
Modelling Memory Functions with Recurrent Neural

Networks Consisting of Input Compensation Units:

I. Static Situations

SIMONE KÜHN1*, WOLF-JÜRGEN BEYN2 AND HOLK CRUSE1

1 Department of Biological Cybernetics, Faculty of Biology, University of Bielefeld, Bielefeld, 33501, Germany

2 Department of Mathematics, University of Bielefeld, Bielefeld, 33501, Germany

* Correspondence to: Simone Kühn
Mail: Simone.Kuehn@uni-bielefeld.de
Phone: +49 521/ 106 5533
Fax: +49 521/ 89010

Abstract
Humans are able to form internal representations of the information they process – a
capability which enables them to perform many different memory tasks. Therefore, the neural
system has to learn somehow to represent aspects of the environmental situation; this process
is assumed to be based on synaptic changes. The situations to be represented are various as for
example different types of static patterns but also dynamic scenes. How are neural networks
consisting of mutually connected neurons capable of performing such tasks?
Here we propose a new neuronal structure for artificial neurons. This structure allows to
disentangle the dynamics of the recurrent connectivity from the dynamics induced by synaptic
changes due to the learning processes. The error signal is computed locally within the
individual neuron. Thus, online learning is possible without any additional structures.
Recurrent neural networks equipped with these computational units cope with different
memory tasks. Examples illustrate how information is extracted from environmental
situations comprising fixed patterns to produce sustained activity and to deal with simple
algebraic relations.

1

mailto:Simone.Kuehn@uni-bielefeld.de

1 Introduction
From early childhood on humans brains have a fundamental ability: they build up
representations. Brains and their constituents, the neurons, are specialised to represent aspects
of the environment which means that these neurons or groups of neurons “stand for” those
aspects. This information coded within neural circuits can be multifaceted. Information of
objects like a tree or a chair can as well be represented as rules, for example underlying
grammar in language, or dynamic events like the movement of one person toward another. To
start with we want to focus on the two first examples: We propose a new neuronal
architecture that is able to deal with these problems. Its ability to represent dynamic situations
is treated in a companion paper.
This paper contributes to a larger project the goal of which is to develop a complete memory
system containing a large number of memory engrams, able to learn, behave and reason using
this memory structure. This memory system will consist of two parts. One represents a
collection of many situation models, the other some kind of “Selector net” that is able to
connect sensory input with the appropriate situation model. Although this Selector net, of
course, comprises an important element of the complete system, we will not deal with this
problem in this paper, but concentrate on the question how individual situation models may be
constructed and how they can be learned when a situation is given via sensory input. Situation
models stand for information stored in LTM, but also for information stored in STM or a
working memory (Baddeley, 1986, 1992). Such a working memory allows us to hold
representations of external information actively in memory, at least for a short time, to be able
to act within and react to the world. In various experiments the properties of working memory
have been investigated applying so-called delayed response tasks. The pioneer work has been
done by Fuster and Niki (Fuster and Alexander, 1971; Fuster, 1973; Niki, 1974a, 1974b). In
continuing this work many studies using electrophysiological recordings show a stimulus-
specific, enhanced delay activity in several brain areas (for reviews see Fuster, 1995;
Miyashita and Hayashi, 2000; Wang, 2001). This sustained internal activity in the absence of
the external stimulus is argued to be the neural substrate of working memory. An exciting
example concerning the representation of dynamic scenes is given by Umiltà et al. (2001). So
called mirror neurons are shown to be active when a grasping movement to an object is
observed, even when the object is hidden behind an occluder. However, the neuron remains
silent when the same movement is observed but the monkey knows that there is no object
hidden behind the occluder.
Another important capability human brains have is representing rules. This becomes apparent
when regarding language learning. Marcus et al. (1999) have shown that statistical learning
mechanisms – which are, of course, not called into question to exist – do not exhaust the
child’s repertoire of learning mechanism. They performed experiments showing that already 7
month old babies are able to extract simple algebraic relations from acoustic input. The babies
were able to distinguish between three word sentences consisting of made-up words and
following either the condition “ABA” or “ABB”. As the test words were totally new and the
sentences were the same length the babies could not distinguish them based on transitional
probabilities or statistical properties.
Representing such algebraic relations means representing “open-ended abstract relationships
for which we can substitute arbitrary items. For instance, we can substitute any value of x into
the equation 2+= xy .” (Marcus et al., 1999; see also Chomsky, 1980; Pinker and Prince,
1988; Pinker, 1991; Marcus et al., 1995; Marcus, 2001). The point made in the study is that
humans, including young babies, are not only capable of generalising due to statistical
learning mechanisms in order to build correct sentences as described, but are capable of
representing the underlying general rule.

2

However, even insects can cope with similar problems. Honey bees can solve “delayed
matching to sample” tasks which allowed Giurfa et al. (2001) to show that honey bees are
able to learn the concept of “symmetry”. These authors could further show that honey bees
are able to learn the concept of “difference” or “oddity” which implied these insects to be able
to cope with “delayed non-matching to sample” tasks. Drosophila is assumed to be able to
construct a dynamic representation of an optical pattern that has disappeared behind an
occluder and expects it to appear again at the other side of that occluder (Strauss and Pichler
1998).
For many of the different abilities of brains computational models have been proposed. The
most promising among them are models with recurrently coupled neurons because they seem
to resemble natural neuronal assemblies best. This approach will also be followed in this
paper. As the tasks mentioned require an internal representation of the current external
situation, some form of learning is necessary. To model example-based learning different
forms of error backpropagation (Rumelhart et al., 1986; Hertz et al., 1991) are widely used
training procedures for both feed-forward and recurrent neural networks (RNNs). But
backpropagation is often considered to be biologically implausible because the error signal
has to be provided externally and a specific additional network is required that is able to
propagate these error signals.
Additionally, most artificial recurrent networks exposed to learning situations suffer from two
severe problems. On the one hand, training is particularly difficult in RNNs because two
different dynamics are intertwined: There is the dynamics of the RNN itself, the properties of
which depend on distribution and size of the weights. If, on the other hand, these weights are
changed additionally due to the learning procedure, a second dynamic process is introduced
that interacts with the first one. Therefore, neural and synaptic dynamics are coupled in a very
intricate way (Del Giudice et al., 2003) making the control of the network a hard problem
(Steil, 1999). This difficulty is often solved by application of off-line training procedures, that
separate the dynamics of the network from the dynamics of the training procedure like in
Contrastive Hebbian Learning (Movellan, 1990, Baldi and Pineda, 1991; Xie and Seung,
2003) or training echo state networks (Jaeger and Haas, 2004), or by hand-tuning the
parameters (e.g. Seung et al., 2000). But neither a cut-off of the feedback loop nor hand-
tuning seems to be biologically plausible. Online learning algorithms like real-time recurrent
learning (e.g. Williams and Zipser, 1989b), in contrast, are often very slow and
computationally very expensive concerning storage capacity and computation time (see
(Williams and Zipser, 1989b; Schmidhuber, 1992; Doya, 1995). Furthermore, they are non-
local and would require a large additional network structure when being applied to biological
systems.

