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Abstract. Reflexes are important in the control of such
daily activities as standing and walking. The goal of this
study is to establish how reflexive feedback of muscle
length, velocity, and force can lead to stable equilibria
(i.e., posture) and limit cycles (e.g., ankle clonus and gait).
The influence of stretch reflexes on the behavior and sta-
bility of musculoskeletal systems was examined using a
model of human stance. We computed branches of fold
and Hopf bifurcations by numerical bifurcation analy-
sis of the model. These fold and Hopf branches divide
the parameter space, constructed by the reflexive feedback
gains, into regions of different behavior: unstable posture,
stable posture, and stable limit cycles. These limit cycles
correspond to a neural deficiency, termed ankle clonus. We
also linked bifurcation analysis to known biomechanical
concepts by linearizing the model: the fold branch cor-
responds to zero ankle stiffness and defines the minimal
muscle length feedback necessary for stable posture; the
Hopf branch is related to unstable reflex loops. Crossing
the Hopf branch can lead to the above-mentioned stable
limit cycles. The Hopf branch reduces with increasing time
delays, making the subject’s posture more susceptible to
unstable reflex loops. This might be one of the reasons why
elderly people, or those with injuries to the central nervous
system, often have trouble with standing and other posture
tasks. The influence of cocontraction and force feedback
on the behavior of the posture model was also investigated.
An increase in cocontraction leads to an increase in ankle
stiffness (i.e., intrinsic muscle stiffness) and a decrease in
the effective reflex loop gain. On the one hand, positive
force feedback increases the ankle stiffness (i.e., intrinsic
and reflexive muscle stiffness); on the other hand it makes
the posture more susceptible to unstable reflex loops. For
negative force feedback, the opposite is true. Finally, we
calculated areas of reflex gains for perturbed stance and
quiet stance in healthy subjects by fitting the model to
data from the literature. The overlap of these areas of
reflex gains could indicate that stretch reflexes are the
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major control mechanisms in both quiet and perturbed
stance.

In conclusion, this study has successfully combined
bifurcation analysis with the more common biomechan-
ical concepts and tools to determine the influence of
reflexes on the stability and quality of stance. In the future,
we will develop this line of research to look at rhythmic
tasks, such as walking.

1 Introduction

For healthy people, walking seems an easy task, since for
them it is an effortless and robust way of locomotion.
However, people with an orthosis or prosthesis and peo-
ple with a decreased capacity of the central nervous system
(e.g., older people, CVA patients) often find walking diffi-
cult. They need to put more effort in each step, become
tired more quickly, and are less able to deal with pertur-
bations (e.g., a push). To help these groups, the principles
that make normal walking such a robust and efficient form
of locomotion must be discovered first.

If people are slightly perturbed by their environment
during walking, they tend to return to their original peri-
odic movement. This periodic orbit that gait approaches
each time it is perturbed can be described by a stable
limit cycle (e.g., Garcia et al. 1998; Hurmuzlu and Bas-
dogan 1994). A limit cycle is termed stable if the sys-
tem under consideration returns to this cycle after small
perturbations. The mathematical description of walking
as approaching a stable limit cycle gives us the opportu-
nity to explore the influence of physiological parameters
on the qualitative behavior and stability of gait. Simpli-
fied segment models of humans show unactuated walking
down a shallow slope (Garcia et al. 1998; McGeer 1989;
Schwab and Wisse 2001), which McGeer termed passive
dynamic walking (McGeer 1990). Such models can be seen
as damped mechanical nonlinear oscillators, maintaining
oscillation by a small supply of gravitational energy (by
means of the slope), which compensates for energy losses
due to friction and heel strike. It is this interaction between
energy loss and energy supply that creates the limit cycle
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to which the model returns after small perturbations. The
drawback of passive dynamic walking is its poor robust-
ness against perturbations. Schwab and Wisse (2001) have
quantified the robustness by computation of the basin of
attraction of the simplest walking model of Garcia et al.
(1998); they showed that the basin was very small.

Humans exploit the natural dynamics of their body dur-
ing walking. At a certain velocity they walk with mini-
mum effort per unit distance traveled (Inman et al. 1981;
McMahon 1984). It is this velocity people mostly adopt,
exploiting natural dynamics to the maximum and resem-
bling passive dynamic walking most closely. However,
unlike the passive dynamic walking models, humans can
adapt their speed (i.e., change to another limit cycle) and
are robust against larger perturbations. A major con-
tribution to this adaptability and robustness comes from
reflexes and probably from central pattern generators. The
functional role of muscle, load receptor (probably Golgi
tendon organs), and cutaneous reflexes in gait is discussed
in depth by Zehr and Stein (1999). They conclude that
stretch reflexes are important in, among other factors, pro-
viding stability against perturbations in the swing phase
and in providing both weight support and stability in the
stance phase. Load receptor reflexes could be important
in the stance and stance-to-swing phase and affect the
period of the limit cycle, although it is unclear to what
extent. To fulfill their functional role during gait, reflexes
are modulated (i.e., phase dependent), but the mechanisms
that cause this modulation are not yet known precisely. A
central pattern generator (CPG) could play an important
part in the phase modulation of reflexes during walking. A
CPG is a neural oscillator that entrains to the “mechanical
oscillator” (i.e., segment model), thus providing an activa-
tion pattern that in turn leads to stable locomotion. Evi-
dence for the existence of CPGs were found, for example,
in lampreys (Cohen and Wallen 1980; Grillner et al. 1981)
and cats (Amemiya and Yamaguchi 1984; Brown 1911;
Shik et al. 1966). Although there is no direct evidence of
CPGs in humans, there is a growing number of observa-
tions suggesting their presence in the human spine (reviews
by Duysens and Van de Crommert 1998; MacKay-Lyons
2002). Taga (1995a,b, 1998) and Taga et al. (1991) have
successfully used simple CPGs in their neuromusculoskel-
etal models of human locomotion in order to achieve
robust locomotion.

In this paper, we investigate the qualitative influence
of reflexes on the behavior and stability of musculoskel-
etal systems. The goal is to establish how reflexive feed-
back of muscle lengthening, velocity and force, and the
time delays, present in these reflex arcs, can lead to sta-
ble equilibria (i.e., posture) and limit cycles (e.g., ankle
clonus, gait). As reflex gains or time delays are varied,
changes may occur in the qualitative structure of the solu-
tions to the delayed differential equations that describe
the model. These changes are termed bifurcations and may
reveal significant behavior of the musculoskeletal system.
This study considers stance (i.e., posture) but also pro-
vides a framework for future research into the influence
of certain types of reflexes on the behavior and stability of
physiologically based gait models.

In the next section, the model is outlined. It is a
model of stance, consisting of an inverted pendulum
with an antagonistic muscle pair around the ankle joint
and reflexive feedback of muscle lengthening, velocity,
and force. The model is complex enough to demon-
strate some basic influences of reflexes on the quali-
tative behavior of musculoskeletal systems. Necessary
conditions for stable and unstable equilibria to become
stable limit cycles are discussed and mathematical con-
cepts from the bifurcation analysis are linked to known
biomechanical concepts such as stiffness. The influence of
reflex gains, delays, and cocontraction on the qualitative
behavior of the model is investigated by using bifurcation
analysis. Finally, the model is fitted to data of perturbed
and quiet stance.

