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Abstract
We have suggested that the mirror-neuron system might be usefully understood as implementing
Bayes-optimal perception of actions emitted by oneself or others. To substantiate this claim, we
present neuronal simulations that show the same representations can prescribe motor behavior and
encode motor intentions during action–observation. These simulations are based on the free-
energy formulation of active inference, which is formally related to predictive coding. In this
scheme, (generalised) states of the world are represented as trajectories. When these states include
motor trajectories they implicitly entail intentions (future motor states). Optimizing the
representation of these intentions enables predictive coding in a prospective sense. Crucially, the
same generative models used to make predictions can be deployed to predict the actions of self or
others by simply changing the bias or precision (i.e. attention) afforded to proprioceptive signals.
We illustrate these points using simulations of handwriting to illustrate neuronally plausible
generation and recognition of itinerant (wandering) motor trajectories. We then use the same
simulations to produce synthetic electrophysiological responses to violations of intentional
expectations. Our results affirm that a Bayes-optimal approach provides a principled framework,
which accommodates current thinking about the mirror-neuron system. Furthermore, it endorses
the general formulation of action as active inference.
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1 Introduction
An exciting electrophysiological discovery is the existence of mirror neurons that respond to
emitting and observing the same motor act (Di Pellegrino et al. 1992; Rizzolatti and
Craighero 2004). Recently, we suggested that the representations encoded by these neurons
are consistent with hierarchical Bayesian inference about states of the world generating
sensory signals (Kilner et al. 2007a,b): See Grafton and Hamilton (2007) and Tani et al.
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(2004), who also consider action observation in terms of hierarchical inference. In these
treatments, mirror neurons represent motor intentions (goals) and generate predictions about
the proprioceptive and exteroceptive (e.g. visual) consequences of action, irrespective of
agency (self or other). Casting mirror neurons in this representational role may explain why
they appear to possess the properties of motor and sensory units in different contexts. This is
because the content of the representation (action) is the same in different contexts (agency).
Crucially, the idea that neurons represent the causes of sensory input also underlies
predictive coding and active inference. In predictive coding, neuronal representations are
used to make predictions, which are optimised during perception by minimizing prediction
error. In active inference, action tries to fulfill these predictions by minimizing sensory (e.g.
proprioceptive) prediction error. This enables intended movements (goal directed acts) to be
prescribed by predictions, which action is enslaved to fulfill. This account of action suggests
that mirror neurons are mandated in any Bayes-optimal agent that acts upon its world. We
try to illustrate this, using simulations of optimal behavior that reproduce the basic empirical
phenomenology of the mirror-neuron system.

Humans can infer the intentions of others through observation of their actions (Gallese and
Goldman 1998; Frith and Frith 1999; Grafton and Hamilton 2007), where action comprises a
sequence of acts or movements with a specific goal. Little is known about the neural
mechanisms underlying this ability to ‘mind read’, but a likely candidate is the mirror-
neuron system (Rizzolatti and Craighero 2004). Mirror neurons discharge not only during
action execution but also during action–observation. Their participation in action execution
and observation suggests that these neurons are a possible substrate for action
understanding. Mirror neurons were first discovered in the premotor area, F5, of the
macaque monkey (Di Pellegrino et al. 1992; Gallese et al. 1996; Rizzolatti et al. 2001;
Umilta et al. 2001) and were identified subsequently in an area of inferior parietal lobule,
area PF (Fogassi et al. 2005).

The premise of this article is that mirror neurons emerge naturally in any agent that acts on
its environment to avoid surprising events. We have discussed the imperative of minimizing
surprise in terms of a free-energy principle (Friston et al. 2006; Friston 2009). The
underlying motivation is that adaptive agents maintain low entropy equilibria with their
environment. Here, entropy is the average surprise of sensory signals, under the agent’s
model of how those signals were generated. Another perspective on this imperative comes
from the fact that surprise is mathematically the same as the negative log-evidence for an
agent’s model. This means the agent is trying to maximise the evidence for its model of its
world by minimizing surprise. Under some simplifying assumptions, surprise reduces to the
difference between the model’s predictions and the sensations sampled (i.e. prediction
error). In this formulation, action corresponds to selecting sensory samples that conform to
predictions, while perception involves optimizing predictions by updating posterior
(conditional) beliefs about the state of the world generating sensory signals. Both result in a
reduction of prediction error (see Friston 2009 for a heuristic summary). The resulting
scheme is called active inference (Friston et al. 2009, 2010a), which, in the absence of
action, is formally equivalent to evidence accumulation in predictive coding (Mumford
1992; Rao and Ballard 1998).

Active inference provides a slightly different perspective on the brain and its neuronal
representations, when compared to conventional views of the motor system. Under active
inference, there are no distinct sensory or motor representations, because proprioceptive
predictions are sufficient to furnish motor control signals. This obviates the need for motor
representations per se: High-level representations encode beliefs about the state of the world
that generate both proprioceptive and exteroceptive predictions. Motor control and action
emerge only at the lowest levels of the hierarchy, as suppression of proprioceptive
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prediction error; for example, by classical motor reflex arcs. In this scheme, complex
sequences of behavior can be prescribed by proprioceptive predictions, which peripheral
motor systems try to fulfill. This means that the central nervous system is concerned solely
with perceptual inference about the hidden states of the world causing sensory data. The
primary motor cortex is no more or less a motor cortical area than striate (visual) cortex. The
only difference between the motor cortex and visual cortex is that one predicts retinotopic
input, while the other predicts proprioceptive input from the motor plant (see Friston et al.
2010a for discussion). In this picture of the brain, neurons represent both cause and
consequence: They encode conditional expectations about hidden states in the world causing
sensory data, while at the same time causing those states vicariously through action. In a
similar way, they report the consequences of action because they are conditioned on its
sensory sequelae. In short, active inference induces a circular causality that destroys
conventional distinctions between sensory (consequence) and motor (cause) representations.
This means that optimizing representations corresponds to perception or intention, i.e.
forming percepts or intents. It is this bilateral view of neuronal representations we exploit in
the theoretical treatment of the mirror-neuron system below.

A key aspect of the free-energy formulation is that hidden states and causes in the world are
represented in terms of their generalised motion (Friston 2008). In this context, a generalised
state corresponds to a trajectory or path through state-space that contains the variables
responsible for generating sensory data. Neuronal representations of generalised states
pertain not just to an instant in time but to a trajectory that encodes future states. This means
that the implicit predictive coding is predictive in an anticipatory or generalised sense. This
is only true of generalised predictive coding: Usually, the ‘predictive’ in predictive coding is
not about what will happen but about predicting current sensations, given their causes.
However, in generalised predictive coding, prediction can be used in both its concurrent and
anticipatory sense. The trajectories one might presume are represented by the brain are
itinerant or wandering. Obvious examples here are those encoding locomotion, speech,
reading and writing. A useful concept here is the notion of a stable heteroclinic channel.
This simply means a path through state-space that visits a succession of (unstable) fixed
points. Heteroclinic channels and their associated itinerant dynamics are easy to specify in
generative models and have been used to model the recognition of speech and song (e.g.
Afraimovich et al. 2008; Rabinovich et al. 2008; Kiebel et al. 2009a,b). Conceptually, they
can be thought of as encoding dynamical movement ‘primitives’ (Ijspeert et al. 2002; Schaal
et al. 2007; Namikawa and Tani 2010) or perceptual and motor ‘schema’ (Jeannerod et al.
1995; Arbib 2008). In this article, we will use itinerant dynamics to both generate and
recognise handwriting. During action these dynamics play the role of prior expectations that
are fulfilled by action to render them posterior beliefs about what actually happened. In
action–observation, these priors correspond to dynamical templates for recognizing
complicated and itinerant sensory trajectories. In what follows, we will exploit both
perspectives using the same neuronal instantiation of itinerant dynamics to generate action
and then recognise the same action executed by another agent. The only difference between
these two scenarios is whether the proprioceptive signals generated by action are sensed by
the agent. It is this simple change of context (agency) that enables the same inferential
machinery to generate and recognise the perceptual correlates of itinerant (sequential)
behaviour.