In this paper, we propose a new biologically inspired computational circuit consisting of
neuronal units called Input Compensation Unit (IC Unit). Using these units allows to
disconnect the dynamics of the recurrent network from the dynamics due to the learning
procedure. Therefore, these units allow for an easy training of RNNs in an online mode to
model the two tasks mentioned above – i.e. holding an item in memory which means learning
the representation of static patterns, and representing simple algebraic relations. Additionally
it is possible that a network equipped with those units is also able to learn dynamic situations.
This is described in the companion paper (Kühn and Cruse, 2006).
The circuit acts within a neuronal unit and incorporates a learning rule that formally
corresponds to the delta rule (Widrow and Hoff, 1960), but does not require a separate
network for backpropagating the error. Each neuron only needs local information directly
available via its synaptic connections. The error is determined within each neuron. Therefore,
the training procedure is unsupervised as no global trainer is necessary and each neuron relies
on local information only. Consequently, the computational costs are very low. Thus, our

3

model overcomes the main objections against traditional approaches in training recurrent
neural networks. A very similar rule has been proposed by (Kalveram, 2000) for training
feedforward networks. The difference to our approach is discussed below (Section 5).
The final goal behind this approach is to design a memory system that contains the
representation of many different situations. Such situations may comprise static or moving
objects or describe connections between a sensory input and a motor output, analogue to so-
called motor primitives as proposed by Wolpert and Kawato (1998), for example. In some
contrast to these motor primitives, the situation models proposed here are not separable in
forward models and inverse models, but each situation model combines both aspects in one
holistic model (see also Cruse 2003). The units of these RNN models - like those of the
somewhat more complex MMC nets (Steinkühler and Cruse 1998) - may be interpreted as
showing properties of mirror neurons, or canonical neurons (Gallese and Lakoff 2005),
because no functional separation is possible between neurons being related to perceptual or to
motor tasks. These units correspond to what Gallese and Lakoff (2005) termed “multimodal
neurons”.
The view, that different situations are stored by specific networks, is supported by
physiological findings (Fogassi et al., 2005). Studying mirror neurons, i.e. neurons which
likewise represent sensory as well as motor aspects, Fogassi and colleagues (2005) have
shown that different neurons are activated when identical movements are either observed or
performed which however belong to a different context (e.g. eating or placing). As mentioned,
in this paper we do not deal with the question of how cooperation or selection of different
situation models may be organised, but first concentrate on the basic structure of such
situation models.
The situation models proposed here consist of very simple recurrent neural networks which
may, therefore, also be suited to serve as models for cognitive properties of animals like
insects. Thus we follow the general idea of Beer (2003) who proposes to study “minimal
cognition” first and then try to develop this system to be able to cope with higher cognitive
functions. An excellent example for this approach is given by Feldman and Narayanan (2004)
and Narayanan (1999).
In the following (Section 2) we want to specify the tasks in more detail the network should be
able to deal with. The structure of the circuit proposed is described in Section 3. After having
presented the results (Section 4) the paper concludes with a discussion of the networks’
properties including some biological interpretations.

2 The tasks

2.1 Learning a static pattern to produce sustained activity
The first task the network should cope with is to represent a fixed static pattern consisting of
analogue values that is given as input to produce sustained activity even if the input pattern
disappears. Specifically, the task is as follows: The recurrent network consists of at least n
units. As an example a network for 3=n is depicted in Figure 1a. Any n-dimensional input
vector is provided to the network. The learning algorithm should change the weights in a way
that all units of the network adopt activations that correspond to the input and maintain their
activation even after the external input is switched off.
Which values should the weights take if a fixed input vector is presented? Assume that we
have a network with n units with output values x1, x2, … xn and the input vector consists of the
components ()T

21 ,...,, naaa=a . The task is then to find a weight matrix W with aWa ⋅= .
This means that the weights of the recurrent network should form a matrix that has the vector
() T

21 ,...,, naaa as an eigenvector corresponding to the eigenvalue 1=λ , while all other

4

eigenvalues satisfy 1<λ . As we have n2 weights there is a manifold of matrices that fulfil
this condition, as n equations determine n degrees of freedom. Therefore, ()nn −2 of the n2

weights can be chosen arbitrarily. For 3=n one possible solution is given by matrix W1:

()















⋅++

333

222

111

3211
aaa
aaa
aaa

aaa (W1)

With () T1,1,1=1 , W1 can be rewritten as ()[] TT1 1aa1 ⋅⋅⋅ . W1 is a skew projector. It projects
onto { }aspan along the space that is orthogonal to 1. Such a network does not only stabilise
an input situation given by vector () T

321 ,, aaa , but any multiple of this vector. If the initial
activations of the units are set to values that deviate from this condition, the network relaxes
to a vector that obeys this relation, i.e., to a multiple of () T

321 ,, aaa . The network can
therefore be described as forming an attractor consisting of a two-dimensional subspace that is
described by the plane 0332211 =++ xaxaxa . This network is only neutrally stable. Neutral
stability means that if any weight is changed arbitrarily, the activations of the units increase to
infinity or may decrease to zero. Therefore, a learning mechanism is needed that
automatically stabilises the weights against disturbances as for example disturbances due to
synaptic noise.

2.2 Representing simple algebraic relations
As a further task, the network should be able to store simple algebraic relations. Here, we deal
with two examples of such relations: First, the results obtained by Marcus et al. (1999) should
be simulated with the network proposed here. Marcus and colleagues found, that the infants
tested were able to extract abstract algebra-like rules that represent the relationship between
variables such as “the first item X is the same as the third item Y”. Simulations of two
experiments have to be performed: In the first one the network has to be trained with external
input of structure “ABA” and in the second one with external input of structure “ABB”. The
network can be tested afterwards (just like the babies) with consistent input, i.e. input
resembling the structure of the training phase, or with inconsistent input. The test input has to
consist of variables not yet presented during the training phase to prevent learning based on
transitional probabilities. The babies in the experiments described above paid attention to the
inconsistent sentences for a longer period of time (for details see Marcus et al., 1999).
The second task to be learnt by the network is more general by nature: It should be able to
represent simple linear equations. The network should be able to sum up two variables, i.e. to
represent all possible configurations of x1 and x2 that result in a value 213 xxx += . If we do
not wish to apply a 3D look-up table for all possible cases, the mechanism, i.e. the underlying
rule or equation, should be represented which can then be applied to any given values. For
this specific example, an easy solution is to use two input units x1 and x2, the output of which
is fed in as input to a third unit, with weights of unity. However, there are two tasks related
tightly: The task 213 xxx += also implies that 231 xxx −= and 132 xxx −= . Of course, two
further independent nets could be constructed that can solve these additional tasks. This
solution would require a kind of selector network that decides which of the three nets should
be used depending on the task given.

5

A simpler solution is to form one “holistic” network that represents the complete situation and
can solve all three tasks. This recurrent network is given by the equation () ()tt xWx ⋅=+1 or,
for 3=n , by:

() () () ()
() () () ()
() () () ()txwtxwtxwtx

txwtxwtxwtx
txwtxwtxwtx

3332321313

3232221212

3132121111

1
1
1

⋅+⋅+⋅=+
⋅+⋅+⋅=+

⋅+⋅+⋅=+

Here, ()tx is the vector describing the actual activation of the n units (3=n in our case) and
()1+tx the vector describing the activation in the following time step. W describes the n2

weights wij (ni to1= , nj to1=). If the weights are chosen appropriately, this system has
stable solutions that fulfil the equation 0321 =−+ xxx . An appropriate weight matrix is given
by matrix W2:
















−

−

011
101
110

(W2)

The tasks regarded here can be understood as pattern completion tasks: Given any two values
as input, after relaxation the network will provide all three values x1, x2, and x3 at the output,
i.e., a correct solution in any case. Therefore, depending on the input variables chosen, any of
the three subtasks can be solved by this network. A correct solution is even found if only one
input value is defined. As this latter task is underconstrained, different solutions are possible.
The solution actually chosen by the network depends on its earlier state.

3 The model: A recurrent neural network with IC Units

3.1 Structure of IC Units
In this section we explain the architecture of a network that can cope with both tasks specified
above and can, as will be shown in the companion paper, also learn to represent dynamic
situations. To explain the structure of the network and to explicate its individual units let us
consider a network that consists of n recurrently connected units. An example of a three-unit
network is shown in Figure 1a.
Each individual neuron xi (ni to1=) is equipped with a special internal structure (Fig. 1b)
described in the following. The dendritic tree is partitioned into two regions: One region with
fixed synapses, whose presynaptic neurons belong to sensory neurons transmitting the
external input ai. To simplify matters each neuron can only be stimulated by one external
stimulus. As the synaptic weight is fixed it is not specified in Figure 1b and 1c. The second
dendritic region is characterised by active synapses wij, whose presynaptic neurons are
components of the recurrent network (Fig. 1a) and are recurrently connected to neuron xi.
Active synapses are synapses which can be either potentiated or depressed (Montgomery and
Madison, 2004) and thus are exposed to learning. Therefore, the activation of a single neuron
is determined by an external component ai and an internal component, the weighted sum of
the internal recurrent inputs si. The weighted sum of the internal recurrent inputs of neuron xi

is given by

() () ()txtwts
n

j
jiji ∑

=

⋅=
1

 or, for the complete network, () () ()ttt xWs ⋅= .

