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Density-dependence of functional development in spiking cortical networks grown in vitro
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During development, the mammalian brain differentiatés $pecialized regions with distinct functional abil-
ities. While many factors contribute to functional speiziaion, we explore the effect of neuronal density on
the development of neuronal interactionsitro. Two types of cortical networks, dense and sparse, witb@D
and 12000 total cells respectively, are studied. Activation grafhat represent pairwise neuronal interactions
are constructed using a competitive first response modelsd raphs reveal that, during developmanitro,
dense networks form activation connections earlier thamsgpnetworks. Link entropy analysis of dense net-
work activation graphs suggests that the majority of cotioes between electrodes are reciprocal in nature.
Information theoretic measures reveal that early funeti@mformation interactions (among 3 cells) are syner-
getic in both dense and sparse networks. However, durieg s$téages of development, previously synergetic
relationships become primarily redundant in dense, buimgparse networks. Large link entropy values in the
activation graph are related to the domination of redunéasembles in late stages of development in dense
networks. Results demonstrate differences between dedssparse networks in terms of informational groups,
pairwise relationships, and activation graphs. Theserdiffces suggest that variations in cell density may result
in different functional specialization of nervous systésstein vivo.

INTRODUCTION are observable results of neuronal interaction (functiooma-
nectivity) they can be used to infer neuronal relationsfi$

The mammalian brain is a remarkable structure compose[?]’ [27], [4].
of many specialized regions and types of cells. Despite or- In this work the effect of density on functional units is
ganizational differences in neural tissue, the basic fonat  explored using dissociated cortical tissue developmgtro
units of the nervous system, neurons, are generally simion microelectrode arrays. These are well established raodel
lar across tissues, as are methods of forming and modifyingf neuronal interaction [22]] [3], [11], though obvious eon
synaptic connections between them (e.g. spike-timingmlepe straints and limitations must be considered when attergptin
dent plasticity [[18], [7]). Thus, functional specializati of  to extrapolate betwedn vitro andin vivo structures [8],/[19].
brain regions is a function of neuron specialization, (@x.  To gain new insight into functional connectivity in deveilog
citatory or inhibitory), ratios of neurons to neurogliansptic ~ networks, we analyze the coordinated electrophysioldgiza
density, learning, and many other factors that are not y#t wetivity of groups of two and three spike trains, each represen
understood. ing an integration of all of the action potentials recorded a

Though the functional role of neurons in different typessingle electrode. Each electrode may capture the activity o
of tissues can be similar, neuronal density can vary dramag single neuron, or less frequently, incorporate signamfr
ically. For example, neuronal density in human fascia danta several cells.
is ~ 3.2X10° neurons/mm [16] while cortical tissue density ~ Activation between pairs of electrodes is inferred using a
is &2 3.4X10% neurons/mm[2], nearly an order of magnitude competitive first response model, whereby directionaldink
difference. are derived from spike train data. These pairwise links esti

A previous study of network developmantvitro demon- mate the probability that activity at one electrode causes a
strated that network bursting (when a large majority of neudivity at another. The set of all such links forms a network
rons fire in a coordinated pattern) and spiking patternsfare aactivation graph where vertices represent recordingreldes
fected by neuronal density [28]. Since spike and burstigtiv and weighted edges represent a dependent activation pirobab
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ity. We use entropy based link analysis (link entropy) torecha Network Electrodes Recording days

acterize connectivity between electrodes. Informatieoth D1 56  4-7,9-26,28,31-35

retic measures applied to ensembles of 3 electrodes reveai2 56 4-26,28,31-35

functional information structures. Such structures ararch D3 56 4-26,28,31-35

acterized using an information overlap method that revealgs 56  4-26,28,31-35

whether interactions are Synergetic (more informationbis o s1 58 4-7,10,11,13,14,17,19,21,22,24-26,28,31,33,34

tained from the measurement of two electrodes together cong
ditioned on the third compared to measuring them sepajately
redundant (less information is obtained from the measunéme
of two electrodes together conditioned on the third comgbare
to measuring them separately) or independent. Results shoyAg| £ |: Network: D1-D4 are densely seeded and S1-S4 are
that functional structures in networks are strongly inflesth  sparsely seeded. Electrodes: number of electrodes witamiten-

by neuronal density and suggest that varying cell densiy is tial activity. Recording days: dayis vitro a network was recorded.
potential strategy for differentiating tissue functiahal

58 4-7,10,11,13,14,17,19,21,22,24-26,28,31,33,34
58 4-7,10,11,13,14,17,19,21,22,24-26,28,31,33,34
S4 58 4-8,10,12-14,17,18,20,21,31-35

data presented here, typically no more than 2 neurons are ob-
served at any given electrode [13].

