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Abstract A significant challenge in modern neuroscience
lies in determining the functional connectivity between dis-
crete populations of neurones and brain regions. In this study,
a variation of partial directed coherence, the generalized par-
tial directed coherence (gPDC), along with a newly proposed
critical value for gPDC, were applied on recorded local field
potentials (LFPs) and single-unit activity, in order to assess
information flow between medial prefrontal cortex (mPFC)
and hippocampus and within the hippocampus of the rat
brain, under isoflurane anesthesia and kainic acid-induced
enhanced neuronal activity. Our findings suggest that, under
anesthesia, there exists a continuous information flow from
hippocampus towards mPFC, reversed mostly during activ-
ity bursts occurring in the mPFC. Moreover, there was a clear
directional connection from the lateral towards medial dor-
sal hippocampus, most prominent in the beta frequency band
(10–30 Hz). Kainic acid resulted in partially disrupting the
reciprocal cortico-hippocampal connectivity and reversing
the intra-hippocampal one. The biological implications of
these findings on the effects of anesthesia and kainic acid
in brain connectivity, along with implementation issues of
gPDC analysis on field potentials and spike trains, are exten-
sively discussed.
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1 Introduction

Traditionally effective connectivity between pairs of neu-
ronal structures has been estimated using cross-correlation
analysis which gives an indication of a delay in coupling,
but does not provide any inference to causality, i.e., which
structure drives which. Use of coherence provides a fre-
quency-domain representation of the magnitude and phase
relationship between two local neuronal populations, but pro-
vides no information on the directionality between them.
However, some directionality information can be obtained
from the coherence phase spectrum which provides a mea-
sure of phase (time delay) between coherent signals (Halliday
et al. 1995) but it has been argued to be rather ineffective (Kus
et al. 2004).

New techniques for statistical analysis of signals have
recently been developed in order to provide tools for assess-
ing the directional effective connectivity between neurons,
neural ensembles, and whole brain regions. Among them, the
closely related partial directed coherence (PDC) (Sameshima
and Baccalá 1999; Baccalá and Sameshima 2001) and
Directed Transfer Function (DTF) (Kamiński and Blinowska
1991; Kamiński et al. 2001) have been applied in numer-
ous studies of either simplified tests (Baccalá and Sameshi-
ma 2001; Kus et al. 2004; Winterhalder et al. 2005) or real
neurophysiological data (reviewed by Pereda et al. 2005). A
variation of PDC, the generalized PDC, was also recently
introduced to cope with time series with widely different
variances (Baccala et al. 2007). These techniques are mainly
based on the notion of Granger causality (Granger 1980) and
have the advantage that they can be applied on multivariate
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time series, not restricting the connectivity analysis to pairs
of neural structures but extending it to whole sets of simulta-
neously recorded signals. This way, typical problems with
pairwise analysis, namely serial connections or common
sources (Kus et al. 2004; Cadotte et al. 2008) can be avoided.

In this study, PDC analysis was applied on electrophys-
iologically recorded local field potentials (LFPs) and unit
spike trains from dorsal hippocampus (medial and lateral
regions) and medial prefrontal cortex (mPFC) from isoflu-
rane-anesthetised rats (Coomber et al. 2008). After a period
of basal recordings, kainic acid (KA) was administered in
order to induce increased excitatory activity. The aims of
the study were (i) to assess the rat mPFC-hippocampal and
intra-hippocampal functional connectivity, under isoflurane
anesthesia; (ii) to examine potential changes in neuronal
dynamics following KA induction; (iii) to compare the con-
nectivity indicated by PDC on LFPs with that by PDC on
spikes, pre-processed by two different techniques.

The experimental methods and recording procedures are
described in Sect. 2. A short introduction to Granger causality
and the definitions of PDC and generalized PDC are given
in Sect. 3. Spike pre-processing procedures and numerical
implementation are described in Sect. 4. All results from our
analysis are presented in detail in Sect. 5.

2 Methods

2.1 Animals

All procedures were carried out in accordance with the ani-
mals (Scientific Procedures) Act 1986, UK. Experiments
were performed on male Lister hooded rats (University of
Nottingham Biomedical Sciences Services Unit in-house col-
ony) weighing 200–350 g (n = 4). Rats were group housed
on a 12 h:12 h light:dark cycle, and food and water were
available ad libitum. Rats were anesthetized with a 3.5% iso-
flurane/O2:N2O (50:50%) mixture. The isoflurane level was
reduced progressively and maintained at 1.5–2% throughout
the experiment to maintain a constant state of areflexia. Core
body temperature was monitored throughout and maintained
at 37◦C using a homeothermic heating pad (Harvard Appa-
ratus Ltd., UK).

2.2 Surgery

Rats were placed in a stereotaxic frame, craniotomies were
performed over dorsal hippocampus and mPFC, and a 16
micro-wire Teflon-coated stainless steel electrode array (NB
Labs, USA) was slowly and progressively lowered into the
right dorsal hippocampus [3.5 mm posterior and 3.0 mm lat-
eral to bregma, measured from the centre of the array; 3.0–
3.5 mm ventral to the cortical surface; (Paxinos and Watson

1998)], and an eight micro-wire electrode bundle lowered
into the right mPFC [3.2 mm anterior and 0.5 mm lateral to
bregma; 2.0–2.5 mm ventral to the cortical surface; (Paxinos
and Watson 1998)]. Multiple extracellular single-unit activity
(filtered at 250 Hz–8 kHz) from all electrodes of the 16-wire
array and 8-wire bundle, and simultaneous LFPs, sampled
at 1 kHz and filtered at 0.1–170 Hz, were recorded using a
Plexon Multichannel Acquisition Processor (MAP) system
(Plexon Inc., TX, USA).