This article comprises four sections. In Sect.2, we briefly reprise the free-energy formulation
of active inference to place what follows in a general setting and illustrate that action–
observation rests on exactly the same principles underlying perceptual inference, learning
and attention. In Sect. 3, we describe a generative model based on Lotka–Volterra dynamics
(Afraimovich et al. 2008) that generate handwriting. We use this model to illustrate the basic
properties of active inference and how prior expectations can induce realistic motor
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behavior. This section is based on the principles established by Sect.2. Our focus will be on
the interpretation of posterior or conditional expectations about hidden states of the world
(the trajectory of joint angles in a synthetic arm) as intended movements, which action
fulfils. In the Sect.4, we take the same model and make one simple change: We retain the
visual input caused by action but ‘switch off’ proprioceptive input. This simulates action–
observation and appeals to the same contextual gating we have used previously to model
attention (Friston 2009; Feldman and Friston 2010). In this context, the observed movement
is exactly the same as the self-generated movement. However, because the agent does not
distinguish between perceptions and intentions, it still predicts and perceives the movement
trajectory. In other words, it infers the trajectory intended by the (other) agent; provided the
other agent behaves like the observer. The final section illustrates the implicit capacity to
encode the intentions of others by reversing the movement during the course of the predicted
sequence. We then examine the agent’s conditional representations for evidence that this
violation has been detected. To do this, we look at the prediction errors and associate these
with synthetic event related potentials of the sort observed electrophysiologically. We
conclude with a brief discussion of this formulation of action–observation for the mirror-
neuron system and motor control in general. The purpose of this paper is to provide proof of
principle that active inference can account for both action and its understanding. We
therefore focus on motivating the underlying scheme from basic principles and providing
worked examples. However, we include an Appendix for people who want to implement and
extend the simulations themselves.

2 Free-energy and active inference
In this section, we review briefly the free-energy principle and how it translates into action
and perception. We have covered this material in previous publications (Friston et al. 2006;
Friston 2008, 2009; Friston et al. 2009, 2010a,b). It is reprised here intuitively to describe
the formulism on which later simulations are based.

The free-energy formalism for the brain has three basic ingredients. We start with the free-
energy principle per se, which says that adaptive agents minimise a free-energy bound on
surprise (or the negative log evidence for their model of the world). The free-energy is
induced by something called a recognition density, encoded by the conditional expectations
of hidden states causing sensory data (henceforth, expected states). Under the assumption
that agents minimise free-energy (and implicitly surprise) using gradient descent, we end up
with a set of differential equations describing how action and neuronal representations of
expected states change with time. The second ingredient is the agent’s model of how sensory
data are generated (Gregory 1968, 1980; Dayan et al. 1995). This model is necessary to
specify what is surprising. We use a very general dynamical model with a hierarchical form
that we assume is used by the brain. The third ingredient is how the brain implements the
free-energy principle. This involves substituting the particular form of the generative model
into the differential equations describing action and perception. The resulting scheme, when
formulated in terms of prediction errors, corresponds to predictive coding (cf., Mumford
1992; Rao and Ballard 1998; Friston 2008). The scheme is essentially a set of differential
equations describing the activity of two populations of cells in the brain (encoding expected
states and prediction error, respectively). This generalised predictive coding is used in the
simulations of subsequent sections. Furthermore, it is exactly the same scheme used in
previous illustrations of perceptual inference (Kiebel et al. 2009a), perceptual learning
(Friston 2008), reinforcement learning (Friston et al. 2009), active inference (Friston et al.
2010a) and attentional processing (Feldman and Friston 2010). The quantities and variables
used below are summarised in Table 1.
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2.1 Action and perception from basic principles
The starting point for the free-energy principle is that biological systems (e.g. agents) resist
a natural tendency to disorder; under which fluctuations in their states cause the entropy
(dispersion) of their ensemble density to increase with time. Probabilistically, this means
that agents must minimise the entropy of their states and, implicitly, their sensory samples of
the world. More formally, any agent or model, m, must minimise the average uncertainty
(entropy) about its generalised sensory states, s̃ = s  s’  s″  …  S (  means
concatenation). Generalised states (designated by the tilde) comprise the states per se and
their generalised motion (velocity, acceleration, jerk, etc). Generalised motion is (in
principle) of infinite order; however, it can be truncated to a low order (four in this paper);
because the precision of high order motion is very small. This is covered in detail in Friston
(2008). The average uncertainty about generalised states is

(1)

Under ergodic assumptions, this is proportional to the long-term average of surprise, also
known as negative log-evidence, . Essentially, sensory entropy
negative log-evidence over time. Minimising sensory entropy therefore corresponds to
maximizing the accumulated log-evidence for the agent’s model of the world. Although,
sensory entropy cannot be minimised directly, we can create an upper bound S(s̃, q) ≥ H(S|
m) that can be minimised. This bound is a function of a time-dependent recognition density

q ( ) on the causes (i.e. environmental states and parameters) of sensory signals. The
requisite bound is the path-integral of free-energy , which is created simply by adding a
non-negative function of the recognition density to surprise:

(2)

This function is a Kullback–Leibler divergence D(·||·) and is greater than zero, with equality

when q( ) = p( |s̃, m) is the true conditional density. This means that minimizing free-
energy, by changing the recognition density, makes it an approximate posterior or
conditional density on sensory causes. This is Bayes-optimal perception. The free-energy
can be evaluated easily because it is a function of the recognition density and a generative

model entailed by m: Eq. 2 expresses free-energy in terms of , the negentropy of q ( )
and an energy  expected under q( ). This expected (Gibbs) energy rests on

a probabilistic generative model; p(s̃, |m). If we assume that the recognition density
 is Gaussian (known as the Laplace assumption), we can express free-energy

in terms of the conditional mean or expectation of the recognition density , where
omitting constants

(3)

Here, the conditional precision (inverse covariance) is . Crucially, this means
the free-energy is a function of the expected states and sensory samples, which depend on
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how they are sampled by action. The action a(t) and expected states  that minimise free-
energy are the solutions to the following differential equations

(4)

In short, the free-energy principle prescribes optimal action and perception. Here  is a
derivative matrix operator with identity matrices above the leading diagonal, such that

. Here and throughout, we assume all gradients (denoted by subscripts) are
evaluated at the mean. The stationary solution of Eq. 4 ensures that when free-energy is
minimised the expected motion of the states is the motion of the expected states; that is

. The recognition dynamics in Eq. 4 can be regarded as a gradient descent in
a frame of reference that moves with the expected motion of the states (cf., surfing a wave).
More general formulations of Eq. 4 make a distinction between time-varying environmental

states u   and time-invariant parameters φ   (see Friston et al. 2010a,b). In this
article, we will assume that only the states are unknown or hidden from the agent and ignore

the learning of φ  

Action can only reduce free-energy by changing sensory signals. This changes the first (log-
likelihood) part of Gibb’s energy  that depends on sensations.
This means that action will sample sensory signals that are most likely under the recognition
density (i.e. sampling selectively what one expects to experience). In other words, agents
must necessarily (if implicitly) make inferences about the causes of their sensations and
sample signals that are consistent with those inferences.

2.2 Summary
In summary, we have derived action and perception dynamics for expected states (in
generalised coordinates of motion) that cause sensory samples. The solutions to these
equations minimise free-energy and therefore minimise surprising sensations or,
equivalently, maximise the evidence for an agent’s model of the world. This corresponds to
active inference, where predictions guide active sampling of sensory data. Active inference
rests on the notion that “perception and behavior can interact synergistically, via the
environment” to optimise behavior (Verschure et al. 2003) and is an example of self-
referenced learning (Porr and Wörgötter 2003; Wörgötter and Porr 2005). The precise form
of active inference depends on the energy at each point in time  that rests
on a particular generative model. In what follows, we review dynamic models of the world.

2.3 Hierarchical dynamic models
We now introduce a general model based on the models discussed in Friston (2008). We
will assume that sensory data are modeled with a special case of

(5)

The nonlinear functions f(u) : u  , x represent the deterministic part of the model and are
parameterised by θ  φ. The variables v  u are referred to as hidden causes, while hidden
states x  u meditate the influence of the causes on sensory data and endow the model with
memory. Equation 5 is just a state-space model, where the first (sensory mapping) function
maps from hidden variables to sensory data and the second represents equations of motion
for hidden states (where the hidden causes can be regarded as exogenous inputs). We
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assume the random fluctuations ω(u) are analytic, such that the covariance of the generalised
fluctuations  is well defined. These fluctuations represent the stochastic part of the
model. This model allows for state dependent changes in the amplitude of random
fluctuations and introduces a distinction between the effect of states on the flow and
dispersion of sensory trajectories. Under local linearity assumptions, the generalised motion
of the sensory response and hidden states can be expressed compactly as

(6)

where the generalised predictions are

(7)

Equation 5 means that Gaussian assumptions about the fluctuations specify a generative
model in terms of a likelihood and empirical priors on the motion of hidden states

(8)

These probability densities are encoded by their covariances  or precisions (inverse

covariances)  with precision parameters γ  φ that control the amplitude
and smoothness of the random fluctuations. Generally, the covariances factorise:

 into a covariance among different fluctuations and a matrix of correlations
V(u) over different orders of motion that encodes their smoothness. Given this generative
model we can now write down the energy as a function of the conditional means, which has
a simple quadratic form (ignoring constants)

