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Abstract Perception relies on the response of populations
of neurons in sensory cortex. How the response profile of
a neuronal population gives rise to perception and percep-
tual discrimination has been conceptualized in various ways.
Here we suggest that neuronal population responses repre-
sent information about our environment explicitly as Fisher
information (FI), which is a local measure of the variance
estimate of the sensory input. We show how this sensory
information can be read out and combined to infer from the
available information profile which stimulus value is per-
ceived during a fine discrimination task. In particular, we pro-
pose that the perceived stimulus corresponds to the stimulus
value that leads to the same information for each of the alter-
native directions, and compare the model prediction to stan-
dard models considered in the literature (population vector,
maximum likelihood, maximum-a-posteriori Bayesian infer-
ence). The models are applied to human performance in a
motion discrimination task that induces perceptual misjudge-
ments of a target direction of motion by task irrelevant motion
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in the spatial surround of the target stimulus (motion repul-
sion). By using the neurophysiological insight that surround
motion suppresses neuronal responses to the target motion
in the center, all models predicted the pattern of perceptual
misjudgements. The variation of discrimination thresholds
(error on the perceived value) was also explained through
the changes of the total FI content with varying surround
motion directions. The proposed FI decoding scheme incor-
porates recent neurophysiological evidence from macaque
visual cortex showing that perceptual decisions do not rely
on the most active neurons, but rather on the most informa-
tive neuronal responses. We statistically compare the predic-
tion capability of the FI decoding approach and the standard
decoding models. Notably, all models reproduced the varia-
tion of the perceived stimulus values for different surrounds,
but with different neuronal tuning characteristics underly-
ing perception. Compared to the FI approach the prediction
power of the standard models was based on neurons with
far wider tuning width and stronger surround suppression.
Our study demonstrates that perceptual misjudgements can
be based on neuronal populations encoding explicitly the
available sensory information, and provides testable neuro-
physiological predictions on neuronal tuning characteristics
underlying human perceptual decisions.

Keywords Fisher Information · Computational model ·
Psychophysics · Discrimination · Motion repulsion · Bayes ·
Maximum likelihood

1 Introduction

Human perceptual skills rely on the activity of thousands of
neurons within sensory cortex. The activity of each of these
neurons contributes to the perception of sensory informa-
tion in our environment. Exactly how the pattern of neuronal
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activities are combined to inform perceptual decisions is one
of the central problems in theoretical and system neurosci-
ence (Dayan and Abbott 2001). Solutions to this problem
generally need to address (1) how sensory information is
encoded in the pattern of activated neurons, and (2) how
this information is read out to ultimately inform a perceptual
decision. Here we propose a new theoretical framework
providing insights into both aspects of neuronal decoding
and apply it to perceptual performance in a fine discrimina-
tion task.

Neurons convey information about sensory inputs by pro-
ducing graded responses to a continuously varying stimulus
feature such as the direction of visual motion. The response
profile of a neuron is typically characterized by its tuning
function. For visual motion processing, tuning functions are
well described by a bell-shaped Gaussian profile indicat-
ing that a motion sensitive neuron responds with a peak
amplitude only for a narrow range of motion directions, and
that response strength levels off for directions of motion
offset from the preferred direction (Britten 2003; Born and
Bradley 2005). The peak region and width parameter pro-
vide a complete description of neuron’s response to different
directions of motion.

Based on these tuning characteristics, various theoretical
approaches have been proposed to decode neuronal popula-
tion activity in order to predict the sensory stimulus evoking
particular neuronal responses and to infer the perceptual deci-
sion about the input (Fig. 1). However, it is far from clear
how the neuronal response characteristics are used by the
brain to extract the perceptually relevant information. Most
commonly used approaches rely on vector averaging of
neuronal responses, maximum-likelihood or Bayesian prob-
ability estimation (Paradiso 1988; Vogels 1990; Seung and
Sompolinsky 1993; Kim and Wilson 1997; Zemel et al. 1998;
Pouget et al. 2000; Jazayeri and Movshon 2006). In popula-
tion vector models the relevant sensory information is derived
directly from the neuronal firing rate, which is considered as
the "weight" of a neuron in a global population vector of firing
rates (Vogels 1990; Seung and Sompolinsky 1993). In con-
trast, likelihood based models rely on the calculation of the
probability that a particular response is observed in response
to an input stimulus and Bayesian approaches compute the
probability that an input was presented given the observed
response. Individual neurons contribute by means of their
probability function of observing a neuronal response to a
given stimulus (Seung and Sompolinsky 1993; Zemel et al.
1998; Pouget et al. 2000; Jazayeri and Movshon 2006).

However, it is also possible to calculate information con-
veyed by a neuronal population about the sensory input
explicitly as an information profile representing directly the
statistical knowledge of the input. It can be represented
through a measure known as Fisher information (FI) (Fisher
1925; Paradiso 1988; Kass et al. 2005) that is used for arriving
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Fig. 1 a Illustration of the visual motion stimulus used for the center-
surround paradigm in the experiment and model. b Theoretical psycho-
metric function of a subject for discriminating the direction of motion of
the center target from the vertical (upward) reference direction. It repre-
sents the proportion of “rightward” answers as a function of the center
motion direction, and helps to visualize the perceived vertical reference
direction (midpoint) as well as the discrimination threshold for reliably
(above p=0.84) seeing a deviation from the perceived reference. Theo-
retical models need to predict the perceived value of the stimulus. The
discrimination threshold is the error on the perceived value

at an optimal estimate of available sensory information. The
interest of using the FI measure is that its definition is related
to the underlying variance of the estimate (Fisher 1925; Pa-
radiso 1988) and therefore to the error on the predicted stim-
ulus (the discrimination threshold, e.g. Paradiso 1988). In
other words, extracting FI for a given neuronal system pro-
vides a representation of the minimum variance estimate
within the neuronal population. The FI encoded by neurons
is directly related to their tuning functions. The most infor-
mative part of the tuning function for estimating the sensory
stimulus is a region offset from the peak, i.e. the neurons
most sensitive to the stimulus are not the ones with the high-
est firing rate (Paradiso 1988; Seung and Sompolinsky 1993;
Dayan and Abbott 2001). However, FI definition implies that
it should allow estimating the identity of the sensory stimu-
lus that has evoked a neuronal population response. In human
perceptual terms, decoding of FI from the neuronal popula-
tion should allow to predict which stimulus is actually per-
ceived.

