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Abstract One of the most specific and exhibited features in
the electrical activity of dissociated cultured neural networks
(NNG5s) is the phenomenon of synchronized bursts, whose pro-
files vary widely in shape, width and firing rate. On the way
to understanding the organization and behavior of biological
NN, we reproduced those features with random connectiv-
ity network models with 5,000 neurons. While the common
approach to induce bursting behavior in neuronal network
models is noise injection, there is experimental evidence
suggesting the existence of pacemaker-like neurons. In our
simulations noise did evoke bursts, but with an unrealisti-
cally gentle rising slope. We show that a small subset of
‘pacemaker’ neurons can trigger bursts with a more realis-
tic profile. We found that adding pacemaker-like neurons as
well as adaptive synapses yield burst features (shape, width,
and height of the main phase) in the same ranges as obtained
experimentally. Finally, we demonstrate how changes in net-
work connectivity, transmission delays, and excitatory frac-
tion influence network burst features quantitatively.
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1 Introduction

Dissociated neuronal cultures provide a useful platform to
study behavior and development of biological neural net-
works (NNs). Deprived from external inputs neural cultures
develop electrical activity patterns “on their own”, showing
several specific features. The most striking one is the phe-
nomenon of more or less regular network bursts (NBs), i.e.,
almost simultaneous firing of many neurons in a relatively
short time window. These spontaneous NBs have been sub-
ject of many experimental studies; see for example (Kamioka
etal. 1996; Jimbo et al. 2000; Van Pelt et al. 2004b; Stegenga
et al. 2008). Statistics of recorded bursting events are usually
provided by averaging of the intra-burst firing rate profiles
over long-term recordings. Usually, NB firing rate profiles
have a sharp rising slope, a single maximum and a relatively
slower descent. During cultured network development burst
profiles undergo several changes. In particular, during the
second week in vitro they become wider and higher in firing
rate. The third week is usually characterized by reduction and
stabilization of NB firing rate and NB width (Van Pelt et al.
2004a; Wagenaar et al. 2006; Le Feber et al. 2007; Stegenga
et al. 2008).

It is well known that artificial random recurrent neural
networks (ARRNN5) with excitatory and inhibitory neuronal
populations are able to exhibit synchronous activity (Amari
1972). Even though the introduction of biological complex-
ity into ARRNN models does not enable rigorous proof of
network synchronizability, widely used numerical simula-
tions of plausible RRNN clearly expose this feature (see
e.g., Hansel and Sompolinsky 1996; Tsodyks et al. 1998,
2000; Giugliano et al. 2004). The oscillatory nature of the
network activity may originate from different properties pre-
sented in neural systems, e.g., Van Vreeswijk et al. (1994)
studied the inhibitory nature of the network oscillation;
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Tsodyks et al. (2000) showed that the delayed activation of
synaptic depression is responsible for the network oscillatory
behavior; Giugliano et al. (2004) studied spike adaptation
features.

The current state of neuroscience provides a wide range of
realistic neuron and synapse models that may serve as build-
ing blocks for network models. In general, network models
contain three sets of parameters: neuronal parameters (such
as rheobase, spike-frequency adaptation time constant, etc.),
synaptic parameters (such as weights, post-synaptic poten-
tial time constant, etc.), and network connectivity parame-
ters (number of connections per neuron, transmission delays,
etc.). Most models proposed in literature describe network
wide neuronal activity. These models are usually focusing
on accuracy of their elementary units. For example, stud-
ies on network behavior have shown the influence of neuro-
nal features (like spike-frequency adaptation; Van Vreeswijk
and Hansel 2001; Giugliano et al. 2004) and synaptic fea-
tures (such as synaptic decay times and depression parame-
ters; Tsodyks et al. 1998; Wang 1999; Tsodyks et al. 2000;
Fuhrmann et al. 2002; Brunel and Wang 2003; Wiedemann
and Luthi 2003) on population rhythms. Many research-
ers supplement their models with additional equations and
parameters for better mimicking neurons and synapses while
trying to copy collective network behavior. However, often
the importance of more global network parameters, such as
number of connections per neuron and transmission delays
(the time delay between pre-synaptic spike and post-syn-
apse response) are disregarded. Many studies are restricted
to sparse networks, up to a hundred connections per neu-
ron; most of them use short or zero transmission delays
(Mehring et al. 2003; Persi et al. 2004; French and Gru-
enstein 2006). However, integrated synaptic input from the
network affects the network activity regime (see for exam-
ple Brunel and Hakim 1999; Brunel and Wang 2003). This
integrated input directly depends on the number of synaptic
connections, transmission time delays of incoming spikes,
and the excitatory/inhibitory ratio. While the effects of the
first two parameter sets (neuronal and synaptic features) have
been studied extensively, the influence of network parameters
has been investigated less explicitly and is usually covered
under the mask of Gauss-distributed noisy currents that emu-
late a realistic input from a large network (see for example
Giugliano et al. 2004). However, taking into account that syn-
chronous network bursts occur frequently, we may expect a
big influence of network parameters on NB profiles.

The ranges of many network parameters are known. Neu-
rons in cortical networks receive several thousands of synap-
tic inputs in vivo and about one thousand in vitro (Van Huizen
et al. 1985; Ichikawa et al. 1993), delays may exceed the 40-
ms range in vivo (Swadlow and Waxman 1975) or 20-ms in
vitro (Muller et al. 1997). Moreover, several experimental
studies on synaptogenesis in cortical neuronal cultures show
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that network activity is correlated with the average number
of synapses per neuron (further referred to as connectivity;
Habets et al. 1987; Muramoto et al. 1993). Because connec-
tivity changes during maturation of cultures, we cannot solely
rely on neuronal and synaptic adaptation dynamics to describe
the shapes of NB profiles over the life time of cultures.

The second issue we address in this study is emer-
gence/origin of spontaneous activity. The literature provides
two main sources, namely ‘synaptic noise’ (see for exam-
ple Hubbard et al. 1967) and rhythmic pacemaker cells.
The first one is most widely used in modeling studies and
is well characterized by random (Poisson-distributed) syn-
aptic inputs (Destexhe et al. 2004). The less used ‘pace-
maker-driven’ approach is based on intrinsically active cells,
as described by Latham et al. (2000a,b). Recent modeling
studies showed that theoretically both the approaches can
provide robustness of network bursting behavior in noise-
driven (Nesse et al. 2008) and pacemaker-driven networks
(Vladimirski et al. 2008). However, Vladimirski et al. (2008)
showed that homogeneous noise-driven networks produced
fragile rhythmic bursts. It is an open question which of these
mechanisms causes spontaneous activity in neuronal cul-
tures. To answer this, we simulated both ‘noise-driven’ and
‘pacemaker-driven’ neuronal networks, and we compared the
results with experimental data.