2 Methods

2.1 Musculoskeletal model of stance

A simple posture model is used to investigate the influ-
ence of reflex gains, delays, and cocontraction on the
qualitative behavior and stability of musculoskeletal sys-
tems. The model consists of an inverted pendulum with an
antagonistic muscle pair, as shown in Fig. 1. The inverted
pendulum represents a person who tries to maintain an
upright position by flexing and extending the ankles.
Stance is assumed to be a perturbed equilibrium (e.g., by
measurement errors of muscle spindles), thus producing
sway. The only joint in this model represents the ankle
joints, and the two muscles represent the tibialis anterior
muscle and the soleus muscle for both legs. The lumped
Hill-type muscle model is based on the work of Winters
and Stark (1985, 1987) and models both activation and
contraction dynamics. It consists of a contractile element
(CE) and a serial elastic element (SE), which is modeled
as nonlinear spring. The frequently used parallel elastic
element has been omitted because it has no influence on
the local stability of the considered posture (i.e., eigen-
values). Two types of feedback are incorporated into the
model: intrinsic feedback (force–length and force–velocity
relationships of the muscle) and reflexive feedback. This
feedback defines the viscoelastic properties of the muscle
pair.

Fig. 1. Simplified human posture (left) and dynamic model repre-
sentation as inverted pendulum with muscles (right). Parameters are
mass m, moment of inertia I, moment arm r. The muscle moment
Mmus tries to keep the angle θ to a minimum despite the destabilizing
actions of the perturbation moment Mp and gravity g
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The equation of motion for the inverse pendulum with
mass m, moment of inertia around the ankles I, distance
from ankles to center of mass lcom, and gravitational con-
stant g are written as

I θ̈ =mg lcom sin θ +Mmus +Mp (1)

in which θ is the angle of the pendulum with respect
to the vertical position, Mmus is the moment around the
ankles produced by the muscle forces Fmus via their con-
stant moment arms r, and Mp is the perturbation moment
imposed by the environment. The activation and contrac-
tion dynamics of the Hill-type muscles are presented in (2)
and (3), respectively. Both muscles are parameterized as a
soleus muscle (Thunnissen 1993; Yamaguchi et al. 1990)
for simplicity (i.e., symmetric model):

ȧ =fa

(
a,u,�lmus (t − τ) , vmus (t − τ) ,Fmus (t − τ) , kp, kv, kf

)
,

(2)

l̇ce =fc (Fvce (a,Flce,Fse)) . (3)

Equation (2) is a delay differential equation (DDE).
The dependence on time t is only written explicitly in case
of a delay because otherwise the equations could be mis-
taken to be nonautonomous. The vector a represents the
active states of both muscles, and u is the neural input
vector. The vectors �lmus and vmus represent the muscle
lengths (relative to the rest lengths) and the muscle veloci-
ties, respectively. They are fed back by the reflexive gains kp

and kv, respectively, with a time delay τ . This feedback of
muscle lengths and velocities represents the stretch reflexes
and reciprocal inhibition found in all antagonistic muscle
pairs. Force feedback by Golgi tendon organs is repre-
sented by an ipsilateral feedback of each muscle force by
a reflex gain kf , with time delay τ .

Equation (3) is an inverse force–velocity relationship.
The vector Fvce(a, Flce, Fse) represents the momentary val-
ues of the force–velocity relationships of the CEs of both
muscles, which is obtained by recognizing that the force in
the SE must be equal to the force in the CE in this muscle
model. These force–velocity relationships are expressed in
terms of the momentary values of the force–length rela-
tionships of the CEs Flce and the forces in the SEs Fse. The
elaborate form of (1), (2), and (3) is found in Appendix A.

The model contains a total of six state variables: the
angle θ , the angular velocity ω, the active states of the tib-
ialis anterior and the soleus, ata and asol, and the lengths of
the CEs of both muscles, lce,ta and lce,sol. However, because
of reflexive feedback, the angle and angular velocity also
appear in delayed form, θ(t −τ ) and ω(t −τ ), respectively.
Thus, the system is of infinite order. The considered equi-
librium is standing upright, which corresponds to zero
angle, zero angular velocity, and for both muscles con-
stant, equal, active states and lengths of the CEs. The
muscles have different time constants for increasing and
decreasing muscle activation, and there is a discontinu-
ity in the slope of force–velocity curve of the CEs at zero
velocity. These discontinuities are exactly in the equilib-
rium and render bifurcation analysis difficult. Therefore,
they have been approximated with the help of a “sharp”

tangent hyperbolic function (i.e., steep slope), as shown in
Appendix B. Numerical simulations showed no significant
change in behavior between the model with real disconti-
nuities and the one with the smoothed discontinuities.

2.2 Bifurcation analysis

The purpose of the performed bifurcation analysis is to
identify the influence of those parameters that can be
adjusted by the central nervous system. These are assumed
to be the supraspinal neural input vector u and the reflex-
ive feedback gains of the muscle length, velocity, and force,
kp, kv, and kf , respectively. The neural input for both mus-
cles is assumed to be equal, thus u = [uta usol]T = [u u]T .
The influence of a time delay τ , inevitably present in all
reflex arcs, is also analyzed. Time delays limit the maxi-
mum reflex gains possible for a stable posture, as is known
from control engineering. However, the influence of time
delays on the occurrence and stability of limit cycles is less
clear.

A bifurcation is the appearance of a topologically
nonequivalent phase portrait under parameter variation
(Kuznetsov 1998). Local bifurcations of a continuous time
system, to which we confine ourselves in this paper, may
occur when eigenvalues of the linearization about an equi-
librium pass the imaginary axis as parameters vary. The
two most common bifurcations for such systems are the
fold and the Hopf bifurcation, which are conventional
textbook paradigms (e.g., Arrowsmith and Place 1990;
Iooss and Joseph 1990; Seydel 1988). The fold bifurca-
tion is associated with the appearance or disappearance
of two equilibria. In symmetric systems, such as the mus-
culoskeletal model, the fold bifurcation often manifests
itself as a pitchfork bifurcation (Kuznetsov 1998). Beyond
this type of fold bifurcation, an additional third equi-
librium is present, which changes stability at the bifur-
cation point (eigenvalue of the considered equilibrium
passes through zero with nonzero speed). It is this type
of fold bifurcation that is associated with the stability
of posture in the musculoskeletal model, with the third
equilibrium representing the posture. A Hopf bifurca-
tion occurs when a conjugated pair of eigenvalues passes
the imaginary axis with nonzero speed. The Andronov–
Hopf theorem gives conditions that guarantee that a limit
cycle will appear or disappear after a Hopf bifurcation
(Arrowsmith and Place 1990). Note that there are two
different scenarios, namely, the subcritical and the super-
critical Hopf bifurcation, but only the latter leads to stable
limit cycles. The local stability of encountered limit cycles
can be assessed by placing a (hyper) surface transverse to
the flow near the limit cycle. The crossings of the orbit
with this surface in a given direction can be seen as a dis-
crete representation of the flow near the limit cycle. This
discrete map is called a Poincaré map – or first return map
– and has a state space whose dimension is reduced by one
relative to the original continuous time system. The limit
cycle is represented by a fixed point (i.e., rest point) of the
Poincaré map. The limit cycle will be locally stable if the
fixed point of the Poincaré map is locally stable. This is
determined by calculating the eigenvalues of the Poincaré
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map, which are called Floquet multipliers. All multipliers
have to be within the unit circle (i.e., in absolute value
smaller than 1) for the limit cycle to be locally asymptoti-
cally stable (Kuznetsov 1998).

