!ate;. the input. Thus pre-synap_tic neurons can ha_ve a T % an(t — 1B
lingering influence on the post-synaptic neuron. By varying Y

the decay rates for different types of connections, the relative
time scales of the different connection types can be controlled - i Z Mkt (= 1) ij k), 7
to obtain desirable synchronization behavior. k.l

The spike generator compares the input to a threshold anghere v,,7., 7., andy; are the relative strengths of the
decides whether to fire a spike. The threshold is dynamic, deafferent, intra-columnar, and excitatory and inhibitory lat-
pending on the previous firing activity at the neuron, in ordereral contributions,, ., is the input level of retinal neu-
to model the refractory period and to improve synchronizason (-1, 72), 1., iS the corresponding afferent connection

tion. It consists of three terms: 3 . ! .
The preprocessing in the retinal ganglion cells and lateral

0(t) = Opase + Oabs(t) + T0ra1 (t), (3)  geniculate nucleus (LGN) was bypassed for simplicity.
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Figure 2:Overview of the PGLISSOM Model. (a) The neuron model. Leaky integrators at each synapse perform decayed summation of
incoming spikes, and the outgoing spikes are generated by comparing the sum of weighted sums to the dynamic spiking threshold. Four types
of inputs contribute to the activity: afferent, excitatory lateral, inhibitory lateral, and intra-columnar connections. The dynamic threshold
consists of the base threshdld.s., the absolute refractory componéhi,s, and the relative refractory componéeht,. (b) The overall
organization of the network. The cortical network consists of two layers (or maps): MAP1 has short-range excitation and long-range lateral
inhibition, and drives the self-organization of the model. In MAP2, both excitation and inhibition have a long range, establishing binding
and segmentation. Both maps receive input from a model retina, and neurons in the vertically corresponding locations on the two maps are
connected via intra-columnar connections representing a cortical column.

weight, ¢,, ,, is the decayed sum of spikes of the cortical according to the normalized Hebbian learning rule:
neuron f;, p2) of the other cortical mapy;; p,p, is the cor-

responding intra-columnar connection weigh;(t — 1) is Wyjomn (1) = Wijmn(t = 1) + Vi (1) Vinn () . (10)
the decayed sum of spikes from the map neuto)(at time ” >ij Wigma(t — 1) + aVij (8) Vinn (1))

t — 1, E;; 1 is the corresponding excitatory aig x; the in- . ) .

hibitory lateral connection weight, angl-) is a piece-wise ~WHeréwijmx(t) is the connection weight from neurém, )

linear approximation of the sigmoid function that squashed® (%+7): wij.mn(t—1) is the previous weighty is the learning
the net input sum between 0.0 and 1.0: rate @, for afferent,a. for intra-columnarp, for excitatory,

anda; for inhibitory connections), antf;; (¢t) andV,,,,, (t) are
0 if the average spiking rates of the neurons.
x <6 ) , L .

@)= 1 if > 3 (8) This process of Welght_ adap_tanon is repeated with inputs at
g o—5 random locations and orientations, and the neurons gradually
-0 become sensitive to particular orientations at particular loca-
) ) . tions, resulting in a global retinotopic orientation map similar
whered is the threshold angd is the ceiling. to that found ig the vg:sual cortex. TFr)1e self-organized?nap will

The inputs to the model consist of activation patterns withthen synchronize and desynchronize the firing of neurons to
activation values ranging between 0 and 1. A fixed such inpUfygicate binding and segmentation of visual features to dif-
is presented on the retina at each iteration and the corticggrent objects present in the scene. The lateral connections
neurons are allowed to generate and exchange spikes. Aftg{at survive connection death play an important role in this
several iterations, the short-term spiking rate of the neuronsrocess, by mediating synchronization and desynchronization
in a small window is calculated: among populations of neurons.

otherwise

@

V(1) = TaveV(t = 1) + (1 = Tayg)y(t), 9) 3 Experiments
A Stacked RF-SLISSOM network with46 x 46 retina and
wherer,,, is the window size}/(t — 1) is the previous av- a 136 x 136 cortex was trained for 40,000 iterations with
erage firing rate, ang(¢) is the output spike at time The  straight elongated Gaussian bars at random locations in the
afferent, lateral and intra-columnar weights are then modifiedetina. ~ Although natural images could in principle be used