(9)

Here, the auxiliary variables , are prediction errors for sensory data and motion of
the hidden states. We next consider hierarchical forms of this model. These are just special
cases of Eq. 6, in which we make certain conditional independencies explicit. Although, the
examples in the next section are not hierarchical, we briefly consider hierarchical forms
here, because they provide an important empirical Bayesian perspective on inference that
may be exploited by the brain. Furthermore, they provide a nice link to the connectionist
scheme of Tani et al. (2004). Hierarchical dynamic models have the following form
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(10)

As above, f(i,u) : u  v, x are nonlinear functions, the random terms ω(i,u) : u  v, x are
conditionally independent and enter each level of the hierarchy. They play the role of
sensory noise at the first level and induce random fluctuations in the states at higher levels.
The hidden causes v = v(1)  v(2) … link levels, whereas the hidden states x = x(1)  x(2)

… link dynamics over time. In hierarchical form, the output of one level acts as an input to
the next. This input can enter nonlinearly to produce quite complicated generalised
convolutions with deep (hierarchical) structure. Crucially, when these top-down inputs act as
control parameters for the hidden states in the level below, they correspond to ‘parametric
biases’ in the connectionist scheme of Tani et al. (2004). Hierarchical structure appears in

the energy as empirical priors  where, ignoring constants

(11)

2.4 Summary
In summary, these models are as complicated as one could imagine; they comprise hidden
causes and states, whose dynamics can be coupled with arbitrary (analytic) nonlinear
functions. Furthermore, these states can be subject to random fluctuations with state-
dependent changes in amplitude and arbitrary (analytic) autocorrelation functions. A key
aspect is their hierarchical form, which induces empirical priors on the causes. In the next
section, we look at the recognition dynamics entailed by this form of generative model, with
a particular focus on how recognition might be implemented in the brain.

2.5 Action and perception under hierarchical dynamic models
If we now write down the recognition dynamics (Eq. 4) using precision-weighted prediction

errors  from Eq. 11, one can see the hierarchical message-passing entailed by
this scheme (ignoring the derivatives of the energy curvature):

(12)

For simplicity, we have assumed the amplitude of the random fluctuations does not depend
on the states and can be parameterised in terms of log-precisions γ(i,u) : u  v, x, where the
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precision of the generalised fluctuations is . Here, R(i,u) is the
inverse of the correlation matrix V(i,u) above and I (i,u) is the identity matrix.

It is difficult to overstate the generality and importance of Eq. 12: It grandfathers nearly
every known statistical scheme, under parametric assumptions about noise. These range
from ordinary least squares to advanced variational deconvolution schemes (see Friston
2008). Equation 12 is generalised predictive coding and follows simply from the generalised
gradient decent in Eq. 4, where the freeenergy gradients reduce to linear mixtures of
prediction errors. This simplicity rests on Gaussian assumptions about the random
fluctuations and the form of the recognition density.

Equation 12 shows how recognition dynamics can be implemented by relatively simple
message-passing between (neuronal) states encoding conditional expectations and prediction
errors. The motion of conditional expectations is driven in a linear fashion by prediction
error, while prediction error is a nonlinear function of conditional expectations. In neural
network terms, Eq. 12 says that error-units encoding (precision-weighted) prediction error
receive messages from the state-units encoding conditional expectations in the same level
and the level above. Conversely, state-units are driven by error-units in the same level and
the level below. Crucially, perception requires only the (precision-weighted) prediction error
from the lower level ξ(i,v) and the level in question ξ(i,x), ξ(i+1,v). These constitute bottom-

up and lateral messages that drive the conditional expectations  towards a better

prediction. These top-down and lateral predictions correspond to . This is the essence of
recurrent message passing between hierarchical levels to optimise free-energy or suppress
prediction error (see Friston 2008 for a more detailed discussion).

Equation 12 also tells us that the precisions modulate the responses of the error-units to their
presynaptic inputs. This translates into synaptic gain control in principal cells (superficial
pyramidal cells; Mumford 1992) elaborating prediction errors and fits comfortably with
modulatory bias effects that have been associated with attention (Desimone and Duncan
1995; Schroeder et al. 2001; Salinas and Sejnowski 2001; Fries et al. 2008; see Feldman and
Friston 2010). We will use precisions later to contextualise recognition under action or
observation.

Since action can only affect the free-energy by changing sensory data, it can only affect
sensory prediction error. From Eq. 4, we have

(13)

The second equality expresses the change in prediction error with action in terms of the
effect of action on successively higher order motions of the hidden states. In biologically
plausible instances of this scheme, the partial derivatives in Eq. 13 would have to be
computed on the basis of a mapping from action to sensory consequences, which is usually
quite simple, e.g. activating an intrafusal muscle fiber elicits stretch receptor activity in the
corresponding spindle (see Friston et al. 2010a for discussion).

2.6 Summary
In summary, we have derived equations for the dynamics of action and perception using a
free-energy formulation of adaptive (Bayes-optimal) exchange with the world and a
generative model that is both generic and biologically plausible. In what follows, we will
use Eqs. 12 and 13 to simulate neuronal responses under action and observation. A technical
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treatment of the material in section will be found in Friston et al. (2010b), which provides
the details of the scheme used to integrate (solve) Eq. 12 to produce the simulations in the
next section.

3 Simulations: action
In this section, we describe a generative model of handwriting and then use the generalised
predictive coding scheme of the previous section to simulate neuronal dynamics and
behavior. To create these simulations, all we have to do is specify the equations of the
generative model and the precision of random fluctuations. Action and perception are then
prescribed by Eqs. 12 and 13, which simulate neuronal and behavioral responses
respectively. Our agent was equipped a simple (one-level) dynamical model of its sensorium
based on a Lotka–Volterra model of itinerant dynamics. The particular form of this model
has been discussed previously as the basis of putative speech decoding (Kiebel et al. 2009b).
Here, it is used to model a stable heteroclinic channel (Rabinovich et al. 2008) encoding
successive locations to which the agent expects its two-jointed arm to be attracted. The
resulting trajectory was contrived to simulate synthetic handwriting.

A stable heteroclinic channel is a particular form of (stable) itinerant trajectory or orbit that
revisits a sequence of (unstable) fixed points. In our model, there are two sets of hidden
states. The first set α = [α1, …, α6]T  x corresponds to the state-space of a Lotka–Volterra
system. This is an abstract (attractor) state-space, in which a series of attracting points are
visited in succession. The second set {x1, x2, x′1, x′2}  x corresponds to the (angular)
positions and velocities of the two joints in (two dimensional) physical space. The dynamics
of both sets are coupled through the agent’s prior expectation that the arm will be drawn to a
particular location, ℓ*(α) specified by the attractor states. This is implemented simply by
placing a (virtual) elastic band between the tip of the arm and the attracting location in
physical space. The hidden states basically draw the arm’s extremity (finger) to a succession
of locations to produce an orbit or trajectory, under classical Newtonian mechanics. We
chose the locations so that the resulting trajectory looked like handwriting. These hidden
states generate both proprioceptive and visual (extroceptive) sensory data: The
proprioceptive data are the angular positions and velocities of the two joints {x1, x2, x1′,
x2′}, while the visual information was the location of the arm in Cartesian space {ℓ1,
ℓ1+ℓ2},where ℓ2(x1, x2) is the displacement of the finger from the location of the second joint
ℓ1(x1) (see Fig. 1 and Table 2). Crucially, because this generative model generates two
(proprioceptive and visual) sensory modalities, solutions to the equations of the previous
section (i.e. perception) implement Bayes-optimal multisensory integration. However,
because action is also trying to reduce prediction errors, it will move the arm to reproduce
the expected trajectory (under the constraints of the motor plant). In other words, the arm
will trace out a trajectory prescribed by the itinerant priors. This closes the loop, producing
autonomous self-generated sequences of behavior of the sort described below. Note that the
real world does not contain any attracting locations or elastic bands: The only causes of
observed movement are the self-fulfilling expectations encoded by the itinerant dynamics of
the generative model. In short, hidden attractor states essentially entail the intended
movement trajectory, because they generate predictions that action fulfils. This means
expected states encode conditional percepts (concepts) about latent abstract states (that do
not exist in the absence of action), which play the role of intentions. We now describe the
model formally. In this model, there is only one hierarchical level, and we can drop the
hierarchical superscripts.