Stretch reflexes (position and velocity feedback) are
generally known to have an important regulatory function
in posture as well as in locomotion (Houk 1979). Cocon-
traction is an effective – but also very energy-consuming
– way of regulating the viscoelastic properties of muscles
and is probably only used when necessary. Therefore, our
analysis starts by looking at the influence of the stretch
reflex at a low cocontraction level. A parameter space is
constructed with the positional gain kp on the horizontal
axis and the velocity gain kv on the vertical axis. In such
a space, the dependence of existing bifurcations on those
parameters can be shown. The functional role of force
feedback is less clear and will be analyzed subsequently
in the same parameter space. The steps of the analysis are
described in the paragraph below.

First, the equilibria of the DDEs [(1), (2), and (3)] are
calculated for a reference set of parameters. At these equi-
libria, the system is linearized and, at least, the rightmost
eigenvalues – that is, the eigenvalues with the largest real
parts (Lyapunov exponents) – have to be calculated, be-
cause these play a dominant role in the system’s behavior
and stability. Second, one of the parameters is changed so
that the rightmost eigenvalues cross the imaginary axis. If
it concerns a single eigenvalue with zero imaginary part,
a fold bifurcation is encountered, whereas if it concerns
a conjugated pair of eigenvalues, a Hopf bifurcation has
occurred. From a fold point a whole branch of fold points
can be followed through parameter space spanned by kp

and kv. Similarly, from a Hopf point a branch of Hopf
points can be computed, which is represented by a set of
combinations of kp and kv.

The calculated fold and Hopf branches, with the reflex
gains kp and kv as parameters, will be used as reference
branches for determination of the influence of the other
parameters. The influence of time delay τ , equal neural
inputs u (level of cocontraction), and force feedback gain
kf will be determined by calculation of the fold and Hopf
branches in the same parameter space, in the same way as
described above. Only the parameter whose influence is to
be determined is changed relative to the reference parame-
ter set. The influence of those deviating parameters can be
observed by comparing the reference bifurcation branches
with the ones with deviating parameter sets. Choosing the
same parameter space, instead of constructing new ones
with the deviating parameter on one of the axis, is impor-
tant since it allows the influence of parameters to be com-
pared.

The intersections of fold and Hopf branches can lead to
mathematically intriguing bifurcation points, such as the
Bogdanov–Takens bifurcation and the fold–Hopf bifur-
cation (Kuznetsov 1998). These bifurcations were indeed
encountered in the analysis (Sect. 3.1) but are only dis-
cussed as far as is considered relevant. It is not within the
scope of this paper to review all possible behaviors in the
neighborhood of such points. More significant is the sub-
division of parameter space by fold and Hopf branches.

This leads to different regions in parameter space, each
representing a different qualitative behavior of the model.

In analyzing musculoskeletal models, the delays pres-
ent in the reflex arcs result in delayed differential equa-
tions (DDEs). The state space for a DDE is infinite
dimensional. The DDE-BIFTOOL Matlab package
(Engelborghs et al. 2001) is used to perform bifur-
cation analysis for the DDEs. This package approxi-
mates the most dominant eigenvalues, which allows the
user to determine the type of bifurcation. Subsequently,
DDE-BIFTOOL tests the necessary conditions for the
bifurcation to be generic. The Floquet multipliers of limit
cycles, emerging beyond the Hopf branch, are numeri-
cally calculated by DDE-BIFTOOL by time integration
of the variational equation around the periodic solution
(for details, please see Engelborghs et al. 2001).

2.3 Biomechanical interpretation of fold and Hopf
bifurcations by linearization of the stance model

Bifurcation analysis is relatively unknown in the field of
biomechanics, whereas it can be of great assistance in
understanding the influence of certain parameters on the
behavior and stability of biological systems. In the pre-
vious subsection (Sect. 2.2), fold and Hopf bifurcations
were discussed. In this section, a linearized model is con-
structed in the form of a block diagram, which makes it
possible to link the fold and Hopf bifurcations to some
well-known biomechanical and control engineering con-
cepts. The musculoskeletal model (Sect. 2.1) is linearized
in its equilibrium, which represents stance. The equilib-
rium states are entirely determined by the level of cocon-
traction aco. The active states of the muscles in equilibrium
are equal to the level of cocontraction (ata =asol =aco), and
cocontraction also determines the length of the contrac-
tile elements (CE), lce,ta, and lce,sol. Higher cocontraction
leads to a decreased length of the CEs such that a new force
equilibrium with the SEs is established, with higher force
and generally higher muscle stiffness and viscosity. The
angle θ and angular velocity ω are both zero in the equi-
librium because both muscles have the same rest length
and neural input u. The level of cocontraction is mainly
determined by the neural input but can also be increased or
decreased by force feedback. Positive force feedback will
increase the level of cocontraction, while negative force
feedback will decrease it. Feedback of the muscle lengths
and velocities does not change the level of cocontraction
aco. The stability of the equilibrium depends on the level of
cocontraction and on the reflexive feedback of muscle
lengths, velocities, and forces. The feedback of muscle
lengths and velocities is proven to be especially important
in keeping the posture stable (Van der Helm et al. 2002).
Time delays in these reflex arcs limit the maximum possible
feedback gains because the gain and phase margin of the
reflex loop is decreased by the extra phase lag introduced
by time delays. In other words, time delays jeopardize the
stability of the posture at high reflex gains.

The linearized model is shown in Fig. 2. The scheme
is similar to the linearized musculoskeletal models used
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Fig. 2. Linearized model of the musculoskeletal system including
intrinsic viscoelastic properties of the muscles (KCE is stiffness of
CE, BCE is viscosity of CE, and HSE is viscoelastic properties due
to SE) and delayed reflexive feedback of muscle length, velocity, and
force with gains kp, kv , and kf , respectively. The delay τ is modeled
by a Padé approximation. Segment model parameters are moment

of inertia I, moment arm r, and gravitational stiffness Kg . Muscle
parameters are maximal force Fmax and the value of the force-length
relationship in equilibrium F lCE(aco). Hact represents the muscle acti-
vation dynamics. Inputs are neural input fluctuations δu and pertur-
bation moment Mp. Output is angle of inverse pendulum relative to
vertical θ

by van der Helm and Rozendaal for analyzing shoulder
posture tasks (Van der Helm and Rozendaal 2000). How-
ever, in our model the influence of the SEs of the muscles is
not discarded because the soleus and tibialis anterior have
long tendons. Therefore, the SEs of the modeled muscles
are compliant (relative to, for example, shoulder muscles)
and have a large influence on the behavior and stability
of the posture. In the linearized model, this influence is
represented by the transfer function HSE. This is recog-
nized as the viscoelastic behavior of the SE in series with
the CE. In most muscles of the upper extremity, the SE is
very stiff because the tendons are relatively short. In such
cases, the influence of the SE in the muscle model can be
neglected, but this is generally not true for muscles in the
lower extremities.

Gravity has a destabilizing effect on the posture of the
inverted pendulum and is modeled as a negative stiffness.
This negative gravitational stiffness Kg = −mglcom must
be compensated by intrinsic and reflexive feedback so as
to achieve a stable posture.

