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Abstract In this paper we present a methodological frame-45 million programmable and dynamic synapses that is cur-
work that meets novel requirements emerging from upcomrently under development, and we sketch the conceptual
ing types of accelerated and highly configurable neuromorehallenges that arise from taking this platform into opera-
phic hardware systems. We describe in detail a device wittion. More specifically, we aim at the establishment of this
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neuromorphic system as a flexible and neuroscientifically
valuable modeling tool that can be used by non-hardware-
experts. We consider various functional aspects to be cru-
cial for this purpose, and we introduce a consistent workflow
with detailed descriptions of all involved modules that im-
plement the suggested steps: The integration of the haedwar
interface into the simulator-independent model desanipti
language PyNN; a fully automated translation between the
PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic sys-
tem that can be seamlessly integrated into this biology-to-
hardware mapping process as a test bench for all software
layers and possible hardware design modifications; an eval-
uation scheme that deploys models from a dedicated bench-
mark library, compares the results generated by virtual or
prototype hardware devices with reference software simula
tions and analyzes the differences. The integration ofethes
components into one hardware-software workflow provides
an ecosystem for ongoing preparative studies that support
the hardware design process and represents the basis for the
maturity of the model-to-hardware mapping software. The
functionality and flexibility of the latter is proven with av

riety of experimental results.

Keywords Neuromorphic VLSI - Hardware- Wafer-
Scale- Software Modeling- Computational Neuroscienece
PyNN
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1 Introduction implementations as well. This fact can offer one important
way to create reliable computing components on the basis
Neuroscience and Technology of future nano-scale hardware constituents, where current

design strategies will run into serious yield problems. &or

Advances in neuroscience have often gone hand in hargler, the inherent parallelism of on-chip emulation of réur
with significant progress in the applied technologies, 200l gynamics has the potential to overcome the aforementioned
and methods. While the experimental investigation of ivin scaling limitations of pure software simulations.
neural tissue is indispensable for the generation of alddtai Still, until today the focus of neuromorphic projects is
knowledge base of the brain, from which understanding ofnostly very application-specific. The majority of groups
underlying principles can emerge, technological diffiesit js working on neuromorphic sensors like e.g. silicon reti-
have always imposed limits to this endeavor. Until today ithas and visual processing systems (Netter and Franceschini
is not possible to study relevant observables in a suffisient 2002: Delbriick and Liu, 2004; Serrano-Gotarredona et al,
large fraction of brain tissue under realistic conditionsia 2006: Merolla and Boahen, 2006: Fu et al, 2008; Gomez-
with a spatiotemporal resolution that is high enough to/full Rodriguez et al, 2010) or motor control in robotics (Lewis
capture — and possibly consistently explain — the mechagt al, 2000). The requirement of communication with the en-
nisms of higher order brain functions. vironment is one important reason for the fact that neatly al

Therefore, in neuroscience, like in any other researcheyromorphic devices reported so far are designed to oper-
field on dynamical systems that cannot be fully exploredte in real-time. But even the projects that deal with mirnick
by experimental methods, models represent an indispengg, studying or applying neural information processing{V
able approach to test hypotheses and theories on the regl|stein et al, 2007), self-organization (Hafliger, 200%: M
subject of interest. However, even neural modeling is sigtra et al, 2009) or even hybrid setups coupling neuromorphic
nificantly constrained and influenced by the set of availyevices with living tissue (Bontorin et al, 2007) are usyall
able technologies. The spectrum of feasible experimentahcused on one type of neural architecture, one anatomical
setups, in particular inomputational neurosciencdirectly  region or one function the implemented network is supposed
depends on the accessible computational power. The diffiy fyffill.
culty of efficiently mapping the massive parallelism of neu-  Two main reasons for this self-limitation of neuromor-
ral computation in biological tissue to a limited number of phic development are the finite size of every neuromorphic
digital general purpos€PUs is a crucial bottleneck in the gevice as well as the limited possibilities to change the be-
development of large-scale computational models of neurd{avior of individual cells and the network connection pat-
networks, where statistics-intensive analyses or long-te terns once they have been cast into silicon. A typical ap-
observations of network dynamics can become computasroach to reduce size limitations is to scale up networks
tionally extremely expensive (see e.g. Morrison et al, 2005py inter-connecting multiple hardware modules (Costas-