The neuron and synapse models that we used may both
include adaptation features (Izhikevich 2003; Markram et al.
1998). In this article, we will verify whether certain combi-
nations of network parameters result in realistic burst pro-
file parameters (as acquired from neuronal cultures), using
either activity-independent or activity-dependent synapses
with heterogeneous distribution of synaptic efficacies. Fur-
thermore, we will investigate the sensitivity of burst profiles
to network parameters.

2 Methods
2.1 Simulation model

Most modelers use conductance or circuit-based neuron
models, like the Hodgkin—Huxley or integrate-and-fire neu-
rons, respectively, because their parameters are biophysically
meaningful. A drawback of these models is their high com-
putational load due to the short simulation step needed (in
the order of 0.1 ms). Since this study focuses on network
parameters, we chose to use the computationally more effi-
cient canonical neuron model by Izhikevich (2003), which is
able to reproduce the whole range of anatomical variability
of basic cortical neurons as described by Toledo-Rodriguez
etal. (2003). This model has four independent dimensionless
parameters that determine the spiking behavior of the neu-
ron. To set the values of these parameters we used the same
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normal distributions in all simulations. Thus, we were able
to compare and interpret simulations resulting from chang-
ing network parameters only. Membrane potentials for all
neurons were calculated using equations provided in Appen-
dix A. We regarded the Izhikevich neuron model as a black
box that has been demonstrated to provide realistic neuronal
firing patterns.

As for synaptic kinetics, one can choose to use either an
activity-independent model in favor of simplicity, or a biolog-
ically more realistic activity-dependent model. We aimed to
compare the results of both the approaches. Again, we used
well-known, existing models to describe synaptic behavior.
For simplicity and unambiguous interpretation of the sim-
ulation results, we first used activity-independent synapses,
therein comparing ‘noise-driven’ versus ‘pacemaker-driven’
network.

We compared two methods to ignite activity in the net-
work models: noise injection or intrinsic ‘pacemakers’. In
case of noise-driven networks, the (random) noise injec-
tion may mimic synaptic or membrane noise. We adopted
the method from Destexhe et al. (2004) which was vali-
dated in experimental studies on cortical slices. Each neu-
ron received a Poissonian spike train (/) of rectangular 1-ms
pulses, whose amplitude was normally distributed between O
and 8 mV. In response, neurons showed fluctuations in their
membrane potential (v) which yielded normally distributed
values between —78 and —55mV. These values agree with
experimental distributions (see Fig. 3C in Destexhe et al.
2004). We assume that noise frequency can change drasti-
cally during cell development; therefore, the mean rate of
synaptic noise J was varied in a wide range between 0 and
1kHz per neuron.

The second method (‘pacemakers’) is supported by sev-
eral experimental studies, namely the presence of: (i) endog-
enously active cells as described by Latham et al. (2000a),
(ii) ‘privileged’ neurons in neural cultures (Eytan and Marom
2006, or (iii) spontaneous burst initiation zones (Feinerman
et al., 2007). In this part noise was set J = 0 for all i (see
Eq. 1). Without input from other neurons the pacemaker neu-
rons fired regular spikes with frequencies ranging from 0 to
0.26 Hz.

Next, when the most suited mechanism for spontaneous
activation was determined, we replaced the activity-inde-
pendent synaptic model by an activity-dependent one. We
used the adaptive (frequency dependent) synapse model by
Markram et al. (1998), which mimics short-term facilita-
tion and depression between heterogeneous [excitatory (E)—
inhibitory (I) or I-E] and homogeneous (E-E or I-I)
synapses, respectively (see Appendix B for details). Thus,
in our first simulations the synaptic weight range was con-
stant, and in later simulations it was allowed to vary accord-
ing to a well-established short-term plasticity (STP) model
(Markram et al. 1998; Markram 2000). To mimic adaptive

interaction between cortical neurons we used their phenom-
enological model and parameters, which are suggested to be
responsible for setting population rhythms (Tsodyks et al.
1998, 2000). Thus, we again applied an existing model as a
black box, to fully focus on the effects of network param-
eters on network-wide firing characteristics. The following
sections describe the simulation design in more detail.

2.1.1 Network parameters

We used a random scale-free network model with recurrent
connections. The NN model generates the following system
of equations in general form:

1, if fi(v;, wij, x;) > 30mV

Xi(t +dr) = [ 0, otherwise

where

n
fii i, x)) = vi(0) + Ji + D wij - eij - xj(t = lj) (1)
j=1

Here x; is the generated firing pattern in a receiving neuron
i, xj(t — l;;) is the state of a transmitting neuron j (i, j =
1,2, ..., n, where n is the total number of neurons). J; cor-
responds to synaptic noise, independent for different i’s; the
v; (1) term represents the nonlinear dynamics of the neuronal
membrane potential of neuron i and dt is the simulation step.
The summation on the right-hand side of (1) represents input
from the network and incorporates square, sparse W and L
matrices and a matrix E, whose elements are defined as fol-
lows. e;; is —1if j corresponds to an inhibitory neuron and 1
otherwise; /;; is the latency between a spike on neuron j and
the post-synaptic potential on neuron i; the synaptic weights
are denoted by wy; . First, activity-independent values for w;;
were used, which were later replaced by activity-dependent
values as described in Appendix B.

Now we assign values to w;;, /;;, and e;;. The actual num-
ber of synaptic couplings from neuron j is the number of
nonzero elements per column in W. Connectivity Kpyax was
defined as the maximum number of couplings per neuron.
All neurons had a number of synapses, taken from a normal
distribution (0, Kmax). To the nonzero elements /;; in latency
matrix L, we assigned values in the range O—Dp,x (maximal
transmission delay), taken again from a normal distribution
(0, Dmax)- Excitatory fraction R is the percentage of excit-
atory neurons in the network.

In batch simulations we subsequently varied the parame-
ters Kmax, Dmax, and R while keeping the other parameters
constant.

Only broad ranges for these network parameters can be
found in literature. For instance, Kyy,x may have values up to
several thousands of synaptic contacts. In order to set real-
istic connectivity ranges we used approximations based on
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the mean number of synapses and neuron seeding density
per volume unit, as observed in our own experiments or by
others (Van Huizen et al. 1985; Habets et al. 1987). Accord-
ing to the experimental protocol in Habets et al. (1987), the
neuronal seeding density was about 2000 cells/mm?, which
is similar to our experiments, and number of synapses per
103 wm? ranged from about 30 to 160. Under the assump-
tion that a culture forms synapses in a monolayer of about
10 pm (thickness of an average cell), the number of synapses
per neuron can be up to 800. Ichikawa et al. (1993) showed
that this number can be as high as 1100 (synapses per neu-
ron). We used a connectivity range (Kmax) up to 1100. We
estimated the transmission delays using normal distributions,
which ranged up to Dpax = 25 ms according to experimental
findings by Muller et al. (1997).