Intrinsic feedback is achieved by cocontraction aco.
This cocontraction results in a certain stiffness KCE and
viscosity BCE of the CE of each muscle. The stiffness KCE
of the muscle model is proportional to the cocontrac-
tion and the derivative of the force–length relationship at
the equilibrium length of the CE. The viscosity BCE of
the muscle model is proportional to the cocontraction,
the force–length relationship at the equilibrium length of
the CE, and the derivative of the force–velocity relation-
ship at zero velocity of the CE. As the length of the CEs
is determined by the cocontraction, KCE and BCE only
depend on the level of cocontraction.

Reflexive feedback is achieved by feedback of muscle
length, velocity, and force with gains kp, kv, and kf respec-
tively. All reflexive feedback is proportional to the value of

the force–length relationship in the equilibrium F lce(aco),
as shown in the block diagram. The time delay τ is mod-
eled as a third-order Padé approximation (Appendix C)
in the linearized block diagram, which gives good results,
predicting the eigenvalues of the model (at least up to
the transition from linear stability to linear instability).
The stretch reflex is modeled as the feedback of angle θ
and angular velocity ω because these are directly related
to muscle length and velocity (Appendix A). Ideally, the
feedback of muscle length would purely define muscle stiff-
ness and the feedback of muscle velocity would purely de-
fine muscle viscosity. However, the activation dynamics
Hact, viscoelastic dynamics HSE, and especially the delay
τ(Hτ = e−jωτ ) add a considerable phase lag to the reflex
loop, endangering the stability of posture. The viscoelastic
dynamic properties due to the SE,HSE, not only introduces
phase lag but also reduces the total muscle stiffness. It
becomes Kmus = KSE(KCE+KR)

KSE+KCE
, with KSE the stiffness of

the SE, KCE the intrinsic stiffness of the CE, and KR the
reflexive contribution to the stiffness of the CE.

The contribution of force feedback with gain kf is two-
fold. First, as mentioned above, force feedback changes
the level of cocontraction aco. Positive force feedback will
increase the cocontraction and thereby increase the intrin-
sic and reflexive contributions to muscle stiffness and vis-
cosity. Negative force feedback will decrease the muscle
stiffness and viscosity. Second, force feedback introduces
some extra dynamics because it modulates the intrin-
sic and reflexive feedback loops, as shown in the block
diagram (Fig. 2). Positive force feedback makes acti-
vation dynamics become more dominant, giving more
phase lag at low frequencies. This leads to linear insta-
bility if this phase lag is not compensated by addi-
tional feedback of muscle velocity. On the other hand,
negative force feedback will decrease the intrinsic and
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reflexive contributions to muscle stiffness and viscosity.
The activation dynamics become less dominant, giving less
phase lag at low frequencies in the reflexive loops, and the
posture might therefore be less susceptible to instability.

It has long been known that negative force feedback
exists in humans (Sherwood 1997), and at one time it was
thought that its sole purpose was the protection of mus-
cles from overload. Later, the functions of stiffness regu-
lation (Houk 1979) and compensation for muscle fatigue
(Kirsch and Rymer 1987) were hypothesized. The exis-
tence of positive force feedback in humans is still the sub-
ject of debate (Capaday 2000, 2001; Duysens 2000). The
exact role of force feedback in posture and locomotion is
not yet clear, although it does seem to be significant (Dietz
1998; Dietz and Duysens 2000; Duysens et al. 2000).

The linearized model of stance can predict the eigen-
values of the posture quite well. Therefore, it will be used
to provide insight into the physical causes of encountered
fold and Hopf bifurcations (Sects. 3.1–3.4). A limitation
of the linearized model is that the behavior will only be
correctly predicted if the posture is stable and the pertur-
bations are small. Hence, bifurcation analysis is necessary
to predict the behavior of the posture when it has become
linearly unstable.

3 Results of the numerical simulations

In this section, the influence of stretch reflexes (includ-
ing reciprocal inhibition), time delays, cocontraction, and
force feedback on the behavior of the musculoskeletal
model of stance is discussed. Stability regions of posture
and periodic movement in parameter space (kp vs. kv,
Sect. 2.2) will be distinguished with the help of bifurcation
analysis. The linearized model described in Sect. 2.3 will
be used to link these findings with known concepts in the
biomechanical field. Section 3.5 describes how the model
is fitted to data from literature about quiet and perturbed
stance in order to get a notion of normal feedback gains
in healthy people.

To begin our analysis, a reference parameter set has
to be chosen. This defines the reference equilibrium in
state space and accompanying eigenvalues. The reference
parameter set is [u kp kv kf τ ]T = [0.1 50 10 0 50e − 3]T,
where u is the value of both neural inputs, kp, kv, and
kf are the reflexive feedback gains of the muscle length-
ening, velocity, and force, respectively, and τ is the time
delay present in the reflex arcs. A low level of neural in-
put (u = 0.1) is chosen, which is not enough to stabilize
the posture without reflexive feedback. The influence of
stretch reflexes is studied first, and thus the force feedback
gain kf is initially set to zero. The reference gains kp =50
and kv = 10 stabilize the posture. A reference delay τ of
50 ms is chosen because this is typical for the short latency
reflexes found in human ankle flexors and extensors (Sink-
jaer et al. 1988). These parameters give an equilibrium at

xeq,ref = [
ata asol lce,ta lce,sol θ ω

]T = [0.1 0.1 0.936 0.936 0 0]T ,

with accompanying rightmost eigenvalues λrm,ref =
−1.46 ± 4.54j (i.e., posture is stable). As mentioned in

Sect. 2.3, the states of the equilibrium xeq only depend
on the value of the neural inputs u and on the force feed-
back gain kf . However, the stability of the equilibrium also
depends on the positional feedback gain kp, the velocity
feedback gain kv, and the delay τ of the reflex arc.

3.1 Influence of stretch reflexes on model behavior
and stability

The influence of stretch reflex gains on the behavior of the
model is explored by looking at bifurcations in parame-
ter space, with the positional gain kp on one axis and the
velocity gain kv on the other. A bifurcation point is found
by varying one parameter while looking at the rightmost
eigenvalues of the equilibrium because they dominate the
system behavior. Figure 3 shows the real part of the right-
most eigenvalues λrm in dependence on kp, while the other
parameters are kept constant at their reference value.

The events for which the rightmost eigenvalues go
through the imaginary axis are marked in the figure by
circles, and these correspond to a fold and a Hopf bifur-
cation. Distinguishing between a Hopf and a fold bifurca-
tion from this figure is not possible. However, looking at
the imaginary part of the eigenvalues will reveal the nature
of the bifurcation (Sect. 2.2).

A fold and a Hopf branch are continued in parameter
space, with the previously determined bifurcation points
as starting points. Figure 4 shows the fold and the Hopf
branch as well as the starting points. The fold branch is
a vertical line, indicating that the fold bifurcation only
depends on kp.