The first response model provides a method for estimating

We analyze developmental activity patterns in eight cul-whether a spike produced at one electrode initiates a spike a
tured cortical networks growing on microelectrode arraysanother. Each time a spike at an electrode is the first to fire
Networks were recorded [28] on days ranging from 3 to 36within 1 — 10 ms after a spike at another electrode (Fig. 2a),
daysinvitro (DIV, days after plating). Half the networks stud- the link (edge) from the first to the second is incrementaly i
ied are sparsely seeded (625 cells/ml) the other half dgnsetreased. This results in a weighted and directed edge betwee
seeded (500 cells/ml). electrodes (Fid.12b).

Cells (neurons and support glia) are removed from embry- Edge weights are calculated for all electrode pairs. Edges
onic mice and their existing tissue structure is dissodiate represent inferred activation links in the network and ae n
mechanically and enzymatically. After cells are seeded omecessarily representative of actual synaptic connedt®n
a microelectrode array, they form new connections and selfaween neurons recorded at any two electrodes. Edges are de-
organize into spontaneously active networks [12], [17§ufé  noted byx;j , wherei is the first electrode to fire anfthe
depicts a representative dense and sparse network at 1, $8cond. When pairwise edges are studied individually, they
and 32 DIV. Experiments and data collection were performecire normalized by the lesser of the total spikes recorded at
by Wagenaar et al. [28] and made publicly available for analy or j, giving an estimate of the probability thialeadsj. Nor-

sis. Detailed information about culturing, plating, anddang  malized frequency edgeg; andx;; are denote, andY,
techniques are provided in this reference. respectively.

METHODS

First response model Activation graph

We build a model of network connectivity using spike tim-  The combination of all weighted directed edges between
ing correlations to study the evolution of pairwise neural i ~€lectrodes forms an activation graph, which is a weighted di
teractions during development. The model is based on theected graph, with each edge normalized between zero and
assumption that, within a small network, all activity prdee Unity. This graph estimates the activation probabilitynesn
ing a spike within a biologically plausible time window con- all electrodes. New activation graphs are created for eath n
tributes to its firing. Any given spike is assumed to be corrework on each recording day.
lated with the ignition of the next spike to fire within-110
ms. This temporal window is selected such that the first spike
has enough time to influence the production of the second, Information ensembles of order 2
but not so long that its effect will have faded [20]} [7]. All
spikes collected at a single electrode form a single spéia.tr Neuronal activation along pathways in the brain is gengrall
Therefore, the number of spike trains is equal to the number aa sequential process. Activity in one area can ignite agtivi
active channels (Table 1) and functional connections dised  in another on large scales (tissue structure, €.g. [26])ells w
here are made between electrodes. as small scales (neuronal networks, e€.gl [13]). To chaiiaete

Recent analysis of similar recordings in which individ- the influence a target electrode has on all other electroges,
ual neurons at an electrode were discriminated (spikedprte apply a link entropy analysis of the activation graphs. Link
shows that, for plating densities comparable to those in thentropy is calculated for each electrode and measures the un



FIG. 1: Neurons and neuroglia growing on microelectrodayar Dense (left column) and sparse (right column) netwarksdepicted at
1, 15 and 32 dayin vitro (DIV). Dark circles are electrodes and dark lines are iratgt wires that transmit action potential activity from
electrodes to amplifiers (not pictured). Figure was presfippublished by Wagenaar et dl. [28] and is used with petiorissom the authors
under the license of the publication

certainty of which electrodes will be activated by the targe the probabilityp(x;j):

electrode. For example, in Figl 2b, electrotiactivates only

Z. Since there is no uncertainty about which electridac- p(Xi;) = j (1)
tivates, the link entropy is 0. IK activated more than one J 2?';11Xii

other electrode, uncertainty in activation and link enyrop
crease. In a fully connected network withelectrodes, there
areN — 1 potential pathways (edges) originating from each
electrode. Edges) originating from a target electrodé) (

in the weighted directed activation graph are used to ettima

The link entropy of the target electrodié in an activation
graph with N active electrodes is:

N-1

Hi = — Zl p(xij)l0g2(p(xij)) @)
]:
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a,  =ioms b. theoretic quantities are measured only during networktbprs
where the vast majority of all coordinated interactionsurcc
x = More details about network burst detection are givern.in.[13]
'\ L The average number of detected network bursts per minute

across all dense and sparse networks on all recorded DIV is

shown in Fig.[#a. Bursts are digitized by dividing time into

10 ms bins. If activity occurs during a bin, the bin is assijne
<1 ms. a 1. Otherwise the bin is assigned a 0. Probabilities are com-

puted by normalizing the number of spiking and not spiking

FIG. 2: a) Activation links are made when activity at an elede is  bins by the total number of bins. Joint probabilities camals

the first to occur within a & 10 ms window after another electrode. pe computed in the same way for multiple electrodes.

Note that no link is made from the second spikeXisince the time

window between it and is less than 1 ms and it aidis greater than After digitization, all groups of spike train triplets arg-e

10 ms. b.) Pairwise activation graph constructed from dafmita.  amined for redundant or synergetic relationships per time co

Edges are directed and weights increase as connectionsseeed.  yention established in [5]._[24]. Specifically, for threee

Edges are normalized by the lesser of the total spikes obS@V  q4eqx Y, Z, we consider the conditional mutual information

either of the connected electrodes. Activation networkseagent .
activation flow and are not representative of the physicahections betweerX and the state of two other electrodéandZ ([9]):

between two electrodes

§

p(xvyvz)
(X {Y,Z2}) =Y p(xy,z)logp———. 3)
=g, ?B00p(2)
y Subtracting this quantity from the sum &tX;Y) and

[ (X;Z) reveals the informational nature of the ensemble [9].
For example, in a synergetic ensemble (see[Big. 3a), more in-
formation is gained when considerifigandZ together rather

X than separately:(X;Y,Z) > 1(X;Y) +1(X; Z). However, in a
redundant ensemble (see Fig. 3b), less information is daine
when considering’ and Z together rather than separately:
FIG. 3: a) Synergetic relationship whexeandY together provide | (X;Y,Z) < 1(X;Y) +1(X;Z). If Y andZ are independent,
more information about the state &fthan they do individually, as | (X;Y,Z) =1(X;Y)+1(X;Z). Therefore, we can use the mea-
in the case of a logic gate. b) Redundant relationship, wheaed  sureR(X,Y,Z) =1(X;Y)+1(X;Z)—1(X;Y,Z) to characterize

Y together prOVide less information about the stat& dian they do the functional informational nature of an ensemb®scan be
individually, as in the case of a Markov chain positive (redundant), negative (Synergetic) or zero (irete
dent).

This measure represents the uncertainty (in bits) of the po- To test for statistical significance, experimentally obéai
tential activation paths originating from a target elede#o R values were compared to values obtained from a Poisson
Link entropy values range from O (no uncertainty; activa-null model with the same spiking rates as in the experiment
tion flows along only one path with probability of 100%) to [5]. In this model, experimentally obtained spike traine ar
a maximal value ofog>(N — 1). The latter occurs only when used to form a randomly distributed Poisson spike train for
(non-zero) probabilistic connections between the target a each electrode. This eliminates all correlations betweées
all otherN — 1 electrodes in the network are equal. trains, so that non zero values®#re the result of finite sam-

pling. The Poisson spike train contains the same number of

spikes as the experimentally observed spike train. In jmect
Informational ensembles of order 3 R values obtained from this model are very small since coin-

cidences are minimal between random Poisson spike trains.