4



(a) MAP 1 (b)) MAP 2 Orientation Map (a) Neuron (18,22)53°

Figure 3: Orientation Preferences in MAP1 and MAP2 . The
orientation preference at each location on the cortex is coded |i
color, according to the color key on the right. The orientation
preference of each neuron was calculated by taking a dot product|c
its afferent weight matrix and six different elongated Gaussians: tht
preference was the vector sum of six polar vectors each consisting|s
the angle of one Gaussian and its dot product (Bednar 1997; Blasd
1992). The same organization of orientation preferences developg

(4

in both maps. The global and local features such as pinwheel centg
and fractures in each map closely match those found in the visug
cortex.

(b) Neuron (21,25)179° (c) Neuron (35,33)88°

as well (Bednar 2002), such abstract input is computationFigure 4: Excitatory Lateral Connections . The excitatory lat-

ally more efficient while still representing the essential localéral connections from three source neurons in MAP2 (marked by

features of natural stimuli after the edge detection and end’oWs In the orientation map) are shown. The hue represents the
. . . . rientation preference of the target neuron, and the intensity repre-

hancement mechanisms in the retina and LGN. During €aclgns the strength of the connection. The neurons are numbered in

training presentation, the network was allowed to settle forcartesian coordinates, where the lower left corner is neuron (1,1)

15 time steps (through equation 7) and all connections excegind the upper right corner is neuron (54,54) The excitatory lat-

the inhibitory lateral connections in MAP2 were updated ac-eral connections of neuron (18,22), with an orientation preference of
cording to equation 10 The fixed inhibition in MAP2 53 degrees.b) The excitatory lateral connections of neuron (21,25),

. . S e - with an orientation preference of 179 degree}The excitatory lat-
provides a baseline similar to global inhibition in other corti- 4 connections of neuron (35,33), with an orientation preference of
cal models (Eckhorn et al. 1988; Kammen et al. 1989; Termags degrees. The lateral connections link neurons with similar orien-

and Wang 1995; von der Malsburg and Buhrriann 1992; \Wantation tuning (similar hue), and the target zones are aligned along the
1995, 1995, 2000): it allows input elements to be segmente@rientation preference of the source neuron, as is the case in experi-
by default, unless lateral excitation binds them together. Th ental observations (Bosking et al. 1997). Specific connections like

. . . . . . ese are crucial for implementing perceptual grouping tasks such as
details of the model and the simulation details are given in theynqur integration. P g perceptuatgrouping
Appendix.

3.1 Orientation Map and Functional Connection

o Like connectivity patterns found in the visual cortex (Bosk-
Statistics

ing et al. 1997| Fitzpatrick et al. 1994), the remaining lat-
A well-formed orientation map emerged in the training pro-eral connections target those neurons that have a similar ori-
cess (figure 3). The map is qualitatively similar to the ori- entation preference as their source neuron, and they are dis-
entation map in the primary visual cortex with features sucHributed mainly along the direction of the source neuron’s pre-
as linear zones where orientation preference changes contiferred orientation. In other words, connections link areas with
uously along one direction, pinwheel centers around whicthighly-correlated activity, such as those along a continuous
a full 360 degrees of orientation preferences can be obeontour.

served, and fractures where orientation preference changesTo quantify the grouping rules implemented by the lateral
abruptly (Blasdel 1992; Blasdel and Salama 1986). Becausexcitatory connections, their distributions in final MAP2 were
of the intra-columnar connections, similar activity patternsmeasured in detail (figure 5). Since these distributions are
formed on both maps during self-organization, and they deebtained from the receptive fields of the neurons, they de-
veloped almost identical global organizations (figure 3). Af-scribe thefunctional connectivitpf the neurons in theetinal

ter training, lateral connections with weights less than 0.00%i.e. visual) spaceather than simple cortical wiring statis-
were killed, leaving a patchy connection profile (figure-§.  tics. The results confirm that (1) the lateral connections more
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Figure 5:Lateral Connection and Edge Co-Occurrence Statistics.The distributions of lateral connections in the model are compared to

the edge co-occurrence statistics in nature to see how well they match perceptual requirein€hesplot summarizes the notation used in