The fold and Hopf branches divide parameter space
into four regions, marked I, II, III, and IV in the figure.
The intrinsic stiffness of the muscles, induced by a co-
contraction of 10%, is too small to compensate for the
negative stiffness caused by the gravitational force. Thus,
without reflexive feedback ([kp, kv] = [0,0] in the figure)
the pendulum will fall to ±π because the muscles have no
parallel element. Reflexive feedback of the muscle length-

Fig. 3. The real part of the rightmost eigenvalues versus the posi-
tional feedback gain kp. The other parameters are kept constant at
reference values. The left marking represents a fold bifurcation (one
eigenvalue through zero), the right marking represents a Hopf bifur-
cation (conjugated pair of eigenvalues through imaginary axis)
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Fig. 4. Hopf and fold bifurcations in parameter space. The param-
eters are the positional feedback gain kp and the velocity feedback
gain kv . The starting points of the bifurcation branches are marked
and correspond to the marked points in Fig. 3. The fold and Hopf
branch divide the parameter space in four different regions: I, II, III,
IV. In regions I and II the posture is unstable and the person will
“fall”. The posture is stable in region III, and in region IV oscillatory
movements are experienced (i.e., limit cycles)

ening will increase the muscle stiffness. For a given level of
cocontraction, a certain minimal positional feedback gain
kp,min is necessary in order to compensate for the negative
“gravitational stiffness” Kg. This minimal feedback gain
of the muscle length, kp,min, is represented by the vertical
fold bifurcation line in the figure. Thus, in regions I and II
the person falls because the total ankle stiffness, caused
by muscles and gravity, is negative.

For stable posture, besides the minimal positional feed-
back gain kp,min, a minimal velocity feedback gain kv,min is
also necessary. Velocity feedback is necessary to compen-
sate for the phase lag caused by time delay in the reflex arcs,
muscle activation dynamics, and the presence of a compli-
ant SE (Sect. 2.3). Figure 5 shows the minimal feedback
gains to be [kp,min, kv,min] = [11.7,5.5e − 2]. This point is
an intersection of the fold and Hopf branch and has a
double zero as rightmost eigenvalues. It is, in fact, a Bog-
danov–Takens (BT) bifurcation and it is the start of the
Hopf branch in parameter space.

The lower part of the Hopf branch (Fig. 4), up to
the turn ([kp, kv] = [165.6,27.6]), represents all possible
positional feedback gains kp with accompanying minimal
velocity feedback gains kv. For higher velocity gains, the
posture is stable; for lower gains it is unstable. However,
if velocity gains increase too much, the reflex loop also
becomes unstable. The upper part of the Hopf branch is
associated with these maximal velocity feedback gains. To
the right of the turning point of the Hopf branch the pos-
ture is also unstable because the positional feedback is
too high for any velocity feedback. Thus, in region III the
posture is stable because the lack of intrinsic stiffness is
compensated by a large enough positional feedback. In
addition, the phase lag, introduced mostly by time delay,
is compensated by a velocity feedback.

If one travels from region III to IV across the Hopf
branch, the phase and/or gain margin reduces and the
stability of the posture vanishes. Instead, a limit cycle

Fig. 5. Zoom-in of Fig. 4. BT is a Bogdanov–Takens bifurcation,
the first intersection of fold and Hopf branch and representing the
minimal feedback gains [kp,min, kv,min]= [11.7,5.5e−2] above which
the posture will be stable (up to certain maximum gains)

originates around the equilibrium states of the previously
stable posture. Limit cycles can only exist for nonlinear
systems, and their local stability is determined by the
eigenvalues of the Poincaré map (i.e., linearization about
the cycle), called Floquet multipliers (Sect. 2.2). The Flo-
quet multipliers of the limit cycles were calculated and
the absolute values were always less than unity, indicating
stable limit cycles just beyond the Hopf branch in all of
region IV. In Fig. 6, the size of the imaginary part of the
conjugated pair of eigenvalues associated with the Hopf
bifurcation is shown. The size of the imaginary part Im is
directly related to the period T of the sinusoidal periodic
solutions just beyond these Hopf points (T =2π/Im).

Along the Hopf branch, for increasing velocity gain kv,
Im increases (i.e., T decreases) from 0 [rad/s] at the BT to
16.0 [rad/s] at the second intersection of the fold and Hopf
branch. This intersection has a zero and a conjugated pair
of eigenvalues on the imaginary axis and is in fact a fold–

Fig. 6. Size of imaginary parts Im of conjugated pair of eigenvalues
related to the Hopf bifurcations plotted along the Hopf branch. The
period T of limit cycles just beyond these Hopf points is about T =
2π/Im
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Hopf (FH) bifurcation. Left from the FH, in region I, the
limit cycles are unstable. In the neighborhood of the BT
and FH bifurcations, complex dynamical behavior can be
expected, such as homoclinic cycles (BT) and tori (FH).
However, analysis of these complex behaviors is not within
the scope of this paper. See Kuznetsov (1998) for more
information about BT and FH bifurcations and about the
possible system behavior in their neighborhoods.

The observed limit cycles do not represent the sway
experienced during stance, because sway is assumed to be
the result of perturbations acting on a stable equilibrium
(Sect. 2.1). They are more likely to be related to a path-
ological case termed ankle clonus. Clonus is a sustained
rhythmical contraction of muscles that occurs after a sud-
den stretch and is often caused by injury to the central ner-
vous system. Hidler and Rymer (1999, 2000) showed that
the presence of two conditions leads to clonus, namely,
the presence of significant delays in the reflex paths and
an increase in effective reflex gains, caused by a reduced
motoneuron firing threshold. The ankle is one of the most
distal joints, which means that there are large time delays
in its reflex arcs. This is why ankle clonus is a quite com-
mon type of clonus.

The limit cycles to the right and above the Hopf branch
(Figs. 4 and 6) are caused by similar mechanisms to those
causing ankle clonus, namely, high reflex gains in combina-
tion with a considerable time delay in the reflex arcs. The
period of the oscillations, associated with ankle clonus,
depends on the feedback gains of muscle lengthening and
velocity and varies between 1.8 and 2.5 Hz (Fig. 6). In the
literature, frequencies of about 3–8 Hz are reported, but
these are usually assessed when the patient is seated. It
is therefore not surprising that our simulated frequencies,
assessed using a model of stance, are somewhat lower (the
moment of inertia about the ankles is much larger in stance
compared to sitting).

3.2 Influence of reflex delay on model behavior
and stability

The influence of time delay τ on the behavior of the posture
model is shown in Fig. 7 in parameter space. The fold
branch does not change for different delays because it rep-
resents the muscle length feedback kp,min for zero ankle
stiffness, and stiffness is defined at zero frequency. Time
delay only adds phase lag proportional to frequency (Hτ =
e−jωτ ) and has no influence on stiffness and therefore none
on the location of the fold bifurcation in parameter space
either. However, time delay has a tremendous influence on
the Hopf branch. For increasing delay, the Hopf branch
“shrinks” because it becomes harder to compensate for
the extra phase lag introduced by this delay. This causes
the region of reflex gains for which the posture is stable
(region III in Fig. 4) to become smaller.

The period of the stable limit cycles, emerging beyond
the Hopf branch, will increase with increasing time delay.
The frequency of stable oscillations is up to 6.3 Hz for zero
time delay, up to 2.5 Hz for 50 ms time delay (as mentioned
in the previous section), up to 1.7 Hz for 100 ms time delay,

Fig. 7. Influence of time delays τ on fold and Hopf branches. Fold
bifurcation branch is unaffected by delay. Hopf bifurcation branch
shrinks with increasing delay

and up to 1.2 Hz for 150 ms time delay. These maximum
frequencies lie in the neighborhood of the FH.