2.3 Recording procedure

Recordings were made in epochs of 3 min every 10 min, over
a total period of 123 min. Rats were administered KA (10
mg/kg i.p.; Sigma, UK; n = 4) dissolved in saline, after a
33 min period of basal recording, to induce increased excit-
atory activity (Westbrook and Lothman 1983; Kunz and Oliw
2001) with a lag of approximately 20–30 min following i.p.
administration. Vehicle control injections did not alter the
spike firing or the LFP signal activity (data not shown).

2.4 Histology

At the end of each experiment, animals were deeply anesthe-
tised and current (0.1 mA for 5–10 s) passed through medial,
central and lateral pairs of electrodes in the hippocampus
and mPFC, to mark placements. Brains were removed and
stored in 4% paraformaldehyde/4% potassium ferrocyanide
solution for 48 h. Histological sections (200µm) were taken
with a vibratome (Camden Instruments, UK) and electrode
placements were revealed by the Prussian Blue reaction
(Hong et al. 2000). Medial and lateral hippocampal elec-
trode placements were largely confined to the CA3 and CA1
fields, respectively; mPFC electrodes were between layers
3–5 (Fig. 1).

2.5 Spike sorting

Data from animals with confirmed hippocampal electrode
placements were sorted into individual neuronal single-
units using both automatic and manual sorting techniques
in Offline Sorter (Plexon Inc.). Briefly, principle component
analysis was used to display the recorded waveforms in three-
dimensional space. Each electrode was manually checked for
artifacts (e.g., 50 Hz noise). Automatic sorting (T-Dist E-M)
methods were then used to separate the waveforms into indi-
vidual units. The resulting clusters were inspected and the
units were considered to be separate only if the cluster bor-
ders did not overlap (see Stevenson et al. 2007).
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Fig. 1 Schematic
representation of histological
verification of dorsal
hippocampal (upper left) and
mPFC (upper right) recording
sites. The most medial (black
dots) and lateral (white dots)
electrode placements of the
hippocampal array and an
electrode from the bundle in
mPFC (black dots) are shown in
coronal brain images (Paxinos
and Watson 1998) for each
experiment included in this
study (n = 4 rats). The distance
posterior to bregma in the
sequence of images for
hippocampal placements is:
(a) −3.8 mm; (b) −3.6 mm; (c)
−3.3 mm. The distance anterior
to bregma in each image for
mPFC placements is: (a)
3.2 mm; (b) 3.7 mm. The lower
panel shows representative
segments of LFP activity during
basal conditions in one rat
recorded simultaneously in
mPFC, medial hippocampus
(mHipp), and lateral
hippocampus (lHipp)
respectively over a 10 s period

2.6 Spike selection

The mean firing rate of each unit data set was computed
and only units with firing rates within the range 0.1–10 Hz
in hippocampus and 0.05–10 Hz in mPFC were used for the
subsequent analysis. This range was assumed to represent
populations of putative principal cells (Frank et al. 2001).
In order to make the comparison between analysis on the
single unit and LFP activity as rigorous as possible, only
units recorded adjacent to the electrodes recording LFPs were
used. If none of these satisfied the firing rate criteria, then the
range of potential units was expanded by one electrode fur-
ther from the LFP electrode, until there was at least one unit
for each brain region.

3 Partial directed coherence

The definition of PDC is based on the notion of linear Granger
causality (Granger 1980) whose basic concept is simply that
the cause precedes its effect temporally. Thus, a variable x j (t)
“Granger-causes” another xi (t), if knowledge of x j (t)’s past
values significantly improves predictions of xi (t)’s future
values. This relation is not reciprocal, meaning that x j (t) can
Granger-cause xi (t), without xi (t) necessarily causing x j (t)
back, and this lack of reciprocity permits gauging the direc-

tion of information flow between variables. Note here that
the term “information flow” does not correspond to actual
bits of information in the strict sense but is a widely used
term in similar studies which implies a directed causal link.

Granger causality within an m-variate process defined by
a set (x1(t), x2(t), . . . , xm(t))T of m zero-mean stationary
time series, i.e., trend-free time series with approximately
constant mean and variance, is assessed by modeling them
through a vector autoregressive (VAR) model of the form:

⎡
⎢⎣

x1(t)
...

xm(t)

⎤
⎥⎦ =

p∑
r=1

Ar

⎡
⎢⎣

x1(t − r)
...

xm(t − r)

⎤
⎥⎦+

⎡
⎢⎣

u1(t)
...

um(t)

⎤
⎥⎦ (1)

where (u1(t), . . . , um(t))T are uncorrelated Gaussian white
noise processes representing the model residuals (Lütkepohl
2005), with covariance matrix �. p is the VAR model’s
order which represents the maximum temporal delay in the
causal link between the modeled variables. For a VAR pro-
cess of unknown order, as in this case, it can be optimized
through various selection criteria, such as the Akaike crite-
rion (Akaike 1974) or the Bayesian Information Criterion
(Schwarz 1978), which acquire their minimum value at the
model order which strikes the best balance between the model
fit and overparametrization. The stationarity of the series gen-
erated by the VAR model can be assessed through the model’s
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stability. A VAR model is stable if it satisfies the criterion:

det(I − A1z − · · · − Apzp) �= 0 (2)

for all z ∈ C, such that |z| ≤ 1. The VAR coefficients
Ar are m × m matrices whose entries Ar(i j) represent the
linear effect of x j ’s past value x j (t − r) onto xi ’s present:
xi (t). Consequently, if it can be shown that Ar(i j), is signif-
icantly nonzero for any r ∈ 1, 2, . . . , p then x j is Granger-
causing xi .