Brette et al, 2006; Morrison et al, 2007). Santos et al, 2007; Berge and Hafliger, 2007; Indiveri, 2008;
Schemmel et al, 2008). Furthermore, recent advances in
Neuromorphic Hardware neuromorphic development eventually promise to overcome

the limited flexibility of hardware models by offering a suf-
For an alternative modeling approach, the so-cafledro-  ficiently fine-grained configurability of both the neuron pa-
morphic engineeringthe technology-driven nature is even rameter values as well as the network connectivity (Indi-
more obvious. In a physical, typically silicon form, neuro- verij et al, 2006; Schemmel et al, 2007; Ehrlich et al, 2007;
morphic devices mimic the structure and emulate the funcschemmel et al, 2008; Indiveri et al, 2009: Schemmel et al,
tion of biological neural networks. This branch of neuro-2010). This crucial feature allows to consider the utiliza-
science has its origins in the 1980s (Mead and Mahowaldijon of neuromorphic systems as flexible modeling tools
1988; Mead, 1989, 1990), and today an active community igo approach open neuroscientific questions with new strate-

working on analog or mixed-sign&ILSI* models of neural  gies (Kaplan et al, 2009; Briiderle and Miiller et al, 2009;
systems (for reviews see e.g. Renaud et al, 2007; Indivegiriiderle, 2009 Briiderle et al, 2010).

et al, 2009).

Dedicated implementations of said computational moda Novel Methodological Approach
els are typically more power efficient compared to general
purpose architectures and are well suited for e.g. embedrhe FACETS research project (FACETS, 2010) and its suc-
ded controllers of autonomous units like robots. Faultrtole cessor BrainScaleS (BrainScaleS, 2010) aim at a compre-
ance features observed in biological neural architecanes hensive exploitation of the possibilities inherent to thpt
expected to apply to corresponding neuromorphic hardwargroach. The highly interdisciplinary collaborations gath
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neurophysiological, theoretical and hardware expertise i2 The Workflow Components: Modules and Methods
order to develop and operate a large-scale neuromorphic de-
vice that can serve as a flexible neural network emulatior he following section provides an overview over the com-
platform with hitherto unattained configurability and alece plete infrastructure that has been developed to realize a
eration. It is planned to exploit this combination of fea- novel neural modeling concept built around the FACETS
tures with experimental paradigms that are not realizableeuromorphic hardware system. For this purpose, the neu-
with pure software simulations, like long-term learningdst ~ romorphic device itself is presented in Section 2.1 on a
ies, systematic parameter explorations and the acquisifio level of detail that is appropriate to the method descripgtio
statistics for every tested setup. that follow. These methods are either implemented by or di-
Following this attempt, one important insight hasrectly rely on aninnovative software framework, which will
emerged that has only rarely been addressed in the litebe explained in Section 2.2 by means of its structure and
ature so far (exceptions are e.g. Dante et al, 2005; Ost@oncepts. A significant achievement for the targeted design
et al, 2005): Any hardware device that is complex enough t@nd development of a harmonizing hardware-software unit
serve as a useful neural modeling tool is useless without ai@rming the modeling platform was the collection of a set of
appropriate software environment that implements a reasotiterature-based benchmark model experiments, as summa-
able methodological framework for its operation. For anyrized in Section 2.4.
developed neuromorphic modeling platform, hard- and soft-  The workflow that has been developed around these
ware have to form a functional unit. Moreover, the need foithree main components is schematically depicted in Fig-
methods that have to be applied in order to make the advatwe 1: The library of dedicated neuroscientific benchmark
tages of a neuromorphic device accessible to non-hardwareodels, including descriptions and measures to evaluate
experts does not only refer to the actaglerationof the  their correct functionality, has been established by membe
device itself. Instead, already idesign procesaeeds to be of the FACETS research project (FACETS, 2010). For any
supported and influenced by preparatory studies, e.g. witodel from within this set, a description on the basis of the
virtual versions of the future hardware-software system. simulator-independent modeling language PyNN (see Sec-
In this publication we summarize the FACETS effortstion 2.2.1) is available. The mentioned translation sofeva
to create a comprehensive methodological framework prostack performs an automated conversion of these scrijats int
viding a workflow aiming to make the innovative FACETS appropriate data for the configuration and control of differ
wafer-scale hardware system a generic modeling tool that nt hardware or software back-ends. The same stack also
applicable to a wide range of neuroscientific questions ante-translates the resulting hardware output into the domai