The peak values of the post-synaptic potential, referred to
as synaptic weights (w;;), are usually distributed between 0
and 1 mV (Magee and Cook 2000), but may reach values up
to 12mV (Gibson 2003). According to these experimental
data, we defined an inhomogeneous distribution for synaptic
weights, which was composed of two sets. The first set rep-
resented the weights for the regular (nonpacemaker) neurons
in both ‘noise-’" and ‘pacemaker-driven’ simulations and was
normally distributed in the [0, 1] mV range. In simulations
with ‘pacemakers,” we used two other sets of weights for
corresponding neurons, either [0, 3] mV or [0, 12] mV inter-
vals (normal distributions), in NNs with activity-independent
or activity-dependent synapses, respectively. We varied the
‘pacemaker’ fraction between 4 and 16%. We set the excit-
atory fraction (R) in the range between 70 and 90%, which is
in agreement with many experimental studies (see for exam-
ple Toledo-Rodriguez et al. 2003).

2.2 Sensitivity and statistical analysis

We performed batch simulations for gradual changes of the

network parameters, as follows:

e Ratio of excitatory/inhibitory neurons or neural fraction
(R) was set to 70, 80, or 90%.

e Connectivity ranged up to Kyax , which was set between
100 and 1100 in steps of 100 (i.e., neurons had random
number of connections, normally distributed between 0
and Kpax.)

e Transmission delays ranged between 1 and Dp,ax ms with
a normal distribution, where Dy,,x had values from 5 to 25
ms, with a 5-ms simulation step.

e The total number of neurons was constant at n = 5000.

2.2.1 Output parameters

As the experimental recordings were made using 60-elec-
trode arrays we adopted this number to analyze simulated

@ Springer

data. From every 1 min of simulation, subsets of 60 neurons
(R% excitatory and (100 — R) % inhibitory) were selected
and NBs were detected whenever an average of 2 spikes per
neuron appeared in a 10-ms time bin. We used a Gaussian
filter (5-ms width) to smooth NB profiles.

Our network model produced bursts, which were char-
acterized similar to the experimentally measured ones, as
described by Stegenga et al. (2008). Three intra-burst param-
eters, namely maximum firing rate (mFr), half-width of the
rising slope (Rs), and half-width of the falling slope (Fs) were
calculated as follows (see Fig. 1): mFr is taken at the burst
peak, Rs and Fs are the intervals (in ms) between time at burst
peak and time at 50% of burst height, of rising, and falling
slopes of the main phase, respectively. The main phase is
defined as the phase around mFr. It is separated from a pre-
and tail-phase by two local minima, each far below the 50%
(of mFr) level.

We aligned the main phases acquired from every simula-
tion by their peak. Then we calculated the firing rate probabil-
ity with 10-Hz bin at every time step (1 ms) in a time window
between 300 ms before and 300 ms after the peak. Finally,
we calculated 7.5th, 92.5th percentiles (further referred to
as lower and upper percentiles) and medians for every time
step. And we followed the same procedure for NBs in every
culture, where firing rate probability distributions occupied
a very wide area because of a few outliers. We chose these
percentiles as a fair compromise between a high percentage
and a small area. In the Fig.3A, we plotted the percentiles
and medians against time (e.g., see black solid and dashed
curves).

We studied NB profiles, which were calculated as a
(smoothed) estimation of the array-wide firing frequency
(Van Pelt et al. 2004b; Stegenga et al. 2008), without attempt-
ing to analyze neuron spiking behavior or explicit compari-
son with individual neurons in culture.

Network simulations were performed using C programs
(MEX-files) in a Matlab environment (the MathWorks, Inc)
on a PC compatible platform. We used Euler’s method to inte-
grate neuronal and synaptic model equations with dt = 1 ms
simulation step.

2.3 Measured data

Experimental data were obtained from six cortical cultures.
Culturing, recording, and other experimental techniques
were as follows. Cortical neurons were obtained from either
newborn or E18 Wistar rats by trituration and chemical dis-
sociation using trypsin. The cells were plated at a concen-
tration of 10° cells/ml, and allowed to adhere for 2h. Multi
electrode arrays (MEAs) were coated in advance with poly-
ethylene-imine to increase adhesion. The nonadhering cells
were then removed by refreshing the medium, and 600 .l
of R12 medium was added. The resulting monolayer had a
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Fig. 1 a Example of the N B T o 3 H T H A
activity recorded from one of the i ¢ .
cultures, represented in a spike 50 : b
raster plot. Each dot represents a =
recorded action potential at the 3 .
indicated electrode. b Enlarged e t i
view of one of the bursts in (a). g 30
¢ Examples of network burst © . :
(NB) profiles acquired from one :
of the cultures (green and blue 10 % s : E
lines) aligned at the peaks of the R :
main phases. Waves before and L L L = " !
after the main phases are 0 20 40 60 80 100 120
referred to as pre-phase and
tail-phase, respectively T T T T
(occasionally we also saw a B
flanking phase). S0 ]
Characterization of the main ++
phase by mFr, Rs, and Fs are 2
shown in one example (thick g 301 |
blue line). mFr is taken at burst 8
peak, Rs and Fs are the intervals ©
between burst peak and 50% of
burst height, of the left and right 10 F 5 a
sides of the main wave, X
respectively L L L L
68.9 68.95 69 69.05
time (s)
T T T T T T T T T
3r C
25k Flanking phase |
Main phase
= 2 A A
i~
S [
g |
on 1.5 a
= |
é \ mkET]
e Rs N‘ Fs i
[
50% mFr : Tail—phase|
0.5 b
Pre—phase \
[
0 [ I o { | 1 I . I I Y.
-100  -80 -60 -40 -20 0 20 40 60 80 100
time (ms)

density of ~5000 cells/ mm?. Two-thirds of the medium was
changed twice a week. The cultures were stored in an incu-
bator at 37°C, at a CO, concentration of 5% and near 100%
humidity.