In the following we calculate information profiles of theo-
retical neuronal population activity during a motion discrimi-
nation task. We show that actual perceptual decisions directly
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correspond to the stimulus value that leads to the same infor-
mation content for the different alternative motion directions,
which need to be discriminated. The proposed model is based
on the assumptions (1) that behaviorally relevant informa-
tion in neuronal population responses is represented as FI
and (2) that decoding this information can be achieved by a
simple equalization procedure. The model is used to predict
perceived stimulus values and it is compared to the predic-
tion of standard decoding methods considered in the literature
(population vector average, maximum-likelihood and max-
imum a posteriori inferences). All models provide testable
predictions of the neuronal tuning parameters underlying the
perceptual performance. Additionally, the variation of dis-
crimination sensitivity is also explained through the modu-
lation of the total Fisher information content (e.g. Paradiso
1988).

We apply the models to perceptual performance during
motion discrimination of a foveally presented target stim-
ulus surrounded by task irrelevant motion of varying direc-
tions across trials (Fig. 1). The paradigm is known to give rise
to motion repulsion reflecting a systematic overestimation of
the angular difference of two motion directions (Marshak and
Sekuler 1979; Kim and Wilson 1997). In particular, subjects
misperceive the physical direction of the target motion when
the task irrelevant surround moves at directions around 30–
60◦ away from the target direction (Kim and Wilson 1997).
Motion repulsion is often explained by inhibitory interac-
tions between motion-tuned neurons (Marshak and Sekuler
1979; Allman et al. 1985; Born and Bradley 2005), and in
particular to neurons in area MT/V5 tuned to visual unidi-
rectional motion (Britten 2003; Born and Bradley 2005). In
the following we utilize these tuning properties to propose a
novel approach to decode the information content of neuronal
population responses during a motion repulsion paradigm,
and we compare its prediction power to standard decoding
schemes.

2 Modeling human perception

In the following we describe the theoretical background of
the various decoding methods applied to the psychophysical
results. We first provide in detail the rationale underlying our
novel approach to decode perceptual decisions from neuro-
nal information profiles. Secondly, we summarize the mod-
els based on population vector average, maximum-likelihood
and Bayesian maximum-a-posteriori inference for perform-
ing the decision process. We use the term standard models
for these last three models because they are commonly con-
sidered in the literature and we demonstrate that in the exper-
imental paradigm considered here they give rise to identical
estimates for the value of the stimulus despite different the-
oretical origins.

2.1 Theoretical background

All decoding models are based on theoretical and functional
hypotheses. Here, we assume that the decision process is
based on the response of those neurons tuned to the main
stimulus feature—here the direction of motion, and these
neuronal responses are used to decode the visual input with a
given theoretical decoding scheme. Furthermore, we assume
a continuous population of direction of motion sensitive neu-
rons based on the insights from cortical area MT/V5 (see
Fig. 2a). This visual area contains a hypercolumn represen-
tation of motion direction at each location of the visual field
and the neuronal activity is modulated by surround-to-center
spatial interactions (Britten 2003; Born and Bradley 2005).
Importantly, the neurons’ response to various directions of
visual motion follows a characteristic unimodal bell-shaped
tuning function that is well represented by a Gaussian func-
tion written as:

ri (θ0) = Ai exp

(
− (θ0 − θi )

2

2σ 2
i

)
. (1)

In this equation ri (θ0) is the mean firing rate of the neurons
with preferred direction of motion θi in response to a motion
direction θ0, σi is the standard deviation of the tuning curve,
and Ai is the mean maximum firing rate of the neurons tuned
to θi . Therefore, for a single presented stimulus the hypercol-
umn population response follows the same Gaussian function
(Fig. 2b, thick solid line) (Pouget et al. 2000). To simplify the
subsequent calculations, we assumed that all neurons could
be modelled by a characteristic tuning curve with amplitude
A0 and tuning width σ0 and that the responses of neurons fol-
low an independent Poisson process (cf. Dayan and Abbott
2001; Jin et al. 2005).

We were particularly interested in the modulation of
perceived motion directions of the center stimulus in a cen-
ter surround stimulus configuration with the surround being
task-irrelevant (Fig. 1a). Motion in the surround does not acti-
vate directly the population of neurons within the directional
hypercolumn responding to the central target, but indirectly
modulates the strength of the neuronal response (Allman et al.
1985; Born and Bradley 2005). According to neurophysio-
logical evidence (Allman et al. 1985), the surround motion
(subscript i0) is modelled to reduce the maximal response
amplitude of neurons responding to the target motion. The
response modulation varies as a function of the difference
between the surround motion directions (θi0 ) and the neuron’s
preferred direction (θi ), with the surround assumed to have
a multiplicative effect on neuronal responses to the target
motion when they have similar preferred directions (no effect
from opponent motion directions is considered, see Appen-
dix A). We capture this amplitude modulation effect with a
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Fig. 2 Illustration of population activity and Fisher information (FI)
within a theoretical neuronal population and its hypothetical modulation
by surround motion. a Schematic of a population of neurons sensitive to
all directions of motion and arranged in a hypercolumn of motion sen-
sitive neurons in macaque cortical area MT/V5. b The corresponding
theoretical population response function (thick line) based on neurons
with all possible preferred directions of motion in response to a zero
degree motion direction. Error bars denote the Poisson variability of
the firing rate of the neurons. The thin line represents the FI informa-
tion profile of the neuronal population. c Modulation of neuronal tuning

curve amplitudes induced by a second motion stimulus in the surround
moving +40◦ away from zero degree. The suppressive influence on the
amplitude is shown in thick grey (Eq. 2). d The corresponding popula-
tion activity and FI profile modulated by the presence of the surround
(thick and thin line, respectively). The FI estimate is shown as verti-
cal white line and the Standard models estimate as vertical black line
(Ai0 = 0.8, σ = 30). Note that both models provide different esti-
mates (the x-position of the vertical lines) given identical population
characteristics

Gaussian function centred at θi0 and a standard deviation σi0 ,
written as:

Ai (θi , θi0) = A0

(
1 − Ai0 exp

(
− (θi − θi0)

2

2σ 2
i0

))
, (2)

with Ai0 corresponding to the maximum amplitude inhibi-
tion. Figure 2c illustrates an amplitude suppressive effect of
a second irrelevant motion on the population tuning curves.

In deriving most models, we need to define the probabil-
ity distribution P(R|θ0) of observing a pattern of activity
R = (x1, x2 . . . xn) in the hypercolumn population given the
presence of the stimulus θ0. Based on the independent Pois-
son process for neuronal firing rates and assuming a reading
time T of the neuronal response giving individual firing rates
xi in the trial, the probability can be written as (e.g. Dayan
and Abbott 2001):

P(R|θ0) =
n∏

i=1

P(xi |θ0) (3)

=
n∏

i=1

(ri (θ0)T )xi T

(xi T )! exp (−ri (θ0)T ) . (4)

This equation represents the likelihood function for observ-
ing a population response R for the presented stimulus θ0

with known mean tuning characteristics ri (θ0) (here xi T rep-
resents the number of spikes fired by neuron i during the
reading time of the neuronal population).