accessible to the neuroscientific community. of its biological interpretation. During the developmenta
optimization phase of the FACETS wafer-scale hardware
Structure of this Article system, an elaborate virtual version of the device (see Sec-

tion 2.3) serves as a test bench for the development and tun-
This introduction is followed by a description of the com- ing of all involved translation software modules.
plete neuromorphic modeling infrastructure. This inclide  In addition to the virtual wafer-scale device, a purely
both the utilized hardware devices and therkflowthat is  chip-based neuromorphic system (see Section 2.1.5) pro-
in focus of this paper, i.e. the framework of methods andvides important information about characteristics of cir-
software modules that have been developed for the desigauits planned to be implemented in the wafer-scale system.
assistance, the benchmarking and the actual operatior of tfhese ASICs thereby support the wafer-scale design pro-
platform. A third section presents data and results that process and the development of possible strategies to compen-
vide a proof of functionality for the concept as a whole.Sate unavoidable phenomena like transistor-level vanati
Various components of the workflow are evaluated, and ther noise. The outputs of all applied hardware or virtual hard
performance of benchmark model experiments performedare back-ends are compared with the target output descrip-
with the complete system is studied and analyzed. The lagions included with the models in the benchmark library and
section discusses the state of validation of the presentetith reference experiments on pure software simulators. Th
framework as well as its advantages and limitations consigemaining differences are analyzed, as is exemplarily pre-
ering alternative approaches. Implications and planstfer f sented in Section 3.1.
ture work and new perspectives arising from the presented In an ongoing optimization flow, the benchmark mod-
achievements are outlined. els are repeatedly mapped to the still evolving hardware
substrate with the likewise continuously optimized sofeva
framework. The iteratively applied result analyses previd
the fundament for improvements that close the workflow
loop: The hardware design, the biology-to-hardware trans-
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Fig. 1: Optimization workflow towards neural modeling withuromorphic hardware devices. The main components are
1. the highly configurable FACETS neuromorphic hardwardasy 2. the software module stack that performs an auto-
mated translation of neural network experiments descntiddthe modeling language PyNN into corresponding haréwar
configuration and control patterns, and 3. a benchmarkriititeat contains a collection of neuroscientific models tgritin
PyNN. For a detailed explanation of the complete flow andnaiiidual steps and components see full text.

lation modules and optionally even the models themselvegonents and methods, the scope of this paper would be ex-

are modified such that the functional effects of remainingceeded by providing detailed motivation fall particular

distortions caused by the model-to-hardware mapping prcehoices of methods and components being part of the frame-

cess are minimized. work. The reasons for individual methodological or design
Hence, the first application of the presented workflow isdecisions can be found in the literature referenced withen t

to take novel types of hardware devices into operation. Fureorresponding paragraphs.

thermore, it can serve as a basic methodological paradigm

for the actual target application of nheuromorphic systems,

i.e. the exploration and optimization of neural architeesu 2.1 The FACETS Hardware System

by means of different optimization objectives. These idelu )
the search for computationally powerful structures or éor s N the following, the FACETS wafer-scale hardware system

tups that can reproduce biologically plausible dynamics. will be described with focus on conceptual and technical de-

While this section motivates and explains the workflowtails that are relevant in the context of this article. Mare i
as a wholeand provides descriptions of all involved com- formation on the hardware setup and circuitry can be found



in Schemmel et al (2008), Ehrlich et al (2007), Millner et al chanical components are custom-made by FACETS project
(2010) and Schemmel et al (2010). members.