figure b—d. For each pair of neurons connected with lateral excitatory connections, the afferent weight matrix was used to calculate (1) the
orientation preference of the neuron (shown as oriented bars) and (2) the location of the receptive field in retinal space (as the center of gravity
of the afferent weight matrix). From these values, the directioradial distancé, and orientation preference differengdetween all pairs

of neurons shown as the color of the bar were calculated. Notice that these values measure the spatial relationship between the two neurons
in the retinal (or visual) space, not in the cortical space, and therefore allow comparing connectivity with human performance data (Geisler
etall 2001). §) The number of connections as a function of orientation difference in the model (solid line) and experimental data (dotted line)
are shown. The number of excitatory lateral connections in MAP2 that exceeded a threshold value of 0.001 were counted, and normalized
by the number of neurons. The corresponding measurements in tree shrew visual cortex were obtained by staining methods (Bosking et al.
1997). This plot shows that strong excitatory lateral connections mostly link neurons with similar orientation tenimge distributions of

0, ¢, andd in MAP2. Each location in polar coordinatés, 4) displays two values: (1) the black oriented bars represent the most probable
orientationd of the target receptive field at that direction and distageé). These orientations are aligned along co-circular paths emanating

from the center. (2) The color scale in the background shows the relative log-probability of finding a target receptive field at diegxtion
distance). The locations with high relative probability (the red and yellow areas) form a bow-tie shaped flank along the horizontal axis. Such
an arrangement is very similar to the association field (or local grouping functions) suggested by psychophysical research [Field et al. 1993;
Geisler etal. 19€9, 2001)d) The Bayesian edge co-occurrence statistic, (Geisler et all 2001, with permission from the author). Each location
(¢,0) contains a small round disk, representing the likelihood ratios of all possible orientétatrthat location by color coding. The

with the highest ratio is shown in the foreground. Each likelihood ratio represents the conditional probability of a pair of edge elements in
configuration €, ¢, §) belonging to @ame physical contows. different physical contouris natural images. A high likelihood ratio indicates

that a pair of edges in that configuration is more likely to occur @eramon natural contouhan onseparate contoursThe conditional
probabilities were determined through manual labeling of contours in real world images. There is a strong correspondence between this data
and the connection statistics in the model, suggesting that the model is well-suited for encoding grouping relations in natural images.



often connect neurons with similar orientation tuning (fig- of a salient contour. The average of the within-contour cor-
ure ), and (2) connections go to target neurons with re-relations is used as a measure of overall performance of the
ceptive fields aligned along the preferred orientation of themodel. The results are summarized in figure 7, plotted against
source neuron, with a small flank (figure)5In other words, the human performance data from Geisler et al. (1999, 2001).
neurons whose receptive fields fall on a smooth (co-circularYhe plot clearly shows that at low orientation jitter, the model
contour are most likely to be connected with strong lateraland human performance are both high, but as the jitter in-
excitatory connections in MAP2, creases, they both deteriorate in a similar manner. Correlation
Interestingly, these connection statistics are very similar t@oefficients between MUA pairs corresponding to two back-
the edge co-occurrence statistics in natural images (Geislground segments, or pairs between a background and a seg-
et all|2001; figure B). Combined with transitive grouping mentin the contour remained low, usually near O (not shown),
rules, such edge co-occurrence statistics can accurately présus they were not perceptually salient. Such a performance
dict human contour integration performance (Geisler et alprofile is closely predicted by the lateral connection statistics,
1999, 2001). Therefore, we expect the model to perform likeas described in the previous section. This way, the perceptual
humans as well. If this prediction is confirmed, it lends com-phenomenon of contour integration can be grounded on the
putational support to the idea that self-organized lateral coneircuit-level description given by the model.
ES%Z:]Z,m V1 underlies contour integration performance |n3.3 Contour Segmentation
Importantly, the synchronization process that establishes the
contour percept can also separate different contours to differ-
Psychological experiments by Field et al. (1993) and GeisleEnt percepts. In this experiment, two collinear contours were
et al (1999, 2001) have shown that contour integration accuPresented as input and the correlations between and across
racy is maximal when orientation jitter in the physical contourthe MUAs representing each input segment were calculated
is 0°, and the accuracy decreases as a function of increasif§igure &). All simulation parameters were the same as in the
orientation jitter. The lateral connection statistics in the preJPrevious experiment. By comparing the rows in the plot, we
vious section are consistent with such behavior, but does théan see that in the beginning (at stimulus onset) all areas are
model actually perform that way? To answer this questionsynchronized, but as the lateral interactions start to take ef-
we ran several contour integration experiments with varyingect, the MUAs start to form two major groups firing in two
degrees of orientation jitter (figure 6). alternating phases. The correlation coefficients of areas in
To measure the performance of the model, for each inpuf’® Same contour are consistently high (0.86) while those in
bar, the number of spikes generated by the area of the cortglifferent contours are very low (-0.11), signifying integration
that responded to the bar was counted at each time step. TH4thin each contour and segmentation across the two con-
quantity is called the Multi-Unit Activity of the response, or tours. This result suggests that the same circuitry responsible
MUA, and it can be used to identify which area of the cortexfor contour integration can also be responsible for contour
is active at each time step. In order to determine the degre#®gmentation when there are multiple salient contours.
of synchronization between two areas, the linear Correlatio% 4
coefficientr between their MUA sequences was calculated as ™