Information theoretic measures applied to ensembles of Fhe Poisson model establishes a background noise level be-
electrodes are used to estimate functional relationshigs, low which R values were considered to be effectively 0. This
yond simple directed connectivity, in developing networks null model was used to establish the background noise level
At this point, probabilities are no longer based on actorati  below whichR values were considered to be effectively 0. The
graph links between electrodes. Rather, each electrode canean PoissoR values over 10 instances of the model were on
assume two states — spiking or not spiking. In the conventhe order 10° while typical values from the experimental data
tion established in Reike et al. |23], see also [5], infoiiorat  ranged betweer10 2 and 101,
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FIG. 4: Comparison of network bursts and pairwise activitylense and sparse networks. Four dense (diamonds) andbfosegcircles)
are averaged together. a) Average number of network buestmimute per day for dense and sparse networks. Multiplearktbursts per
minute occur around 9 DIV in dense networks and 22 DIV in sparetworks. Days with no network bursts are not plotted. gripxe of a
normalized pairwise interactioix, is the probability that neurovi is the first to respond to neurétand vice-versa foy,. For all coordinates
not equal to [0,0], the coordinate magnitude and angle ofatien from the diagonaX, =Y, (solid line) is computed. c) Time evolution of
the average magnitude across all study networks in densspande networks. Note that average magnitudes are réyagiveall due to the
fact that very few pairs lead one another a majority of theetifMagnitude in dense networks increases faster, but spate®rks exhibit
higher vales after 30 DIV. d) Average angle (degrees) ofatewi in dense and sparse networks. Throughout maturaanse networks show
greater deviation from the diagonal than dense ones. Indmths deviation decreases with age, but deviation in deta@rks decreases
fasters

Results greater than in their sparse counterparts. This indichims t
pairwise connections form faster in dense networks. How-
ever, in sparse networks, the average coordinate magnitude

We analyze eight developing networks, four dens&42  stabilizes at (slightly) higher values than in dense neksor
1.5 cells/mn?) and four sparse (64 0.24 cells/mm). For  (Fig.[@c). In Figidd, we examine the average deviation from
each network on each recording day (1), new activation gsaphthe liney = x in dense and sparse networks, for all active
are generated by the competitive first response model (sgsairs. Pairwise activation is relatively balanced duriegse
Methods) and directional activation links between pails ar network maturationX, ~ Y;), as demonstrated by low devia-
established. Thus, pairs can be represented by the cot#dinaion angles. In sparse networks, deviation angles decrease
[Xn, Y, WhereX, is the estimated probability that electrade  remain larger than dense deviation angles throughout @atur
activatesy andY, is the estimated probability activatesX tion.

(Fig[b). If Xa=Yq, the point falls on the ling = x (solid line,

Fig. [4b). Each coordinate has a magnitude (distance from Wagenaar et al. | [28] observed that sparse networks are
zero) and a deviation angle from the lige=x. If X, =Y, ,  slower to develop network bursting than their dense counter
then the deviation angle = 0 and the magnitudgX? + Y2 . parts (Fig. (#a). Additionally, activation graphs reveadtth

In figuresdc &4d we examine the magnitude and deviatiorlate onset bursting, a function of pairwise interactiorg[is

of all non-zero X, # 0 & Y, # 0) coordinates in all networks. highly correlated to the slow development of pairwise activ

In figure[4c, the average coordinate magnitude for dense artibn connections. Therefore, early development of paiwis
sparse networks on each recorded DIV is plotted. At earlyinteractions in dense networks appears to be related tathe o
ages, the average coordinate magnitude in dense networkssst of multiple network bursts per minute around 10 DIV. Note



that multiple bursts per minute are not a present in sparse nesynergetic after 25 DIV. While three out of the four sparse ne
works until about 22 DIV (Fi§l4a). works remain primarily synergetic (Fig 6, S1, S3, S4), in one
network (S2) redundant groups reemerge around 30 DIV and
are present throughout the remainder of the experiment Not
link entropy that synergetic triplets still maintain a strong presenaeng)
this time period. This is in clear contrast to dense networks