At the core of the FACETS wafer-scale hardware sys-
tem (see Figure 2) is an uncut wafer built from mixed-
signal ASICS, namecdHigh Input Count Analog Neural Net-
work chips HICANNs Schemmel et al, 2008), that pro- _©
vide a highly configurable substrate which physically emu-
lates adaptively spiking neurons and dynamic synapses. Tt §
intrinsic time constants of these VLSI model circuits are
multiple orders of magnitude shorter than their biological
originals. Consequently, the hardware model evolves with .
speedup factor of Foup to 1 compared to biological real
time, the precise value depending on the configuration of th
system.

In addition to a high-bandwidth asynchronous on-wafel
event communication infrastructure, full custom digitét o
wafer ASICs provide terminals for a packet-based multi-

purpose communication network (Scholze et al, 2010)gjy 2. The FACETS wafer-scale hardware system: Wafer
These so calle®igital Network Chips (DNCsgare backed (A) comprising HICANN building blocks and on-wafer

by a flexible FPGA design that handles the packet routing .ommunication infrastructure, wafer bracket (B), top feam

(Hartmann et al, 2010). The communication infrastructurqcy ang digital inter-wafer and wafer-host communication
is illustrated in Figure 5. See Section 2.1.3 for detailstent ., qules (D).

inter-chip communication scheme.

A full wafer system will comprise 384 interconnectable
HICANNS, each of which implements more than 100,000
programmable dynamic synapses and up to 512 neurons, 12-1.2 The HICANN Building Block
sulting in a total of approximately 45 million synapses and
up to 200,000 neurons per wafer. The exact number of nedFhe HICANN building block shown in Figure 3 is the neu-
rons depends on the configuration of the substrate, which atomorphic ASIC of the FACETS wafer-scale hardware sys-
lows to combine multiple neuron building blocks to increaseteém. The inter-chip communication scheme is explained in
the input count per cell. Section 2.1.3.

2.1.1 Composition of the FACETS Hardware System .

The wafer as the main component for the FACETS wafer
scale hardware system has to be embedded into a fram
work that provides the electrical integration as well as the
mechanical stability. The wafer has a diameter of 20cm an
will be placed into an aluminum plate which also serves a:
a heat sink. A multi-layer Printed Circuit Board (PCB) is
placed on top of the wafer. This PCB has to provide the
fan-out of 1500 impedance-controlled differential painsla '
- in the worst case - has to deliver a total electrical power o )
of 1000 Watts to the wafer. A 14-layer fine pitch board with Fi9- 3: A photograph of the HICANN building block with
laser drilled micro-vias and a total size of 430 mm x 430 mnSYNa@pse arrays (A), neurons (B), floating-gate arrays (@) an
meets these requirements. The PCB will be clamped to aht routing (D).
aluminum frame that is also used as a platform for com-
munication devicgs such as the 48 DNCs and the 12 EPGA simplifying, the HICANN can be divided into four
boards (see Section 2.1.3). Figure 2 shows a 3-D drawing of . I : .
the hardware composition. All depicted electrical and me_parts. the neuron C.IrCUItS with their analog parameter stor
age based on floating gate technology (Lande et al, 1996),
3 Application Specific Integrated Circuit an array of 114688 dynamic synapses andltiger 1 (L1)
4 Field Programmable Gate Array bus system interconnecting HICANNSs on a wafer. The hard-
ware neurons implemented by the HICANN building blocks