3.1 The generative model
The model used in this section concerns a two-joint arm. When simulating active inference,
it is important to distinguish between the agent’s generative model and the actual dynamics
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generating sensory data. To make this distinction clear, we will use bold for true equations
and states, while those of the generative model will be written in italics. Proprioceptive input
corresponds to the angular position and velocity of both joints, while the visual input
corresponds to the location of the extremities of both parts of the arm.

(14)

We ignore the complexities of inference on retinotopically mapped visual input and assume
the agent has direct access to locations of the arm in visual space. The kinetics of the arm
conforms to Newtonian laws, under which action forces the angular position of each joint.
Both joints have an equilibrium position at 90°; with inertia ml  8, 4 and viscosity κi  4,
2, giving the following equations of motion

(15)

However, the agent’s empirical priors on this motion have a very different form. Its

generative model assumes the finger is pulled to a (goal) location  by a force

, which implements the virtual elastic band above (16 is a column vector of
ones):

(16)

Heuristically, these equations of motion mean that the agent thinks that changes in its world

are caused by the dynamics of hidden states  in an abstract
(conceptual) space. These dynamics conform to an attractor, which ensures points in
attractor space are revisited in sequence and that only one attractor-state is active at any
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time. The currently active state selects a location ℓ*(α) in the physical (Cartesian) space of

the agent’s world, which exerts a force (x, α) on the agent’s finger. The first four
equations of motion in Eq. 16 pertain to the resulting motion of the agent’s arm in Cartesian
space, while the last equation mediates the attractor dynamics driving these movements.

More formally, the (Lotka–Volterra) form of the equations of motion for the hidden attractor
states ensures that only one has a high value at any one time and imposes a particular
sequence on the underlying states. Lotka–Volterra dynamics basically induce competition
among states that no state can win. One can see this intuitively by noting that when any
state’s value is high, the negative effect on its motion can now longer be offset by the upper
bounded function σ(α). The resulting winnerless competition rests on the (logistic) function
σ(α), while the sequence order is determined by the elements of the matrix

(17)

Each attractor state has an associated location in Cartesian space, which draws the arm
towards it using classical Newtonian mechanics. The attracting location is specified by a
mapping ℓ*(α) = Ls(α) from attractor space  to Cartesian space , which weights
the locations L  θ:

(18)

with a softmax function s(α) of the attractor states. The location parameters were specified
by hand but could, in principle, be learnt as described in Friston et al. (2009, 2010a). The
inertia and viscosity of the arm were chosen some what arbitrarily to reproduce realistic
writing movements over 256 time bins, each corresponding to roughly 8ms (i.e. a second).
Unless stated otherwise, we used a log-precision of four for sensory noise and eight for
fluctuations in the motion of hidden states.

Movement is caused by action, which is trying to minimise sensory prediction error. A
subtle but important constraint in these simulations was that action only had access to
proprioceptive prediction error. In other words, action only minimised the difference
between the expected and sensed angular location and velocity of the joints. This is
important because it resolves a potential problem with active inference; namely that action
or command signals need to know how they affect sensory input to minimise prediction
error. The argument here is that the mapping from action to its proprioceptive consequences
is sufficiently simple that it can be relegated (by evolution) to peripheral motor systems
(perhaps even the spinal cord). In this example, complicated (handwriting) behavior is
prescribed just by proprioceptive (generalised joint position) prediction errors. Here the
mapping between action (changing the generalised joint position) and proprioceptive input is
very simple. However, this does not mean that visual information (prediction errors) cannot
affect action. Visual information is crucial when optimizing conditional beliefs (expected
states) that prescribe predictions in both proprioceptive and visual modalities. This means
that visual input can influence action vicariously, through high level (intentional)
representations that predict a (unimodal) proprioceptive component (Fig. 1). See also
Todorov et al. (2005). In short, although the perception or intention of the agent integrates
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proprioceptive and visual information in a Bayes-optimal fashion, action is driven just by
proprioceptive prediction errors. This will become important in the next section, where we
remove proprioceptive input but retain visual stimulation to simulate action observation.

Figure 2 shows the results of integrating the active inference scheme of the previous section
using the generative model above. The top right panel shows the hidden states; here the
attractor states embodying Lotka–Volterra dynamics (the hidden joint states are smaller in
amplitude). These generate predictions about the position of the joints (upper left panel) and
consequent prediction errors that drive action. Action is shown on the lower right and
displays intermittent forces that move the joint positions to produce a motor trajectory. This
trajectory is shown on the lower left as a function of Cartesian location traced over time.
This trajectory or orbit is translated as a function of time to reproduce the implicit
handwriting. Although this is a pleasingly simple way of simulating an extremely
complicated motor trajectory, it should be noted that this agent has a very limited repertoire
of behaviors; it can only reproduce this sequence of graphemes, and will do so ad infinitum.
Having said this, any exogenous perturbations or random forces on the arm have very little
effect on the accuracy of its behavior; because action automatically compensates for
unpredicted excursions from its trajectory (see Friston et al. 2009).

To highlight the fact that the hidden attractor states anticipate the physical motor trajectory,
we plotted the expected and true locations of the finger. Figure 3 shows how conditional
expectations about hidden states of the world antedate and effectively prescribe subsequent
behavior. The upper panel shows the intended location of the finger. This is a nonlinear
function ℓ∗(u(α)) of the attractor states (the states shown in Fig. 2). The subsequent location
of the finger is shown as a solid blue line and roughly reproduces the desired position, with a
lag of about 80ms. This lag can be seen clearly if we look at the cross-correlation function
between the intended and attained positions shown on the lower left. One can see that the
peak correlation occurs at about ten time bins or 80ms prior to a zero lag. These dynamics
reinforce the notion that conditional beliefs (expected states) constitute an intentional
representation.

Empirically, the correlation between movements and their internal representations would
suggest detectable coherence between muscle and cerebral activity. The time-courses in Fig.
2 suggest this coherence would predominate in the theta (4–10Hz) range. Interestingly, Jerbi
et al. (2007) found significant phase-locking between slow (2–5Hz) oscillatory activity in
the contralateral primary motor cortex and hand speed. They also reported “long-range task-
related coupling between primary motor cortex and multiple brain regions in the same
frequency band.” (Jerbi et al. 2007). Evidence for localised oscillations or coherence during
writing (or writing observation) is sparse; however, Butz et al. (2006) were able to show that
“coherence between cortical sources and muscles appeared primarily in the frequency of
writing movements (3–7Hz), while coherence between cerebral sources occurred primarily
around 10Hz (8–13Hz)”. Interestingly, they found coupling between ipsilateral cerebellum
and the contralateral posterior parietal cortex (in normal subjects). This sort of finding may
point to the specific neuronal systems (e.g. cerebellum and posterior parietal cortex) that
sustain itinerant dynamics encoding complex motor behavior. Note there are dense
connections between the ventral premotor and intraparietal cortex (Luppino et al. 1999).

In fact, it was relatively easy to reproduce (roughly) the findings of Butz et al. (2006), using
the simulated responses in Fig. 2. The upper panel of Fig. 4 shows the activity of prediction
error units (red—attractor states; blue—visual input) and the angular position of a joint
(green). These can be regarded as proxies for central and peripheral electrophysiological
responses. This is because the main contribution to electroencephalographic (EEG)
measures is thought to come from superficial pyramidal cells, and it is these that are
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believed to elaborate prediction error (Mumford 1992; Friston 2008). The lower left panel
shows the coherence between the central (sum of errors on attractor states) and peripheral
(arm movement) responses, while the lower right panel shows the equivalent coherence
between the two populations of (central) error-units. The main result here is that central to
peripheral coherence lies predominantly in the theta range (grey region) and reflects the
quasiperiodic motion of the motor system, while the coherence between central measures
lies predominately above the range (in the alpha range). This agrees qualitatively with the
empirical results of Butz et al. (2006).

3.2 Summary
In this section, we have covered the functional architecture of a generative model whose
autonomous (itinerant) expectations prescribe complicated motor sequences through active
inference. This rests upon itinerant dynamics (stable heteroclinic channels) that can be
regarded as a formal prior on abstract causes in the world. These are translated into physical
movements through classical Newtonian mechanics, which correspond to the physical states
of the model. Action tries to fulfill predictions about proprioceptive inputs and is enslaved
by autonomous predictions, producing realistic behavior. These trajectories are both caused
by neuronal representations of abstract (attractor) states and cause those states in the sense
that they are conditional expectations. Closing the loop in this way ensures a synchrony
between internal expectations and external outcomes. Crucially, this synchrony entails a
consistent lag between anticipated and observed movements, which highlights the
prospective nature of generalised predictive coding. In short, active inference suggests a
biological implementation of motor control that; (i) makes testable predictions about
behavioral and neurophysiological responses; (ii) provides simple solutions to complex
motor control problems, by enslaving action to perception; and (iii) is consistent with the
known organization of the mirror-neuron system. In the next section, we will make a simple
change which means that movements are no longer caused by the agent. However, we will
see that the conditional expectations about attractor states are relatively unaffected, which
means that they still anticipate observed movements.