6

Such a splitting in an external and a recurrent component can also be found in the model
described by Del Giudice et al. (2003). Please recall that s describes the internal input, not the
output of the unit.

[insert Figure 1 about here]

3.2 Training the synaptic weights
The overall goal in both tasks mentioned above is to represent the external situation a (a static
pattern or several examples following an algebraic relation) perceived via the sense organs
within the network. ‘Representing the external situation’ can be defined as follows: If the
weighted sum of the internal recurrent inputs si of neuron xi equals the external input ai, this
stimulus is represented within the network because then the external input is no longer needed
to elicit the activation characterising the stimulus ai. In order to reach this goal the synaptic
weights wij have to be adapted in a learning process.
As has been mentioned above, a major problem with training RNNs is that the dynamics of
the network are superimposed by the dynamics due to the learning procedure. Both dynamics
could however be separated, if, during training, the overall output xi would always equal the
external input (i.e. ii ax =) independent of the actual learning state, i.e., independent of the
actual values of the weights wij. This can be achieved if we determine the output xi by

() () () () () () ()ttststatstatx iiiiiii δ+=−+==+1 (1)
with () () ()tstat iii −=δ . The corresponding circuit is shown in Fig. 1b (solid lines).

To attain the overall goal, the weights wij have to be changed such that ()tstx ii =+)1(or, in
other terms, () 0=tiδ . This can be obtained by application of the learning algorithm

() () ijijij wtwtw ∆+=+1 with () ()ttxw ijij δε ⋅⋅=∆ (2)
with 0>ε being the learning rate (for more detailed information about the choice of ε see
Appendix). This learning algorithm formally corresponds to the delta rule. However, in
contrast to the traditional approach, the delta error is here assumed to be determined and
propagated locally within each neuron (Fig. 1b, dashed arrows) as has been proposed by
Kalveram (2000) for feedforward networks or Jaeger and Haas (2004) for echo state
networks. Application of the rule depicted in equation (2) leads to a weight change until

() 0=tiδ , i.e., until the sum si of the weighted recurrent inputs equals the external input ai. We
call units with this internal structure Input Compensation Units (IC Units), because this circuit
compensates the effect of the external input, independent of the actual state of the recurrent
weights.
To be able to address this memory content later, it is necessary to prevent the network to
automatically adapt to each new input situation. Thus, once the synaptic connections have
learnt the specific input situation, further learning is stopped. A simple solution is to finish
learning after the error δi has fallen below a given threshold because then external situation is
represented within the network. To simplify matters, in the simulations shown here further

learning is stopped, if the summed squared error () ()∑
=

=
n

i
i ttE

1

2δ of the entire network has

fallen below a given threshold.

7

3.3 Extension of the neuronal structure
To account for working memory capabilities, it should also be possible to sustain the
activation once induced by a stimulus. As explained above the overall output of an IC Unit as
shown in Figure 1b will, however, decay to zero after the external stimulus vanishes. This is
due to the property of the IC Units, that the output always equals the input. Thus, the network
cannot remain active to act as working memory.
In order to be able to sustain the activation, the architecture requires an extension. If ai is
smaller than si in a unit shown in Fig. 1b the output activation xi decreases, because then
negative δ-values (recall that () () ()tstat iii −=δ) are added to si. This effect can, however, be
avoided if we rewrite equation (1) by using rectifiers, which means that only the positive part
of the function is transmitted. The rectifier is marked by a + in the following equations.
For an explanation, we will first consider only positive input values (() 0≥tai). If the weights
are small at the beginning of training, for example zero, which means that () 00 =tsi , we can
assume that during training the condition () ()tats ii ≤≤0 is fulfilled which is biologically
plausible. With this assumption, the condition () 0≥tai can be replaced by () 0≥tsi and
equation (1) can be rewritten:

() () () ()[] +−+=+ tstatstx iiii 1 , for () 0≥tsi (3.1)

Following (3.1), xi still corresponds to si, even if () ()tsta ii < . Therefore, using this rectifier,
the external input can indeed be switched off after training is finished, i.e. () 0=tai , and no
changes occur to the output (if training has not yet been finished completely, the activation of
the units will slowly decrease to zero, see Discussion). Note, that the rectifiers do not
influence the δ-value used for learning.
Furthermore, we can generalise this condition for negative input values (() 0≤tai): If we
again assume that the weights are small at the beginning of learning, for example zero, we can
state () ()tats ii ≤≤0 , because during learning si will approach ai starting from zero also for
negative input values ai. Correspondingly, we can now replace the condition () 0≤tai by

() 0≤tsi . This leads to the second equation

() () () ()[] ++−−=+ tstatstx iiii 1 , for () 0≤tsi (3.2)

Both equations (3.1) and (3.2) are depicted in the circuit diagram in Fig. 1c. The condition
() 0≥tsi and () 0≤tsi are represented by the clipping functions. The two rectifiers used in

equations (3.1) and (3.2) are depicted in the lower part of the circuit (Fig. 1c). This circuit
fulfils three requirements:

(i) It allows to apply both positive and negative input values ai.
(ii) After training is finished, it maintains its activation after the external input has

been switched off.
(iii) It shows the same training properties as the linear version (Fig. 1b), if the

condition () ()tats ii ≤≤0 is fulfilled.

The results shown in the following were obtained by using this expanded network. Note that
the nonlinear expansions applied are only necessary for being able to use the network after
learning is finished, i.e. in the testing mode. The learning procedure as such can still be

8

described by a linear approach. As before and during training the activations of the neurons
are only determined by the external input values ai due to their input compensation property,
the dynamics resulting from the weight changes do not affect the dynamics of the complete
network and therefore do not cause stability problems.

4 Results

4.1 Learning a static pattern to produce sustained activity
Training the network. Let us first consider the case of a network consisting of three
units that receives an external, fixed input vector () T

321 ,, aaa . Numerical investigations reveal
the following results which can also be proven to hold generally (see Appendix in Chapter
3.6).
If all nine weights including the diagonal weights, by which each neuron influences itself
directly, are allowed to be learnt and all weights are set to zero at the beginning, the IC
learning procedure (Fig. 1, Eq. (2)) provides the solution shown by matrix W3

() ()() TT

332313

322212

312111
2

3
2

2
2

1 11 aaaa ⋅=















⋅++

aaaaaa
aaaaaa
aaaaaa

aaa (W3)

Matrix W3 is the orthogonal projector onto { }aspan . In geometrical terms, the behaviour of
an individual unit k can be described as follows: Assume the network consists of n units and
is trained with a vector a. The output of unit k is determined by

() () () ()txwtxwtxwtx nknkkk +++=+ ...1 2211 ,
which describes a linear function in an ()1+n -dimensional space. This function corresponds
to an n-dimensional hyperplane that contains the origin and, after training, the ()1+n -
dimensional vector () T

21 ',,..., kn aaaa . a’k and x’k describe the additional dimension given by
the output value ()1+txk . This hyperplane also contains the ()1−n -dimensional subspace that
is contained in the n-dimensional space (x1 to xn). This subspace is orthogonal to vector
() T

21 ,..., naaa . In other words, this hyperplane could be constructed in the following way: The

hyperplane defined by 0' =kx is rotated around the vector orthogonal to () T
21 ,..., naaa until it

contains the vector () T
21 ',,..., kn aaaa . For 2=n and 2=k , this process is schematised in

Figure 2.