Figure 8 shows a zoom-in of parameter space at the BT
point. The minimal velocity feedback gain kv,min neces-
sary for stable posture increases for increasing time delay
τ because the extra phase lag of the time delay has to be
compensated by extra velocity feedback. The figure also
shows that without time delay no velocity feedback would
be necessary at all to obtain stable posture (although it
still might give better transient response).

3.3 Influence of cocontraction on model behavior
and stability

Increased neural input u leads to increased cocontraction
aco and so to shortened CEs. In other words, the active
states and lengths of the CEs of the muscles in equilib-
rium change. In Fig. 9, the influence of increased neural
inputs u on the fold bifurcation in terms of positional feed-
back gain kp is shown. The intrinsic stiffness of the mus-
cles becomes greater for increasing cocontraction, and for
u > 0.23 the stiffness has become so great that reflexive

Fig. 8. Zoom-in of Fig. 7. Increasing time delay increases the mini-
mal velocity feedback, kv,min, necessary for stable posture
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Fig. 9. Influence of neural input u, in this case equal to the cocon-
traction aco (no force feedback), on fold bifurcation. The fold branch
represents the minimal muscle length feedback kp,min that exactly
compensates for the negative gravitational stiffness: the total ankle
stiffness is zero. Higher cocontraction increases the intrinsic muscle
stiffness, and therefore less muscle length feedback is necessary for
stable posture. For neural inputs higher than 0.23 (23% of maximal
cocontraction) the posture is stable without any reflexive feedback
at all

feedback is no longer necessary for stable posture (kp <0
for u> 0.23 in Fig. 9). In a parameter space of kp versus
kv (as in Fig. 4), this would manifest itself as a shift of the
vertical fold branch to the left for increasing u.

The influence of increased neural input u on the Hopf
branch is shown in Fig. 10. This figure shows that the
Hopf branch grows rapidly with increasing cocontraction
and thus provides stable posture for much larger feedback
gains. A large part of this growth is due to the fact that
for increasing cocontraction the muscles will work on a
lower part of their force–length relationship (below opti-
mum length), thereby decreasing the effective reflex loop
gain. Moreover, increasing the intrinsic stiffness of the
muscles decreases the loop gain further, especially at low
frequencies.

Fig. 10. Influence of neural input u, in this case equal to the cocon-
traction aco (no force feedback), on Hopf branches. Increased level
of cocontraction lowers the effective reflex loop gain and increases
the intrinsic muscle stiffness, which leads to larger Hopf branches

The period of the stable limit cycles, emerging beyond
the Hopf branch, will decrease slightly with increasing
cocontraction. The frequency of the stable oscillations
is up to 2.5 Hz for 10% cocontraction (as mentioned in
Sect. 3.1), up to 2.7 Hz for 20–30% cocontraction, and up
to 2.8 Hz for 40% cocontraction.

3.4 Influence of force feedback on model behavior
and stability

The influence of force feedback in musculoskeletal sys-
tems is still a topic of debate. Force feedback in the model
of stance has two consequences: it changes the equilib-
rium by changing the level of cocontraction aco (Sect. 3.3)
and it modulates the intrinsic and reflexive feedback loops
(Sect. 2.3). The solid lines in Fig. 11 show the influence of
force feedback with gain kf on the fold bifurcation (posi-
tive kf means positive force feedback). For positive force
feedback, less or no positional feedback is necessary in
terms of kp to obtain positive ankle stiffness; for nega-
tive force feedback more positional feedback is necessary.
To see the modulation effect of force feedback, the neu-
ral inputs were adapted such that there was no increase
in cocontraction (i.e., same equilibrium for all kf ). This is
represented by the dashed lines and shows a linear relation
between kp and kf .

The influence of force feedback on the Hopf branch
is shown in Fig. 12. The modulation effect (dashed lines)
of positive force feedback makes the Hopf branch shrink
considerably, which is compensated only slightly by the
effect of increased cocontraction. Negative force feed-
back, on the other hand, enlarges the Hopf branch. To
summarize, positive force feedback increases the muscle
stiffness (intrinsic and reflexive), but the posture becomes

Fig. 11. Influence of force feedback kf on fold bifurcation. Posi-
tive kf means positive force feedback. Solid lines show influence of
force feedback on fold bifurcation. Positive force feedback increases
the cocontraction and modulates the intrinsic and reflexive feedback
loops. This increases ankle stiffness, and therefore less muscle length
feedback kp is necessary. The effect of the modulation effect alone is
shown by the dashed lines (cocontraction is kept constant by adapting
the neural input)



57

Fig. 12. Influence of force feedback kf on Hopf branches. Positive
kf means positive force feedback. Solid lines show influence of force
feedback on the Hopf branch (increased cocontraction and mod-
ulation of reflexive and intrinsic loops). The effect of the modula-
tion effect alone is shown by the dashed lines (cocontraction is kept
constant by adapting the neural input). The effect of modulation is
dominant and causes the Hopf branch to shrink for positive force
feedback

more susceptible to an unstable reflex loop. For negative
force feedback, it is precisely the other way around.

The frequency of stable oscillations is not very sensi-
tive to increasing force feedback and is up to 2.6 Hz for
negative force feedback with gain kf =−1e−5 and up to
2.5 Hz for no force feedback (as mentioned in Sect. 3.1) or
positive force feedback with gain kf =1e−5.

3.5 Model fit to data of quiet and perturbed stance

To get a notion about the reflex gains experienced during
posture, the model was fitted to data from the literature
about disturbance rejection and quiet stance in the sagit-
tal plane. Mihelj et al. (2000) measured the effective ankle
stiffness (i.e., stiffness of ankle muscles plus gravitational
stiffness) in the sagittal plane in response to disturbances,
relying mainly on ankle strategy (i.e., counteracting per-
turbations with your ankle joints only). They found it to
be between 9 and 12 Nm/deg. We roughly estimated the
relative damping factor at between 0.6 and 0.8 by taking
the logarithmic decrement of the presented graphs. The
combinations of reflex gains [kp, kv] reflecting these data
is shown in Fig. 13 (light gray area).

Whether or not ankle stiffness – reflexive stiffness in
particular – is important in quiet stance remains a topic of
debate. Some believe anticipatory control makes a major
contribution to stability during quiet stance (Masani et al.
2003; Morasso and Sanguineti 2002). However, Fitz-
patrick et al. (1994) has shown that afferent feedback
from ankle muscles is sufficient for a stable upright stance.
Therefore, we fitted our model to data of quiet stance in
the sagittal plane with the subject’s eyes closed (Winter
et al. 1998) and also plotted it in Fig. 13 (dark gray area).
Figure 14 zooms in on the areas of reflex gains. The figure
shows that the areas of reflex gains for perturbed stance
and quiet stance overlap.

Fig. 13. Areas of reflex gains for the stance model fitted to data from
the literature of perturbed stance (light gray) and quiet stance (dark
gray)

Fig. 14. Zoom-in of Fig. 13. The overlap of the areas of reflex gains,
experienced during perturbed and quiet stance, could indicate that
stretch reflexes play a major role in stabilizing the posture in both
cases

Most experts agree that reflexes play a crucial role in
perturbed stance. For quiet stance, it has been proposed
that anticipatory control may play a key role. However,
the overlap of the calculated areas of reflex gains for per-
turbed stance and quiet stance could be an indication that
stretch reflexes are the major control mechanisms in both
cases.