4 Simulations: action–observation
In this section, we repeat the simulations of the previous section but with one small but
important change. Basically, we reproduced the same movements as above but the
proprioceptive consequences of action were removed, so that the agent could see but not feel
the arm moving. From the agent’s perspective, this is like seeing an arm that looks like its
own arm but does not generate proprioceptive input (i.e. the arm of another agent).
However, the agent still expects the arm to move with a particular itinerant structure and
will try to predict the trajectory with its generative model. In this instance, the hidden states
still represent itinerant dynamics (intentions) that govern the motor trajectory but these
states do not produce (precise) proprioceptive prediction errors and therefore do not result in
action. Crucially, the perceptual representation still retains its anticipatory or prospective
aspect and can therefore be taken as a perceptual representation of intention, not of self, but
of another. We will see below that this representation is almost exactly the same under
action–observation as it is during action.

Practically speaking, to perform these simulations, we simply recorded the forces produced
by action in the previous simulation and replayed them as exogenous forces (hidden causes
v(t) in Eq. 15) to move the arm in the current simulations. This change in context (agency)
was modeled by down-weighting the precision of proprioceptive signals. This reduction
appeals to exactly the same mechanism that we have used to model attention, in terms of
perceptual gain (Feldman and Friston 2010). In this setting, reducing the precision of
proprioceptive prediction errors precludes them from having any influence on perceptual
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inference (i.e. the agent cannot feel changes in its joints). Furthermore, action is not
compelled to reduce these prediction errors because they have no (or trivial) precision. In
these simulations, we reduced the log-precision of proprioceptive prediction errors from
eight to minus eight.

The results of these simulations are shown in Fig. 5 using the same format as Fig. 2. The key
thing to take from these results is that there is very little difference in terms of the inferred
hidden states (upper right panel) or predictions and their errors (upper left panel).
Furthermore, there is no difference in the actual movement (lower left panel). Having said
this, there is small but important difference in inference at the onset of movement:
Comparison with Fig. 2 shows that the hidden states take about 400ms (50 time bins) before
‘catching up’ with the equivalent trajectory under action. This means it takes a little time
before the perceptual dynamics become entrained by the sensory input that they are trying to
predict (note these simulations used the same initial conditions)

The largest difference between Figs. 2 and 5 is in terms of action (sold lines) and the
exogenous forces (dotted lines). Here, action has collapsed to zero and has been replaced by
exogenous forces on the agent’s joints. These forces (hidden causes) correspond to the
action of another agent that is perceived by the agent we are simulating. If one returns to
Fig. 3 (lower right panel), one can see that the cross-correlation function, between the
expected and the true or attained position, has retained its phase-lag and anticipates the
intended movement of the other agent (although there is a slight shift in lag in comparison to
action—dotted line). These simulations are consistent with motor activation prior to
observation of a predicted movement (Kilner et al. 2004). This is the key behavior that we
wanted to demonstrate; namely, that exactly the same neuronal representation can serve as a
prescription for self-generated action, while, in another context, it encodes a perceptual
representation of the intentions of another. The only thing that changes here is the context in
which the inference is made. In these simulations, this contextual change was modeled by
simply reducing the precision of proprioceptive errors. We have previously discussed this
modulation of proprioceptive precision in terms of selectively enabling or disabling
particular motor trajectories, which may be a potential target for the pathophysiology of
Parkinson’s disease (Friston et al. 2009). Here, we use it to encode a change in context
implicit in observing ones own arm, relative to observing another’s. The connection with
formal mechanisms of attentional gain (Feldman and Friston 2010) is interesting here,
because it means that we could regard this contextual manipulation as an attentional bias to
exteroceptive signals (caused by others) relative to interoceptive signals (caused by oneself).

In terms of writing, “humans are able to recognise handwritten texts accurately despite the
extreme variability of scripts from one writer to another. This skill has been suggested to
rely on the observer’s own knowledge about implicit motor rules involved in writing”
(Longcamp et al. 2006). Using magnetoencephalography (MEG), Longcamp et al. (2006)
observed that 20-Hz oscillations were more suppressed after visual presentation of
handwritten than printed letters, “indicating stronger excitation of the motor cortex to
handwritten scripts”. This fits comfortably with the functional anatomy of active inference:
The motor cortex is populated with multimodal neurons that respond to visual,
somatosensory and auditory cues in peri-personal space (Graziano 1999; see also Graziano
2006). It is the ‘activation’ of these sorts of units that one would associate with the
proprioceptive predictions in our model (see Fig. 1). Note that these predictions are still
generated under action–observation; however, the precision (gain) of the ensuing prediction
errors is insufficient to elicit motor acts.
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4.1 Place-cells and oscillations
It is interesting to think about the attractor states as representing trajectories through abstract
representational spaces (cf., the activity of place cells; O’Keefe 1999; Tsodyks 1999;
Burgess et al. 2007). Figure 6 illustrates the sensory or perceptual correlates of units
representing expected attractor states. The left hand panels show the activity of one (the
fourth) hidden state unit under action, while the right panels show exactly the same unit
under action–observation. The top rows show the trajectories in visual space, in terms of
horizontal and vertical displacements (grey lines). The dots correspond to the time bins in
which the activity of the hidden state unit exceeded an amplitude threshold of two arbitrary
units. They key thing to take from these results is that the activity of this unit is very specific
to a limited part of Cartesian space and, crucially, a particular trajectory through this space.
The analogy here is between directionally selective place-cells of the sort studied in
hippocampal recordings (Battaglia et al. 2004): In tasks involving goal-directed, stereotyped
trajectories, the spatially selective activity of hippocampal cells depends on the animal’s
direction of motion. Battaglia et al. (2004) were able to show “that sensory cues can change
the directional properties of CA1 pyramidal cells, inducing bidirectionality in a significant
proportion of place cells. For a majority of these bidirectional place cells, place field centers
in the two directions of motion were displaced relative to one another, as would be the case
if the cells were representing a position in space 5–10cm ahead of the rat”. This anticipatory
aspect is reminiscent of the behavior of simulated responses shown in Fig. 3. A further
interesting connection with hippocampal dynamics is the prevalence of theta rhythms during
action (Dragoi and Buzsáki 2006): “Driven either by external landmarks or by internal
dynamics, hippocampal neurons form sequences of cell assemblies. The coordinated firing
of these active cells is organised by the prominent “theta” oscillations in the local field
potential (LFP): place cells discharge at progressively earlier theta phases as the rat crosses
the respective place field (phase precession)” (Geisler et al. 2010). Quantitatively, the
dynamics of the hidden state-units in Fig. 2 (upper left panel) show quasiperiodic
oscillations in the (low) theta range. The notion that quasiperiodic oscillations may reflect
stable heteroclinic channels is implicit in many treatments of episodic memory and spatial
navigation, which “require temporal encoding of the relationships between events or
locations” (Dragoi and Buzsáki 2006), and may be usefully pursued in the context of active
inference under itinerant priors.

4.2 Conserved selectivity under action and observation
Notice that the same ‘place’ and ‘directional’ selectivity is seen under action and
observation (Fig. 6 right and left columns). Direction selectivity can be seen more clearly in
the lower panels, in which the same data are displayed but in a moving frame of reference
(to simulate writing). They key thing to note here is that this unit responds preferentially
when, and only, when the motor trajectory produces a downstroke, but not an up-stroke.
There is an interesting dissociation in the firing of this unit under action and action–
observation: during observation the unit only starts responding to down-strokes after it has
been observed once. This reflects the finite amount of time required for visual information to
entrain the perceptual dynamics and establish veridical predictions (see Fig. 5).

Figure 7 illustrates the correlations between the representations of hidden states under action
and observation. The upper panel shows the cross-correlation (at zero lag) between all ten
hidden state units. The first four correspond to the positions and velocities of the joint
angles, while the subsequent six encode the attractor dynamics that represent trajectories
during writing. The important thing here is that the leading diagonal of correlations is nearly
one, while the off diagonal terms are distributed about zero. This means that the stimulus
(visual) evoked responses of these units are highly correlated between action and
observation and would be inferred, empirically, to be representing the same thing. To
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provide a simpler perspective on these correlations, the lower left panel plots the response of
a single hidden state unit (the same depicted in Fig. 6) under observation and action,
respectively, to show the high degree of correlation. Note that these correlations rest upon
the fact that the same motion is expressed during action and action observation. The cross-
correlation function is shown on the lower right. Interestingly, there is a slight phase-shift,
suggesting that, under action, the activity of this unit occurs slightly earlier (about 4–8ms).
We would expect this, given that this unit is effectively a consequence of motion in the
visual field under observation, as opposed to a cause under action.