We used a MC1060BC setup and MEAs from MultiChan-
nel Systems GmbH. The MEA’s had 60 Titanium-Nitride

electrodes in an 8 x 8§ square grid. The inter-electrode dis-
tance was 100 wm, and the diameter of the electrodes was
10 wm. The temperature was controlled at 36°C and a CO,
concentration of 5% was maintained. Custom made LabView
(National Instruments, Austin, TX) programs were made to
control data-acquisition (Stegenga et al. 2008).
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Table 1 Overview of the experimental data ranges

#Culture 1 2 3 4 5 6 Average
Recorded DIVs 14-18 11-18 12-17 9-36 10, 15, 16 11,12
Number of NBs 1193 873 698 2482 547 534
mFr
Mean (kHz) 6.42 2.12 5.73 3.13 2.71 3.75 3.98
SD 0.63 0.58 0.67 0.82 0.51 0.57 1.82
Rs
Mean (ms) 13.23 7.48 15.85 15.37 11.39 11.42 12.5
SD 5.99 0.87 5.67 5.6 4.5 4.8 4.8
Fs
Mean (ms) 17.58 8.52 17.65 16.1 16.49 30.75 15.4
SD 6.0 0.9 54 4.6 5.7 7.7 59
mFr maximal firing rate, Rs rising slope, Fs falling slope, NB network burst, DIV days in vitro, SD standard deviation
3 Results
3.1 Statistical analysis of the experimental data 08¢ A
0.7+ mPFr disributions

We were primarily interested in studying and comparing col- Z 06r -t

. .o . . . =051 —#3
lective behavior in experimental and simulated NNs by their _=§ 04l —#
NB characteristics. This included analysis of three profile & sl —#6
features (mFr, Rs, and Fs) and how they depended on the 02l
network parameters, connectivity, excitatory fraction, and 01l
transmission delays, parameters that develop in biological B 1 5 : - : A 5 : 5
NN during culture growth. Figure 1 shows a typical exam- KHz
ple of the spike raster plot (A and B) and several examples 08
of NB profiles (C) acquired from one of the recorded cul- 0:7 | B
tures, aligned at the maximum of the main phase. In gen- o6l Rs distributions
eral, we divided whole NB profiles into a main phase, which Zosl
in most cases lasted around 80 ms, and additional phases E o4l
before and after the main phase, referred to as pre-phase %0.3 L
and tail-phase, respectively. In spite of rich profile variation, 02l
the upper part (above 50% of maximum of the main phase) 01L
appeared to be statistically stable and, thus, appropriate for 0 —_—
quantitative characterization of synchronous network-wide > s = 0 3 0
activation. The bell-shaped upper part was characterized by
three parameters: mFr, Rs, and Fs. Most of the experimental C
NB profiles were symmetric (with equal Rs and Fs) or left- 03¢ Fs distributions
shifted (with slightly longer Fs than Rs). Only a few percent 2041
of the profiles had longer Rs than Fs. Z 03l

First, we pooled data from all cultures and determined %

first-order statistics, i.e., average values and data ranges. In 02r
general, our experimental data showed the following ranges: 0.1r
mFr ranges from 0.8 to 8 kHz, Rs ranges from 6 to 40 ms, and - -
Fs ranges from 7 to 47 ms. Mean and SD values are shown : s 2rsns 0B s

in Table 1. We used these data for model validation.

Figure 2a—c shows the distributions of mFr, Rs, and Fs,
respectively, for each culture. Distributions have different
shapes and variances, with overlapping ranges. For exam-
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Fig. 2 Overview of experimental parameters. Distributions of mFr (a),
Rs (b), and Fs (¢) acquired from six cultures marked by colors. Note
that Fs distribution curves are shifted to the right with respect to corre-
sponding Rs curves
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Fig. 3 a Overview of experimental NB profiles from six recorded cul-
tures. For each culture we composed profile sets from NBs aligned
by their peak (gray lines) and calculated 7.5th and 92.5th percentiles
(black solid lines) and medians (dashed lines). b Distribution of the

ple, mFr distributions acquired from cultures #1 and 3 have
similar (normal-like) shapes with SD around 0.66 kHz, but
different mean values. Rs and Fs distributions also show sev-
eral similar gamma-like shapes (see Fig. 2b).

In a search for the origin of the spontaneous NB, we exam-
ined the starting point of the rising slope of the experimental
main phase. Profiles recorded from each culture were pooled
into separate sets, which were used to calculate median and
percentile curves. Figure 3 shows six sets of experimental
curves. We chose to use median values instead of average
curves because of the asymmetric nature of the firing rate
distributions. For all recorded cultures, we found that the
median dropped to zero in the time interval [-50 : —15]
ms before the peak. This means that in this interval there is
no minimum level of activity (a kind of rheobase at network

B

0.7

minimum firing rate in [—50 : —15] ms time interval before the peak of
the global profile. The histogram was calculated over all detected NBs
(N = 6327). Most of the NBs show the firing rate minimum in the first
(20 Hz) bin

level) required to initiate a NB. Figure 3b shows the distribu-
tion of minimum firing rate at [-50 : —15] ms time interval
before mFr acquired from all recorded profiles. This indi-
cates that our neuronal cultures did not require maintained
network activity for main phase initiation. To compare mea-
sured and simulated data, we conducted similar analysis, in
the same time interval, on simulated NB profiles.

In the scope of this article, we investigated three network
models. The network model, responding to gradually increas-
ing internal noise (1), ‘pacemaker-driven’ network activity,
with either activity-independent (2) or activity-dependent (3)
synapses. In subsequent sections, we will study which model
best mimics the origin of the NB main phase and we will
analyze the sensitivity of NB profile features to the network
parameters.
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Fig. 4 Example of firing
patterns in the ‘noise-driven’
neural network. Top simulated
spiking train segments that
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3.2 Network model response to gradually increasing
external noise

First, we tested the model response to injected Poisonian
spike trains with gradually increasing mean frequency, while
keeping all other parameters constant. Relatively low-rate
noise evoked asynchronous random firing (Fig. 4, top plot,
see first two segments), whenever the amplitude of the
injected stimulus exceeded the neuronal rheobase of the
receiving neuron. Then, beyond a certain noise rate (see
Fig. 4, arrow), network models switched to synchronized
bursting behavior (Fig 4, see segments on the right of the
arrow).