[insert Figure 2 about here]

The network adopts solution W4 (for a proof see Appendix), if during training all diagonal
weights are constantly set to zero:

() ()
() ()
() () 
















++
++
++

0
0

0

2
2

2
132

2
2

2
131

2
3

2
132

2
3

2
121

2
3

2
231

2
3

2
221

aaaaaaaa
aaaaaaaa
aaaaaaaa

(W4)

9

In general, matrix W4 is asymmetric. The n-dimensional hyperplane described by unit k
contains the origin and the vector () T

21 ,,..., kn aaaa , but now contains the kth coordinate axis

instead of the vector orthogonal to () T
21 ,..., naaa as was the case for (W3).

Solution (W4) is of practical interest, because starting from this solution, a manifold of
solutions can be constructed by replacing the diagonal weights by arbitrary positive values di

first and then normalising all weights of unit i by multiplication with ()id+11 . Parameters di

can be interpreted as damping factors: The larger di, the slower the network approaches to a
stable solution. A special treatment of the diagonal weights is plausible in biological systems,
because these weights correspond to the only synapses by which the neurons are connected to
themselves.

Addressing the memory content. After having trained the network with a certain input
vector a this external input can be switched off without changing the output; thus, due to the
internal connections built up during learning the network keeps the activity induced by the
external stimuli even if the stimuli are no longer present.
How does the network react to incorrect input? If for a limited period of time an input vector
is provided to the network that does not correspond to its stored vector, the network relaxes to
a stable state that corresponds to its stored vector or a multiple thereof, after having switched
off the input. Therefore, the network has the ability of pattern completion. For a network
characterised by matrix W3, the stable state is reached immediately. For matrix W4 the
relaxation takes some time depending upon value di (0>id). A given ε-neighbourhood of the
stable state is reached the faster, the more similar input vector and stored vector (or its nearest
multiple) are.

4.2 Representing simple algebraic relations
Training the network. The second task addressed in the Introduction and Section 2 was
to learn algebraic rules, as given in the condition ABA or ABB on the one hand and equations
like 213 xxx += on the other hand. Such tasks require that not only one vector is learnt, but a
solution for all vectors is found that fulfil the respective condition.
Providing a network consisting of IC Units with input vectors following the former condition
ABA (e.g. ()5,1,5 , ()2,3,2) leads to weight matrix (W5):

















5.005.0
010
5.005.0

(W5).

Training the network with the second condition applied by (Marcus et al., 1999), namely ABB
(e.g. ()1,1,5 , ()3,3,2) another weight matrix is obtained:

















5.05.00
5.05.00

001
(W6).

The solution of this task allows a simple geometrical interpretation. In a 3D-space (x1,x2,x3)
the solution of the task (A,B,B) is given by a 2D-plane with x2= x3 and any value of x1, i.e. a

10

plane that is perpendicular to the 21 xx − plane. Matrix (W6) corresponds to this solution with
132 == dd , and d1 being infinite (() 11/ 11 =+dd).

The second task mentioned in Section 2.2 requires a solution for all vectors fulfilling the

equation ∑
=

=
n

i
ii xc

1

0 for given ∈ic ℝ, i.e. all vectors of an ()1−n -dimensional hyperplane

containing the origin. Geometrically, for 3=n , the solution is given by a plane in the 3D
coordinate system that contains all points given by the coordinates that fulfil the equation

0332211 =++ xcxcxc . Therefore, the solution is completely defined if three points are given.
As ()0,0,0 is already a solution, only two further examples (not collinear with ()0,0,0) are

sufficient to specify the solution. Generally, the solution for any task described by ∑
=

=
n

i
ii xc

1
0

with fixed coefficients ∈ic ℝ is uniquely defined if 1−n examples are presented to the
network that form an ()1−n -dimensional subspace and do not contain the origin.
Application of a network with IC Units actually leads to this solution. To illustrate this ability,
we again use a three unit network. The task to be trained is 213 xxx += . Any two training
examples fulfilling the equation could be used (e.g. ()4,1,5 − , ()3,4,1−). The same solution
(W7) is obtained whether the training examples are presented in periodic epochs or in random
order:
















−

−

323131
313231
313132

(W7)

Here, all nine weights were allowed to learn. Matrix W7 can be interpreted to be a special
case of matrix W2 that is expanded by application of a damping factor 2=id as explained
above. If, however, the diagonal weights are constrained and always set to zero, we obtain a
solution that corresponds to matrix W2 (see section 2). These results are based on numerical
investigations; a general proof is still pending.

Addressing the memory content. If a network trained on either of the two conditions ABA
or ABB is provided with a consistent input (e.g. ()7,1,7 for the first condition ABA), it
immediately stabilises at this values even if the values have not been presented to the network
before, i.e. are totally new. If, in turn, inconsistent input is presented to the network (e.g.
()1,1,5 for the first condition ABA), the activation of the unit not matching the condition
asymptotically approaches the correct value.
To address the memory content after having trained all the weights according to the task of
representing the summation (or, based on matrix W4, after the application of any positive
damping factors), the network is provided with a vector a the first component a1 and the
second component a2 of which are fixed to certain values while the third a3 is set to zero. In
the end, the third component should be the sum of the other components.
In each case, the network provides a solution that fulfils 213 xxx += . But it is not necessarily
the case that 11 ax = and 22 ax = . This condition is fulfilled in two cases:

(i) 11 ax = and 22 ax = , if 21 aa > and
2

1
2

a
a ≥

(ii) 11 ax = and 22 ax = , if 12 aa > and
2

2
1

a
a ≥ .

11

If, however, 21 aa > and
2
1

2
a

a < , we obtain 11 ax = and
2

21
22

aaax +−= ; and if 12 aa >

and
2

2
1

a
a ≥ , we obtain

2
21

11
aaax +−= and 22 ax = .

Therefore, if all)()(iiiai ∨∈ unit x3 approaches asymptotically the value 213 aax += .
Nevertheless, in the other cases as mentioned the network still stabilises at a value x3

following the summation task 213 xxx += . Thus, the trained network is able to cope also with
this pattern completion task. Correspondingly, solving the equation for the other variables is
possible, too.

5 Discussion
The work presented here forms an essential step towards a broader goal, that is to develop a
complete memory system which can be used for learning information, for recognition, and for
retrieving stored information to perform actions, but may also be used for mental simulation.
Basic elements of such a complete memory system are situation models that are able to
represent the relevant information to serve a working memory and/or a long term memory. In
this section, we discuss the properties and the biological plausibility of the neuronal units (IC
units) introduced here, we then discuss the properties of the complete networks consisting of
such IC units and compare them with related approaches. Finally, we discuss how these
networks can be used for short term (working) memory and long term memory functions.
In this paper we propose Input Compensation Units (IC Units) as a new internal structure for
artificial neurons that can be used as a basic building block of recurrent neural networks and
allows for an efficient training of the synaptic weights. RNNs consisting of these IC Units and
being trained in the described way have two main advantages over traditional approaches in
training recurrent neural networks making them biologically more realistic:
First, the learning algorithm can be applied online, i.e. without cutting the recurrent
connections, because the learning dynamics are disentangled from the dynamics of the
recurrent network as such. Thus, the individual units behave as if belonging to a feed-forward
net. This is possible due to the following properties: As the sum of the weighted internal
inputs is subtracted from the external input, the output of the neuron always equals the size of
the external input and is therefore independent of its learning state (Eq. 3.1 and 3.2). In other
words, as the built-in compensation mechanism always replaces that part of the input signal
that corresponds to the sum of the recurrent signals, the global dynamics of the network is
protected from the learning dynamics. Therefore, no stability problems arise here due to
weight changes. During the training procedure, the weights stabilise at values guaranteeing
that in the end the summed recurrent input si equals the external input ai. After learning is
completed, and the summed internal input equals the external input, the latter can be switched
off without changing the activation of the network.
Second, the synaptic weights of each neuron are adapted using local information only. The
single neuron does not rely on information about the activation of whole network but only to
information directly available at its synaptic connections just like real neurons. Consequently,
the computational costs are very low – in contrast to many other training procedures (e.g.
Williams and Zipser, 1989a; Schmidhuber, 1992) as no specific network for determination of
the error and for its backpropagation is needed.
As mentioned in Sect. 2.1, many solutions are possible. One, however trivial, solution for all
static cases is given by the identity matrix. However, the identity matrix never showed up as a
result except for such cases in which this matrix was the only solution, i.e. when several input
vectors were given which did not fulfil the basic equation.