Taking the Fourier Transformation of the VAR coeffi-
cients:

A( f ) =
p∑

r=1

Are
−2π i f r (3)

yields a frequency-domain representation of the VAR model.
Defining the matrix: Ā( f ) as the difference between the iden-
tity matrix and A( f ) : Ā( f ) = I − A( f ), then PDC from
variable x j to xi is defined as:

|πi← j ( f )| = | Āi j ( f )|√∑
k | Āk j ( f )|2

(4)

This definition is directly related to Granger causality since
πi← j is zero for all frequencies if and only if Ar(i j) = 0
for all r ∈ 1, 2, . . . , p, in which case x j is not Granger-
causing xi .

The denominator in (4) is a normalization that bounds the
PDC coefficients to values from 0 to 1. This choice of scaling
means that |πi← j ( f )| measures the outflow of information
from signal x j to signal xi with respect to the total outflow
of information from x j to all signals. In other words PDC
ranks the interaction strength with respect to the origin of
the information flow. This is a characteristic difference from
the similar measure of DTF (Kamiński and Blinowska 1991),
where the interaction is ranked with respect to the total inflow
of information to a variable.

The asymptotic distributions of PDC have been recently
studied and it was shown that under the null hypothesis of
| Āi j ( f )|2 = 0, equivalent to |πi← j ( f )| = 0, the asymptotic
distribution of:

N

Ci j ( f )
| Ãi j ( f )|2 (5)

is a weighted average of two independent χ2-distributions
with one degree of freedom (Schelter et al. 2006a; Takahashi
and Baccalá 2007). Here:

Ci j ( f ) = σ 2
i

⎛
⎝

p∑
k,l=1

Hj j (k − l) cos(2π(k − l) f )

⎞
⎠ , (6)

σ 2
i is the variance of ui and Hj j (h) is the j th diagonal entry

in the (k − l)-lag block of H , where H is the inverse of the

VAR process’s covariance matrix �X (0) (Lütkepohl 2005):

�X =

⎛
⎜⎜⎜⎝

�(0) �(1) . . . �(p − 1)

�(−1) �(0) . . . �(p − 2)
...

...
. . .

...

�(−p + 1) �(−p + 2) . . . �(0)

⎞
⎟⎟⎟⎠ . (7)

Ãi j ( f ) is an estimate of the true VAR-process matrix Āi j ( f ),
computed from the N -length time series through the common
normally distributed estimators [maximum likelihood, Yule–
Walker estimators etc. (Lütkepohl 2005)]. The asymptotic
distribution of (5) leads to the approximation of an analyti-
cal critical level for the significance of a nonzero |πi← j ( f )|,
proposed in Schelter et al. (2006a):

√√√√ Ĉi j ( f )χ2
1,1−α

N
∑

k | Ãk j ( f )|2 (8)

with χ2
1,1−α the 1−α quantile of the χ2-distribution with one

degree of freedom and Ĉi j ( f ) an estimate of Ci j ( f ) based on
the computation of the covariance matrix �X by the sample
data.

Although PDC has proved to be an accurate tool for the
detection of direct connectivities, both in cases of coupled
oscillators (Baccalá and Sameshima 2001; Winterhalder et al.
2005; Gourévitch et al. 2006; Schelter et al. 2006a) or sim-
ple neuronal models of interconnected neurons (Sameshima
and Baccalá 1999; Kamiński et al. 2001; Astolfi et al. 2007),
it has been shown that large differences in the variances of
the modeled time series can yield distortions in the resulting
PDC values (Winterhalder et al. 2005; Baccala et al. 2007).
For example, a set of three uncorrelated white noise pro-
cesses, where two of them have much larger variance than
the third, will produce a distorted connectivity profile, since
PDC wrongly detects connections from the low-variance pro-
cess to the other two (Winterhalder et al. 2005). To avoid such
distortions deriving from differences in time series scaling, a
variation of the original PDC, the so called generalized PDC
(gPDC) was introduced (Baccala et al. 2007). In gPDC, the
coefficients | Āi j ( f )| are normalized by the standard devia-
tion of the ui model residuals:

|πgen
i← j ( f )| =

1
σi
| Āi j ( f )|√∑

k
1
σ 2

k
| Āk j ( f )|2

(9)

In need of a critical level for gPDC, we followed the same
analysis as in the derivation of (8). Given that the stationarity
of the time series guarantees they have bounded non-zero
variances, under the null hypothesis of 1

σ 2
i
| Āi j ( f )|2 = 0,
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Fig. 2 PDC (dashed line) and
gPDC (solid line) for three
independent white noises with
different variance (see text).
PDC indicates that process x1 is
driving the much higher variant
processes x2 and x3. gPDC on
the other hand, being practically
zero and lying entirely below
the critical value (11) (dotted
line) restores the independence
of the processes. The diagonal
panels represent the logarithm
of the power spectral density of
each process
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which is equivalent to |πgen
i← j ( f )| = 0, we can simply rewrite

(5) as:

N
Ci j ( f )

σ 2
i

1

σ 2
i

| Ãi j ( f )|2 (10)

whose asymptotic distribution is again a weighted average
of two independent χ2-distributions with one degree of free-
dom. By following same steps as in Schelter et al. (2006a),
we obtain a similar approximation to (8) for the significance
level of gPDC:
√√√√√

Ĉi j ( f )χ2
1,1−α

Nσ 2
i

∑
k

1
σ 2

k
| Ãk j ( f )|2 (11)

where Ĉi j ( f ), σi and Ãi j ( f ) are estimated as above.
It has been suggested that gPDC, when accompanied by a

Z -score pre-normalization of the time series, yields correct
connectivities even for very short data samples of series with
different scaling (Baccala et al. 2007). Indeed in the example
of three oscillators we find that the lack of connections is
correctly detected after replacing PDC with gPDC (Fig. 2).
For an example of a false negative PDC, corrected by gPDC,
see Baccala et al. (2007).