2.2 Fisher information decoding method

To calculate information profiles of a theoretical neuronal
population we derive Fisher information (FI) across the
whole neuronal population (as in Paradiso 1988; Seung and
Sompolinsky 1993; Dayan and Abbott 2001) (cf. Fig. 2).
When the neuronal population is activated by a single stimu-
lus with motion in one direction (Fig. 2b), the total FI repre-
sented by the neuronal population response is reflected in the
mean curvature of the log-likelihood function (Fisher 1925;
Paradiso 1988; Dayan and Abbott 2001; Kass et al. 2005). It
is defined as:

IF (θ0) =
〈
− ∂2

∂θ2
0

ln (P(R|θ0))

〉
. (5)

For neuronal responses based on Poisson-like noise pro-
cesses, it can be shown that the FI about a single presented
stimulus conveyed by neurons having the same preferred
stimulus θi is proportional to the square of the tuning curve
derivative divided by the tuning curve itself (Paradiso 1988;
Seung and Sompolinsky 1993; Dayan and Abbott 2001):

IF (θi , θ0) = ((d/dθ0)ri (θ0))
2 /ri (θ0). (6)

The above total FI (Eq. 5) is the sum of the FI across the
neuronal population with different preferred values.

Neuronal tuning functions for the direction of motion in
area MT/V5 are known to follow a Gaussian function (Eq. 1).
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Thus, the mean FI carried by the neurons with a preferred
direction θi about the stimulus θ0 is:

IF (θi , θ0) = A0

σ 2
0

(
θ0 − θi

σ0

)2

exp

(
− (θ0 − θi )

2

2σ 2
0

)
. (7)

The neurons that provide the most FI about a given direction
of motion are those with preferred directions at σ

√
2 from the

stimulus direction, i.e. where small changes of motion direc-
tion results in the strongest differences in neuronal response
compared to the underlying variability of the firing rate (see
Fig. 2b) (Dayan and Abbott 2001).

We were particularly interested in the modulation of neu-
ronal information profiles induced by a second task-irrele-
vant motion direction in the spatial surround of the target
motion (cf. Fig. 1a). Motion in the surround does not acti-
vate directly the population of neurons within the directional
hypercolumn responding to the central target, but indirectly
modulates the strength of the neuronal population response
(Allman et al. 1985; Born and Bradley 2005). As a conse-
quence, this spatial segregation leads to a single FI term for
the hypercolumn model. Figure 2c-d illustrate the suppres-
sive effect of a second irrelevant motion on the population
tuning curves together with the modulation of the population
response and its information content.

We model the subjectively estimated perceived motion
direction as an information equalization process. It is obtai-
ned by assuming that human subjects perceive the stimulus
value that lead to the same amount of information present for
either alternative. It can be written in different forms (ratio,
squared or absolute value of difference), and here we use the
mathematical expression:

G(θ) =
∣∣∣∣∣∣

θ∫
θ−π

IF (θi , θ0)dθi −
θ+π∫
θ

IF (θi , θ0)dθi

∣∣∣∣∣∣ (8)

θFI = argmin G(θ). (9)

G(θ) represents the difference in information content con-
veyed by the neuronal populations “left” and “right” of the
reference value θ .

For example, when a single direction of motion is pre-
sented to the neuronal hypercolumn population without a
surround motion (Fig. 2b), it is clear that the amount of infor-
mation for directions of motion leftward and rightward from
the exact physical direction of motion is equal (cf. dark and
light grey areas in Fig. 2b). When a second stimulus is pre-
sented in the surround and changes the response strength
of a part of the neuronal population (Fig. 2c), the equaliza-
tion point is moved further away from the surround direction
(white vertical line in Fig. 2d).

The FI computation can be implemented by postsynap-
tic neurons in a higher-level neuronal population coding for
direction of motion. For example, calculation of the individual

FI terms require neurons to compute the square of the
tuning curve derivative divided by the tuning curve (see Eq. 6).
In neuronal terms it involves basic computations: subtracting
the responses of neurons with adjacent stimulus preference
and squaring ((ri+1 − ri−1)

2)), and dividing the outcome by
the neuronal response (ri ). These calculations could easily be
implemented in dendritic trees equivalent to two-layer neu-
ral networks (London and Häusser 2005). As a final step, the
read-out of this FI population representation is performed
through Eq. 9.

2.3 Standard models of decoding

2.3.1 Population vector average

The population vector average model assumes that the final
percept θperc is obtained by performing a weighted-average
across firing rates of neurons’ with preferred direction θi

(e.g. Dayan and Abbott 2001). It is written as:

θPV =
∫

ri (θ0) × θi dθi∫
ri (θ0)dθi

. (10)

2.3.2 Maximum-Likelihood estimate

The maximum likelihood estimate of the input is obtained by
computing the log-likelihood function L(θ) = ln(P(R|θ))

for the observed firing pattern R in the neuronal popula-
tion encoding the direction of motion. The likelihood func-
tion for different motion directions θ can be represented in a
higher level neuronal population (e.g. Jazayeri and Movshon
2006) and therefore could allow to extract the stimulus value
that maximizes this function, i.e. the most probable input
value. The final perceived value is mathematically tractable,
and gives:

θML =
∫

ri (θ0) × θi dθi∫
ri (θ0)dθi

. (11)

2.3.3 Maximum-a-posteriori estimate

The Bayes rule relates the conditional probability that a stim-
ulus was presented given the neuronal response to the global
probabilities of neuronal responses and stimulus presenta-
tions and their conditional relation. It is written as:

P(θ |R) = P(R|θ)P(θ)/P(R) (12)

where P(θ |R) is the conditional probability that stimulus θ

was presented given the observed activity pattern R across
the neuronal population, P(R|θ) is the conditional probabil-
ity of observing a pattern of activity R given the presence of
stimulus θ , and P(θ) and P(R) are respectively the probabil-
ities of stimulus θ being presented and observing response
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R (e.g. Chap. 3, “Neural decoding”, in Dayan and Abbott
2001).

By using the theoretical hypotheses (Sect. 2.1) plus the
assumption that the probability of a stimulus θ being pre-
sented is unimodal and can be represented with a Gauss-
ian probability density function centred on θprior and width
σprior, one obtains the maximum-a-posteriori estimate θMAP

as
(cf. Dayan and Abbott 2001):

θMAP = T
∫

ri (θ0)θi/σ
2
0 dθi + θprior/σ

2
prior

T
∫

ri (θ0)/σ
2
0 dθi + 1/σ 2

prior

(13)

If the prior distribution is centred on the MAP estimate,
i.e. θMAP = θprior, which is equivalent to saying that the
prior distribution of the stimulus is centred on the mean per-
ceived value by the subject, it can be easily shown that Eq. 13
becomes:

θMAP =
∫

ri (θ0) × θi dθi∫
ri (θ0)dθi

. (14)

This demonstrates an interesting result for the condition
described above, that the maximum-a-posteriori estimate is
independent of the prior width. In Sect. 4, we show that the
staircase psychophysical method used in our experimental
design entails exactly this property, that is, the global a priori
probability distribution of the target direction of motion is
centred on the mean perceived value by the subject. There-
fore, a direct comparison of the MAP estimate to the human
perceptual data is possible.