. - _where synergetic groups essentially disappear altogetieer
Figure[3 shows the average daily link entropy for all elec vor of redundant ensembles. This shift is primarily due ® th

trodes in each of the eight networks studied. Note that a . L : .
L . . evolution of individual tripletR values changing from syn-
similar number of active electrodes were observed in all net ! .
.~ ergetic to redundant. In Figuté 7, several randomly sefiecte
works (Tabldll). As dense networks mature, average individ- . . :
’ ; representative triplets and thétrvalues on different record-
ual electrode link entropy values approach the maximum pos-
) R . s Ing days are shown from network D4. We observe that the vast
sible value, which indicates nearly uniform probabilidiidks

o . 0 .
between any target electrode and all other active elecrr.rodemaJOrIty of dense network triplets (98%) that are synerget

In other words, given activation at a particular dense netwo ayoung age become redundant during maturation.

electrode, the next electrode to activate is almost complet ~ Ataround 21 DIV, redundant ensembles begin emerging in
random. Mature sparse networks exhibit midrange link enboth dense and sparse networks (Elg. 6). This correlategto t
tropy values, indicating that probabilistic connectionsni  time period when cortical networks vitro are generally con-

a target to all other electrodes are unequally distributedi a Sidered mature [15] and when Wagenaar etlal. [28] observed
therefore more predictable. This corresponds to the latger that spike rates stopped increasing and leveled off.

viation angles observed in sparse networks (ffig. 4d). Note

that sparse network S2 has larger link-entropy values than S

S3 or S4 though not as large as in the dense networks.

Triplet interactions

Informational relationships of order 3 Large link-entropy values and the presence of redundanten-

. sembles do not appear to be directly correlated to one anothe
Groups of three electrodes (triplets), are the smallest (anHowever, large values of link entropy seem to be an indica-

most abundant) arrangement capable of providing infoonati o that redundant ensembles will dominate the information
about functional connectivity in a network [4]. As descdbe re|ationships. It should be noted that in D1, the rise in aver
in Methods, informational structures are determined bycomage link-entropy and the increase in redundant tripletsvati
paring the information from two electrodes together condi-correlated, but this is not observed in the other three dense
tional on the third with information gained from the two elec networks where link-entropy maximizes before redundant en
trodes separately conditioned on the third. The resultalgey  semples fully dominate. Regardless, results suggest ifjiat h
(R) categorizes activity between electrodes as redundamt, syya|ues of link entropy are necessary for the emergence and
ergetic or independent. dominance of redundant neuronal ensembles. Fldure 5 S2 in-
On each recording day values for all unique electrode dicates that, with moderate link entropy values, synetgeti
triplet ensembles are calculated (see Methods). Note thakdundant groups coexist. Relatively low link entropyglik
R(X,Y,Z) =R(X,Z,Y). In Figure6, distributions oR values  that seen in S1, S3, and S4, appears indicative of synergetic
from each network on each recorded day are shown. Synefelationships (Fig.15).
getic valuesRR < 0) are grouped in bin sizes @f01 bits while
redundant valuesR(> 0) are grouped in bins of siz81 bits.
The asymmetry in relative sizes of positive and negdival-
ues has been demonstrated previously [5]. Independergvalu
(R=0) account for 35% of alRvalues and are not shown. As
described in Methods, all values are obtained during nétwor
burst events to provide a comparison with earlier studies. In this manuscript, we explored guantitative patterns of
In all instances, young network bursts (2@0 DIV) are  neuronal interactions in developing dense and sparsereditu
dominated by synergetic triplets. However, around 18 DIV, a cortical networks. Such networks are formed when dissoci-
networks show a shift towards redundant triplets. By 30 DIV,ated prenatal cortical tissue is plated on microelectrade a
matured dense networks are dominated by redundant tripleays and new connections are spontaneously formed. Mul-
ensembles. This finding is commensurate with our previousisite electrophysiological data from these networks ftes
study of a mature 45 DIV network|[5]. Sparse networks areunique access to the development of cortical cultures. It
observed to switch back and forth between primarily synershould be noted thah vitro network formation is guided by
getic and primarily redundant from 1825 DIV. Unlike their ~ similar mechanisms (synaptogenesis; [14]) used by in&et n
dense counterparts, sparse network triplets became piimar vous systems.