In our recordings the mPFC LFP signals have much lower
variance than that of the hippocampal ones. This led to the

application in this study of gPDC on the recordings, instead
of the original PDC. This is the first study to apply gPDC on
neurophysiological data.

4 Data pre-processing and numerical implementation

Partial directed coherence and gPDC should only be applied
on stationary data. LFPs usually provide locally (almost) sta-
tionary series when examined in small segments of only a few
seconds (Bernasconi and König 1999; Ding et al. 2000). As
proposed by Ding et al. (2000), all LFP recording epochs
were split in 10-s segments with 80% overlap, and each seg-
ment was analyzed separately. Smaller segments of 2 and 5 s
duration were also implemented but, although yielding qual-
itatively similar connectivity features, their short data length
resulted in poor gPDC estimation and very high critical
levels.

In contrast, the binary spike trains are non-stationarity and
need to be transformed into continuous stationary time series.
Two methods were applied here: the spike trains (i) were
substituted with their corresponding firing rates, or (ii) trans-
formed into a continuous function through the kernel convo-
lution method of the French–Holden algorithm (French and
Holden 1971). Both methods have been used before in neuro-
physiological studies with PDC (Sameshima and Baccalá
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Fig. 3 The French–Holden
algorithm applied on a series of
spikes (top) with Nyquist
frequency set to 10 Hz (middle)
and 100 Hz (bottom)
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1999; Fanselow et al. 2001; Yang et al. 2005; Huang et al.
2006; Wang et al. 2007, 2008).

For the firing rate calculation, spike data were binned by
10 ms bins, overlapping by 50%. This choice of bin length
and overlap was to ensure the bins were large enough for the
resulting firing rates not to be completely binary, while not
losing much information by grouping the spikes. The main
drawback of this method is that the information of the precise
spike timings is lost.

The French–Holden (F–H) algorithm provides an alterna-
tive approach by transforming the spike point process into a
continuous signal while retaining the spiking times. This is
done by convolving each spike with the infinite-length ker-
nel:

S(t) = sin (2π fN(t − ti ))

2π fN(t − ti )
(12)

where ti is the timing of the specific spike and fN is the
Nyquist frequency (Marple 1987), the maximum frequency
for which there will be no aliasing distortions in the final
signal. The resulting infinite and continuous function is then
truncated by the exact duration of the train and sampled at
rate 2 fN. The output is a continuous function whose mag-
nitude represents an estimate of the instantaneous firing rate
of the spike train (Paterka et al. 1978). The choice of the fN

parameter affects the shape of the final signal and the accu-
racy of the spike times, as can be seen in Fig. 3. In this study,
the maximum frequency analyzed was 50 Hz and the Ny-
quist frequency was set to 100 Hz to avoid significant errors
in power spectral computations (Paterka et al. 1978).

Principal Component analysis was performed to group
either the firing rates or the F–H processed units of each
brain region together. The first principal component from

each region was implemented for the VAR modeling and
subsequent PDC analysis. In most cases presented below,
the first principal component contained more than 75% of the
processed units’ variance, rendering them good representa-
tives of their sets of units. The only exception was the third
case study where the percentage dropped to approximately
45% for the lateral hippocampal neurons. Each recording
epoch was split into segments of 10 s duration with 90%
overlap.

All LFP time series from each segment were normalized
into Z -scores before further analysis. The single-unit time
series had only their mean values removed, since the seg-
ments’ variances were often too small to be used for normal-
ization. VAR modeling and gPDC analysis were performed
for each segment separately. Unfortunately, the very low
firing of neurons under anesthesia, especially those in the
mPFC, led in most occasions to very few non-zero values
in the firing rates time series, even after KA administration,
rendering these series non-stationary. In fact, many segments
had completely zero firing rates, making it impossible to per-
form VAR analysis on them. Moreover, the very sparse firing
led to many highly non-stationary (but non-zero) segments in
the F–H processed cases as well. All the non-stationary seg-
ments of both firing rates and F–H processed spikes yielded
VAR models that did not satisfy the stability criterion (2) and
their gPDC results were set to zero.

One parameter that needs to be set before VAR modeling
takes place is the model order p in (1). To perform a con-
sistent analysis between all the data segments and be able to
make rigorous comparisons between PDC results, the same
model order should be set for all VAR models, as it represents
the delay of information transfer between the recorded brain
regions. This is not a straightforward choice, as different data
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sets usually require different orders for the VAR model to
accurately capture the data characteristics. The model order
differences are potentially even more substantial between
different types of data, as in our case. Even though they cor-
respond to the same experiment, each of the three types of
neurophysiological data examined here carries a different
type of information and the corresponding data have differ-
ent form.