(Millner et al, 2010) can emulate the adaptive exponentiaRdEx parameters configurable in the hardware implementa-
integrate-and-fire neuron mod@ldEx Brette and Gerstner, tion have been designed such that the complete set of bio-
2005) which can produce complex firing patterns observetbgically relevant firing patterns distinguished e.g. inuda

in biology (see e.g. Markram et al, 2004; Destexhe, 2009)t al (2008) can be reproduced. If this design goal was fully
like spike-frequency-adaptation, bursting, regular sgik  achieved is currently studied with HICANN prototypes, i.e.
irregular spiking and transient spiking, by tuning a limdite work in progress (see also Section 3.4).

number of parameters (Naud et al, 2008). The decision to

implement this particular neuron model in hardware wasHebbian Learning in the FACETS Hardwateong-term
motivated by the large spectrum of possible and biologicall Hebbian learning in the FACETS hardware devices is imple-
relevant cell behavior realizable with a comparably comipacmented in every synapse as spike-timing-dependent plastic
circuitry. The latter fact is a crucial aspect when aiming atity (STDP, reviewed e.g. in Morrison et al, 2008). To ensure
the integration of large numbers of neurons in one hardwarkigh flexibility in terms of mappable neuronal networks each
system. For a neuromorphic implementation of Hodgkin-neuron in hardware needs an appropriate number of synaptic
Huxley cells that consume significantly more chip area seéputs. However, due to limited die area, a trade-off betwee

e.g. Daouzli et al (2008). the number of synapses and the chip resources for a single
The model can be described by the following two differ-synapse has to be made.
ential equations for the membrane voltagand the adapta- To achieve a minimal circuit size for the synapses, lo-
tion variablew and a reset condition specified further below:cal correlation measurements and the local synaptic weight
dv (\%) storage are separated from global weigptiate controllers
—Cma =g(V—E)—agde' %/ +w (Schemmel et al, 2007, 2006). Causal and acausal correla-
V_E tions between pre- and post-synaptic spikes determine the
+ Ge(t)( e) . .
OV E 1 temporal factor of the STDP rule described in Schemmel
+aOV-&) () et al (2004) and are accumulated locally until they are pro-
_de_w =w-aV-Fg) . (2)  cessed by the update controller. Synaptic weights aredstore
dt locally as digital values with a four-bit resolution eacthi§

Cm, 01, ge andg; are the membrane capacitance, the leakresolution is again a trade-off between precision and chip
age conductance and the conductances for excitatory angsources and requires several correlated events to feach t
inhibitory synaptic inputs, wherge andg; depend on time  next discrete weight value. If a sufficient amount of corre-
and on the inputs from other neurois, E; andEe are the  |ations is accumulated, the discrete weight is updated by
leakage reversal potential and the synaptic reversal potethe update controller. Since many synapses share one update
tials. The parameterd and A; are the effective threshold controller a weight update is performed periodically with a
potential and the threshold Slope factor. The time ConStaﬁfequency that has an upper limit determined by the Cil’intf

of the adaptation variable i,. The adaptation paramet@r (Schemmel et al, 2006). Since a reduced symmetric nearest-

has the dimension of a conductance. neighbor spike pairing scheme turned out to be one feasible
If the membrane voltage crosses a certain threshold voliapproach for describing biological measurements (Burkitt

ageo, the neuron is reset: et al, 2007; Morrison et al, 2008), this specific plasticity

V = Vieset 3) mechanism has been chosen to be implemented in hardware

to further reduce the size of a synapse. Update controllers
are modifying the synaptic weights by using look-up tables
The parameteb is responsible for spike-triggered adapta-that are listing, for each discrete weight value, the résyilt
tion. weight values in case of measured causal or acausal corre-