We characterized this change in the collective behavior by
changes in mean firing rate of the NB (calculated over time
periods with constant noise-stimulation rate) and its fluctua-
tions (SD). Firing rate curves are depicted in Fig. 4 (bottom
plot). We observed a frequency threshold where the network
behavior changes, i.e., NBs appeared. Bursts originated while
ongoing background noise recruited new neurons. In spite of
the high amplitude of the noise spikes (up to 8 mV), Fig. 4
shows that networks required a noise rate higher than 290
Hz/neuron to produce NBs. Then, the network firing rate
rose gradually and NB profiles developed in an exponential
manner. To ensure burst-dominated network activity, we set
the rate of injected noise to 330Hz and ran batch simula-
tions with all possible combinations of the parameters K pax.,
Dmax, and R. Simulations with R > 80% and Kpax > 600
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produced NBs with an mFr range broader than experimental.
Then, we further analyzed simulations using combinations
of Kmax, Dmax and R that yielded NBs whose mFr, Rs, and
Fs values matched experimental ranges. In general, this was
for simulations with R = 70% and D,x from 10 to 20 ms.
The common characteristic of all NB profiles produced
by ‘noise-driven’ NNs was the long pre-phase (from about
—150 ms before mFr), gradually developing into the rising
slope of the main phase. These simulations always produced
NBs whose median curve had a long and elevated onset of
the rising slope, while the rising slope in experimental medi-
ans had no long or elevated onset. Figure 5a shows about
800 NB profiles and their median and percentile curves from
a NN simulation with Kpy,x = 1000, Dyax = 15ms and
R = 70%. In these simulations, in general, the lower per-
centile curves rose before or around the same time period of
—100 ms before the mFr peak as the upper percentile curves
of the experimental data. Of all cultures, culture #4 showed
the longest pre-phase and the widest percentile area on the ris-
ing slope. The inset in Fig. 5 allows to compare experimental
and simulated percentile curves, acquired from culture #4 and
the ‘noise-driven’ simulation (the same as in the main plot),
respectively. Similar to the experimental part, we calculated
minimum network activity in the [—50 : —15] ms time inter-
val before the NB peak. We found that ‘noise-driven’ NN
required an elevated and maintained network firing rate at
about 0.26 +0.12 kHz (mean & SD) to initiate a main phase.
The histogram in Fig. 5B represents the typical distribution
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Fig. 5 a A typical example of a 4.5
NB profile set (gray lines)
acquired from a ‘noise-driven’
NN simulation with

Kmax = 1000, Dyax = 15ms,
and R = 70%, which resembled
the mFr range of culture #4. The
black dashed line corresponds to
the median and black solid lines
are the percentiles. Inset shows
the simulated (red lines) and
experimental (black lines)
percentiles and medians
acquired from culture #4. b
Distribution of the minimum
firing rate in the [-50 : —15] ms
time interval before the main
peak of the NB profile. The
histogram was calculated from
all simulated NBs shown in (a).
¢ Sensitivity curves of Rs (black
solid line) and Fs (blue dashed
line) in simulations w ith 0
changing connectivity (Kmax)-
Data were collected from
simulations with mFr in the
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of minimum firing rates within that time interval. Further-
more, while developing into the main phase, this elevated
onset increased Rs values, making it unnaturally longer than
Fs. Figure 5c shows Rs and Fs sensitivity curves (note that
Rs > Fs, whereas experimentally Rs < Fs).

3.3 Networks with ‘pacemaker-driven’ activity

In ‘pacemaker-driven’ simulations, we added intrinsically
active neurons and ran these models without any noise injec-
tion. Pacemakers ignited network activity, as they were able
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Fig. 6 A typical example of a spike raster plot produced by a ‘pace-
maker-driven’ NN model with activity-independent synapses, Kmax =
1100, Dax = 15ms, R = 70 and 16% of pacemakers. Note that the
pacemaker population fired first, which provided an input to the network
strong enough to generate a NB

to fire with small or no input from other neurons in the
network. In order to produce any activity, network models
needed different amounts of ‘pacemakers’ (with ordinary [0,
1] mV synapses), ranging from 12 to 16% of the total num-
ber of neurons in the network, depending on the parameters
Kmax, Dmax, and R. In the simulations, we observed that the
firing pacemakers provided input to the network, and occa-
sionally reached a level of synchronicity strong enough to
generate NBs that show striking resemblance to NB profiles
acquired from experimental recordings. There was reason-
able likeliness to reach such level of synchronization because
the pacemakers were defined as a homogeneous population,
with comparable intrinsic firing frequencies. Figure 6 shows
a typical spike raster plot acquired from one of these simu-
lations.

Then we reduced the amount of pacemakers to about 4%,
using stronger synaptic connections ([0, 3] mV) for the ‘pace-
makers’ (other parameters were the same). Similar to the pre-
vious section, simulations whose NB profiles showed mFr,
Rs, and Fs values in the experimental ranges were selected
for further analysis.

These NN models produced NB profiles with several real-
istic features: short pre-phase, symmetric and left-shifted
main phases in most cases, and occasionally even rare fea-
tures like a flanking phase on the slope of the main phase.
As before, we focused on the rising slope of the median and
percentile curves. We found that ‘pacemaker-driven’ simula-
tions better reproduced experimental NB profiles than ‘noise-
driven’ simulations. For 5 out of 6 experimental percentile
curves we were able to find simulated percentiles with a ris-
ing slope that fitted into the experimental range, except for
percentiles acquired from culture #2, which had a very short
start-up interval of the rising slope (—20 to — 15 ms before the
NB peak, see Fig. 3 box 2). Figure 7a shows a typical example
of NB profiles along with their median and percentile curves
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produced by the NN with Ki,x = 1100, Dpax = 15ms,
R = 70 and 14% of pacemakers (all profiles). The corre-
sponding median curves of both simulated and experimental
data rose at about the same time (see inset in Fig. 7). ‘Pace-
maker-driven’ NNs did not require elevated and maintained
activity to initiate a NB. Here, distributions of minimum net-
work activity in the [—50 : —15] ms time interval before the
NB peak showed better resemblance to experimental data
than those from ‘noise-driven’ simulations. Figure 7b shows
a typical distribution of the minimum firing rate acquired
from the simulated data shown in Fig. 7a.

The simulations described so far show that ‘pacemaker-
driven’ NNs produce NB profiles that better resemble exper-
imental profiles than ‘noise-driven’ simulations. Therefore,
we chose this model for further simulations. Both ‘noise-’ and
‘pacemaker-" driven models, with most combinations of real-
istic Kmax, Dmax and R values, produced profiles whose mFr
values ran beyond the experimental range. Figure 8 shows
several examples of sensitivity curves. We found that net-
works with short Dyax = 5 ms, high R (from 80 to 90%)
and Kpnax > 800 increased mFr drastically, with subsequent
“explosions” of the network activity (dot-dashed and solid
lines with Ky, above 700 and 1000, respectively, in Fig. 8a).
Rs and Fs values fell inside the experimental range (gray
background in Fig. 8b). We found that mean values of Rs and
Fs increased with bigger Dpax or Kpmax (not shown here).

3.4 Simulations with activity-dependent synapses

Next, we introduced frequency-dependent synapses.
Strengths of synapses leading from pacemaker neurons were
set to [0: 12] mV in order to ignite sufficient activity for sen-
sitivity analysis and statistical comparison with experimental
data. All other model parameters remained the same.