3.2 Contour Integration

Influence of Input Distribution on Structure
and Performance

follows:
The results in previous sections suggest that lateral connec-
- > (@i —2)(yi — ) (11) tions play a significant role in the contour integration and seg-
V@i =22/, (i — 9)? mentation process. Because these connections are formed in

an input-driven self-organizing process, different input dis-
wherex; andy;, ¢ = 1,..., N are the MUA values at timé tributions result in different patterns of lateral connectivity,
for the two areas representing the two different objects in thevhich in turn result in different performance in behavioral
scene, and andy are the mean of each sequence. tasks. This explanation can potentially account for the ob-
Using r as the measure, the contour integration perfor-servations by Hess and Dakin (1997) and Rubin &t al. (1996)
mance of the network in the four different input configura- showing that contour integration performance differs between
tions (degrees of orientation jitter; figure 6) was calculatedfovea and periphery, and between upper and lower visual
The network was presented with each input for 600 iterationsiemifield.
and the MUAs from the activity areas on MAP2 correspond- To date, the distributions of input features across the visual
ing to the nine input segments were obtained. The MUA sefield have not been fully characterized, and it is not possi-
guences are shown in figure 6. The correlation coefficientble to verify this hypothesis directly with experimental data.
for MUA pairs belonging to the same contour measure the deHowever, with the current model we can test the basic princi-
gree of contour integration. The higher these values, the mongle that different input distributions result in different perfor-
synchronized are the areas, thus representing a strong percepance. In this section, we will systematically vary the input
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Figure 6: Contour Integration with Varying Degrees of Orientation Jitter.  (a—d) The input presented to the network (left) and the
resulting multi-unit activity plot (right) are shown. Each contour element is an oriented Gaussian ofdéngtB.5 and widthb?> = 1.5

(appendix A.2). The activity levels of the retinal units are plotted in gray scale from white to black. Each contour was composed of three
contour elements, and embedded in a background of six other randomly-oriented elements. Each contour runs diagonally from lower left to
top right with varying degrees of orientation jitter. At right, the Multi-Unit Activities (MUAS) of the active areas are shown in gray scale.
Time (i.e. simulation iteration) is on the-axis and they-axis consists of nine rows, each plotting the MUAs corresponding to one input.

The bottom three rows represent the MUAs of the salient contour, and the top six rows represent MUAs of the random background contour
elements. Synchronization is very strong for 0 and 30 degrees but relatively weak for 50 and 70 degrees, that is, the contours get harder to
detect as the orientation jitter increases. In all casés (), the background MUAs are unsynchronized. A quantitative summary of these
results are shown in figure 7

distribution and show how it affects the lateral connectivity within the interval[0°,10°] in one area vs|0°,25°] in the
and contour integration in the PGLISSOM model. other. Under each of these conditions, a PGLISSOM network
was trained in the same way as in section 3.1, and tested as

There are several ways in which the input distributionin section 3.2 using the same set of parameters. These con-

could vary between two areas: one area could receive morditions represent the general idea that the inputs e.g. in the

training with oriented inputs than the other, or it could receivefovea and in the lower hemifield are likely to be more numer-

longer or more sharply defined edges, or edges with highesus and more complex than in the upper hemifield and in the

curvature or preferred orientation, or edges organized into periphery.