Both the Akaike and Bayesian Information criteria were
applied. In the LFP cases they failed to yield an optimal order
as they kept decreasing with increasing order. This is a typi-
cal situation for EEG and LFP data (Jansen 1991; Ding et al.
2000). It is customary to select a model order manually so
that the power spectrum of the modeled data closely follows
that of the original data (Brovelli et al. 2004; Gourévitch et al.
2006; Schelter et al. 2006b). For the spike train data, pre-pro-
cessed either way, both selection criteria indicated different
optimal orders that were strongly fluctuating between seg-
ments. For the LFPs a model order of 100 sample points was
set, corresponding to 100 ms of history since the sampling
rate was 1 KHz. This order yielded on average a very good fit
of the model spectrum and the data spectra (although it natu-
rally varied between different segments and different record-
ings). For the spike data, a delay of 100 ms corresponded to
a model order of 20 data points for both firing rates and F–H

processed trains. This order appeared to be close to opti-
mal as by visual inspection, it was found that significantly
increasing or decreasing p diminished the fit between VAR
and data spectra. The power spectra of the original data and
those of the VAR models are presented for each case study in
the following section as representations of the fit of the VAR
models to the original data.

All data pre-processing, parameters set up, VAR mod-
eling, PDC analysis and plots were performed through
a custom-built toolbox in MATLAB, containing (modi-
fied) algorithms from the ARFIT (Neumaier and Schnei-
der 2001; Schneider and Neumaier 2001) (http://www.gps.
caltech.edu/tapio/arfit/), Biosig (http://biosig.sourceforge.
net/documentation.html) and Neurospec 20 (http://www.
neurospec.org/) numerical toolboxes. In particular, for the
computation of the VAR models, the ARFIT algorithm was
applied (Neumaier and Schneider 2001).

5 Results

In Figs. 4 and 6 the results from the VAR modeling and gPDC
analysis on LFP data are presented for all studied cases indi-
vidually, referred to as Cases 1–4. A single plot of the gPDC
results averaged over all case studies was avoided so that indi-
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Fig. 4 Results for LFPs from Cases 1 (left column) and 2 (right col-
umn). Top Average power spectral densities of the VAR models, over the
first four (basal) epochs (dashed lines) and over the last four epochs,
when KA is expected to have taken effect (solid lines). LFP spectra
are shown in dotted lines. Each panel represents one of the three brain
regions (from left mPFC, medial hippocampus, lateral hippocampus).

Bottom gPDC results between all pairs of the three brain regions. Oppo-
site directionalities are shown next to each other. False positive gPDC
entries, according to 95% critical value (11) have been set to zero. The
peaks at 50 Hz in some panels in this (and following figures) represent
50 Hz mains noise artefacts
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Fig. 5 a gPDC results between the mPFC and the hippocampus of
Case 1 during the second to fourth recording epochs, plotted in similar
fashion as in Fig. 4. Left row displays gPDC from LFP recordings while
the right one displays gPDC from F–H processed spike data. White
lines indicate the limits between the epochs. b LFP recordings from the
mPFC (top), medial (middle) and lateral hippocampus (bottom) during

the same epochs. The intervals of no recordings between the epochs
have been removed. Black lines indicate the limits between epochs and
time axis displays the starting time of each epoch (180 s duration). The
arrows indicate the second UP state in the mPFC signal during epoch
2 and the mPFC-to-hippocampus PDC results corresponding to that
segment. These results are discussed in the text

vidual differences and similarities in neural network dynam-
ics could be examined. For each one, the gPDC results are
presented along with the spectral comparison between the
original data and the VAR model. This comparison is done
separately for spectra averaged over the first four recording
epochs (344 segments in total) of basal recordings and for
spectra averaged over the last four epochs during which KA
is expected to have taken full effect. The averaged power
spectra are plotted in the top panel row in each case, sepa-
rately for each of the three brain regions under study.

In Case 1 (Fig. 4, left column), gPDC indicates a bidi-
rectional functional connection between the mPFC and the
hippocampus. Information appears to be flowing continu-
ously from the medial hippocampus to the mPFC, mostly in
the beta frequency band (10–30 Hz), with the mPFC respond-
ing mainly during short bursts of activity where gPDC spans
most of the frequency range. Also the lateral hippocampus
sends information to mPFC at frequencies >10 Hz, again
peaking roughly around the beta band. mPFC seems to be
responding to lateral hippocampus mostly in the lower fre-
quencies around the 0–10 Hz frequency band. gPDC also
revealed a strong intra-hippocampal connection from the lat-

eral to medial hippocampus, mostly concentrated on the beta
(10–30 Hz) frequency band, with a gPDC maximum around
∼15 Hz. Causality in the opposite direction is very low, peak-
ing in the theta band (4–10 Hz). KA started taking effect after
the 7th epoch but did not disrupt the strong intra-hippocampal
connection, while its effects were more evident in the cor-
tico-hippocampal ones. Information flow from hippocampus
to cortex was halted and reversed, with strong flow in the
opposite direction, from mPFC to both medial hippocam-
pus (covering most frequencies) and lateral (localized in the
0–10 Hz band).

One distinctive feature of the basal activity epochs in Case
1 is a large gPDC decrease from hippocampus to mPFC
during the third epoch with a simultaneous increase in the
opposite direction, identical to the connectivity during the
KA-induced enhanced-activity epochs. This reversal of
directionality coincided with a period of continuous oscilla-
tory transitions between active and quiet states in the cortex.
Figure 5a displays gPDC between mPFC and hippocampus
during epochs 2 to 4. Results from LFP analysis are shown
on the left row, while the right one contains the correspond-
ing results from F–H processed spike trains. Due to the very
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Fig. 6 Same set of plots as in Fig. 4 for the third (left) and fourth (right) case studies

sparse firing, especially in the mPFC area, many segments
gave unstable VAR models. gPDC from these segments was
set to zero. For the same reason, VAR modeling of the firing
rates was not possible since most segments yielded only zero
values in the firing rate time series. Nevertheless, some seg-
ments gave significant non-zero gPDC. Figure 5b displays
the LFP recordings from the same three epochs.