2.3.4 Decision process

All these standard decoding processes have the same mathe-
matical description under different theoretical assumptions.
The PV model is based on the assumption that each neuron
codes its preferred direction of motion and contributes to the
perceived value with a weight equal to its firing rate. The
ML estimate is based on the assumption that a higher-level
neuronal population computes the different probabilities of
observing the activity profile in MT/V5 for different possi-
ble input values and the decision process simply reads-out
the stimulus value with the highest probability (e.g. Jazayeri
and Movshon 2006). The MAP estimate could be imple-
mented by assuming that a higher-level neuronal population
calculates the a posteriori distribution based on knowledge
of both stimulus distribution across the experiment and firing
rate distribution of the neuronal population (e.g. Zemel et al.
1998).

As demonstrated in the model derivations these three deci-
sion processes provide the same prediction of the stimulus
value, and therefore the exact modulation of the perceived
value follows the same behaviour in the three cases. When a
single stimulus is presented to the hypercolumn population

without a surround, the firing rate weighted-average of the
preferred directions is representing the stimulus estimate. It
is the exact presented stimulus value (Fig. 2b, peak of the
Gaussian population response). When a second stimulus is
presented in the surround and changes the response amplitude
of a part of the neuronal population, the estimate is moved
further away from the surround direction, consistent with the
psychophysically observed repulsion effect (Fig. 2d, black
vertical line).

2.4 Discrimination thresholds: error on the perceived
value of a stimulus

In addition to the measured perceived direction of motion
we can infer the discrimination threshold, i.e. the amount
of direction change required for a subject to report the cor-
rect direction difference with respect to his/her perceived
reference (e.g. Paradiso 1988; Dayan and Abbott 2001). We
can estimate a lower bound on the discrimination thresholds
through the total Fisher information representing the best
decoding error one can achieve with an unbiased decoding
algorithm. The squared discrimination threshold is inversely
proportional to the total FI present in the neuronal popula-
tion, and it is written as (Cramer-Rao bound, cf. Dayan and
Abbott 2001):

(σexp)
2 ≥

(
1 + d

dθ0
θbias

)2

/IF (θ0, θi0). (15)

In the described center-surround paradigm, the mathemat-
ical computations for the total FI contained in the neuronal
population activity are practicable (integral over θi of Eq. 7),
and lead to the following expression:

IF (θ0, θi0) = I 0
F

[
1 − Ai0

(1 + k)3/2

(
1 + 2Y 2

)

× exp (−Y 2/k2)
]

(16)

by replacing:

Y = k2(θ0 − θi0)/(
√

1 + k2
√

2σ0) (17)

k = σ0/σi0 . (18)

Equation 16 represents the total FI present in the neuronal
hypercolumn population about the reference direction θ0

given the presence of the modulatory surround direction θi0 .
Here, I 0

F is the FI contained in the total population activ-
ity when no surround direction of motion θi0 is present (cf.
Dayan and Abbott 2001). Thus, it is also possible to predict
the exact variation of the discrimination thresholds for the
central target motion with different surround motion
directions.
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2.5 Predictions of human perceptual parameters modulation

The described decision processes predict a systematic vari-
ation of the perceived upward reference direction of motion
as a function of the direction of motion in the spatial sur-
round (Fig. 3a). It is important to note that for a given theo-
retical population characteristics (σ0, σi0 and Ai0 fixed) the
repulsion amplitude of the models are substantially different
(see also Fig. 2d). This is due to the high sensitivity of the
FI decoding method to both tuning curve parameters: width
and amplitude of firing rate, whereas the Standard models
need strong amplitude modulation for creating a repulsion
effect. As a consequence, for predicting similar repulsion
amplitudes the models need very different population char-
acteristics. The modulation of the total FI content predicts
variation of the discrimination threshold of the target stim-
ulus as a function of surround motion direction (Fig. 3b).
We assumed that k = 1, i.e. σ0 = σi0 and optimal decoding
for the total variance estimate (these assumptions are taken
throughout the paper).

3 Psychophysics of center-surround motion
discrimination

3.1 Methods

3.1.1 Subjects

We collected data from 20 subjects (including the first author)
for fitting and extracting model parameters. Subjects had nor-
mal, or corrected to normal, vision and gave written consent
for participating in the experiment (mean age: 27.6 ± 5.6
years).

3.1.2 Apparatus and stimuli

The experiment was conducted on a 21-inch CRT monitor
at a refresh rate of 85 Hz and a resolution of 40 pixels per
degree of visual angle, controlled by a MacIntosh G4 com-
puter. Stimuli were random dot patterns (RDP) presented at
the center of a white screen (luminance: 80.2 cd/m2). RDPs
contained 8 dots per square degree with each dot extend-
ing 4 pixels and set to the lowest luminance resulting in a
contrast of 22.6 cd/m2 (the contrast of an RDP is defined
as C = ∑

pi (Li − L0)
2; the sum is over all dots present

in the RDP; pi is the proportion of surface in the RDP of
dot i ; Li is its luminance; L0 is the luminance of the back-
ground). Dots moved through a circular or annular aperture
at a speed of 8◦/s in an unidirectional translational motion
for the center stimulus and the surround in the test condi-
tion. For the noise-control condition, the surround contained
dots moving at 8◦/s in random directions, with each dot being
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Fig. 3 a Illustration of the prediction of the perceived reference direc-
tion (0◦) for the FI (thick black line) and the Standard models (thin
grey line) as a function of the distracting surround motion direction
(different y-scales for the two curves). b Elevation of the discrim-
ination thresholds as a function of surround motion direction (ratio
between discrimination threshold for the center-with-surround stimulus
and the center-without-surround stimulus). An elevation of 1.0 indicates
that the discr. threshold center-with-surround is not different from
center-without-surround’s discr. threshold when adding a surround with
the corresponding motion direction (x-axis)

assigned a fixed direction of motion until it disappeared from
the screen. Upward motion was defined as zero degree with
“leftward” motion directions as negative values. The target
RDP had a radius of 1.5◦. In the target-alone control condi-
tion, its allowed directions of motion were in the ±30◦ range
sampled in one degree steps. In the other two experimental
conditions the range of the target RDP directions was ±29◦
sampled every 2◦, and the target RDP was surrounded by an
annular aperture (inner/outer radius: 1.5◦/4.5◦) (see Fig. 1a).
For the test condition, the surround motion was 100% coher-
ent in one of the 36 directions of motion spanning the whole
360◦. The variation allowed us to test the influence of differ-
ent angles between target and surround motion on the per-
ceived upward reference direction of the central target RDP,
i.e. the motion repulsion effect.