texture. We chose to test PGLISSOM in two representative

ways, by (1) changing the input presentation frequency, and After training each network for 40,000 iterations, ori-

by (2) changing the curvature of the input. In the first ex-entation maps comparable to those in the previous self-

periment, inputs were presented in one area twice as often asganization experiments emerged in each case. However,

in the other. In the second, the angles between the line se¢heir lateral connection patterns were quite different, as

ments constituting an input was varied uniformly randomlyshown by the#, ¢, ¢) statistics similar to those in section 3.1
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Figure 7:Contour Integration in Humans vs. the Model.  The model's performance was measured as the average correlation coefficient
between the MUA sequences in the salient contour, and that of humans as the percentage of correctly identified contours (Geisler et al. 1999,
2001; RMS amplitude 12.5, fractal exponent 1.5; the error bars indicate standard deviation in the model). Erroethstaratard deviation.
Thez-axis is the orientation jitter in degree®) ( In both cases, performance is robust up to 30 degrees, but then quickly breaks down as the
orientation jitter increases.

¢
]

&4 [T
/ JUIIEIII0IRARARRERRFEFOARARIARLASEEFEFHELERY

Figure 8: Contour Segmentation. The input for the contour segmentation experiment consisted of two contours, vertical and diagonal
(shown at left). The gray scales and the input sizes are identical to those in figure 6. The MUA sequences from the six areas of MAP2
responding to each input are shown at right. The bottom three rows correspond to the vertical contour and the top three rows to the diagonal
contour. The average correlation coefficients between pairs of MUA sequences is high (0.86) within the same contour and low (-0.11) across
different contours. Neurons within a contour are synchronized, while neurons belonging to different contours are desynchronized, segmenting

two contours.

(figures 9 and 10). ondary (co-circularity) property as well.

In the frequency experiment, two major differences In the curvature .experiment (ﬁgure 1_0), high probability
emerged (figuré 9): (1) The high probability areas extend'€as are broader in the map trained Wlth a proader range of
out longer in the high-frequency map)(than in the low-  curvatures ) compared to the one trained with a narrower
frequency mapt), i.e. the map with more exposure to ori- 'ange 0). As expected, the input-driven self-organizing pro-

ented edges can group together more distant inputs. (2) THESS has encerd the input distribution diffe_rences into the
most probable for a given (¢, §) location tends to be co- lateral connections. As a result, the map with exposure to

circular in the high-frequency mapi) while in the low- higher curvature should be better at integrating co-circular

frequency map#) it is more collinear (i.e. the black edges contours.

in the high probability areas are more parallel). Collinear- The difference in structure predicts that contour integration
ity is the most prominent feature in the input, and is thereperformance between the networks should also differ. To test
fore learned first. With enough input presentations, it is exthis prediction, contour integration experiments like those in
tended to large distances. Co-circularity develops slower thasection 3.2 were performed on each network: each network
collinearity because the response levels are lower in the cawas activated for 600 iterations and the MUA sequences cor-
circular arrangement. The more frequently stimulated mapesponding to the three contour elements were measured. The
had enough input presentations and was able to learn the seesults are summarized in figure 11.

9



Relative Probability Relative Probability

¢790° ! ¢ﬁ900 I
0.1 0.1
0.01 0.01
—¢=0 — =0
- -
(a) More frequently stimulated (b) Less frequently stimulated

Figure 9: Distributions of Excitatory Lateral Connections with High and Low Frequency of Input Presentation. During training,
PGLISSOM network ¢) received oriented training inputs twice as often as netwbykAs a result, the lateral connection profiles in MAP2
differ in two significant ways: (1) the high probability areas (red and yellow) extend longe) thgn in ¢), and (2) the most probabte
(black oriented bars) are co-circular ) { but mostly collinear in#). These results predict that contours should be easier to detect in visual

areas that see oriented inputs more often.
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Figure 10: Distributions of Excitatory Lateral Connections Trained with Different Curvature Ranges. Two PGLISSOM networks

were trained with different input curvature distributions) With [0°, 25°] and 6) with [0°,10°]. The MAP2s in these networks developed
different lateral connection distributions as a result. (The number of tracks in the probability plots were increased, by reducing the histogram
bin size, to highlight this difference.) The high probability areas (red and yellow) are broadgtfag in ¢), suggesting that contours with