12

5.1 Biological plausibility
To implement the mechanism described the neuron has to distinguish between external input
and input supplied by the recurrent connections of the network. How is this possible in a
biological network? It is known (e.g. Kandel et al., 2000) that different types of synapses
exist; the strength of one type does not easily change whereas other synapses show variation
depending on activity. Additionally, physiological findings show, that the dendritic tree of a
neuron is subdivided into different computational subunits for chemical signals such as
changes in concentration of ions or other second messengers; this compartmentalisation is
considered to be the basis of local modifications of the dendritic properties to achieve, for
example, input-specific changes of synaptic weights (Helmchen, 1999) and it is also
important from a computational perspective (Mel, 1999). Therefore, a different treatment of
sensory input to the neuron and the recurrent internal input might well be possible.
Furthermore, some speculations concerning potential molecular mechanisms underlying the
internal structure of the IC Units are possible; basic building blocks necessary to realise the
algorithm proposed here can be found in real neurons (e.g. Kandel et al., 2000): Several
pathways are known that increase and others that decrease the concentration of substances
that influence the insertion of AMPA receptors in the synaptic membrane, for example. It is
widely assumed, that the kinetics and magnitude of NMDA receptor mediated Ca2+ signal
determine the sign of synaptic modification (Kirkwood et al., 1993; Cummings et al., 1996).
A large increase of Ca2+ favours the activation of kinases which results in a phosphorylation
of AMPA receptors; a lower increase in contrast favours the activation of phosphatases which
results in a dephosphorylation of AMPA receptors (e.g. Lisman, 1989; Cormier et al., 2001).

5.2 Capabilities of the network
Being able to scale the properties of a network with its size is crucially important for a model
in order to serve as a biologically plausible brain model. The architecture of many models has
to be additionally constrained to scale it by, for example, restricting the connectivity to local
neighbourhoods only (Sejnowski et al., 1988).

The model we used, the building blocks of which are IC Units, does not suffer from scaling

problems as long as the learning rate ε is chosen small enough according to
aa ⋅

<< T

20 ε (see

Appendix) in the case of training the network to represent static situations. Thus, the more
units the network has, the smaller the learning rate has to be in order to obtain stable
solutions. Therefore, this IC model seems to be promising for further applications and it is
possible to train more realistic networks consisting of a large number of neurons.

Representing static patterns. Using these units it is possible to solve several memory tasks.
First, static input patterns can be applied; due to the built-in learning mechanism the weights
adapt in a way that the activations of the units remain fixed even after the external input signal
has been switched off, thus producing sustained activity in the network.
It has been suggested to use attractor dynamics of coupled neurons provided with strong
feedback for modelling these states of enhanced activity (Wilson and Cowan, 1973; Amari,
1977; Hopfield, 1982; Zipser et al., 1993; Amit, 1995; Kühn and Cruse, 2005; for reviews on
neurocomputational models see Durstewitz et al., 2000; Del Giudice et al., 2003). However,
the performance of many of the proposed models is highly dependent on fine tuning the
network parameters such as synaptic strength. If parameters only deviate slightly from the
tuned values, the networks tend to diverge (Wang, 2001). In contrast, our model does not
require fine-tuning of the weights as it automatically adapts to the current input situation.

13

When providing the network with a vector different from the stored one, the stored vector or a
multiple of it is reproduced. This property can be interpreted as an error correction mechanism
(or the capability to generalise) as it has been described for Hopfield nets (Hopfield, 1984; for
a more detailed comparison with other recurrent neural networks see below).
Additionally, if a part of the vector is not specified by the input, i.e. a component of the input
vector is set to zero, the network shows the ability of pattern completion: It finds an
appropriate activation for the unspecified units.

Representing algebraic relations. There has been a heated debate on the claim made by
Marcus et al. (1999) that it is not possible to replicate their results with simple recurrent
neural networks (see Seidenberg and Elman, 1999). The problem with connectionist-like
models is that they are not able to generalise the abstract patterns to new words and are thus
dependent on the input choice. They cannot abstract the underlying rule as it is necessary for
the task described in the Introduction and in Section 2. The model presented here does not
represent any word explicitly but only the rule of an open-ended abstract relationship, in this
case a simple algebraic relation. If the network is provided with consistent input it
immediately stabilises on these activation values, whereas it needs some time to relax on the
inconsistent condition. This matches with the results of the experiments performed by Marcus
et al. (1999). The time the network needs to relax when provided with inconsistent input can
be interpreted as to correspond to the longer time of attention the infants paid to sentences
being inconsistent with the trained ones in the experiments carried out by Marcus et al.
(1999). Therefore it is possible to simulate the experimental results obtained by Marcus et al.
(1999) with networks consisting of IC Units.
Similarly, such algebraic rules may also underlie other grammatical phenomena as for
example building English sentences with plural agreement from an arbitrary set of noun and
verb phrases. In this sense humans know for example that a correct English sentence can be
formed by combining any plural noun phrase with any verb phrase with plural agreement:
From the two phrases “Bart and Lisa”, which is a plural noun phrase, and “played in the
garden”, which is a verb phrase with plural agreement, we can infer that “Bart and Lisa
played in the garden” is a correct English sentence. Here as well, networks that rather
represent the abstract relations between the items than the single words may underlie the
ability to build correct sentences.

The network can also be trained to represent any linear task ∑
=

=
n

i
ii xc

1

0 when only some (at

least 1−n) correct training examples are presented. The network forms a holistic
representation of this algebraic relation implying the capability of pattern completion also in
this task: If 1−n variables are given, the remaining variable is determined by the network. If,
during recall, fewer variables are given and the task is therefore underdetermined, the network
still provides a correct solution. The task is not solved by using a look-up table, but by
representing the underlying mechanism.

The tasks described in Section 4.2 are characterised by homogeneous equations ∑
=

=
n

i
ii xc

1

0 .

However, this network can also be applied to tasks that require non homogeneous equations

∑
=

=
n

i
iii hxc

1
 with constant values hi. This corresponds to the introduction of a ‘bias unit’ often

used in neural networks. The network can simply be extended by such a bias unit by adding a
unit, which is assumed to have a constant activation of 1. The weight of this bias unit
corresponds to the value hi and can be trained using the same algorithm explained above.

14

Human’s internal representations are not necessarily static by nature. As already mentioned
by Johnson-Laird (1983) internal representations could be dynamic, i.e. they show time-
dependent behaviour. This claim is underpinned by recall experiments showing that memory
can be influenced by the observed movement (e.g. direction and speed) of an object (Freyd
and Finke, 1984). Such dynamical systems can also be modelled by a network consisting of
Input Compensation Units as will be explained in a companion paper (Kühn and Cruse,
2006).