4.3 Summary
In summary, we have used exactly the same simulation as in the previous section to show
that the same neuronal infra-structure can predict and perceive motor trajectories that are
caused by another agency. Empirically, this means that if we were able to measure the
activity of units encoding expected states, we would see responses of the same neurons
under action and action–observation. We simulated this empirical observation by looking at
the cross-correlation function between the last attractor state unit from the simulations of
this section and the previous section; namely under action–observation and action. Although
these traces are not identical, they have a profound correlation which is expressed
maximally around zero lag. This is despite the fact that in the first simulation the states
caused behavior (whereas in the second simulation they were caused by behavior). In Sect.6
we repeat the simulations of this section but introduce a deliberate violation of the
exogenous forces to see if we could simulate an (intentional) violation response.

5 Simulations: violation-related responses
Here, we repeated the above simulation but reversed the exogenous forces moving the joints
halfway through the executed movement. This produces a physically plausible movement
but not one the agent can infer (perceive). We hoped to see an exuberant expression of
prediction error following this perturbation. This is important because it demonstrates the
agent has precise predictions about what was going to happen and was able to register the
violations of these predictions. In other words, if the agent was simply inferring the current
state of the world, there should be no increase in prediction error at the point of deviation
from its prior expectations. To relate these simulations to empirical electrophysiology, we
assume that the sources of prediction errors are superficial pyramidal cells that send
projections to higher cortical levels.

Figure 8 shows simulated responses to violations of the expected trajectory (intention). The
top panels show the stimuli presented to the agent, as in Fig. 5. The bottom panels show the
synthetic electrophysiological responses that would be observed if we recorded cells
reporting (proprioceptive) prediction errors about the joints (middle row) or about the
motion of hidden states (lower row). We can associate these with local field potentials or
event related potentials (ERPs). The left column show the stimuli and prediction errors
under canonical or expected movements, whereas the right column shows the same results
under violation. This violation was modeled by simply reversing the exogenous forces
halfway through the trajectory. The lower panels show increased production of prediction
error for both proprioceptive and hidden-state error-units following a violation of
expectations. In both cases, it can be seen that there are early phasic and delayed
components at about 100 and 400ms respectively for some units (highlighted with bold).
These results may correspond to the electrophysiological violation or surprise responses
seen electrophysiologically in other contexts (e.g. the N1, Mangun and Hillyard 1991; the
mismatch negativity, Näätänen et al. (2001) and the P3, Donchin and Coles (1988)). A
ubiquitous late positive component it the P3b with a parietal (posterior) distribution seen in

Friston et al. Page 17

Biol Cybern. Author manuscript; available in PMC 2012 November 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



oddball paradigms and is thought to represent a context-updating operation (Donchin and
Coles 1988; Friedman et al. 2001; Gómez et al. 2008).

We are currently characterizing empirical responses to violations in the context of action–
observation (Kilner et al., – in preparation). Although, we were not able to find any
electrophysiological studies in the literature, Buccino et al. (2007) used fMRI to assess brain
responses when the actions of others do or do not reflect their intentions: “volunteers were
presented with video-clips showing actions that did reflect the intention of the agent
(intended actions) and actions that did not (non-intended actions). Observation of both types
of actions activated a common set of areas including the inferior parietal lobule, the lateral
premotor cortex and mesial premotor areas. The contrast non-intended versus intended
actions showed activation in the right temporo-parietal junction, left supramarginal gyrus,
and mesial prefrontal cortex”. The authors conclude “that our capacity to understand non
intended actions is based on the activation of areas signaling unexpected events in spatial
and temporal domains, in addition to the activity of the mirror neuron system”. From the
perspective of our model, the greater expression of prediction error under violation (i.e. non-
intended action) would suggest fMRI activation (as opposed to deactivation) in those areas
reporting prediction errors on biological motion and proprioception. These would probably
involve the parietal and temporal cortex (as reported in Buccino et al. 2007).

5.1 Summary
In this section, we simulated violation responses in terms of synthetic ERPs. These
responses speak to an empirical handle on action–observation responses, particularly in
relation to how they rest upon encoding the intentions (anticipated trajectory) of motor
movements. Crucially, these responses should be observed in exactly the same neuronal
populations responsible for generating predictions that drive the same behavior during
action. Although a simple set of simulations, they address a potentially important empirical
approach to the study of mirror-neuron system.

6 Discussion
In this article, we have tried to show that the mirror-neuron system is entirely consistent and
understandable in the context of (Bayes-optimal) active inference under the free-energy
principle. Put simply, under this formulation, the brain does not represent intended motor
acts or the perceptual consequences of those acts separately; the constructs represented in
the brain are both intentional and perceptual: They are amodal inferences about the states of
the world generating sensory data that have both sensory and motor correlates, depending
upon the context in which they are made. The predictions generated by these representations
are modality-specific, prescribing both exteroceptive (e.g. visual) and interoceptive (e.g.
proprioception) predictions, which action fulfils. The functional segregation of motor and
sensory cortex could be regarded as a hierarchical decomposition, in the brain’s model of its
world, which provides predictions that are primarily sensory (e.g. visual cortex) or
proprioceptive (motor and premotor cortex). If true, this means that high level
representations can be used to furnish predictions in either visual or proprioceptive
modalities, depending upon the context in which those predictions are called upon.

The ideas in this article can be regarded as a generic Bayesian (free-energy) perspective on
the connectionist scheme introduced by Tani (2003); see also Tani et al. (2004) and Weber
et al. (2006). Using robotic experiments, Tani et al. (2004) show that multiple behavioral
schemata can be learned by recurrent neural networks in a distributed and hierarchical
manner. Hierarchical (parametric) biases in the network play an essential role in both
generating and recognizing behavioral patterns. “They act as a mirror system by means of
self-organizing adequate memory structures”. We have pursued the same basic idea; that
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hierarchical generative models of the (interoceptive and exteroceptive) sequelae of action
can be used to generate and recognise action and exploit this idea to understand what mirror
neurons may encode.

The simulations in this article suggest that in the context of self-agency, proprioceptive
predictions are afforded a high bias or precision, whereas when observing another this bias
is suppressed (gated). Exactly the same sort of bias has been proposed for action selection
by fronto-striatal loops (e.g. Bogacz and Gurney 2007; Frank et al. 2007; Hazy et al. 2007).
Interestingly these proposals call upon classical neuromodulators (like dopamine and
noradrenalin), whose role in modulating synaptic efficacy is exactly what would be required
to implement expected precision in generalised predictive coding (see Eq. 12 and Friston
2008). Formally related mechanisms proposed for attention (e.g. Reynolds and Heeger 2009;
Friston 2008; Feldman and Friston 2010) may also depend on modulatory neurotransmission
(Clark et al. 1989; Coull 1998; Dalley et al. 2001; Davidson and Marrocco 2000; Hasselmo
and Giocomo 2006; Herrero et al. 2008) and indeed the basal forebrain (Voytko et al. 1994).
This means that we can use the same generative model, under action or observation, by
selectively attending to visual or proprioceptive information (depending upon whether visual
movement is caused by ourselves or others). The only difference, from the point of view of
inference, is that movements caused by others do not have proprioceptive components. This
provides a simple but mechanistic account of mirror neuron responses in the context of
Bayes-optimal inference. Note that the gating of the proprioceptive prediction errors does
not imply that the primary and secondary somatosensory areas are quiescent during action
observation. Rather, that any observed activity in these areas should be suppressed relative
to higher somatosensory processing. This is precisely what has been observed. In a meta-
analysis of activations in primary and secondary somatosensory cortices during observation
of touching actions: Keysers et al. (2010) report that areas OP1 and OP4 that constitute the
secondary somatosensory area are consistently found to be active when observing actions.
Areas BA1 and BA2—of the primary somatosensory cortex are sometimes found to be
active—whereas area BA3 of the primary somatosensory cortex has never been shown to be
active during observation of an action. Area BA3 is the primary area for somatosensory
input where as BA1 and BA2 receive their inputs from BA3.