Compared to the simulations with activity-independent
synapses the results clearly improved. Most of the net-
work parameter combinations led to acceptable ranges for
mFr, Rs, and Fs in simulated NB profiles. Only the sim-
ulations with critical combinations of network parameters
(Kmax = 900, Dpax < 10ms, and R > 80%) produced
mFr values which ran beyond the experimental range. For
example, simulations with Dpx = 5 and 10 ms, R = 90%,
ran up to mFr = 17 kHz, in densely connected NNs (with
Kmax = 900 and higher). Other combinations produced
values that matched the specific ranges acquired from indi-
vidual neuronal cultures. Table 2 shows the total mean and
SD values (critical Kpax, Dmax and R combinations were
excluded). In other respects these simulations showed simi-
lar results as previous ones. Figure 9a shows a typical exam-
ple of the NB profiles produced by this network model (with
Kmax = 1000, Dpax = 15ms and R = 80%). The inset
shows median and percentile curves from this simulation and
the experimental profile we used before.
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Fig. 7 a An example of a NB 5 .
profile set acquired from a pacemaker—driven NN A
‘pacemaker-driven’” NN model a5t 4l i
with activity-independent
synapses, 357
Kmax = 1100, Dypay = 15ms, aroosl 7
R =70 and 14% of w25k
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Table2 Statistical data for all ‘pacemaker-driven” NN simulations with
activity-dependent synapses (Kmax < 900, Dpax > 10 ms and R <
80%)

NB parameter Average values

Range Mean SD
mFr (kHz) 0.8-8 4.1 2.6
Rs (ms) 7-33 11.8 2.7
Fs (ms) 8-39 13.7 3.2

Simulated Rs and Fs distributions were in the experimen-
tal range (Fig 2b, c). Figure 9b shows a typical example of Rs
and Fs distributions collected from these simulations (note
the gamma-like shapes).

Providing acceptable ranges of the main phase parame-
ters and distribution shapes, these simulations allowed for
analysis of sensitivity of mFr, Rs, and Fs to the model

minimum firing rate, kHz

network parameters. Figure 10 shows several sensitivity
curves of NB profile features to the network parameters.
In comparison to the NN models with activity-independent
synapses, simulations with adaptive synapses yield a stable
and smooth increase of mFr with increasing average net-
work connectivity. Here, curves show a rising tendency, as in
models with activity-independent synapses. However, now
they do not show any explosion of activity. We also noted
that mFr increased with higher R (Fig. 10a, curves with dif-
ferent line-types) and smaller D,y (curves with different
colors).

The Rs values were about 2-3 ms smaller than Fs and
changed similarly in response to changing network parame-
ters. Figure 10b shows the sensitivity of Rs. In general, Rs and
Fs showed a small increase with increasing K,y (e.g., high-
lighted dot-dashed magenta curve with SD bars), but in few
cases they decreased with higher Ky,x (e.g., solid magenta
curve).
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Changing R has a larger effect on Rs and Fs. With Dpax
between 10 and 20 ms, Rs and Fs increase with increasing R
(red, green, and magenta curves for Dpyax = [10, 15, 20] ms,
respectively). With Dp,x = 5 ms, increased R can result in
a slight reduction of Rs and Fs (blue curves).

Increasing Dp,x causes negligible changes in Rs and Fs
in simulations with low R (70%), but becomes more notice-
able with higher R. In general, increasing Dpax causes an
increase in Rs and Fs (dot-dashed curves).

4 Discussion

Spontaneous bursting behavior in cortical neuronal cultures
has been a central issue in many recent experimental and
modeling studies. In spite of the big repertoire of bursting pat-
terns, there were several attempts to characterize NBs accord-
ing to their profile features; see for example Van Pelt et al.
(2004b); Wagenaar et al. (2006); Stegenga et al. (2008). Fea-
tures become clear after statistical analysis of the experi-
mental recordings; they may be explained via NN modeling
and statistical comparison with experimental data. In this
study, we mainly focused on the main phase of NB profiles,
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which represents the activation of most neurons in the net-
work. Using analyses of both experimental and simulated
data we addressed two main issues: onset of the main phase
(1) and NB parameter sensitivity to changing network param-
eters (2). The first issue was studied by analysis of the ris-
ing slope Rs of the main phase. To study the second issue
we quantitatively evaluated the experimental ranges of three
NB parameters and analyzed the influence of the parameters
Kmaxs Dmax,> and R on simulated NB profiles.

We presented simulation results based on large networks
with biologically realistic connectivity (up to 1100 con-
nections per neuron), transmission delays (1-20 ms), and
excitatory fraction (70-90%), and analyzed their collective
behavior in terms of synchronized NBs. We built our net-
work models using existing neuronal and synapse models
with experimentally estimated parameters. In this study, we
focused on the effect of network parameters on the result-
ing activity patterns. We used a set of neuronal parameters
that adequately reproduced the dynamics of cortical neurons
(Izhikevich 2003). The applied set contained a mixture of all
neuronal cell types that exist in the cortex, which gave our
simulations a certain degree of robustness against variations



Biol Cybern (2010) 102:293-310 305
Fig. 9 a An example of NB 4.5 \ \ \
profile set acquired from a pacemaker—driven NN with adaptive synapses
‘pacemaker—driven’ NN model 4l |
with adaptive synapses, 4
Kmax = 1000, Dyax = 15ms, 35
R = 80 and 4% of pacemakers 350, 1
with stronger synaptic
couplings. Black dashed line 8%
corresponds to the median and = 3re 2 i
black solid lines are the an 13
percentiles. Inset shows the & 25+ 4
difference between simulated ‘Qé 0.5
(red lines) and experimental S I |
(black lines) percentiles and k= 2 -150
medians acquired from culture -
#4 as in Fig. Fig. 5a. b Rs and Fs 15F |
distributions acquired from
‘pacemaker-driven’ simulations
with adaptive synapses Ir 1
0.5 q
0 ! ! L L
-200 -150 -100 =50 0 50 100
time (ms)
0.25 T I 1 T T L
02k ——Rs distribution |
== =Fs distribution
=
= 015f -
@
e o1t -
.
005} -
—— b
05 30 35 40

of cell properties. However, it should be noted that our results
might be affected by changes in cell properties.

The synaptic parameters for a phenomenological model
of STP were estimated for couplings in cortical networks
(Markram et al. 1998; Markram 2000).

Our models lack morphologic information which might
link model parameters such as connectivity and transmission
delay to each other. We feel that these limitations may explain
the lack of variability in pre-phases and the complete lack
of after-phases in our simulated NB profiles. Wagenaar et al.
(2006) clearly showed that the long-tail feature may appear in
cultures with about 50,000 (or more) neurons only. So, another
reason for the lack of tail phases in our simulated burst profiles
might have been the comparatively limited number of 5,000
neurons.

4.1 Origin and development of spontaneous network bursts

We studied two possible sources to initiate bursting: synaptic
noise versus intrinsically active neurons (pacemakers). First,

we ran NN simulations with noisy input to every neuron.
Then, we switched to pacemaker neurons with stronger syn-
apses. In both the simulations, bursts appeared beyond a cer-
tain threshold of network activity. In this article, we observed
the activity patterns of both model types to investigate which
one fitted best to the experimental data. We found that two
features, the length of the burst onset and the ratio between
Rs and Fs, made a clear distinction between the models.