A neuron can be constructed out of up to 64 so-calledations. These look-up tables can be adapted to the weight-
denmenrxircuits, each implementing the dynamics of thedependent factor of any STDP rule.
AdEx model and being connected to up to 224 synapses. Despite its global weight update controllers, the STDP
This way a neuron could have synaptic inputs from up tanechanism of the FACETS hardware has to be considered
14,336 other cells. Additionally, depressing and fadilitg  local to every synapse. The implementation of this partic-
mechanisms of short-term synaptic dynamics (for a reviewlar model represents a project-wide decision on the most
see Zucker and Regehr, 2002) are implemented. A purelgromising mechanism to be cast into silicon, taken in the
chip-based FACETS hardware implementation of this feaearly phase of FACETS. Recent developments in the model-
ture is described and applied in Bill et al (2010). ing of learning and self-organization in neural networlee(s

A general limitation of neuromorphic implementations e.g. Sjostrom et al, 2008; Pfeiffer et al, 2010) combine such
of cell models is the fact that configurable parameter vallocal rules with various global mechanisms like the reward-
ues will always have limited ranges. The value ranges of albased modulation of large groups of synapses. With respect

w—w+b . 4)



to more complex and relevant plasticity mechanisms, an exwafer level provides intra-wafer action potential transmi
tension to STDP rules with additional input parameters, e.gsion on a high density direct interconnection grid. A second
membrane potentials, spike rates or global reward sigisals, one, named.ayer 2 (L2) deploys the DNCs and FPGAs for
currently under development. synchronous, packet-based, intra and inter-wafer communi
cation and - compared to L1 - establishes a more flexible
Parameter Memoriesn contrast to most other systems, therouted network of lower density. To cope with inevitable
FACETS wafer-scale hardware deploys analog floating gatgiter in routing delay, a time stamp is transmitted togethe
memories similar to cells developed by Lande et al (1996) awith the address within the data packets of this network. A
storage devices for the analog parameters. Due to the sm&8LC cluster that handles the mapping, configuration and con-
size of these cells, most parameters can be provided individrol process described in Section 2.2 as well as the playback
ually for a single neuron circuit. This way, matching issuesand recording of external stimuli to the neural network is
can be counterbalanced, and different types of neurons caennected to the FPGAs via multi-Gigabit Ethernet.
be implemented on a single chip. Activity is injected into the L1 network in the form
As a starting point for the parameter ranges, parametex 6 bit serial pulse address packets by neurons that con-
from Brette and Gerstner (2005) and Destexhe et al (1998)ect to the horizontal buses. Sparsely populated passive
have been used. The chosen ranges allow leakage time cawitch matrices at the intersections of horizontal and ver-
stantstmem= Cm/0 at an acceleration factor of 4@etween tical buses pass the data to the vertical buses. Furthesespar
1 ms and 588 ms and an adaptation time congiahetween  switch matrices connect to horizontal lines feeding syaaps
10ms and 5s in terms of biological real time. The paramedrivers that act as data sinks to the network. While crossing
ters used by Pospischil et al (2008), for example, lie easily1ICANN block boundaries the signals are refreshed by re-
within this range. peater circuits with active re-timing that are capable of-dr
A substantial amount of digital memories is integrateding the signals across one HICANN block. The sparseness
in the chip, dominated by the synapse RAM. Each of theof the switch matrices is chosen such that the repeater cir-
114,688 synapses has 8 bit memory cells for weight and adsuits are not overloaded while still providing maximum flex-
dress storage. For the whole wafer, the synapse RAM aloribility for implementing various neural network topologie
is 38 MB large. Figure 4 shows the partitioning of the pa-(see Fieres et al, 2008 and Schemmel et al, 2010 for more
rameter memory on a HICANN building block. To compareinformation on the underlying design decisions and analyse
the analog floating gates to normal digital memory, each celbf the resulting limitations).
has been counted as 10 bit, since this is the number of bits Connectivity between the HICANN blocks is estab-
needed to program it. lished by edge connecting them in the layout. As illustrated
in Figure 5, this is only possible for eight HHICANNSs located
within one reticle. A reticle is the largest producible umrit
[ Synapses the wafer and no connections can be formed between reticles
12% [J Floating Gates during standard CMOS fabrication. Wafer-scale connectiv-
ity is obtained using a post-processing method developed in
the FACETS project. It offers two additional routing layers
that can cover the whole wafer. By means of this technique,
an inter-reticle connection pitch well below ith can be
achieved which facilitates the required connectivity tRar-

Fig. 4: Sector diagram of the parameter space to configuf@0re, large landing pads are formed by the post-processing
one HICANN chip. For a full wafer, the configuration data that connect the wafer to the system PCB via elastomeric
volume is 44 MB large. stripe connectors (see Figure 2 and Schemmel et al, 2010).