3.1.3 Procedure

Subjects were seated in a dimly lit room 57 cm in front of
the monitor. A chin rest was used to stabilize the head. They
were instructed to fixate a small dark square centered on the
screen and to attend the central target stimulus, the surround
being task irrelevant. They started each trial by pressing the
space bar, and 353 ms after the offset of the fixation square
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the stimulus was presented for 117 ms (10 frames) at the
center of the screen. Subjects had to report if the direction
of motion of the small central RDP (the target) was to the
left or right relative to his/her internal reference direction of
upward motion by pressing either the “4” or “6” keys on the
computer keyboard.

Two control and one test condition were presented to each
subject. In the control conditions the target stimulus was pre-
sented either alone or with random motion in the surround.
Each of these two conditions had a total of 120 trials. In
the test condition, the target was shown together with the
surround containing 100% coherent motion. The test condi-
tion was split in two experimental blocks, one containing 18
directions of motion of the surround (from −170 to +170◦
with steps of 20◦), the second the remaining directions of
motion (from −160 to +180◦ with steps of 20◦). The test
design contained a small number of total presentations of
each annular stimulus direction (30 times) combined with a
short presentation of the stimuli to the subject at each trial
(117 ms).

For measuring the subject’s response curve to the direction
of motion of the central RDP, a weighted up-down staircase
procedure for stimulus presentation was used (Kaernbach
1991). The theoretical convergence hit rate of a given stair-
case algorithm was either 75 or 25%, corresponding to step
sizes Up–Down along the psychometric function of 3/1 and
1/3 respectively. For example, in the test condition using the
convergence point of 75%, the step was 3×2◦ to the left
when “right” responses were given, and 1×2◦ to the right
when a “left” response was present. In the test and noise-
control conditions, each staircase run started at ±21◦ devia-
tion from zero degrees upward motion, at the opposite side of
the convergence point when compared to the midpoint. Such
a staircase run for a 75% convergence point can be visual-
ized in Fig. 4a where the run starts at +21◦ and the algorithm
converges rapidly to the stochastic region. In addition, the
convergence points of 25 and 75% were equally distributed
through the different staircases within a given experimen-
tal block in order to avoid biases due to unequal number of
“left” and “right” answers. In the control conditions, four
independent staircase algorithms were interleaved in order
to avoid that subjects learned the experimental procedure
(Cornsweet 1962). Within one test block, the eighteen stair-
cases, corresponding respectively to each motion direction of
the surround, were presented in a pseudo-random order on
a trial-by-trial basis (Bonnet 1986). This allowed avoiding
any building-up of information (learning or adaptation) due
to the shortness of the presentation (117 ms), the random-
ness of surround directions from trial-to-trial, and the small
number of total trials (30) per surround direction. This global
design prevented potential problems coming from asymmet-
ric sampling of motion directions (Rauber and Treue 1999),
adaptation effects, eye tracking (Rauber and Treue 1999),
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Fig. 4 a Example of a staircase run which started by presenting a tar-
get direction of 21◦ and “walks” over up to the 75% convergence point
where it has a typical random walk (condition with surround motion of
−70◦). b The corresponding pooled responses (dots), i.e. proportions of
“leftward” answers as a function of target direction of motion together
with the fitted logistic function (solid curve; a = −5.93, b = −0.44).
The number of trials at each visited target motion direction are shown
above/below each datum. This example shows the repulsion effect on
the psychometric function, with the midpoint shifted closer to the sur-
round, such that the subject responded to the physical vertical direction
(0◦) to be further away from the surround. The psychometric func-
tion allowed to extract the discrimination threshold as illustrated in
Fig. 1b. c Histogram of all target motion directions presented across
subjects. The distribution peaks around 0◦ (mean: −0.073; SE: 0.054;
n = 21, 600), demonstrating that globally the staircase method pre-
sented a mean upward target. Therefore the mathematical condition for
applying the MAP estimate is met (see text for details)

or stimulus statistics (Mahani et al. 2005) as explanation of
motion repulsion.

3.1.4 Raw data extraction

We extracted the staircase runs and obtained the response
curves in the control conditions, and for each surround motion
direction in the test condition. The response curve represents
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the number of “left” answers of the subject as a function of
each motion direction of the target RDP. Figure 4a,b presents
a staircase run and the pooled “left” responses at each target
direction of motion. Using the maximum likelihood method
and the simplex algorithm (Press et al. 1997), each response
curve was fitted with a logistic model of the form:

p(x) = 1

1 + exp (−b(x − a))
, (19)

where x is the direction of motion of the target RDP, p(x) is
the corresponding hit rate, a corresponds to the midpoint of
the function and b is related to its steepness. Thus, a reflects
the internal reference direction of upward motion, i.e. the
direction for which subjects are equally likely to give a “left”
or “right” response. Parameter b allows to compute the dis-
crimination threshold defined as σexp = x p=0.84 −x p=0.50 =
(1/b) log(21/4). It represents the amount of direction devia-
tion in degrees that allows the subject to discriminate between
the target direction relative to his/her internal zero degrees
upward reference in 84% of the trials (for an example, see
Fig. 4a,b). By analyzing the raw results, in one case out
of the 720 experimental values (36 surround directions ×
20 subjects) the fitted psychometric function was flat with
correspondingly very high discrimination threshold (>100◦).
This psychometric function was not included in the data
analysis.

Previous studies have demonstrated that the slope, and
thus the discrimination threshold, is a biased and very noisy
parameter (Leek et al. 1992; Vågerö and Sundberg 1999;
Kaernbach 2001). Therefore, we conducted Mont Carlo sim-
ulations using the staircase procedure described above for
assessing the biases and variability of both parameters in the
experimental design. As reported previously, we observed
that the slope parameter b has a strong bias and variability.
Additionally, the simulations showed that the midpoint a has
a small bias corresponding to less than 5% of its total variance
(see Sect. 4).

3.2 Results

In the experiments, subjects had to judge whether the direc-
tion of motion of a foveally presented stimulus deviated either
rightward or leftward from upward motion (defined to be
0◦ and rightward deviations as positive) (see Fig. 1). Vary-
ing the direction of a task irrelevant motion in the spatial
surround induced changes in the perceived upward motion
direction in all 20 subjects (motion repulsion, cf. Figs. 4 and
5), complementing previous reports (Kim and Wilson 1997;
Tzvetanov et al. 2006). Figure 5a shows the between-sub-
jects mean value of the perceived vertical reference direc-
tion of motion across different surround motion directions.
The figure plots the direction of motion of the center target
that the subjects reported to perceive as moving upward. The

physical direction of motion perceived as moving upward
is closer to the surround motion direction, thus demonstrat-
ing the repulsion effect. Subjects misperceive the upward
direction particularly for surround directions around ±30–
60◦ from the true zero degrees upward direction. Interest-
ingly, the average results showed a small bias induced by
surround stimuli moving at ±130–150◦, i.e. opposite to the
direction that caused the strongest motion repulsion. This
influence of motion opponency was evident in only a subset
of the subjects and is integrated into the model in more detail
in Appendix A.