DISCUSSION
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FIG. 5: Average daily activation link entropy and standamdefor dense D1 — D4) and sparse networkSY— $4). Averages are plotted as a
percent of the maximum link entropyegx (N — 1). Average values in dense networks come close to maximagyalidicating that all nodes
in the network have nearly equally probable connection wilt other nodes. Larger, but not maximal link entropy in ®2relates to the

development of redundant groups in Fig. 6. The values pl@tte normalized by the maximum possible value, which cpmeds to 1 on the
y axis

Pairwise interactions nearly uniform (large values of link entropy, Figl 5) and re-
ciprocal between pairs.

At the most basic level, network formation can be thought In networks processing information, each type of connec-
of as a pairwise phenomenon where two neurons form synagion structure has advantages and disadvantages. Dense net
tic connections with one another through electrical andreshe works appear to have more redundancy (high link entropy)
ical means. We extrapolate functional pairwise connestionwhich may allow for higher fault tolerance: if a path via a
through a competitive first response model which is based ogiven electrode becomes unresponsive to activation ateemp
the assumption that all previous activity (within a bioleglly =~ by another, many other pathways could easily be activated.
plausible time window) contributes to action potentiatismsi ~ However, such a system may be detrimental to rapid infor-
tion. This model is used to create directed, weighted activamation processing where fewer strong pathways, like those
tion graphs. seen in sparse networks, could help an animal reach a fast de-

Mature activation graphs of dense networks reveal that cong>'on state with greater precision. The presence of falore

nections between electrodes are mostly recipro€al Y, activation pathways in sparse networks may indicate ttest th

Fig[4d) as indicated by relatively low deviation angles. ém¢ are better platforms for perf(_)rr_mng_ training stuc_zlles thetis
) L to change network interactioria vitro [25]. Since there

trast, electrodes in sparse networks tend to develop #otiva are fewer probabilistic pathwavs for modification. chanimes

connection strengths that are skewed in one direction or th b P Y y nge

Aot . e these connections will likely produce greater differences
other (larger deviation anglX,, # Yy, Fig.[4d). Additionally, e o
link entropy in sparse networks is smaller than link entropy existing efferentand afferent activation pathways. Coss,

dense networks (S1-S4, Figl 5). Together, these resuliss inds.hUttIng down or buﬂdmg pathways in de_nse_netvyorks WO.UId
R . . likely produce a less noticeable change in directionalaeti
cate that electrodes show activation pathway biases (ldw li . ;
. : . tion patterns as many detours are available.
entropy) in sparse networks, but these biases are not oecipr
cal between pairs. In dense networks, the opposite appearsEnsembles of 3 nodes are the minimum required to form
true; probabilistic activation pathways between eleatsare  computational groups [[6]. Sequential chains of redundant
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FIG. 6: ComputedR values for all ensembles of 3 electrodes in developing ndéisvdndependerR values R = 0) are not depicted. Dense
networks (D1-D4) are depicted on the top row and sparse @166 the bottom row. Individual triplets in dense networkesmege from
primarily synergetic relationships to primarily reduntanabout 18 DIV and by 30 DIV redundant ensembles dominatecafly and late
stages of maturation, sparse networks S1, S3 and S4 areatechisy synergetic relationships. Starting around 18 Dd®rse networks switch
between primarily redundant and primarily synergetic lusitiout 25 DIV when they settle on primarily redundant. NateSR, redundant
ensembles that develop around 28 DIV though synergetitioahips do not disappear as in dense network
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FIG. 7: Daily R values of four representative triplets in netw@¥%. Note that some triplets switch back and forth betweenmggatie R < 0)
and redundantR > 0) informational states during development. Howeverr&&DIV the vast majority of network triplets iD4 were either
redundant or independent

cells, shown in Figurgl3b, can be used to relay informationear function of the inputs. Both systems (redundant and syn-
and similar arrangements have been shown to play a role iaergetic) allow neurons to integrate activity from many s@gr
short-term memory in the brain![1] [10]. In the synergetic and process information.

configuration depicted in FIg 2a, aneuronreceivesinpotafr e demonstrated that plating density has an important ef-
many other cells in such a way that spiking activity isanenli - fect on informational relationships. Dense and sparse net-
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