more curvature and higher orientation jitter should be easier to detect in netsyork (
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Figure 11: Contour Integration Performance for Different Input Distributions. For each input consisting of 3 contour elements, the

correlation coefficients were calculated between each pair of MUA sequences, and the average was used as the measure of performance, as

in figure 7. Error bars indicate: standard deviation. Plot) shows the contour integration performance for the frequency experiments. For

both 0-degree and 40-degree orientation jitter, the high-frequency map had higher correlation than the low-frequency map. The difference is

more pronounced in the 40-degree case, as predicted by the lateral connection distributions in figuré)sHeles(the contour integration
performance for thé0°, 10°] vs. [0°, 25°] curvature experiments. At 0-degree orientation jitter, the performance is comparable, but with

40 degrees of jitter, the map trained with higher curvature input performs significantly better, as predicted by the connection distributions in

figure 10. (The performance is generally lowerdhthan in @) because to cover the whole range of curvatures, each particular curvature can
only be shown with low frequency.)

The MUAs were more synchronized in the high-frequencyorganization. The same self-organization mechanism has pre-
network than in the low-frequency one for both 0 and 40 dewiously been shown potentially responsible for orientation,
grees of orientation jitter (figure k). Moreover, this perfor- ocular dominance, and frequency columns and patchy con-
mance gap was wider in the 40-degree case, indicating thatections between them, for repair after cortical and retinal
the more frequently stimulated map did not just learn to samelamage, and for tilt aftereffects (Miikkulainen et/ al. 1997),
task more accurately—it actually learned to detect co-circulaproviding a unified explanation of several different phenom-
contours in addition to the collinear ones. ena in the visual cortex. The main new idea advanced in

In the curvature comparison experiment, the MUAs of boththis paper is that long-rangexcitatory lateral connections
conditions were equally synchronized in the 0-degree orienean also self-organize into highly specific patterns that serve
tation jitter case. However, with 40 degrees of jitter, the mapa perceptual grouping function.
trained with higher curvature[(®, 25°]) synchronized the The connection patterns that emerge in the model closely
components of the contour significantly better (figuré)11 approximate those found in neurophysiological experi-
The more co-circular lateral connections allowed this map tanents (Bosking et al. 1997; Fitzpatrick et al. 1994), and are
synchronize line segments that were less perfectly aligned. very similar to the local contour grouping statistics found in

These results show that if the input distribution variesnatural images (Geisler et al. 1999, 2001). They also gen-
across different areas of the visual field, the input-driven selferally agree with connection patterns hypothesized in hand-
organization process will shape the connections accordinglyzoded computational models (Li 1998; Ross et al. 2000, Yen
and such structural differences will lead to different perfor-and Finke| 1997, 1998). We also demonstrated that synchro-
mance in contour integration. This is an important predic-nized firing of neuronal populations can represent the percept
tion of the model that in the future can be tested with inputof contour very well, by comparing correlations to human
variation in natural visual input. Such studies can eventucontour integration accuracy with varying degrees of orien-
ally lead to a computational explanation of why visual per-tation jitter (Field et al. 1993; Geisler et al. 1999, 2001).
formance differs across the visual field, and perhaps to some The input patterns studied in this paper are decidedly sim-

extent even in different species. ple for two reasons: (1) this way it is possible to character-
i i ize and measure model behavior clearly, without confounding
4 Discussion factors, and (2) more complex patterns would require larger

Our results show that the specific lateral connectivity necesnetworks, which are computationally too expensive to simu-
sary for contour integration can be due to input-driven selfdate at the moment. For example, the current self-organization
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simulations required about 200MB of memory and took about s \ )

20 hours on a 1.7 GHz Pentium PC. To represent more comS— -
plex inputs, the number of rows and columns would have to B
be scaled up by a factor of four, resulting in a simulation with
over 40GB of memory and a training time of over 4800 hours.
However, there is a good reason to believe that the model wilFigure 12: Simultaneous Activation of Neurons. ~ The plot

i . .. shows two representative cases of coactivation (i.e. when two neu-
scale up well: it is based on regular patterns of Conr]eCUVItyrSons are activated simultaneously), when a long (dashed line) input

that can be duplicated horizontally, resulting in a larger-scalgs presented across the two receptive fields. Gollinear arrange-
model with similar behavior. In a parallel line of research, ment: the two receptive fields (thick bars) are precisely aligned. If
we have developed methods for such incremental scaling af long input is presented along the same direction, the two neurons