5.3 Comparison with other recurrent neural networks
The underlying idea of the Input Compensation Units corresponds to the clamped phase in
Contrastive Learning (CL) procedures (Movellan, 1990; Baldi and Pineda, 1991). The
advantages of CL are the possibility to train networks with hidden units on the one hand and
to use nonlinear activation functions on the other hand. Up to now it has not been tested how
the IC approach could deal with nonlinearities and hidden units. These are certainly the next
problems to be tackled. Preliminary investigations are encouraging.
But there are three main differences between the two approaches: First, in all examples of the
CL approach the weights of the feedback connections are assumed to be symmetric with the
feedforward connections. In networks consisting of IC Units the weights are not constraint.
Second, in contrast to CL only one phase is applied and no oscillations between a phase with
a teacher signal and one without a teacher signal are necessary.
Third, in CL the dynamics of the network are separated from the dynamics due to the learning
procedure by definition as the dynamical equations are first run until convergence to a fixed
point and then the weights are updated (Xie and Seung, 2003). In doing so, the problem of
intertwining two interacting dynamics does not arise. But it is biologically not plausible that
the synapses only then change, after the dynamics of the network has settled. For biological
systems this “waxing and waning” of the synapses is assumed to not be explicitly uncoupled
from the network’s activity but on the contrary explicitly dependent on the network’s activity.
The latter is the case in the neuronal units presented here: the updating of the weights is
performed online, i.e. in each single time step and there is no necessity to decouple it
explicitly from the network. Therefore, the IC approach appears to be nearer to biological
reality.
The training procedure used here is based on the principle of teacher forcing (e.g. Williams
and Zipser, 1989a; Doya, 1995; Jaeger and Haas, 2004): the actual output of a unit is replaced
by the teacher signal in the subsequent computation. This principle permits online learning
and has been applied by other approaches like real-time recurrent learning for RNNs (e.g.
Williams and Zipser, 1989b). The problem with real-time recurrent learning is that it is
computationally very intensive concerning storage and time and – moreover – the algorithm is
non-local because each weight needs the knowledge of the complete recurrent weight matrix
and the error vector. RNNs consisting of IC Units are trained using local information only and
therefore the computational costs are very low.
To alleviate the problem of computational costs, a number of approaches have been put
forward like, for example, the modification of the real-time recurrent learning algorithm by
Schmidhuber (1992) which reduces at least the computational time but still needs quite large
storage capacities.
Kalveram (2000) also proposed a learning algorithm formally corresponding to the delta rule
like the IC approach incorporated on the level of the individual neuron. This has been applied
to feedforward networks. The weights of external inputs are trained by providing the unit with
the desired output. This input corresponds to the fixed external input used here but has to be

15

switched off after training. In contrast our networks comprise memory units that are activated
via the external input (see also below).
Other examples trying to reduce computational costs are the echo-state networks (Jaeger and
Haas, 2004) and, quite similar besides using spiking neurons, the liquid-state machines
(Maass et al., 2002). These types of networks need more units to equip the reservoir but are
able to learn complex dynamic behaviour. Storing static patterns has not been addressed
within these approaches. It will be shown in a companion paper that learning dynamic
patterns is also possible with RNNs consisting of IC Units (Kühn and Cruse, 2006).

Similarities could be figured out, too, between the IC networks and Hopfield (Hopfield, 1982;
1984) networks on the one hand and MSBE networks (Cruse, 2006, and below) on the other
hand. What is the difference between the weight matrices resulting from the training
procedure presented here to that of those other types of recurrent neural networks? The former
are defined by symmetric weights and bounded activation functions. The units used here do
not have bounded activation functions. Symmetric weights could, but do not necessarily result
from application of the IC algorithm. Symmetric weights arise in matrices W2, W5, W6 and
W7, but not in W3 and W4. Therefore, application of IC Units does generally not lead to
Hopfield type networks.
MSBE networks are derived in the following way. If an equation with n variables

0
1

=⋅∑
=

n

i
ii xv is solved for each variable xi, a set of equations is obtained. If each of these n

equations is considered to represent the computation performed by the corresponding neuron

i, the network represents Multiple Solutions for the Basic Equation 0
1

=⋅∑
=

n

i
ii xv and is termed

therefore MSBE network. For 3=n , for example, the basic equation 0332211 =++ xvxvxv
being resolved for x1, x2 and x3 leads to a weight matrix

















0
0

0

3231

2321

1312

vvvv
vvvv
vvvv

(W8)

MSBE networks, like Hopfield networks, can be considered as autoassociators that have the
property of pattern completion. Unlike Hopfield networks, that show discrete attractors, the
attractor points of MSBE networks form a smooth, bounded space.
The weights follow the condition 1=⋅ jiij ww . So the MSBE network is symmetric only for

321 vvv == . As described above for (W4), the weight matrix W8 can be extended by the
introduction of damping factors d1, d2, and d3.
Inspection of the different weight matrices obtained by the learning procedure applied to the
IC Units reveals that some, but not all matrices fulfil the condition jiij ww 1= . Matrix W2

fulfils the condition, matrix W3 only when applying a damping factor 12
3

2
2

2
1

2

−
++

=
aaa

ad i
i

and W4 when applying 12
3

2
2

2
1

2

−
++

=
aaa

ad i
i . This means that the IC algorithm can but does

not necessarily produce weight distributions typical for MSBE networks. The latter is the case
in particular, when in contrast to all examples used here, the weights are not all set to zero at
the beginning of training.

16

5.4 Working memory and long term memory functions
In various experiments properties of the working memory have been investigated (Del
Giudice et al., 2003). In electrophysiological recordings stimulus-specific, enhanced activity
can be observed which is assigned to be a feature of active working memory and enables
animals to hold items in memory for some time. If no further attention is applied to the
content of memory, it vanishes after a short time.
This property can also be found in our model: After presenting a static stimulus the activation
of the artificial neurons is enhanced. During learning the weights approach the final values
characterising the neutrally stable state only asymptotically. Therefore, in more natural
situations, training is finished with non-ideal weight values. Hence, after an input has been
presented to the network and later switched off, the activation of the network does not remain
constant, but decreases to zero with a velocity depending on how closely the ideal values have
been approximated during training (note that the weights themselves maintain their values).
This property may be considered as corresponding to the function of working memory, the
content of which disappears if no specific attention is applied to maintain this content for a
longer time. The velocity of this decrease of activation depends on the quality of learning, i.e.,
on learning time.
At the same time, the network can be considered to represent a passive memory (Fuster,
1995). If, after an activated network has been returned to zero activation, the input a1, a2, a3 is
presented again later, it would immediately activate the network.
As described above the weight values are only changed by means of the learning algorithm
(Eq. 2), i.e., only when an external input is given. However, weights may also decay
spontaneously (as do synapses), but with a long time constant (e.g. hours or days). Under this
condition, the IC Units alone were not sufficient to explain long term memory. The following
additional mechanism could, however, be applied: If the excitation has been strong enough, or
has been repeated sufficiently often, a special mechanism may come into action that prohibits
synaptic decay and weights may stay fixed. In other words, the network forms a long term
memory only after this fixation process has been performed (for a review of observations
concerning switches between discrete states of synapses see Montgomery and Madison,
2004). In contrast to the architecture explained above, this additional mechanism would imply
that not every input is maintained in the long term memory. Rather the system would be able
to select frequent or salient information, and only such information is stored permanently.

17

6 Appendix: Learning a static pattern to produce sustained
activity

6.1 Proof of convergence – training all the weights

During the training phase the nn× weight matrix ()tW is updated according to (2) as follows
(A1) () () () () ()[] TT1 aaWIWaWW ⋅⋅−⋅+=⋅⋅+=+ ttttt εδε ,...2,1,0=t .

We denote by T
Ta
1 aa

aa
P ⋅⋅

⋅
= the orthogonal projector onto span{a}.

Theorem 1 Under the assumption

(A2)
aa ⋅

<< T

20 ε

the iteration (A1) converges for any () 00 WW = to the weight matrix
(A3) () aa0 PPIWW +−⋅=∞ .
In particular if () 00 =W we obtain aPW =∞ as in (W3).

Proof : We use the following well-known result (Berman and Plemmons, 1994).

Theorem 2 Let X be a finite dimensional linear space and let X be the direct sum of two of
its subspaces X1 and X2, i.e. every XW ∈ can be written in a unique way as 21 WWW +=
where 2211 , XWXW ∈∈ .
Let XXL →: be a linear map such that
(i) WWL =⋅ for all 1XW ∈
(ii) L maps X2 into itself and 1<λ for all eigenvalues λ of L that belong to eigenvectors

in X2.

Then the iteration
(A4) () () 21 RWLW +⋅=+ tt , () 00 WW =
converges for any XW ∈0 and any 22 XR ∈ to

() 210 WWW +=∞

where () () 20100 WWW += is the decomposition of W0 and 22 XW ∈ is the unique solution in
X2 of the equation

(A5) 222 RWLW +⋅= .