Surround motion also modulated the threshold for dis-
criminating the target motion direction (Fig. 5b) with ele-
vated thresholds for surround directions around ±40–50◦
(test thresholds normalized to the noise-control condition;
noise-control mean discrimination threshold of 2.7 ± 0.2◦,
SEM; n = 20). This is in the range of the maximum repulsion
effect (Pearson correlation coefficient computed between the
absolute value of perceived upward motion and discrimina-
tion thresholds: r = 0.29, p < 0.001).

4 Model fit to the data

4.1 Methods

4.1.1 Perceived value

The logistic fits to the psychophysical results provided the
perceived vertical upward reference direction of motion and
the threshold in the a and b parameters respectively. After
subtracting the individual mean of the data for adjusting to
zero, the variation of the a parameter with different modu-
latory directions of motion in the surround can be directly
compared to the models.

The FI and standard models predictions were fit to the
data by minimizing the mean squared error between the the-
oretically predicted perceived upward motion direction by
the model and the physical true 0◦ upward direction (using
the simplex algorithm, cf. Press et al. 1997). For a given
set of theoretical model parameters, the perceived upward
direction predicted by the model is obtained by the follow-
ing procedure. The two values of (1) the measured physical
direction of motion reported as upward (parameter a) and (2)
the corresponding surround direction (θsurr) are introduced in
Eqs. 1–2 and then the neuronal activity and information pro-
files computed. Models predictions were extracted through
the standard models estimate and the equalization point of
the FI profile (computing the cumulative of the population
information profile and extracting the stimulus value giving
half of the total information content). These calculations were
performed by discretizing the theoretical hypercolumn pop-
ulation in steps of 0.01◦ (this method is computationally

123



406 Biol Cybern (2008) 98:397–411

a
N

or
m

al
iz

ed
 d

is
cr

im
in

at
io

n
th

re
sh

ol
d 

va
ria

tio
n

Surround motion direction (degrees)

-180 -120 -60 0 120 180

P
er

ce
iv

ed
 v

er
tic

al
re

fe
re

nc
e 

di
re

ct
io

n 
(d

eg
.)

b

-6

-3

0

3

6

0.8

1.2

1.6

2.0

2.4

60

Fig. 5 Psychophysical results and model fit. a Average psychophysi-
cal repulsion curve (dots) obtained by computing the between-subjects
mean perceived vertical upward reference direction of the target motion
as a function of the direction of the surround motion. The model fits are
shown as solid line: FI model in black, standard models in grey. Light
grey data points represent deviations from the predicted motion repul-
sion (see Sect. 4). b Average normalized discrimination thresholds of
the target motion (dots) and model fit (line) as a function of the surround
motion direction. Error bars denote SE (n = 20)

intensive). Each model has 2 parameters to be adjusted: σ0,

Ai0 . Interestingly, we found that some individual subjects’
data showed clear attraction effects for opposite directions of
motion that was only marginally evident in the group aver-
age. To account for this finding we extended the model to
incorporate motion opponency, described in detail in Appen-
dix A.

For fitting the MAP model to the data, we first tested for
the assumption that the prior distribution of the target stim-
ulus, which is the experimental distribution of the presented
target motion direction, is centered on the perceived value.
This condition needs to be met in order to have the MAP
estimate independent of the target distribution width and
therefore allowing a simple Bayesian prediction of human
perceived value. Figure 4c presents for all trials and across
subjects (21,600 trials) the distribution of presented target
directions of motion. The mean is −0.073 ± 0.054 (SE,
n = 21, 600) showing that the distribution of presented tar-
get directions is well centred on the real vertical direction
across all trials and subjects, as expected due to the staircase
algorithms used in the experiment. Therefore, the mathe-
matical conditions for applying the MAP estimate (Eq. 14)
are met.

4.1.2 Discrimination threshold

We also predicted changes in motion discrimination thresh-
olds as a function of the direction of motion in the surround.
We computed the ratio of thresholds in the test condition to
those in the control condition. According to Eqs. 15 and 16
and using σ 0

exp = 1/I 0
F (the discrimination threshold of the

control condition), we can express the above mentioned ratio
as:

σexp

σ 0
exp

= B0 +
√

I 0
F/IF (θ0, θi0), (20)

with B0 reflecting a global constant shift of the curve. This
model prediction was applied on the average normalized
thresholds across subjects, normalized to the noise-control
condition, and fit with the Levenberg-Marquardt algorithm
(Press et al. 1997). Additionally, we considered optimal infor-
mation extraction, i.e. the smallest attainable discrimination
threshold by assuming equality of left and right sides in Eq. 15
and no bias of the curve. Equation 20 provides three parame-
ter estimates: B0, Ai0 , σ0. Using the second target-alone con-
dition for normalization of threshold estimates gave nearly
identical results (not shown).

4.1.3 Statistical tests

The between-subject mean repulsion data were compared
to the mean fitted model with a standard χ2 test for how
good a model predicts the data points. In an initial fit of the
mean repulsion curve and Discrimination thresholds varia-
tion obtained across subjects, we found a statistical difference
between models and data (see Appendix B). Therefore, we
decided to restrict all model fits and tests to 32 out of the
36 data points where the repulsion effect is due to inhibitory
interactions and not affected by yet unknown supplementary
interactions (discarding surround angular deviations of ±10◦
and ±20◦, see Fig. 5, grey data points).

It should be noted that any influence from the small bias
of the midpoint estimate mentioned in Sect. 3 (“Raw data
extraction”) on the main statistical outcome would decrease
the match between the model and data. The bias is always
in a direction away from the midpoint and toward the the-
oretical convergence point. As a consequence of the fixed
experimental design, with half points slightly biased toward
the 25% and half toward the 75% convergence points, the χ2

test would show less statistically reliable model prediction.
The discrimination threshold fit was assessed with an F-

test between global mean residual variance of the data and
model residual variance. This test allows estimating if the
model predicts the data better than the global data mean.
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4.2 Results

We evaluated the outlined models by fitting them to the
psychophysical data. The resulting fits of the data pooled
across subjects are shown in Fig. 5a (FI in black solid line;
standard models in grey solid line) and reveals that the models
captured the observed behavioural motion repulsion across
varying surround motion directions (FI: χ2 = 28.0, d f =
30, p > 0.05; standard models: χ2 = 20.2, d f = 30, p >

0.05). The FI model parameters underlying the significant fit
corresponded to an underlying tuning width of σ = 18.2◦
and surround modulation of the response strength to the target
motion of 2.4% (Ai0 = 0.024). The parameter of the standard
models showed σ = 30.1◦ of tuning width and a surround
modulation of the response strength to the target motion of
50% (Ai0 = 0.50). Comparing the capability to predict the
data by the FI and by the standard models showed no statis-
tically different predictions (F(30,30)=1.38, p > 0.05).