6.1 Active inference and motor control
There have been several accounts of forward and inverse models in action–observation in
the motor control literature (Wolpert et al. 2003; Flanagan et al. 2003; Miall 2003; Keysers
and Perrett 2004): “Skilled motor behavior relies on the brain learning both to control the
body and predict the consequences of this control. Prediction turns motor commands into
expected sensory consequences, whereas control turns desired consequences into motor
commands. To capture this symmetry, the neural processes underlying prediction and
control are termed the forward and inverse internal models, respectively” (Flanagan et al.
2003). Forward and inverse models (e.g. Wolpert et al. 1995) have been discussed in
relation to imitation: The logic here is that the inverse model (mapping from sensory
consequences to motor commands) can be used as a recognition model to infer the cause of
an observed action. Once the cause is inferred the action can then be imitated. Although
these proposals for forward-inverse models in imitation and social interactions (Wolpert et
al. 2003) are exciting; they are formally very different from active inference and related
connectionist schemes (Tani et al. 2004; Friston et al. 2010a). In active inference (and
predictive coding), there are no inverse models or controllers; a generative model mapping
from intention (cause) to sensation (consequence) is inverted by suppressing prediction
error. If this suppression calls on action, then the intention is the generated action. If not, the
intention (of another) is recognised. The implicit inversion depends on self-organizing,
reciprocal exchange of signals among hierarchical levels of the brain’s generative model
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(see Fig. 1 and Tani et al. 2004). Crucially, active inference does not invoke any ‘desired
consequences’, its rests only on experience-dependent learning and inference: Experience
induces prior expectations, which guide perceptual inference and action:

Although our focus has been on the implications of active inference for the mirror-neuron
system and vice versa, the approach taken in this work also has implications for
conventional theories of motor control. In conventional approaches, one usually starts with
some desired states or end points of the control process and uses an inverse model to
compute the optimal control signals. These control signals are some-times finessed with
corrections based upon a forward model (mapping from the control signals to expected
sensory signals). This is a more complicated architecture than that used in active inference,
where predictions control movement and obviate the need for an explicit control signal. This
simplifies things greatly and resolves a series of issues in the motor control literature, which
we have not emphasised in this article. For example, the problem of how to control a motor
plant with many degrees of freedom becomes rather trivial. Here, it was solved by an
invisible elastic band connecting the finger to the desired location. The ensuing scheme is a
formal extension of the equilibrium point hypothesis that suggests “action and perception
are accomplished in a common spatial frame of reference” (Feldman 2009). We generalise
equilibrium points to cover trajectories through the use of generalised motion (generalised
predictive coding). From the perspective of inferring the motor intentions of others,
generalised predictive coding has an interesting implication. It suggests that an agent will
only be able to predict (in the generalised or anticipatory sense) the trajectories or intentions
of another, if the observed agent has the same sort of motor apparatus. In short, one should
be much better at inferring the intended behavior of con-specifics, because the exteroceptive
predictions are based on a veridical model of the other’s motor plant. This is not to say that
we cannot predict the behavior of other creatures; however, it is unlikely that the neurons
involved will show mirror neuron like properties, because they cannot predict our own
proprioceptive inputs. This may provide an interesting empirical prediction; in that one
would expect fewer violation responses when observing the same biological motion
subtended by agents that do and do not look like ourselves (cf., Miura et al. 2010).

6.2 Functional anatomy
In describing these simulations, we have portrayed itinerant (attractor) dynamics as
encoding motor intentions (anticipated or expected motor trajectories), while considering
their role during action–observation as consequent on their role in specifying behavior.
However, from a neurodevelopmental perspective the converse may be true. In other words,
the form and structure of these neural attractor networks may be optimised during
experience-dependent learning by watching other con-specifics (cf., Lee et al. 2010; see also
Del Giudice et al. 2009). By subsequently attending to proprioceptive inputs one can see
how learning to act through imitation could exploit the amodal role of high-order
(intentional) representations. Clearly, this rests upon representations that predict the visual
consequences of movement (of others): Neurons in the superior temporal sulcus (STS),
respond selectively to biological movement (Grossman et al. 2000), both in monkeys (Oram
and Perrett 1994) and humans (Allison et al. 2000). These neurons are not mirror neurons
because they do not discharge during action execution. Nevertheless, they are often
considered part of the mirror-neuron system (Keysers and Perrett 2004). Although mirror
neurons were first discovered in macaque monkeys, using single-cell recordings, there is
evidence for a homologous system in humans: Functional magnetic resonance imaging and
positron emission tomography studies demonstrate that areas of frontal cortex, inferior
parietal lobule (and posterior parietal cortex) and STS are active during action–observation
(e.g. Decety et al. 1997; Grèzes et al. 2001; Hamilton and Grafton 2006).
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We have deliberately tried to keep our simulations as simple as possible to highlight the
underlying ideas. There are many things that one could nuance to make these simulations
more realistic; for example, using a hierarchy of stable heteroclinic channels (cf., Tani et al.
2004; Kiebel et al. 2009b) and providing explicit contextual cues about whether one was
observing ones own body or another’s. However, the basic results would not change and,
even under this simple model, there is an easy mapping to known neurobiology. For
example, we could associate the dynamics encoding itinerant motor sequences with
prefrontal neurons (e.g. F5 in monkeys or Broca’s area in man). Many people have noted
that the same form of itinerant trajectories used to predict complex motor sequences may
also be involved in the prediction of speech (see Arbib 2010; Borghi et al. 2010). The
hidden states subtending biological motion may correspond to neuronal populations in V5
complex and superior temporal sulcus (Allison et al. 2000; Takahashi et al. 2008), while low
level proprioceptive and visual predictions could be associated with the activity of units in
the motor cortex and early visual system respectively. The distributed anatomical
arrangement of these representations speaks to a mirror-neuron system that implicates both
executive systems and cortical systems involved in the processing of biological motion,
which we have previously discussed in relation to mirror-neuron responses and inference
about the intention of others (Kilner et al. 2007a,b). In conclusion, we hope to have sub-
stantiated previous conjectures about the mirror-neuron system in the context of Bayesian
inference, using simulations to disclose some operational and mechanistic details.
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7 Appendix (software note)
This article has focused on the heuristics and basic equations that underlie active inference.
However, we anticipate that people may want to reproduce and extend the simulations
presented in this paper. In principle, this is fairly straightforward because active inference
just entails integrating (solving) Eq. 4. The particular form of Eq. 4 rests on the free-energy
gradients, which are specified completely by the generative model (specified as the
equations of motion and Gaussian priors on the parameters of those equations). The
numerics underlying the integration of Eq. 4 are described in Friston et al. 2010a (Eq. A3.2)
and the form of the gradients can be found in Feldman and Friston (2010): See Appendix 1:
Integrating the recognition dynamics (generalised filtering); using exactly the same notion as
in this article. A more technical account can be found in Friston et al. (2010b) that describes
recognition dynamics in terms of generalised filtering. Active inference can be regarded as
supplementing generalised filtering (recognition dynamics) with the action dynamics in Eq.
13.

For people who want to reproduce the simulations and see how they work at a technical
level, we recommend that they start with the Matlab code used in this article: All the
requisite routines are available as part of the SPM software (academic freeware released
under a GNU license; http://www.fil.ion.ucl.ac.uk/spm). In particular, the graphics in this
paper can be reproduced from a graphical user interface (GUI) in the DEM toolbox that is
invoked by typing DEM_demo at the Matlab prompt. When the GUI appears, depress the
action observation button. The GUI provides the option to run or view/edit routines that
serve as a pseudo-code specification of the ideas in the main text. DEM stands for dynamic
expectation maximization, which is a variant of generalised filtering that uses a mean-field
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approximation (see Friston et al. 2010b for details). The GUI and the scripts are annotated in
a way that should help clarify how the simulations are assembled.