We apply this Theorem 1 to (A1) with X the space of nn× matrices and
{ } nn −==⋅∈= 2

11 dim, 0: XaWXWX
{ } nn =∈⋅= 2

T
2 dim , : XbabX R .

The decomposition of XW ∈ is given by
() 21aa WWPWPIWW +=⋅+−⋅=

since () 0a =⋅−⋅ aPIW and T
a abPW ⋅=⋅ with aW

aa
b ⋅⋅

⋅
= T

1
.

The iteration (A1) has the form (A4) if we define

18

(A6) () T
2

T , aaRaaIWWL ⋅⋅=⋅⋅−⋅=⋅ εε .
Note that (i) follows from () WaaIWWL =⋅⋅−⋅=⋅ Tε for 1XW ∈ .
If 2

T XabW ∈⋅= then we have
() ()() () TTTTTTT 1 abaaaaaabaaIabWL ⋅⋅⋅⋅−=⋅⋅⋅−⋅=⋅⋅−⋅⋅=⋅ εεε ,

therefore aa ⋅⋅−= T1 ελ is an n-fold eigenvalue of L and 1<λ holds as we have assumed
(A2).
Then Theorem 1 is applicable and yields (A3) if we show that (A5) holds for a2 PW = .
 In fact, 2a XP ∈ and

() 2
TT

a
T

aaaa RaaaaPaaIPPPLP =⋅⋅=⋅⋅⋅=⋅⋅−⋅−=⋅− εεε .
❒

19

6.2 Proof of convergence – training with constraints
Now we consider the learning rule (A1) where only certain entries of the weight matrix are
updated. We write this as follows:

(A7) () () ()() T1 aaWIEWW ⋅⋅−⋅+=+ ttt ε
where E is an nn× matrix with entries 0 or 1 and where we used the Hadamard product BE 
of nn× -matrices given by

(A8) () ijijij BEBE ⋅= .
The entries Wij with 1=ijE are updated while those with 0=ijE are kept constant. In
particular, for the choice

(A9)



















=

011
1

01
110







E

only the weights Wij with ji ≠ are updated.

Theorem 3 Assume that the matrix E has no zero row and let 0>ε satisfy for all ni ,...,1=

(A10) 2<⋅ idε , where ∑
=

=
1

2

ijE
ji ad .

Then the learning rule (A7) converges for any () 00 WW = to some limit matrix ∞W . In case
00 =W the entries of ∞W are given by

(A11) ()
i

ji
ij d

aa ⋅
=∞W if 1=ijE

and () 0=∞ ijW otherwise.

In particular, for the pattern matrix E from (A9) with 3=n we obtain exactly the matrix
(W4). In case 1=ijE for all i,j we recover the results from Theorem 1.

Proof: We apply Theorem 1 again with the setting
{ } { }0 if 0:: ===== ijij EWWWWEWX 

and
(A12) [] []T

2
T , aaERaaWEWWL ⋅⋅=⋅⋅⋅−=⋅  εε .

The spaces X1 and X2 are given by
{ }0:1 =⋅∈= aWXWX

(){ }nR∈⋅== babEWX :T
2  .

First note that WWL =⋅ is obvious for 1XW ∈ .

In X2 we choose basis vectors
(A13) () nii

i ,...,1 ,T =⋅= aeEV 
where ()0,...1,...,0=ie is the i-th Cartesian basis vector. Note that

20

() () () () k
i

ijk
i

jk
i

ijki d
ij

eaeaeEaV
E

=⋅=⋅⋅=⋅ ∑∑
=1

22

holds and therefore
(A14) i

ii d eaV ⋅=⋅ .
Since E has no zero row we have 0>id for all i. Equation (A14) then implies that the vectors
Vi are linearly independent and moreover we find that the vectors Vi are eigenvectors of L

(A15) () iiii
i

iii dd ⋅−=⋅=⋅⋅⋅−=⋅ ελλε 1 ,T VaeEVVL 

Condition (A10) guarantees that 1<iλ holds for all eigenvalues.
The decomposition 21 WWW += , 2211 , XWXW ∈∈ is given by

(A16)
()

21
1

2 : , , WWWaWVW −=⋅=⋅= ∑
= i

i
i

n

i
ii d

bb .

Note that XWWW ∈−= 21 satisfies by (A14)

()∑ ∑
= =

=⋅⋅−⋅=⋅⋅−⋅=⋅
n

i

n

i

i
iiib

1 1
1 0eaWaWaVaWaW .

The decomposition is unique since 1XW ∈ and 2XVW ∈⋅= ∑
i

iib implies

∑∑
==

=⋅=⋅⋅=⋅=
n

i

i
i

n

i
ii bb

11

0 beaVaW .

We have now verified the assumptions of Theorem 1.
In order to determine the limit matrix ∞W we need to solve (A5) with R2 given in (A12). The
solution is

i

n

i i

i

d
a VW ⋅= ∑

=1
2

since by (A15)

() () 2
111

22 1 RVVVLVWLW =⋅⋅=⋅−⋅=⋅−⋅=⋅− ∑∑∑
===

n

i
iiii

n

i i

i
ii

n

i i

i a
d
a

d
a ελ .

Combining this with (A16) Theorem 1 leads to the limit matrix ∞W given for 1=ijE by

(A17) () () ()() jii
i

ijij aa
d

⋅⋅−⋅+=∞ aWWW 00
1

.

In the case 00 =W this leads to formula (A11).
❒

Acknowledgements
This work was funded by the DFG grants GK-518 and the EC-IST project SPARK.

References
Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields.

Biological Cybernetics 27: 77-87.

Amit DJ (1995) The hebbian paradigm reintegrated: local reverberations as internal
representations. Behavioral and Brain Sciences 18: 617-626.

Baddeley A (1986) Working memory. Oxford: Clarendon Press.

21

Baddeley A (1992) Working memory. Science 255: 556-559.

Baldi P, Pineda F (1991) Contrastive learning and neural oscillator. Neural Computation 3:
526-545.

Beer R (2003) The Dynamics of Active Categorical Perception in an Evolved Model Agent.
Adaptive Behaviour 11: 209-243.

Berman A., Plemmons R.J. (1994), Nonnegative matrices in the mathematical sciences.
Classics in Applied Mathematics 9, Philadelphia, PA: SIAM Publications.

Chomsky NA (1980) Rules and Representation. New York: Columbia University Press.

Cormier RJ, Greenwood AC, Connor JA (2001) Bidirectional Synaptic Plasticity Correlated
With the Magnitude of Dendritic Calcium Transients Above a Threshold. Journal of
Neurophysiology 85: 399-406.

Cruse H (2003) The evolution of cognition – a hypothesis. Cognitive Science 27: 135-155.

Cruse, H (2005) Neural Networks as Cybernetic Systems.
http://193.30.112.98/brain/archive/cruse [2].

Cummings JA, Mulkey RM, Nicoll RA, Malenka RC (1996) Ca2+ signaling requirements for
long-term depression in the hippocampus. Neuron 16: 825-833.

Del Giudice P, Fusi S, Mattia M (2003) Modelling the formation of working memory with
networks of integrate-and-fire neurons connected by plastic synapses. Journal of
Physiology 97: 659-681.

Doya K (1995) Recurrent networks: Supervised learning. In: The Handbook of Brain Theory
and Neural Networks (M.Arbib, ed), Cambridge, MA: MIT Press, pp 796-800.

Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working
memory. Nature Neuroscience Supplement 3: 1184-1191.

Feldman J, Narayanan S (2004) Embodied meaning in a neural theory of language.
Brain and Language 89: 385-392.

Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: From
action organization to intention understanding. Science 308: 662-666.

Freyd JJ, Finke RA (1984) Representational momentum. Journal of Experimental
Psychology: Learning, Memory, and Cognition 10: 126-132.

Fuster JM (1973) Unit activity in the prefrontal cortex during delayed response performance:
neuronal correlates of transient memory. Journal of Neurophysiology 36: 61-78.