These stripe connectors are used to deliver all required
power to the wafer. Additionally, they connect high speed
communication signals between the HICANNs and the

2.1.3 Communication Infrastructure DNCs. This high speed communication interface transports
configuration data as well as the above-mentioned L2 data
The communication infrastructure of the FACETS wafer-packets. L2/L1 protocol conversion is performed inside the
scale hardware is illustrated in Figure 5. Pulse communiHICANN blocks, where L2 activity can either be injected
cation is generally based on the digital transmission of neuto or read from the L1 network (see Figure 5). The trans-

ral events representing action potentials, but a distingti s - :
For completeness it should be noted that also analog signals

two network layers can be maq_e. An asynchronous, Se”%l.g. selectable neuron membrane voltages, are transpbrtedyh the
protocol, named.ayer 1 (L1)utilized by HICANNs at a  stripe connectors.

1%

M Other
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Fig. 5: Communication structure on a wafer module of the FASRvafer-scale hardware system. Neural activity is trans-
ported horizontally (dark gray) and vertically (light gdayia asynchronous L1 buses on the HICANN building blocks.
Repeater circuits at the edges of these blocks allow fortaldision of the buses over the whole wafer. Off-wafer carne
tivity is established by the L2 network via DNCs and FPGAsnterfaces the L1 buses on the HICANN building blocks.
Several wafer modules can be interconnected using routimgtibnality between the FPGAs via Ethernet switches.

port of the L2 packets is handled by the DNCs, which alsd~PGA controllers act as simple transmission nodes between
implement a time-stamp based buffering and heap-sort ahost computer and wafer. Both operational stages impose
gorithm (Scholze et al, 2010). Together with routing logichigh demands on the communication bandwidth. The ini-
inside the FPGASs, the DNC-FPGA L2 network fulfills the tial configuration space consumes around 50MB (see Fig-
Qo< demands (Philipp et al, 2009) for spiking neural net-ure 4). Every spike event is represented by a 15-bit time
works, i.e. a constant delay at a low pulse loss rate. This istamp and a 12-bit data field, comprising both DNC and
also true for inter-wafer connections routed through EtherHICANN identifiers. Thus, during an experiment approx-

net switches connected to the FPGAs. imately 1GEvenfs can be transported to and from the host
computer. At a speedup factor of4@he corresponding to-

2.1.4 Host Interface tal spike rate in the biological time domain is 100 kHz per
wafer.

The packet communication between wafer and host com- To meet these requirements set by the hardware scale,
puter passes through several layers: DNCs, FPGA controlleicceleration factor and modeling constraints, a highlysca
boards and a Gigabit Ethernet layer (Norris, 2003) have table software implementation of the communication proto-
be traversed. As each of the twelve FPGA controller boardsol was developed (see Section 2.2.10 and Schilling, 2010).
(see C in Figure 2) comprises two Gigabit ports dedicated his multi-threaded protocol stack already provides a-zero
for host communication, a total bandwidth of@&llscanbe  copy APE to the upper software layers.

achieved. Standard networking switches concentrate these Furthermore, to support future applications, such as in-
links into the required number of 10GBase-LX4 (Horak,terfacing the FACETS hardware system to simulated envi-
2007) upstream ports. A standard PC cluster equipped wittbnments which provide sensor output related to motor in-
adequate network interface cards handles the traffic. A cuput, low round-trip times between these components are cru-
tom design ARG-style (Fairhurst, 2002) protocol provides cial. Such classes of in-the-loop experiments demand lew la
a reliable communication channel between the host contency communication and high bandwidth at the same time.
puter and the hardware system. The FPGA controller boards

act as remote terminals for these ARQ communicationcharp 1 5 Chip-Based Neuromorphic System

nels, but also provide system control functionality.