In addition to changes in the perceived upward motion we
also fit the variation of the discrimination threshold as a func-
tion of the surround motion direction. Despite the inherent
variability of discrimination thresholds the model reproduces
the basic shape of the surround influence on human sensitiv-
ity to motion of the center stimulus (Fig. 5b; comparison to
the global data mean: F(31, 29) = 2.48, p < 0.01; param-
eter estimates: σ = 25.3, Ai0 = 1.34, B0 = 0.14).

5 Discussion

This study delineated a novel approach to decode sensory
information from neuronal population responses based on
the extraction of local Fisher information (FI) representing
the underlying variance estimate of the sensory input. We
applied the model to a theoretical hypercolumn population
of area MT/V5 tuned to direction of motion, and predicted
for a motion discrimination paradigm the global perceptual
misjudgements of the center motion direction when flanked
with surround motion. For comparison, we applied more
commonly used standard models (Population vector average,
maximum-likelihood, and maximum-a-posteriori (Bayesian)
inference) to the same data and found that these models
showed similar statistical prediction power for the global
perceived direction of motion. However, the standard
approaches and the FI decoding algorithm provided clearly
divergent estimates of the tuning parameters of the neu-
ronal population that could underlie the psychophysically
observed effect. In addition, our approach demonstrated that
the same surround modulation of the population response
also gave rise to a systematic change in the sensitivity to
motion direction.

Our psychophysical results revealed a systematic change
of the perceived motion direction and discrimination

thresholds of a target stimulus due to the presence of a task
irrelevant motion signal in the spatial surround. Subjects
misperceived the vertical upward motion maximally by on
average 6◦ for surround direction of motion deviating by
about ±40◦ from the upward reference direction. The mag-
nitude and direction of this effect agrees with previous reports
of motion repulsion (Hiris and Blake 1996; Kim and Wilson
1997; Rauber and Treue 1999; Tzvetanov et al. 2006). More-
over, the average thresholds of human subjects for discrimi-
nating a target motion varied in accordance with the repulsion
effect. Elevations of discrimination thresholds were stron-
gest when the angle between center and surround motion
was ±40–50◦ (similar to results of a previous study which
used an adaptation paradigm, Hol and Treue 2001).

The psychophysically observed effects could be predicted
by decoding the neuronal population response as information
profile. The motion direction that was subjectively perceived
was calculated as the value that lead to the same information
content for either behavioural alternative (rightward vs. left-
ward direction of motion) across the whole neuronal popula-
tion. This finding together with the representation of Fisher
information within the neuronal population (Paradiso 1988;
Seung and Sompolinsky 1993; Dayan and Abbott 2001) sug-
gests that human responses can be conceived of as reading
information explicitly from the neuronal response profiles.
This finding extends the more standard views on neuronal
decoding, which also accounted for the observed effects.
However, FI and standard models clearly differed with
respect to the neurophysiological population parameters that
underlie motion discrimination in the center-surround
configuration: compared to the standard models the FI
model predicted far narrower neuronal tuning width
(about 40% smaller) and required only a fraction of the sur-
round amplitude modulation to account for the perceptual
results.

The discrimination threshold variations with surround
motion directions were well predicted based on modula-
tion of the total FI content. This finding parallels an earlier
report from the orientation domain (Paradiso 1988) that dem-
onstrated how the experimental modulation of orientation
sensitivity to a target line by a superimposed irrelevant line
segment (Westheimer et al. 1976) could be well predicted by
changes in the total FI in a theoretical neuronal population
tuned to orientation. We applied these insights to the center-
surround configuration in a fine motion discrimination task
that allowed simplified mathematical computations.

The combined computational modelling of both human
perceptual parameters, that is, the exact perceived value as
well as the sensitivity to this value, demonstrates that a the-
oretical framework is available for fully predicting human
perceptual decisions. Regarding the prediction of perceived
stimulus value, it is still contentious how decoding schemes
could be implemented in the brain (for example, see the
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different propositions in Vogels 1990; Seung and Sompolin-
sky 1993; Pouget et al. 2000; Jazayeri and Movshon 2006).
The proposed Fisher information decoding could be imple-
mented in a higher-level neuronal population similar to max-
imum-likelihood inference, but by reading-out the Fisher
information represented in the neuronal population instead
of probability distributions. It should be noted that the FI
model and the various standard models share common sim-
plifying neurophysiological assumptions allowing tractable
mathematical derivations: identical Gaussian tuning curve
characteristics across neurons (amplitude and width), firing
rate variability following independent Poisson noise, a theo-
retical hypercolumn arrangement of neuronal tuning. A chal-
lenging task for future research is to consider the biological
complexity in more detail and explore the influence of various
noise functions or correlation structures on decoding perfor-
mance of the various models (Vogels 1990; Zemel et al. 1998;
Abbott and Dayan 1999; Pouget et al. 2000).

The proposed FI model is built around two essential ingre-
dients that allowed us to bridge the gap from neuronal encod-
ing of sensory information to exact predictions of human
perceptual performance. First, the model assumes that sen-
sory responses are decoded in the theoretically optimal way
by extracting the FI contained in the population of motion-
tuned neurons in area MT/V5. Second, we propose in the con-
text of a two-alternative forced choice discrimination task,
that the subjective decision about the perceived stimulus is
achieved by finding the stimulus value that lead to equal
FI available for either alternative of the discrimination task
(“leftward” versus “rightward” from the upward direction of
motion).

The described mechanism critically depends on the insight
that maximal information about a stimulus is conveyed by
neurons with tuning preferences offset from the stimulus
value (Regan and Beverley 1985; Hol and Treue 2001). In
particular, for neurons in macaque area MT/V5 with known
tuning width for the direction of motion of about 42–51◦
(Britten 2003), the most “Fisher” informative neurons are
those with tuning preferences 60–72◦ away from the pre-
sented motion (at σ

√
2). Importantly, these FI theoretical val-

ues gain strong support from neuronal recording in macaque
area MT/V5 (Purushothaman and Bradley 2005). Using a
fine motion discrimination task this study revealed that most
information about discrimination performance are obtained
from neurons tuned to directions that were around 60–70◦
away from the task direction, which exactly corresponds
to the prediction of the FI model. These neurophysiologi-
cal findings along with the FI model suggest that the peaks
of misperception correspond to those pools of neurons that
contribute the most to the Fisher information. The individ-
ual neuronal contribution from the remaining population is
lower but also conveys information and cannot be discarded.
Thus, perceptual decisions are based on the whole popula-

tion of activated neurons, while particular subsets of neurons
contribute more than others due to their tuning parameters in
relation to the incoming sensory stimulus.