Fuster JM (1995) Memory in the Cerebral Cortex: An Empirical Approach to Neural
networks in the Human and Nonhuman Primate. Cambridge, MA: MIT Press.

Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:
652-654.

22

Gallese V, Lakoff G (2005) The brain’s concepts: the role of the sensory-motor system in
conceptual knowledge. Cognitive Neuropsychology 22: 455-479.

Giurfa M, Zhang S, Jenett, A, Menzel R, Srinivasan M (2001) The concepts of ‘sameness’
and ‘difference’ in an insect. Nature 410: 930-933.

Helmchen F (1999) Dendrites as biochemical compartments. In: Dendrites (Greg Stuart,
Nelson Spruston, Michael Häusser, eds), Oxford: University Press, pp 161-192.

Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation.
Redwood City: Addison-Wesley Pub.

Hopfield JJ (1982) Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the USA
79: 2554-2558.

Hopfield JJ (1984) Neurons with graded response have collective computational properties
like those of two-state neurons. Proceedings of the National Academy of Sciences of the
USA 81: 3088-3092.

Jaeger H, Haas H (2004) Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication. Science 2: 78-80.

Johnson-Laird PN (1983) Mental models: towards a cognitive science of language, inference,
and consciousness. Cambridge: Cambridge University Press.

Kalveram KT (2000) Sensorimotor sequential learning by a neural network based on redifined
Hebbian learning. In: Perspectives in Neural Computing - Proceedings of the
ANNIMAB-1 Conference (H.Malgrem, M.Borga, L.Niklasson, eds), London: Springer,
pp 271-276.

Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. New York:
McGraw-Hill.

Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF (1993) Common forms of
synaptic plasticity in the hippocampus and neocortex in vitro. Science 260: 1518-1521.

Kühn S, Cruse H (2005) Static mental representations in recurrent neural networks for the
control of dynamic behavioural sequences. Connection Science 17: 343-360.

Kühn S, Cruse H (2006) Modelling memory function with recurrent neural networks
consisting of Input Compensation Units II - Dynamic situations. n n.

Lisman JE (1989) A mechanism for the Hebb and the anti-Hebb processes underlying
learning and memory. Proceedings of the National Academy of Sciences of the USA 86:
9574-9578.

Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural Computation 14:
2531-2560.

Marcus G, Vijayan S, Bandi Rao S, Vishton PM (1999) Rule learning by seven-month-old
infants. Science 283: 77-80.

23

Marcus GF, Brinkman U, Clahsen H, Wiese R, Pinker S (1995) German inflection: The
exception that proves the rule. Cognitive Psychology 29: 189-256.

Marcus GF (2001) The algebraic mind: Integrating connectionism and cognitive science.
Cambridge, MA: MIT Press.

Mel BW (1999) Why have dendrites? A computational perspective. In: Dendrites (Greg
Stuart, Nelson Spruston, Michael Häusser, eds), Oxford: University Press, pp 271-289.

Miyashita Y, Hayashi T (2000) Neural representation of visual objects: encoding and top-
down activation. Current Opinion in Neurobiology 10: 187-194.

Montgomery JM, Madison DV (2004) Discrete synaptic states define a major mechanism of
synaptic plasticity. Trends in Neurosciences 27: 744-750.

Movellan J (1990) Contrastive Hebbian learning in the continuous Hopfield model. In:
Proceedings of the 1990 Connectionist Models Summer School (D.Touretzky, J.Elman,
T.Sejnowski, G.Hinton, eds), San Mateo, CA: Morgan Kaufmann, pp 10-17.

Narayanan S (1999) Moving right along: a computational model of metaphoric reasoning
about events. Proceed. of the National Conference on Artificial Intelligence AAAI-99.
Orlando Florida (http://www.icsi.berkeley.edu/~snarayan/met.ps

Niki H (1974a) Prefrontal unit activity during delayed alternation in the monkey: I. Relation
to direction of response. Brain Research 68: 185-196.

Niki H (1974b) Prefrontal unit activity during delayed alternation in the monkey: II. Relation
to absolute versus relative direction of response. Brain Research 68: 197-204.

Pinker S (1991) Rules of language. Science 253: 530-535.

Pinker S, Prince A (1988) On language and connectionism - analysis of a parallel distributed-
processing model of language-acquisition. Cognition 28: 73-193.

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error
propagation. In: Parallel Distributed Processing, volume 1: Foundations
(D.E.Rumelhart, J.L.McClelland, eds.), Cambridge, MA: MIT Press, pp 318-362.

Schmidhuber J (1992) A fixed size storage O(n3) time complexity learning algorithm for fully
recurrent continually running networks. Neural Computation 4: 243-248.

Seidenberg MS, Elman JL (1999) Networks are not 'hidden rules'. Trends in Cognitive
Sciences 3: 288-289.

Sejnowski TJ, Koch C, Churchland PS (1988) Computational Neuroscience. Science 241:
1299-1306.

Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a
recurrent network of conductance-based model neurons. Neuron 26: 259-271.

Steil JJ (1999) Input-Output Stability of Recurrent Neural Networks. Göttingen: Cuvillier
Verlag.

24

Steinkühler U, Cruse H (1998) A holistic model for an internal representation to control the
movement of a manipulator with redundant degrees of freedom. Biological Cybernetics
79: 457-466.

Strauss R, Pichler J (1988) Persistence of orientation towards a temapraily invisible landmark
in Drosophila melanogaster. J. Comp. Physiol. A 182: 411-423.

Umiltà MA, Kohler E, Gallese V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) “I
know what you are doing”: a neurophysiological study. Neuron 32: 91-101.

Wang X-J (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends in
Neurosciences 24: 455-463.

Widrow B, Hoff ME (1960) Adaptive switching circuits. In: 1960 WESCON Convention
record Part IV, New York: Institute of Radio Engineers, pp 96-104.

Williams RJ, Zipser D (1989a) A learning algorithm for continually running fully recurrent
neural networks. Neural Computation 1: 270-280.

Williams RJ, Zipser D (1989b) Experimental analysis of the real-time recurrent learning
algorithm. Connection Science 1: 87-111.

Wilson H, Cowan J (1973) A mathematical theory of the functional dynamics of cortical and
thalamic nervous tissue. Kybernetik 13: 55-80.

Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor
control. Neural Networks 11: 1317-1329.

Xie X, Seung HS (2003) Equivalence of Backpropagation and Contrastive Hebbian Learning
in layered networks. Neural Computation 15: 441-454.

Zipser D, Kehoe B, Littlewort G, Fuster J (1993) A spiking network model of short-term
active memory. Journal of Neuroscience 13: 3406-3420.

25

Captions

Figure 1: a) Schematic drawing of a three-unit recurrent network; ai is the external input, xi

the recurrent input and wij are the weights. b) Architecture of one linear IC Unit; si(t) is the

weighted sum of the recurrent inputs and δi(t) the difference between the external input ai(t)

and si(t). c) Architecture of one IC Unit with the nonlinear extension (see text for

explanation).

Figure 2: Geometrical illustration for the process of training a two-unit network. The axis

around which the plane is rotated is denoted by the grey arrow.

26

Figures

Figure 1

Figure 2

27

	1Introduction
	2The tasks
	2.1Learning a static pattern to produce sustained activity
	2.2Representing simple algebraic relations

	3The model: A recurrent neural network with IC Units
	3.1Structure of IC Units
	3.2Training the synaptic weights
	3.3Extension of the neuronal structure

	4Results
	4.1Learning a static pattern to produce sustained activity
	4.2Representing simple algebraic relations

	5Discussion
	5.1Biological plausibility
	5.2Capabilities of the network
	5.3Comparison with other recurrent neural networks
	5.4Working memory and long term memory functions	

	6Appendix: Learning a static pattern to produce sustained activity
	6.1Proof of convergence – training all the weights
	6.2 Proof of convergence – training with constraints
	Feldman J, Narayanan S (2004) Embodied meaning in a neural theory of language. Brain and Language 89: 385-392.