Clearly, the continuous hippocampus-to-mPFC informa-
tion flow is interrupted and reversed only during short bursts
of activity in mPFC (UP states). These bursts gave rise to high
gPDC from mPFC towards mostly the medial hippocampal
area. This reversed connectivity was sustained throughout the
third epoch where mPFC exhibited a continuous oscillation
between UP states and relaxation (DOWN states), sending
information to hippocampus. Spike trains reveal the same
scenario. Intuitively, significant gPDC results appeared only
during the mPFC UP states when action potentials were actu-
ally produced. Again, it appears that those states coincided
with information flow towards the hippocampus. Conse-
quently, the third epoch gave rise to continuous high mPFC-
to-hippocampus gPDC. It is noteworthy that in some cases,
results from spikes and LFPs reveal different hippocampal
areas as targets of mPFC information flow. For example, dur-
ing the second UP state in epoch 2 (arrow in Fig. 5b), spike
train analysis indicated information flow only towards the lat-
eral hippocampus, while gPDC from LFPs suggests mainly
flow towards the medial (arrows in Fig. 5a).

In Case 2 (Fig. 4 right column), gPDC yielded simi-
lar basal connectivity profile as in Case 1. The cortico-

hippocampal connection appears reciprocal, with the lateral
hippocampus sending no information below approximately
10 Hz and the mPFC sending information back predomi-
nantly below this frequency boundary. Again most of the
intra-hippocampal information flow is found in the lateral-
to-medial pathway, on the beta band, with flow below this
range going only in the opposite direction, towards the lateral
hippocampus. The disruptive effect of KA in the cortico-hip-
pocampal connections is also evident here but this time with
no apparent reversal of flow towards the hippocampus. This
time KA also disrupted the intra-hippocampal connectivity
as well, as there is a gradual drop of gPDC in the lateral-
to-medial pathway and a dramatic reduction in the opposite
direction. This reduction is followed by a small increase on
higher frequencies suggesting a partial reversal of intra-hip-
pocampal connectivity.

Case 3 (Fig. 6, left column) presents a similar strong recip-
rocal mPFC-lateral hippocampal connection as before. Here,
the medial hippocampus-to-mPFC connection appears much
less prominent, while the high gPDC values in the mPFC-to-
hippocampus connections, present mostly in short bursts of
activity, are more concentrated on low frequencies. Intra-hip-
pocampal connections are again directed from the lateral to
the medial although the strong peak on the beta band is now
absent. KA took effect sooner in Case 3 (6th epoch compared
to 8th and 7th in the two previous cases). Again it disrupted
information flow from hippocampus to mPFC, but only for
a transient period. After epoch 9 the basal connectivity is
partly restored. Also, here the mPFC-to-medial hippocampus
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Fig. 7 Results for the first
principal components of F–H
processed spike trains in Case 4.
The sets of plots are similar to
the ones in Figs. 4 and 6. Only
the power spectra of the last four
epochs are displayed as the
basal epochs contained too
many unstable VAR models. We
note that gPDC analysis on the
last seven epochs of firing-rates
processed spike trains gave
identical results as the ones
presented here
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connection was greatly enhanced in the low frequency band
(0–10 Hz), while the one to the lateral was interrupted by
KA. Finally, KA action also resulted in a partial reversal
of the intra-hippocampal connectivity, with gPDC present-
ing a substantial drop of the medial-to-lateral hippocampus
connection strength and a simultaneous rapid increase in the
opposite direction, most prominently in the low frequency
band.

In Case 4 (Fig. 6, right column), the hippocampus-to-
mPFC connections are almost absent. From the mPFC,
information flow is directed mostly towards the medial
hippocampus, with only a transient increase towards the
lateral, corresponding to a period of similar UP/DOWN-
transitions in mPFC-activity as epoch 3 in Case 1. The most
distinctive characteristic in the intra-hippocampal connec-
tivity is again the very strong gPDC in the lateral-to-medial
pathway on a frequency range around the beta band where
gPDC is maximal while in the theta band it is almost absent.
This strong connectivity is again partially reversed under KA
activity, while the mPFC-to-medial hippocampus connection
is enhanced on the low frequencies as in Case 3.

Case 4 exhibited a firing rate after KA administration
which was high enough to allow gPDC analysis to be per-
formed on spike data. However, the very sparse firing during
the initial basal epochs allowed VAR modeling of the firing
rates to be performed only on the last seven epochs. It also
resulted in many segments with unstable VAR models for
the F–H processed spikes. In Fig. 7, gPDC results from the
F–H processed spikes are displayed in a similar fashion as for
the LFP results. Power spectra comparisons are performed
only for the KA epochs where unstable VAR segments were
sparse. Results from the firing rates are not shown as they
were practically identical with the last seven epochs in Fig. 7.
The basal epochs exhibit no specific sustained connectivity.
The most distinctive characteristic is the pronounced increase
in medial-to-lateral hippocampal connectivity after the KA
administration, sustained until the end of the recordings.
This increase coincides temporally with the gPDC increase
observed in the corresponding LFP results. Although it does
not verify the reversal in hippocampal connectivity observed
through LFPs, it supports the KA-induced increase of infor-
mation flow from medial to lateral hippocampus.
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6 Discussion