It may seem strange to bundle simulation routines with a data analysis package; however,
there are several reasons for doing this. (i) Active inference (as implement in
spm_ADEM.m) uses exactly the same architecture and sub-routines as the equivalent DEM
and generalised filtering schemes that omit action (spm_DEM.m and spm_LAP.m,
respectively). These schemes are used routinely to analyze empirical time-series as part of
the analysis software. This highlights the fact that active inference appeals to exactly the
same fundaments of evidence-based model optimization (and variational techniques) as
state-of-the-art Bayesian filtering for empirical data. (ii) Because the neurobiological
simulation and data analysis routines call on the same numerics and sub-functions it is easier
to bundle them together. This has the advantage that improvements to the code (and
debugging) are seen by both application domains. One of the reasons we encourage people
to start with this code is that it has been tested extensively through worldwide dissemination
in the neuroimaging community. (iii) We have established a protocol within SPM, where
people can create links to their own SPM compatible toolboxes, which is a nice way to
disseminate ideas and developments. This may prove useful for people interested in the
computational aspects of active inference in the future. (iv) Finally, the simulations are
themselves used as part of data analysis; where recognition dynamics are used to explain
evoked electromagnetic brain signals (see spm_dcm_dem.m).
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Fig. 1.
This schematic details the simulated mirror neuron system and the motor plant that it
controls (left and right, respectively). The right panel depicts the functional architecture of
the supposed neural circuits underlying active inference. The filled ellipses represent
prediction error-units (neurons or populations), while the white ellipses denote state-units
encoding conditional expectations about hidden states of the world. Here, they are divided
into abstract attractor states (that supports stable heteroclinic orbits) and physical states of
the arm (angular positions and velocities of the two joints). Filled arrows are forward
connections conveying prediction errors and black arrows are backward connections
mediating predictions. Motor commands are emitted by the black units in the ventral horn of
the spinal cord. Note that these just receive prediction errors about proprioceptive states.
These, in turn, are the difference between sensed proprioceptive input from the two joints
and descending predictions from optimised representations in the motor cortex. The two
jointed arm has a state space that is characterised by two angles, which control the position
of the finger that will be used for writing in subsequent figures. The equations correspond to
the expressions in the main text and represent a gradient decent on free-energy. They have
been simplified here by omitting the hierarchical subscript and dynamics on hidden causes
(which are not called on in this model)
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Fig. 2.
This figure shows the results of simulated action (writing), under active inference, in terms
of conditional expectations about hidden states of the world (b), consequent predictions
about sensory input (a) and the ensuing behavior (c) that is caused by action (d). The
autonomous dynamics that underlie this behavior rest upon the expected hidden states that
follow Lotka–Volterra dynamics: these are the six (arbitrarily) colored lines in b. The
hidden physical states have smaller amplitudes and map directly on to the predicted
proprioceptive and visual signals (a). The visual locations of the two joints are shown as
blue and green lines, above the predicted joint positions and angular velocities that fluctuate
around zero. The dotted lines correspond to prediction error, which shows small fluctuations
about the prediction. Action tries to suppress this error by ‘matching’ expected changes in
angular velocity through exerting forces on the joints. These forces are shown in blue and
green in d. The dotted line corresponds to exogenous forces, which were omitted in this
example. The subsequent movement of the arm is traced out in c; this trajectory has been
plotted in a moving frame of reference so that it looks like synthetic handwriting (e.g. a
succession of ‘j’ and ‘a’ letters). The straight lines in c denote the final position of the two
jointed arm and the hand icon shows the final position of its extremity. (Color figure online)
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Fig. 3.
This figure illustrates how conditional expectations about hidden states of the world antedate
and effectively prescribe subsequent behavior. a shows the intended position of the arms
extremity. This is a nonlinear function of the attractor states (the expected states shown in
Fig. 2). The subsequent position of the finger is shown as a solid line and roughly
reproduces the expected position, with a lag of about 80ms. This lag can be seen more
clearly in the cross-correlation function between the intended and attained positions shown
in b. One can see that the peak correlation occurs at about 10 time bins or 80 ms prior to a
zero lag. Exactly the same results are shown in c but here for action–observation (see Fig.
5). Crucially, the perceived attractor states (a perceptual representation of intention) are still
expressed some 50-60ms before the subsequent trajectory or position is evident.
Interestingly, there is a small shift in the phase relationship between the cross-correlation
function under action (dotted line) and action observation (solid line). In other words, there
is a slight (approximately 8 ms) delay under observation compared to action, in the cross-
correlation between representations of intention and motor trajectories
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Fig. 4.
a The activity of prediction error units (red attractor states, blue visual input) and the angular
position of the first joint (green). These can be regarded as proxies for central and peripheral
electrophysiological responses; b shows the coherence between the central (sum of errors on
red attractor states) and peripheral (green arm movement) responses, while c shows the
equivalent coherence between the two populations of (central red and blue) error-units. The
main result here is that central to peripheral coherence lies predominantly in the theta range
(4–10Hz; grey region), while the coherence between central measures lies predominately
above this range. (Color figure online)
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Fig. 5.
This shows exactly the same results as Fig. 2. However, in this simulation we used the
forces from the action simulation to move the arm exogenously. Furthermore, we directed
the agent’s attention away from proprioceptive inputs, by decreasing their precision to trivial
values (a log precision of minus eight). From the agent’s point of view, it therefore sees
exactly the same movements but in the absence of proprioceptive information. In other
words, the sensory inputs produced by watching the movements of another agent. Because
we initialised the expected attractor states to zero, sensory information has to entrain the
hidden states so that they predict and model observed motor trajectories. The ensuing
perceptual inference, under this simulated action observation, is almost indistinguishable
from the inferred states of the world during action, once the movement trajectory and its
temporal phase have been inferred correctly. Note that in these simulations the action is
zero, while the exogenous perturbations are the same as the action in Fig. 2
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Fig. 6.
These results illustrate the sensory or perceptual correlates of units representing expected
hidden states. The left hand panels (a, c) show the activity of one (the fourth attractor)
hidden state-unit under action, while the right panels (b, d) show exactly the same unit under
action–observation. The top rows (a, b) show the trajectory in Cartesian (visual) space in
terms of horizontal and vertical position (grey lines). The dots correspond to the time bins
during which the activity of the state-unit exceeded an amplitude threshold of two arbitrary
units. They key thing to take from these results is that the activity of this unit is very specific
to a limited part of visual space and, crucially, a particular trajectory through this space.
Notice that the same selectivity is shown almost identically under action and observation.
The implicit direction selectivity can be seen more clearly in the lower panels (c, d), in
which the same data are displayed but in a moving frame of reference to simulate writing.
They key thing to note here is that this unit responds preferentially when, and only when, the
motor trajectory produces a down-stroke, but not an up-stroke
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Fig. 7.
This figure illustrates the correlations between representations of hidden states under action
and observation. a The cross-correlation (at zero lag) between all ten hidden state-units. The
first four correspond to the positions and velocities of the joint angles, while the subsequent
six encode the attractor dynamics that represent movement trajectories during writing. The
key thing to note here is that the leading diagonal of correlations is nearly one, while the off-
diagonal terms are distributed about zero. This means that the stimulus (visual) input-
dependent responses of these units are highly correlated under action and observation; and
would be inferred, by an experimenter, to be representing the same thing. To provide a
simpler illustration of these correlations, b plots the response of a single hidden state unit
(the same depicted in the previous figure) under observation and action, respectively. The
cross-correlation function is shown in c. Interestingly, there is a slight phase shift suggesting
that under action the activity of this unit occurs slightly later (about 4-8ms)
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Fig. 8.
This figure shows simulated electrophysiological responses to violations of expected
movements. The top panels (a, b) show the stimuli presented to the agent as in Fig. 5. The
lower panels show the synthetic electrophysiological responses of units reporting prediction
error (c, d proprioceptive errors; e, f errors on the motion of hidden states). The left panels
(a, c, e) show the stimuli and prediction errors under canonical or expected movements,
whereas the right panels (b, d, f) show the same results with a violation. This violation was
modeled by simply reversing the exogenous forces halfway through the writing. The
exuberant production of prediction error is shown in d and e. It can be seen here that there is
an early phasic and delayed components at about 100 and 400ms for at least one
proprioceptive and hidden state error-unit (sold lines). In c and d, errors on the angular
positions are show in blue and green, while errors on angular velocities are in red and cyan.
All errors on hidden states are shown in red in e and f. (Color figure online)
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Table 2

Variables and quantities specific to the writing example of active inference (see main text for details)

Variable Description

α(t) ∈ ℜ6 ⊂ x Hidden attractor states: A vector of hidden
 states that specify the current location
 owards which the agent expects its arm to
 be pulled.

xi(t) ∈ ℜ ⊂ x

xi
′(t) ∈ ℜ ⊂ x

Hidden effector states: Hidden states that
 specify the angular position and velocity of
 the i-th joint in a two-jointed arm.

ℓ1(x1) ∈ ℜ2

ℓ2(x1, x2) ∈ ℜ2

Joint locations: Locations of the end of the
 two arm parts in Cartesian space. These are
 functions of the angular positions of the
 joints.

ℓ∗(α(t)) ∈ ℜ2 Attracting location: The location towards
 which the arm is drawn. This is specified by
 the hidden attractor states.

ϕ(x, α) ∈ ℜ2 Newtonian force: This is the angular force on
 the joints exerted by the attracting location.

A ∈ ℜ6×6 ⊂ θ Attractor parameters: A matrix of parameters
 that govern the (sequential Lotka–Volterra)
 dynamics of the hidden attractor states.

L ∈ ℜ2×6 ⊂ θ Cartesian parameters: A matrix of
 parameters that specify the attracting
 locations associated with each hidden
 attractor state.
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