4.1.1 Networks with ‘noise-driven’ activity

First, we analyzed ‘noise-driven’ activity in networks, with
normally distributed parameter values. We showed that syn-
chronized bursting in a collection of interconnected neurons
is very common. However, there was no (realistic) combina-
tion of network parameters that could adequately reproduce
experimental data; bursts always had an unrealistic long onset
and Rs usually exceeded Fs.

This longer burst onset may be explained by the slower
synchronization in noise-driven models. Here, noisy input
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fluctuates around a constant value, whereas in pacemaker-
driven models, the input shows much larger variation. Dur-
ing high input, networks may synchronize much faster than
during low input. However, when we set noisy input to a level
comparable to the maximum pacemaker input, we still found
long burst onsets. Probably, a larger fraction of the neurons
are in a refractory state when many neurons show irregu-
lar spiking because the network continuously receives such
high input. Finally, it should be noted that inter burst intervals
were much shorter in noise-driven, than in pacemaker-driven
simulations. After a network burst, many neurons cannot be
excited due to their refractory period, which may largely
reduce network excitability. So, if average excitability is
lowered the progressively increasing network activity slows
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down. In our simulations, we mimicked decreased excit-
ability using a lower R, which yielded longer burst onsets
indeed.

It is hard to find a biological explanation for the 290 Hz
‘threshold’. We showed that all simulated profiles had a long
and elevated pre-phase, which started around 100 ms before
the mFr peak. However, 40% of experimental NBs had no
pre-phase at all and in the remaining 60% pre-phases started
much later and usually dropped to 0 kHz before the onset of
the main phase (Fig. 5b). As the elevated pre-phase distorted
the following rising slope, we decided not to use this model
for sensitivity analysis. We also evaluated this model with
activity-dependent synaptic plasticity, which did not solve
the problem of the long burst onsets.
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4.1.2 Networks with ‘pacemaker-driven’ activity

In order to build a more realistic network model, we
added ‘pacemaker’ neurons with the same or larger synaptic
weights than in the rest of the network. A similar approach
was used by Wiedemann and Luthi (2003); Vladimirski et al.
(2008). In our simulations, the network required a certain
amount of ‘pacemakers’ to produce NBs. First, in simula-
tions where all synaptic weights were normally distributed
between 0 and 1 mV, the network required ~16% of ‘pace-
makers’ to produce NBs. ‘Pacemaker’ neurons fired first and
built up a strong wave-like input to the rest of the NN. This
input occurred periodically with very low firing activity in
between, which allowed the network to fully recover from
neuronal and synaptic depression built up during previous
NBs. Free from neuronal and synaptic depressions, the NN
is more excitable and needs less time to respond to the input.
This makes the whole network more sensitive to pacemaker
synchronization, which in turn evokes a network-wide burst
with relatively short onset. Because pacemaker-driven mod-
els with normally distributed synaptic strengths appeared to
perform better than noise-driven models, we continued with
pacemaker-driven models and did not fully evaluate bimo-
dally distributed synaptic strengths in noise-driven models.
However, preliminary results suggest that noise-driven mod-
els with bimodally distributed synaptic strengths perform
quite similar to pacemaker-driven models without elevated
pre-phases and shortened Rs. We also found that NBs are
more robust using pacemakers than in the noise-driven case,
which is in agreement with the recent theoretical study by
Vladimirski et al. (2008).

To investigate how bursts are terminated, we looked at two
factors: reduced neuronal excitability after firing and activa-
tion of the inhibitory system. In our models, reduced excit-
ability was indicated by a lower average membrane potential
(v, see Appendix A). At the burst onset, the total firing rate
increased and excitatory feedback raised v of initially silent
neurons. This, in turn, recruited new neurons. After firing,
v dropped to a relatively low value and recovery was rather
slow, which hampered quick reactivation. Thus, bursts pro-
gressed as long as the pool of easily activated neurons was
large enough to increase network-wide activity. During the
burst this pool diminished, until there were not enough easily
activated neurons left to maintain synchronized activity, and
the burst ceased. Our simulations indeed showed low average
v during burst cessation.

Conversely, burst termination might also be caused by
activation of the inhibitory system. The example in Fig. 6,
shows that the inhibitory system reached its peak firing rate
only after the network burst peak. This suggests that the inhib-
itory system may also play an important role in burst termi-
nation, but that it is probably not the sole cause.

Thus, burst cessation, and therefore burst shapes, were
affected by both neuronal, as well as network parameters.
This implies that our results might be affected by changes
in cell properties. However, a profound change of neuronal
parameters (setting all excitatory neurons to RS type and all
inhibitory neurons to FS type; see Appendix A) yielded only
minor changes (<10%) of burst shapes. This illustrates the
robustness of our model containing a mixture of five funda-
mental cell types.

Then, the introduction of larger pacemaker synaptic
weights allowed us to simulate NB profiles with fewer pace-
makers. When the pacemaker synaptic weights ranged from
0 to 3 mV, only 4% of ‘pacemakers’ in NNs with activity-
independent synapses were needed to trigger NBs. All ‘pace-
maker-driven’ simulations showed synchronous activity with
a big variety of NB profiles, but they could be divided into
two groups: without (40%) or with (60%) a pre-phase, which
is similar to experiments. Compared to the noise-driven mod-
els, networks with pacemakers produced profiles without ele-
vated and long pre-phases. Furthermore, their main phases
were skewed to the left, which yielded shortened Rs.

There are several experimental studies that point at the
presence of ‘pacemaker-like’ neurons in cortical neuronal
cultures. Eytan and Marom (2006) called them ‘privileged’
neurons; Latham et al. (2000b) described them as endoge-
nously active cells, about 32% of all cells. On average 17%
of spontaneously active neurons can be referred to as burst
leaders, as reported by Ham et al. (2008). In our own lab
we often find 2 or 3 (out of 60) electrodes with ‘pacemaker-
like’ activity, which is about 4%. We showed that by adding
‘pacemakers’ to the network, the simulations can reproduce
the experimental main phase. Thus, our simulation model
helped to relate characteristic NB shapes and the existence
of ‘privileged’ neurons. More experiments, with preferably
more electrodes per MEA, are needed to analyze the recruit-
ment of ‘pacemaker’ neurons and their synchronization.

4.2 Sensitivity of a network burst profile to network
parameters

The influence of some neuronal and synaptic features on
network firing rate was shown in several modeling studies.
Fuhrmann et al. (2002) showed that increased spike-adap-
tation current may explain the emergence of rhythmic fluc-
tuations in the network firing rate. Giugliano et al. (2004)
showed that stronger excitatory synapses cause a higher mean
firing rate in a bursting network. The stabilizing effect of
synaptic depression on network activity was shown by Wang
(1999). We noted this latter effect in the network firing rate
when adaptive synapses were introduced into the NN model.
Synaptic adaptation prevented networks from activity explo-
sions such as shown in Fig. 8a. Moreover, it stabilized Rs
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and Fs means (and SDs) at lower values than in the NNs with
activity-independent synapses.