A significant challenge in neuroscience lies in determining
how complex interactions between discrete populations of
neurones elicit functional output. Partial directed coherence
analysis was applied to LFP and unit activity recorded at
mPFC and medial (CA1) and lateral (CA3) hippocampal
recording sites, to address interactions between these regions.
A variation of the original PDC (Sameshima and Baccalá
1999; Baccalá and Sameshima 2001), notably generalized
PDC (Baccala et al. 2007), was used in order to avoid dis-
torted connectivity results due to different scaling of the data
in cortex and hippocampus. Spike train data from each brain
region were replaced by their firing rate or a continuous func-
tion generated through the F–H algorithm and grouped using
Principal Component analysis.

Connectivity results were consistent between LFP record-
ings during basal recording conditions. Within the hip-
pocampus, the predominant connectivity under isoflurane
anesthesia was clearly from lateral towards medial, con-
centrated in the beta (10–30 Hz) frequency band, peaking
strongly around 15 Hz. Usually, little information was sent
in the opposite direction, and then mostly in the theta (4–
10 Hz) frequency band. This lateral-to-medial directionality
was consistent with the established neuroanatomy of the hip-
pocampus, i.e., glutamatergic pyramidal cells located in CA3
projecting, via Schaffer collaterals, to pyramidal cells in CA1
(reviewed by Amaral and Witter 1989).

Analysis of LFP activity further revealed a reciprocal flow
of information between the mPFC and hippocampus. In most
cases, the hippocampus showed an almost continuous infor-
mation flow towards the mPFC, with the lateral hippocam-
pus-to-mPFC gPDC peaking predominately between 10 and
30 Hz. In the opposite direction, the mPFC-to-hippocampal
information flow was less strong during periods of mPFC
inactivity (corresponding with the “DOWN-state”), but inter-
estingly peaked during short bursts of mPFC (“UP-state”)
activity. This suggests that the hippocampus feeds the mPFC,
while the latter is silent, in an almost-continuous fashion with
signals at frequencies >10 Hz, with the mPFC responding in
bursts towards both the medial (over most of the frequency
range) and the lateral hippocampus (mostly at frequencies
<10 Hz).

The hippocampus forms multiple connections with other
structures in the brain, including the mPFC. Specifically, the
hippocampus (ventral CA1) projects to mPFC, including the
medial orbital area, prelimbic and infralimbic cortices, while
no projections from CA2, CA3, or dentate gyrus to mPFC
exist (Goldman-Rakic et al. 1984; Ferino et al. 1987; Jay et
al. 1989; Sesack et al. 1989; Jay and Witter 1991; Carr and
Sesack 1996). The present recordings were made in the dor-
sal hippocampus and functional intrinsic connectivity within
the hippocampus requires addressing in the future. This

Fig. 8 Simplified schematic representation of the information flow,
under basal conditions, between the structures recorded in the pres-
ent study. Schaffer collaterals project from lateral (CA3) to the medial
(CA1) hippocampal area (Hpc) and monosynaptic projections have been
reported from medial hippocampus (CA1) to the mPFC. No monosyn-
aptic pathways have been observed from mPFC back to the hippocam-
pus, but it is possible that other areas can act as relay structures (see
text). The arrows represent the directionality as assessed by gPDC

CA1-mPFC projection is primarily unidirectional, given that
no direct return projections have been identified (Goldman-
Rakic et al. 1984; Room et al. 1985; Sesack et al. 1989;
Hurley et al. 1991; Takagishi and Chiba 1991; Buchanan
et al. 1994). The monosynaptic hippocampal-to-mPFC path-
way innervates both pyramidal cells and interneurons in the
rat (Ferino et al. 1987; Laroche et al. 1990; Jay et al. 1995;
Tierney et al. 2004), and has been implicated in memory
acquisition and consolidation, specifically for working spa-
tial memory (reviewed in Goldman-Rakic 1995) (Fig. 8).

Interestingly, the observed mPFC-to-hippocampus dir-
ectionality appears inconsistent with an unidirectional
monosynaptic projection from hippocampus to mPFC. This
observation may be explained by the participation of a “relay”
structure, notably the nucleus reuniens of the thalamus, a
structure that receives strong input from prelimbic and infra-
limbic cortices of the mPFC and projects to the hippocampus
(Vertes 2006; Vertes et al. 2007).

Recent electrophysiological studies (reviewed by Tononi
et al. 2006), suggest that the neocortical slow oscillation
(Steriade et al. 1993; Steriade 2006) which engages neu-
rons in prefrontal and other cortical regions into synchronous
transitions between depolarized (UP-) and hyperpolarized
(DOWN-) states during deep sleep and anesthesia, influences
activity in hippocampal cells even though such activity lacks
the neocortical bimodality of the slow oscillation (Isomura
et al. 2006). Specifically, it has been suggested that corti-
cal UP-states result in increased activity of dentate and most
CA1 neurons, as well as a higher probability of ripple events
in the hippocampus (Isomura et al. 2006). The delay between
this cortical influence and its effect on hippocampus is in the
order of tens of milliseconds (Molle et al. 2006). The high
model order that was applied during the present study con-
tains such delays, and the gPDC results presented in Fig. 5
(epoch 3) seem to support this notion, implying that dur-
ing slow oscillation-type cortical activity, information flows
mainly from mPFC to hippocampus. Further, these results
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suggest that this information flow appears generally during
the cortical UP-state, even isolated ones.