self-organizing firing-rate models (Bednar et al. 2002); ap_will respond maximally, and the connection between them becomes
' ronger. §) Co-circular arrangement: even though the two recep-

plylng these T“e”TOdS to the contour integration task is a moﬂf/e fields are slightly misaligned, they are still weakly activated and
interesting direction of future work. The temporal behav-ieair connection is strengthened, although less so thar)in (

ior of the model should also scale up well. Campbell et al.
(1999) recently showed that time to synchronization in lo-
cally connected integrate-and-fire neurons is logarithmicallystatistical differences together with Hebbian self-organization
proportional to the network size. Since the dynamic thresholdvould then result in different contour integration capability in
neuron used in the current model is equivalent to integratedifferent visual areas, as was demonstrated in section 3.4.
and-fire neurons, we eXpeCt our model to show Similar, man- A Competing hypothesis would be that the differences be-
ageable temporal scaling behavior as the network size is inween hemifields (as well as those between fovea and periph-
creased. In the near future, sufficient computational powegry) are genetically determined. One way of distinguishing
mlght exist to train the model with natural images. Based Opetween these hypotheses would be to rear an animal with
analogOUS results with fil’ing-ra’[e models (Bednar etal. 2002bye g|asses that f||p the input to the upper and lower hemi-
we expect the results with more complex images to be similafield. After the critical period, the animal’s performance on
to those of the current model. contour detection task could be measured, and the connec-
Whether contour integration in the model occurs or not detivity patterns formed in the upper and lower hemifield com-
pends on whether the appropriate lateral connections exist gared to normally reared control animals. With genetic deter-
not. Integration is possible only if focused (i.e. patchy) lat-mination there should be no noticeable difference, whereas
eral connections link neurons with similar orientation pref-PGLISSOM predicts that high connectivity and good integra-
erences. Even though the integration and adaptation meckion would occur in the upper hemifield, instead of the lower
anisms might be the same throughout the cortex, if the inhemifield as in control animals.
put to the different areas differs during development, differ- The fact that even simple patterns such as straight Gaus-
ent contour integration performance results. ~ The modesian bars shape the circuitry for contour integration is an in-
therefore suggests why the performance e.g. in the upper vegresting result. It supports a previous proposal by Bednar
lower hemifield (or in fovea vs. periphery) might differ: if and Miikkulainen (1998, 2000a) that simple internally gen-
the upper visual field does not receive sufficiently dense vierated patterns in the developing nervous system may pre-
sual input during development, its lateral connections remaitirain the cortex before birth, explaining why a certain degree
diffuse, resulting in weaker integration. We plan to test thisof organization and functionality already exists in a newborn
hypothesis in the future with a model that also takes into aceortex. However, since the PGLISSOM model was trained
count the structural differences in these areas, such as diffewith straight Gaussian bars, one would expect only collinear
ent receptor densities. In this way, the observed differencegroperties to emerge in the connection profile, instead of the
in contour integration performance can possibly be explainedo-circular patterns actually observed (figure 5). Such an
as an effect of input-driven self-organization. unexpected result follows from Hebbian learning on graded
Statistics of images projected on the retina indeed supporesponses (figure 12). Neurons co-activate even if their re-
the idea that input distributions may differ among differentceptive fields are not perfectly aligned, allowing co-circular
visual areas. Reinagel and Zador (1999) showed that humagpnnections to develop along with the collinear ones. Such
gaze most often falls upon areas with high contrast and lovgraded training in general matches the regularities in the vi-
pixel correlation. As a result, sharper images may projecsual environment, forming a robust starting point for learning
more often on the fovea than the periphery, allowing moremore refined regularities in the visual input.
specific connections to form. A similar method can be used As we have seen in this paper, connection statistics, feature
to find out if there is a difference in statistical distribution of co-occurrence statistics, and performance are very closely re-
image features in the lower vs. upper hemisphere. It seemated. It may be possible to measure co-occurrence statis-
likely, based on the observation that primates mostly maniptics of visual features other than orientation as well, and such
ulate objects in their lower hemifield (Previc 1990). Suchstatistics can be used to derive hypotheses aboufuie