4 Discussion

4.1 How should stability be quantified?

The upright standing posture considered in this paper
is an example of a perturbed equilibrium. Fluctuations
around the equilibrium can be caused by, for example,
measurement noise in muscle spindles, noise in the neural
processing of the information, or environmental pertur-
bations, such as a push. If these fluctuations are small,
local asymptotic stability of the posture guarantees con-
vergence back to the equilibrium. The local stability is
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defined by the eigenvalues of the equilibrium. Similarly,
the stability against small perturbations in walking is
determined by the Floquet multipliers of the gait cycle,
which Hurmuzlu et al. (1996) calculated from experimen-
tal data constructing a Poincaré map. Another method
to assess local stability from experimental gait data is the
calculation of maximum finite-time Lyapunov exponents
(Dingwell and Cusumano 2000; Dingwell et al. 2000). Tra-
ditional measures of gait stability, based on kinematic var-
iability, are poor predictors of local stability (Dingwell
et al. 2001).

For both walking and posture tasks, the stability
against larger perturbations is of great importance. In
walking, for example, perturbations like tripping, stum-
bling, and pushing are frequent in daily life (Forner Cor-
dero 2003). Stability against these kinds of perturbation
cannot be determined by the calculation of the eigenvalues
because for large perturbations linearization is in general
not justified. In fact, for large perturbations the nonlinear
terms of the differential equations determine the stabil-
ity. Thus, local stability is only a necessary condition for
stability against larger perturbations.

An interesting measure of stability is the basin of attrac-
tion. The basin of attraction of an attractor, such as a
limit cycle, is the set of all the initial conditions in state
space that lead to an orbit that approaches the attractor
(Seydel 1988). Schwab and Wisse (2001) calculated the
basin of attraction of the gait cycle of the simplest walk-
ing model for different slopes (i.e., different gravitational
energy inputs). After comparison with the Floquet mul-
tipliers at these slopes, they concluded that there is no
obvious relation between the local stability and the size
of the basin of attraction. In other words, a better local
stability margin does not imply a better stability margin
against large perturbations.

The interpretation of the basin of attraction is easy
in the above case because the basin of attraction equals
all combinations of initial stance leg angles and angular
velocities that lead to stable walking. If the basin of attrac-
tion is larger, the bipedal robot is easier to start up, and
this is desirable. Thus, Schwab and Wisse (2001) concluded
that the size of the basin of attraction is the most impor-
tant stability measure in designing such bipedal robots.
The question is if the basin of attraction is also a good
measure of stability for human walking. In models of
human walking, the basin of attraction can theoretically
be computed in the same way as is done for the sim-
plest walker, namely, by searching numerically the state
space for all initial conditions under which the system
returns to the cycle. However, more realistic models of
walking can only be described by high-dimensional mod-
els, and this implies two problems. The first is the high
computational effort required: the computation time for
calculating the basin of attraction grows exponentially
with system dimension, while the computation time for
the 2D basin of the simplest walker is already long. The
second problem is one of interpretation. Not only is the
size of the basin of attraction given in terms of (hyper) vol-
ume of importance, but its shape is as well. If the basin of
attraction increases substantially in some dimensions of

low importance but decreases a little in a very important
dimension, looking only at the (hyper) volume of the basin
leads to the wrong conclusion, namely, that the stability
margin has increased. Another problem concerning the
interpretation of the basin of attraction is that the states
of the model are often an abstraction or simplification of
reality and/or are not measurable (e.g., muscle activation).
Thus for many states it is not known how much they are
perturbed in real-life walking.

Stability in experimental gait studies is often quantified
by indices, coming from rather intuitive tests, and have few
predictive capabilities (Boulgarides et al. 2003). Moreover,
the question remains whether the perturbations given in
such tests are representative of those in everyday life. It
would be useful to link the stability measures from theo-
retical and experimental research in the future to see how
they are related and possibly to propose better ways of
determining stability through experimental research.

4.2 Concluding remarks

Bifurcation analysis was performed to show the influ-
ence of stretch reflexes, time delays, cocontraction, and
force feedback on the behavior and stability of a model
of stance. A fold and a Hopf branch divided the parame-
ter space, in terms of muscle length and velocity feedback
gains, into regions of different behavior: unstable posture,
stable posture, and stable limit cycles. A linearized model
was constructed and provides insight into the biomechan-
ical causes for the bifurcations. The fold bifurcation rep-
resents zero ankle stiffness, below which the posture is
unstable and a person falls. Ankle stiffness is increased
by extra muscle length feedback, increased cocontraction,
or positive force feedback. Feedback of muscle velocity
is necessary to compensate for phase lag caused by time
delay in the reflex arcs, muscle activation dynamics, and
the presence of a compliant SE. The Hopf bifurcation
represents the transition to unstable reflex loops. Beyond
a Hopf bifurcation, for positive ankle stiffness the pos-
ture becomes unstable and a stable limit cycle emerges.
The Hopf branch shrinks for increasing time delays, mak-
ing the posture more susceptible to unstable reflex loops.
Older people and people with injuries to the central ner-
vous system often have larger time delays in their reflex
arcs. The fact that these groups of people often have trou-
ble with posture tasks such as standing might be explained
by this increased time delay. Positive force feedback also
reduces the size of the Hopf branch. More cocontraction
leads to a growth of the Hopf branch, causing a larger
region of postural stability in terms of stretch reflex gains.
The period of the limit cycles, emerging beyond the Hopf
branch, is mainly dependent on muscle length and velocity
feedback and on the amount of time delay present in the
reflex arc. The stable limit cycles do not correspond to the
sway observed in human stance but rather to a neural defi-
ciency termed ankle clonus. This is caused by higher effec-
tive reflex gains (i.e., reduced motoneuron firing threshold)
together with the large time delay present in the reflex arcs
of the ankles. A model fit to data of perturbed and quiet
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stance in healthy subjects shows that stretch reflexes might
be the major control mechanism in both cases.

This study has considered the influence of reflexes
on stance by combining bifurcation analysis with more
common biomechanical concepts and tools. It provides a
framework for future research: we will develop this line of
research to look at rhythmic tasks such as walking.
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Appendices

Musculoskeletal model

A Equations of motion. The system contains six states:
the activities of both muscles, ata and asol, the length of
the CEs of both muscles, lce,ta and lce,sol, and the angle θ
and angular velocity ω of the inverted pendulum.

Stretch reflexes are modeled by delayed feedback of
the length of both muscles (relative to the rest lengths
lm0), � lmus,ta, and � lmus,sol, and the velocities of both
muscles, vmus,ta and vmus,sol. The lengths are fed back
with gain kp and the velocities with gain kv. Force feed-
back is modeled as delayed feedback of muscle force with
gain kf .