It can be argued that the clear increase in mPFC-to-medial
hippocampus gPDC observed during these UP-states is a
numerical artifact produced by poor VAR modeling, result-
ing from the non-stationarity that an UP-state introduces in a
modeled LFP segment. Nevertheless, the absence of similarly
strong gPDC increase in the corresponding mPFC-to-lateral
hippocampus panels supports the validity of our results.

In this study, kainic acid administration resulted in a vari-
ety of effects on connectivity profiles, yet two major effects
occurred in most case studies: (i) KA caused a partial disrup-
tion of connectivity between the mPFC and hippocampus, in
both directions and (ii) following KA there was a weakening
in the lateral-to-medial connection, often accompanied with
a strong increase of the opposite pathway, leading to a gradual
and partial reversal of connectivity in the hippocampus.

The use of KA is well established as a model of status
epilepticus (SE) and spontaneous seizures in the rat, and the
hippocampus is particularly susceptible to pharmacological
manipulation with KA (Lothman et al. 1981; Nadler 1981;
Ben-Ari 1985; Buckmaster and Dudek 1999). KA receptors
are broadly distributed in the hippocampus, presynaptically
regulating glutamate release at mossy fiber-CA3 synapses
(Schmitz et al. 2001), and GABA release between interneu-
rones (Mulle et al. 2000; Cossart et al. 2001) and at interneu-
rone-pyramidal cell synapses (Clarke et al. 1997; Rodríguez-
Moreno et al. 1997; Maingret et al. 2005). The mechanisms
by which SE and spontaneous seizures are generated in ani-
mal models with KA are not fully understood. Activation
of high affinity KA receptors (densely expressed at mossy
fiber synapses), coupled with additional excitation (leading to
synchronization) provided by recurrent collateral projections
between CA3 pyramidal neurones is proposed to underlie
epileptiform activity generated as a result of KA administra-
tion. This occurs in spite of increased GABA-mediated inhi-
bition (Ben-Ari and Cossart 2000). Alternatively, a removal
of inhibition at interneurone-pyramidal cell synapses may
also be involved (Clarke et al. 1997; Rodríguez-Moreno et
al. 1997; Maingret et al. 2005). Epileptiform activity sub-
sequently propagates from CA3 to CA1, and then, via the
subiculum, to other limbic structures (Ben-Ari and Cossart
2000).

Our results confirm the particular susceptibility of the
hippocampus to KA. The decline in lateral-to-medial hip-
pocampal information flow, and the subsequent reversal of
directionality, exhibited by some rats administered KA in
these experiments is intriguing, in light of both the described
anatomy of the hippocampus, and the suggested mechanisms
for KA-induced limbic seizure. The perforant path does not
represent the sole pathway within the hippocampus (e.g.,
the entorhinal cortex projects directly to CA1 via the temp-
oro-ammonic pathway); however, reverse projections from

CA1 to CA3 have not been reported. Furthermore the sus-
ceptibility of CA3 mossy fibers to KA does not fit with
medial-to-lateral directionality. One caveat is the influence
of anesthesia on KA-evoked activity which may underlie the
hippocampal directionality observed in this study. In addi-
tion, different sub-populations of neurones may have been
recorded because of variations in the precise array-placement
between experiments.

Alterations to functional connectivity have implications
for memory processing in epilepsy. Temporal lobe seizures
are associated with functional deficits, including working
memory (Schubert et al. 2005), for which the hippocampus
and mPFC are both important (Goldman-Rakic 1995).

Our results further indicate that applying PDC on spike
trains can be problematic due to their highly non-stationary
nature. Pre-processing of the unit data is necessary in order
to generate a stationary series. While the effects of such pro-
cessing may not always be clear they should be taken into
account in subsequent analysis. Both of the pre-processing
techniques applied here yielded similar results as parameters
(i.e., bin length, overlap) were chosen so that the resulting
firing rate did not deviate much from the instantaneous firing
rate given through the F–H algorithm. In general, process-
ing parameters should be chosen carefully, and according
to the specific case under study. For example, grouping the
spikes into large bins leads to a loss of information about
the firing patterns of the neuron. Conversely, small bin sizes
may be inadequate for a low-firing neuron. In this particular
study, anesthesia resulted in low firing rates. Thus, spike train
gPDC analysis did not reveal any significant connectivity,
with the exception of Case 4. Nevertheless, in this record-
ing, spike train gPDC did parallel elements of the connectiv-
ity revealed by corresponding analysis on LFPs, namely the
increase in medial-to-lateral hippocampus information flow
under KA. The same conclusion can be drawn from the anal-
ysis of the three basal epochs of Case 1 presented in Fig. 5.
Despite the very low firing of mPFC, spike train analysis
did support the mPFC-to-hippocampus connectivity during
the mPFC UP-states. Thus gPDC analysis of spike trains
can be a useful complementary tool along with analysis of
LFPs.

PDC represents a novel technique for assessing interac-
tions between brain regions and revealing their directional-
ity. Its variation, gPDC, is a powerful tool which, combined
with data normalization, can overcome distortions caused by
differences in the electrophysiological signal scaling. Nev-
ertheless, caution is necessary when applying such statistical
tools in the analysis of neurophysiological data as inappropri-
ate use can lead to false conclusions. There are many issues
such as the scaling and stationarity of time series data and
PDC model order that need to be taken into account when
constructing the VAR models, which is the most crucial part
of this analysis approach.
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