Using FI as the critical decoding variable clearly diverges
from models using maximum-likelihood and Bayesian infer-
ence methodologies to match perceptual decisions. These
approaches generally involve computing probability distribu-
tions from the observed neuronal activity pattern. In contrast,
we propose that the variance coded locally in the correspond-
ing neuronal population is the only relevant variable used for
the decision. This provides a new concept to imagine how the
brain processes information. If response variance serves as
the neuronal parameter critical for the read-out and decision
mechanisms, then the brain may actually implement statisti-
cal variance tests on neuronal population responses and finds
the stimulus value equalizing the variances. This can be con-
sidered as a novel theoretical framework of how the brain
processes information, complementing a recently proposed
general framework based on weight of evidence (Gold and
Shadlen 2001, 2002).

In summary, we delineated an information theoretic model
to account for human perceptual performance and compared
it to standard decoding methods. The good performance of
the models highlights the relevance of theoretical constraints
on neuronal processing. In particular, it demonstrates that
human perception could be the result of computational strat-
egies that are optimal given the known tuning properties of
neurons in cortical areas. This finding bridges the existing
gap between theoretical accounts of neuronal information
processing and perceptual performance of humans and sug-
gests that humans can extract sensory information at their
best given the neuronal population dynamics.

Appendix A:Opponent motion effects

A.1 Psychophysical results

Visual inspection of the individual experimental results sug-
gested that about seven subjects showed opponent direction
of motion effects, with five subjects showing attractive effects
between the surround and center motion and 2 subjects show-
ing repulsive effects. Figure 6 presents two typical curves for
motion repulsion with different peak types across subjects,
one with a simple repulsion effect (subject B) and one of the
strongest opposite directions effects (subject H). The figure
plots the physical direction of motion of the center target the
subject reported to perceive as upward motion (dots; note
that each datum corresponds to a unique measurement of the
perceived upward direction). The graph also shows the pre-
diction of the FI model (solid line). Figure 6 presents attrac-
tion effects for one subject, showing that surround motion of
about ±140◦ resulted in perceived vertical motion as being
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Fig. 6 Examples of typical motion repulsion effects in two subjects.
Shown is the physical motion direction perceived to be the vertical
upward direction (dots), as a function of the surround motion direction.
Each graph also presents the fitted FI model together with the resulting
parameters (the fits did not include the four data points represented with
squares, see main text)

further than the surround motion direction, in contrast to the
first peak where it was seen closer to the surround direction.
This second peak was visually evident in seven of the twenty
subjects.

A.2 FI model with opponent motion effects

The model presented in the main text assumes that the
maximal amplitude modulation effect due to an irrelevant
direction of motion is exactly at its direction (equation 2).
However, it has been described that motion processing is also
influenced by opponency, i.e. by mutual excitation/inhibi-
tion effects between motion signals with opposite directions
(Allman et al. 1985; Snowden et al. 1991; Heeger et al. 1999).
Since we also observed opponency effects in 7 out of 20 sub-
jects, this led us to consider these effects in more detail. We
therefore extended the model to incorporate plausible effects
from opponent motion (θi180 = θi0 ± 180). This was done by
adjusting Eq. 2 (main text) according to:

Ai (θi , θi0) = A0

[
1 − Ai0 exp

(
− (θi − θi0)

2

2σ 2
i0

)

−Ai180 exp

(
− (θi − θi0 + 180)2

2σ 2
i0

)]
. (21)

The additional term introduces the possible suppression of
information content for the perception of the target motion
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Fig. 7 Results of fitting the data of Kim and Wilson (1997) (extracted
from their Fig. 3) with the FI and standard models (black and grey solid
line, respectively). Error bars are SE (n = 4)

from motions opponent to the first peak motion (θi0 ). The
extended-model fits to the individual data curves resulted in
generally low residuals despite the small number of model
parameters (between subjects mean±SE of residuals stan-
dard deviation: 1.76 ± 0.11◦; n = 20). The individual fits
for all 20 subjects data captured the global curve variation
(F-test between model variance and global mean variance:
19 subjects had p<0.01; one subject had p = 0.053). Even
if the introduced opponent motion model seems to catch the
global effect it also induced small discontinuities in the model
prediction as it is evident in Fig. 6.

Appendix B: Motion repulsion in center-surround
paradigms

In the psychophysical literature, we know of few studies
that reported the motion repulsion phenomenon for center-
surround configuration. The study of Kim and Wilson (1997)
reports a full repulsion curve for four subjects, i.e. for the
whole 360◦ of surround directions of motion sampled at
roughly every 22.6◦ by using sine-wave gratings (see Fig. 7;
data extracted from Fig. 3 in their article; mean of 4 subjects).
We performed a fit of the FI and standard models to their data
but it resulted in a statistically poor fit. It seems that biases are
present in this data, with the repulsion curve being strongly
asymmetric for clockwise and counter-clockwise surround-
to-center direction differences (see Fig. 7, solid black curve
for FI, solid grey curve for standard models). Additionally,
the standard models hardly predicted the maximum repulsion
amplitude (about 30◦) even with an almost full surround-to-
center inhibition (Ai0 ∼ 0.93).
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Our psychophysical results revealed clear motion repul-
sion for surround motion directions deviating by 20 up to
about 100◦ from the center motion direction. In contrast,
smaller angular deviations between center and surround
motion directions (±10◦) did not show any motion repul-
sion. To our knowledge, this is the first report of such an
effect for this spatial layout and it was unexpected from our
side. Since our experimental design allowed a finer sampling
of the surround motion directions than Kim and Wilson’s,
the effects that we observed in our data at direction deviation
between center and surround of ±10 and ±20◦ cannot be
seen in their data. A fit of the FI model to the whole set of
36 data points showed that the model could not predict the
overall curve variation (χ2 = 185.9, d f = 34, p < 0.0001;
fit not shown). The same was true for the standard mod-
els (χ2 = 99.6, d f = 34, p < 0.001; fit not shown). The
four data points present for a restricted range of surround
motion directions contributed strongly to the model fit (at
±10 and ±20◦, see Fig. 5, grey dots), and were deviating
substantially from the repulsion effect predicted by inhib-
itory surround-to-center interactions (see the fits to the 32
points, Fig. 5). Given that the FI and standard models were
built explicitly on a theoretical neuronal hypercolumn in area
MT/V5 with surround-to-center inhibitory interactions, we
believe that any model using only these hypotheses cannot
account for the observed differences at these small angular
deviations. For addressing directly the results at small direc-
tion differences, it remains to be seen how additional model
assumptions (e.g. including recurrent neuronal interactions
in MT/V5 or between MT/V5 and earlier processing stages)
will change the model predictions about the perception of the
target stimulus.
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