A direct relation is assumed between the muscle lengths
and velocities and the angle and angular velocity:

�lmus,ta =−θ.r
�lmus,sol = θ.r

and
vmus,ta =−ω.r
vmus,sol =ω.r

Thus, reflexive feedback is modeled as delayed feedback
of angle θ(t − τ), angular velocity ω(t − τ), Fse,ta(t − τ),
and Fse,sol(t − τ). The equations of motions are

ȧta = 1
τta

(
uta −ata −kp c16 θ (t − τ)

−kv c16 ω (t − τ)+kf Fse,ta (t − τ)
)

,

ȧsol = 1
τsol

(
usol −asol +kp c16 θ (t − τ)

+kv c16 ω (t − τ)+kf Fse,sol (t − τ)
)

,

l̇ce,ta = c4 vmax,ta

(
Fvce,ta−1
Fvce,ta+c4

)

if Fvce,ta ≤1 (contracting) ,

l̇ce,ta = −c6 vmax,ta

(
Fvce,ta−1

Fvce,ta−c17

)

if Fvce,ta >1 (lengthening) ,

l̇ce,sol = c4 vmax,sol

(
Fvce,sol−1
Fvce,sol+c4

)

if Fvce,sol ≤1 (contracting) ,

l̇ce,sol = −c6 vmax,sol

(
Fvce,sol−1

Fvce,sol−c17

)

if Fvce,sol >1 (lengthening) ,

θ̇ =ω ,

ω̇= c11 Mp + c12
(
Fse,ta −Fse,sol

)+ c13 sin θ ,

in which the force–length relationships of CEs of the mus-
cles are

F lce,ta = e−(c2 lce,ta−c3)
2

,

F lce,sol = e−(c2 lce,sol−c3)
2

,

the nonlinear springs of the SEs of both muscles are

Fse,ta =min
[
c10 ata F lce,ta , c7

(
ec8 (1−c1−lce,ta)−c9 θ −1

)]
,

Fse,sol =min
[
c10 asol F lce,sol , c7

(
ec8 (1−c1−lce,sol)−c9 θ −1

)]
,

the force–velocity relationships of the muscle are

Fvce,ta = Fse,ta

c5 ata F lce,ta
,

Fvce,sol = Fse,sol

c5 asol F lce,sol
,

the maximum velocities of the muscles are
vmax,ta = c14

(
1− c15

(
1−ata F lce,ta

))
,

vmax,sol = c14
(
1− c15

(
1−asol F lce,sol

))
,

and the activation and deactivation time constants of the
muscle activation dynamics are

τta =





τac in case ata ≤uta −kp c16 θ (t − τ)−kv c16

×ω (t − τ)+kf Fse,ta (t − τ)

else τta = τda ,
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τsol =





τac in case asol ≤usol +kp c16 θ (t − τ)+kvċ16

×ω (t − τ)+kf Fse,sol (t − τ)

else τsol = τda .

Boundary conditions on certain states and functions
are
0≤ata ≤1, 0≤asol ≤1 ,
lce,ta ≥0, lce,sol ≥0 ,
Fse,ta ≥0, Fse,sol ≥0 .

Constants (all positive) used in the equations of motion
above are dependent on muscle parameters in the follow-
ing way:
c1 = lt

lm0
, c2 = 1

lcesh
,

c3 = lce0
lcesh

, c4 =mvsh ,

c5 =Fmax, c6 =mvsh mvshl ,

c7 = Fmax
esesh −1 , c8 = sesh

sexm
,

c9 = r sesh
lm0 sexm

, c10 =Fmaxṁvml ,

c11 = 1
I
, c12 = r

I
,

c13 = mg lcom
I

, c14 =mvvm ,

c15 =mver, c16 = r ,
c17 = (1+mvsh mvshl) (mvml −1)+1 .

The parameters have the following values and meaning:

m=80 kg Mass of male person
I =121.6 kg m2 Mass moment of inertia around

ankles
lcom = 1.0 m Length between COM and ankles
g =9.81 m/s2 Gravity constant
r =0.04 m Moment arm about ankles
lm0 =0.305 m Rest length of muscle
lt =0.27 m Tendon length
lce0 =0.1 Optimum length of CE (normalized

on lm0)
lcesh =0.03 Shape parameter determining width

of F lce
Fmax =8792 N Maximum active muscle force
mver =0.5 Scaling parameter for maximal

contraction velocity
mvvm =2 lm0/s Maximal contraction velocity of

unloaded CE
mvsh =0.2 Shape parameter of curvature of

Fvce
mvshl =0.5 Shape parameter for lengthening

curve of Fvce
mvml =1.3 Maximal force gain for lengthening

muscles
sesh =4.4 Shape parameter of curvature of

exponential slope of SE
sexm =0.043 Maximal extension of SE (normal-

ized on lm0)
τac =11.33 ms Time-constant for increased muscle

activation
τda =31.58 ms Time-constant for decreasing muscle

activation

B Approximation of discontinuities. The function F (x) is
defined as:
F(x)= −x if x <0 ,
F (x)= x if x ≥0 .

The function can be approximated by the following
continuous function with the help of a hyperbolic tangent
function as follows:

Fc(x)=x tanh (SC x) .

This way the discontinuities in the equations of motion
(Appendix A) are smoothed into continuous functions for
the performance of bifurcation analysis. The derivatives
of the functions are also continuous.

The parameter SC represents the steepness con-
stant. The higher SC is, the better the discontinuity is
approached. The drawback is that a higher SC gives a
stiffer system. SC is taken to be 1,000 in all the simula-
tions.

C Padé approximation of time delay. For the linearized
model discussed in Sect. 2.3, the time delay was modeled
by a third-order Padé approximation. A Padé approxima-
tion of a time delay is based on a good approximation in
the frequency domain. In the time domain the results will
be less good. For the prediction of the eigenvalues associ-
ated with the equilibrium of the posture model of Sect. 2.1,
a third-order Padé approximation gave good results (the
higher the order, the better the approximation). The trans-
fer function of the Padé approximation is as follows:

HPadé = 3 τ 2 s2 −24 τ s +60
τ 3 s3 +9 τ 2 s2 +36 τ s +60

.

To give an idea about the validity of the delay approxi-
mation, a comparison is made between the Padé approx-
imation and the real delay in Laplace (Hτ = e−jωτ ) with
delay τ =50 ms. This is shown in the Bode plot of Fig. 15.

The figure shows that the approximation in the fre-
quency domain is good up to ωu =50 [rad/s]. This is much
larger than the open-loop (i.e., before closing the reflex
loop) bandwidth of the system. Therefore, depletion of
the phase and gain margin, defining the transition of linear
stability to linear instability, happens at frequencies much
lower than the frequency up to which the Padé approxi-
mation is valid. Thus the approximation is at least valid up
to the transition from linear stability to linear instability.

Fig. 15. Comparison of real delay of 50 ms (solid) and the third-order
Padé approximation (dashed). The approximation is good up to 50
[rad/s]
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Moreover, as long as the rightmost eigenvalues λrm of
the system have an absolute value much smaller than the
frequency ωu up to which the Padé approximation is valid
(i.e., |λrm|�ωu), the prediction of the eigenvalues by the
linearized model will also be quite good in the right half
plane.

As an example, the eigenvalues were calculated for
the equilibrium with parameter set [u kp kv kf τ ]T =
[0.1 1000 10 0 50e−3]T , thus way out of the stable area of

the parameter space (Fig. 4 in Sect. 3.1). The rightmost
eigenvalues of the DDEs, calculated by DDE-BIFTOOL,
are in this case λrm = 6.88 ± 12.31i. The rightmost eigen-
values, predicted by the linearized model, are in this case
λrm =6.86 ± 12.17i. Thus, while the absolute value of these
eigenvalues, which is 14.1, is not very much lower than 50,
it still gives a reasonably good approximation of the most
dominant eigenvalues.