(a) Collinear Activation (b) Co-Circular Activation
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tional connectivity of visual cortical areas. Thus, perceptualconsisted ofl6 x 46 receptors, except for section 3.4 where it
grouping rules employed by the brain can be systematicallyas72 x 72 to have sufficiently large lower and upper hemi-
investigated by examining the statistical structure in naturafields for the experiments. As long as the relative sizes of
scenes. the map, the retina, and the lateral connection radii are sim-
ilar to these values, the maps self-organize well (see Bednar

5 Conclusion et al, (2002) for precise equations that allow scaling maps to
This paper shows how the specific connection patterns thafifferent sizes).

may facilitate contour integration and segmentation in the vi- L.

sual cortex can be due to the same general process of inpdt-2 ~ Self-Organization

driven self-organization as many other cortical structuresThis section describes the simulation setup used in sec-
The contour integration performance measured by the degrd®ns 3.1 and 3.4. The input in the training experiment con-
of synchronization in the model matches human performanceisted of straight oriented Gaussians:

data very well, lending further support for the idea that seg-

mentation and binding could be due to synchronized firing ¢ _ ¢p(— ((r1 — z)cos(¢) — (r2 — y)sin(¢))?

of neuronal groups. The model also suggests that differently” ' a?

distributed input presentations and the resulting lateral con- ~ ((r = z)sin(e) + (r2 — y)008(¢))2) (12)
nections may be the cause for the different degrees of contour b2 ’

integration observed in the different visual areas. It should : . - .
. where¢,., ., is the desired activity of the retinal neuron at lo-
be possible to account for other low-level Gestalt phenomena '

with similar computational principles Cation {1, 72), a®> andb? specify the length along the major
P principies. and minor axes of the Gaussian, apdpecifies its orien-
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A Appendix: Simulation Setup v; = 2.5, andy, = 0.9 for MAP2. The learning rates of affer-

This section describes the simulation setup in detail for ac€Nt lateral excitatory, lateral inhibitory, and intra-columnar
curate replication of the results presented in this paper. Thgonnections werey, = 0.012, a. = 0.008, a; = 0.008,
code and simulation configuration files can be found on thé@ndae = 0.012 for MAP1 anda, = 0.012, ae = 0.008,

world-wide-web ahttp:/mwww.cs.tamu.edu/faculty/choe @ = 0.0, anda, = 0.012, for MAP2. At 5,000 iterations,
a, anda, in both maps were decreased to 0.008 so that the

A.1  Network global order in the map could start stabilizing. Initial base
While MAP1 consisted of36 x 136 neurons, MAP2 was re- thresholdy,,s. for both maps was 0.05. At the beginning
duced to54 x 54 to save simulation time and memory. The of each settling iteration, thé,... was adjusted to 50% of
intra-columnar connections between MAP1 and MAP2 weremax; ;(o; ;(t)) so that the network would not become too
proportional to scale, so that the relative locations of correactive or totally silent. Later, the percentile was increased to
sponding neurons in the two maps were the same. Howeves,7.5% at 15,000 iterations for MAP1, and 65% at 5,000 for
different parameter values were required for the two mapsMAP2. While organized maps can be obtained without such
corresponding to their different sizes. Excitatory lateral conparameter adaptation, it generally leads to better results. In-
nections in MAP1 had an initial radius of 7 and gradually terestingly, biological evidence also supports such adaptation
reduced to 3, and inhibitory lateral connections had a fixegrocesses during learning, including both threshold adapta-
radius of 10. Initially, large areas have correlated activity saion (Azouz and Gray 2000; Prince and Huguenard 1988) and
that global order can be formed, and later on, the reducedynaptic plasticity (Caleo and Maffei 2002).

lateral excitatory connections help fine-tune the local order The synaptic decay rates were different for different types
in the map (Kohonen 1982, 19€9, 1993; Sirosh and Miikku-of connections. Previous sum was decayec:by, where
lainen 1997). In MAP2, excitatory lateral connections had a\ = 3.0,0.5,and1.0 for lateral excitatory, inhibitory, and
radius of 40 and inhibitory connections 54. Afferent connec-intra-columnar connections for both maps. The decay rate in
tions to the retina had a radius of 6 in both maps, and intrathe spike generator’s inhibitory feedbagk, = 0.5 in both
columnar connections a radius of 2 in both maps. The retinanaps. The relative contribution of the inhibitory feedback in
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