In this study, we focused on the influence of three net-
work parameter ranges on NB features, while neuronal and
synaptic parameters were kept in constant ranges (network
parameters were changed one after another). We used only
network parameters in the physiological range to compare
the two models (noise- vs. pacemaker-driven) to experimen-
tal recordings.

When STP was introduced most of the simulated K.,
Dmax, and R combinations produced NBs whose profile
parameters were in the experimental range. We statistically
compared simulated to experimental NB profile parameters
mFr, Rs, and Fs, and we analyzed the sensitivity of these
parameters to the network parameters Kmax, Dmax, and R.
In network models with relatively long transmission delays
(Dmax = [10, 15, 20] ms), higher Ky,x and R produced NBs
with an elevated total firing rate (and mFr), which in turn pro-
longed Rs and Fs. For small Dyax = 5 ms, Rs and Fs tended
to decrease with higher Ky, because it allowed the network
to recruit neurons faster. Higher Dyax postponed recruitment
of neurons in network activity, which made Rs and Fs longer
(and the whole NB profile wider).

From this study, we drew two major conclusions. The first
is that adaptive synapses stabilize NB parameters in physio-
logically plausible ranges. Second, we found that in network
simulations with normally distributed synaptic strengths the
pacemaker-driven models performed better than noise-driven
network models.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Neuron model and parameters

Izhikevich neuronal model equation has the following form:

v = 0.04v% + 50+ 140 — u

(AD)

u' =abv —u)
Table A1 Synapse parameters

U A (s) F (s)
E-E 0.59 0.813 0
E-I 0.049 0.399 1.797
I-E 0.16 0.045 0.376
I-1 0.25 0.706 0.021

E excitatory, / inhibitory
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with the auxiliary after-spike resetting

Vs =¢C

ifv > +30mV, then
vzt uy=u1+d

Here v represents the membrane potential of the neuron;
u denotes a membrane recovery variable, which accounts
for the activation of K ionic currents and inactivation of
Na™ ionic currents or their combination. The parameter a
describes the time scale of the recovery variable u, so higher
values speed up the membrane recovery process. b describes
the sensitivity of the recovery variable u to the sub-thresh-
old fluctuations of the membrane potential v. Greater values
correspond to bigger sub-threshold current influx. The
parameters ¢ and d account for action of high-threshold
voltage-gated currents activated during the spike, and affect
only the after-spike behavior. ¢ describes the after-spike
reset value of the membrane potential v caused by the fast
high-threshold K+ conductances. The parameter d denotes
after-spike reset of the recovery variable u caused by slow
high-threshold Na™ and KT conductances and describes the
total amount of outward minus inward currents activated dur-
ing the spike (Izhikevich 2003,2007). The phase plane analy-
sis show that the equation system (A1) replicates behavior of
other detailed models such as FitzHugh—Nagumo, Hodgkin—
Huxley model, etc. in sub-threshold area, and thus, it captures
their spiking behavior. Geometrical derivation of this model
from the Hodgkin—Huxley equations is provided by Izhike-
vich (2007). In our simulations, this spiking model mimics
the behavior of several types of cortical neurons. Excitatory
neurons exhibited regular spiking (RS), intrinsically burst-
ing (IB), and chattering (CH) behavior; and inhibitory neu-
rons exhibited fast spiking (FS) and low-threshold spiking
(LTS) dynamics. These dynamics correspond to the follow-
ing settings: (a;; b;) = (0.02;0.2), (¢;; d;j) = (—65;8) +
(15; —6)r;; and (a;; b;) = (0.02; 0.25) 4+ (0.08; —0.05)r;,
(ci; di) = (—65; 2) were assigned to constants of excitatory
and inhibitory neurons, respectively, where r; is a random
variable normally distributed on the interval [0, 1], and i is
the neuron index. This choice of a, b, ¢, and d corresponds
to a biologically plausible range (Izhikevich 2003).

Most of the biologists agree that these types represent
the most fundamental classes of firing patterns observed
in the mammalian neocortex. These classes were described
by Izhikevich (2007) according to how they responded to
injected DC current:

1. RS neurons represent spiny stellate cells in layer 4 and
pyramidal cells in layers 2, 3, 5, and 6. They fire spikes
with adapting frequency and have type-1 excitability.

2. 1B neurons represent excitatory pyramidal neurons found
all over cortical layers. These neurons can fire bursts at
the beginning of DC and then switch to the tonic spiking
mode.
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3. CH neurons represent spiny stellate or pyramidal neurons
of layers 2—4. They fire regular bursts and are also known
as fast rhythmic bursting neurons.

4. FS neurons are the spiny or aspiny nonpyramidal cells.
These inter-neurons fire high-frequency spikes with rela-
tively constant period and exhibit type-2 excitability.

5. LTS neurons represent nonpyramidal inter-neurons. They
fire low-threshold spikes with emphasized spike fre-
quency adaptation (Izhikevich 2007).

We modeled the intrinsic activation feature in ‘pacemaker’
neurons by setting b to values around 0.26.

Appendix B: Synapse model and parameters

In our simulation models, we used both activity-indepen-
dent and activity-dependent synapses. First, we simulated
networks with activity-independent synapses only. Then, we
changed to activity-dependent synapses and compared the
results. Thus, the synaptic weight range was constant in some
simulations and in other simulations it varied according to
the well-known STP model (Markram et al. 1998; Markram
2000).

The dynamics of both the types of synapse over time are
defined by

di(r) B I1(t)
dr Tsyn

+ Wo(r — tsp)

where [ is the synaptic current, which decays exponentially
with time constant Tgyn, except when a spike occurs in the
pre-synaptic neuron at time f5p. The time constant gy, ranged
from 3 to 15 ms throughout different synapses.

Synapse adaptation dynamics were modeled via the fol-
lowing set of equations:

wr = A- B yk

Ve =U+yk—1-(1 =U) -exp(—A—1/F)

By =1+ (Br—1 — Yk—1 - Br—1 — 1) - exp(—=Ay_1/F)
n=U

B =1

where the notation wy denotes one synaptic weight from W
for the kth spike, y is the running variable for synaptic utili-
zation, and B is the running variable for synaptic availability,
with y and B = [0, 1]. The constants U, A, and F represent
the release probability for the first spike, the depression time
constant, and facilitation time constant, respectively. We used
experimental datafor U, A, and F parameters from Markram
et al. (1998); Markram (2000) for all four synapse types, see
Table Al. Markram et al. showed that these settings lead to
biologically plausible synapse models.
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