During experiments, most communication data — basiOn the development path towards the FACETS wafer-scale
cally spike events — flow directly between host computehardware platform, a purely chip-based neuromorphic sys-
and FPGA controller boards. In contrast to this, in theahiti tem has been designed and built (Schemmel et al, 2006,
setup stage almost all traffic — i.e. the system configuratior007) and is in active use (Kaplan et al, 2009; Briiderle and
data — is dedicated to wafer communication. In this case, th®liiller et al, 2009; Bruderle et al, 2010; Bill et al, 2010).

® Quality of Service 8 Application Programming Interface
7 Automatic Repeat reQuest



It implements time-continuous leaky integrate-and-fifsce Its components seamlessly interact in performing an
with conductance-based synapses and both a short-term aadtomated translation of arbitrary neural network experi-
a long-term plasticity mechanism as described above foment descriptions into appropriate data for hardware con-
the wafer-scale device. Up to 16 of these ASICs, each diguration and control. The same stack also automatically
which provides 384 neurons and®@bnfigurable and plas- re-interprets the acquired hardware output into its bielog
tic synaptic connections, can be operated individuallyher i ical interpretation. The top-level interface offered tadva
terconnected via a supporting backplane board. This boandare users to describe neural network setups is based on the
is connected via a single Gigabit Ethernet link to a hossimulator-agnostic modeling language PyNN. The concept
computer, through which multiple users can access and us# this approach and its advantages, especially for neuromo
the neuromorphic devices in parallel. The possibility of re phic system operation, will be described in Section 2.2.1.
motely accessing the chips via the Internet in addition to The process of mapping a PyNN description onto the
setting up and running experiments with an available PyNNonfiguration space of the FACETS hardware systems, in-
interface (see Section 2.2.1 and Briderle and Miller et akluding dedicated representation formats, will be desctib
2009) already now make this system a tool that is useth Sections 2.2.2 to 2.2.8. Sections 2.2.9 and 2.3 focus on
for neuromorphic model exploration by users from varioughe mapping analysis plus its testing and optimization en th
countries. Many circuit design strategies for the wafedesc basis of an elaborate virtual version of the wafer-scald-har
system are implemented for testing purposes in this chipware system. The special performance requirements for the
based device, including the STDP correlation measuremenksw-level host-to-hardware communication software ared th
(see Section 2.1.2) located in every individual synapse. Bamplemented corresponding solutions are outlined in Sec-
sic plasticity studies supporting the design of the watades  tion 2.2.10.
system, some of which are outlined in Section 2.5.3, in-
corporate investigations on the basis of experimentalteesu 2.2.1 PyNN & NeuroTools
from the chip-based devices.
PyNN is a simulator-independent, Python-based language
designed for describing spiking neural network models
2.2 Software Framework (Davison et al, 2008). It offers functions and classes fer th
] ~ setup and control of experiments, and it provides standard
Figure 6 shows the stack of software modules that will b&g|| models as well as standardized dimension units. PyNN
described in the following. supports various software simulators like NEURON (Hines
and Carnevale, 2006; Hines et al, 2009), NEST (Gewaltig
and Diesmann, 2007; Eppler et al, 2008), Brian (Goodman
and Brette, 2008) and PCSIM (Pecevski et al, 2009). With

PyNN, which is open source and well documented, a user
can set up a neural network model, run it on any of the sup-
ported back-ends without changing the code, and directly
compare the results. This provides the possibility to con-

veniently port experiments between different simulattos,
transparently share models and results, and to verify data
acquired from different back-ends (see Figure 7).

The integration of the operating software framework
for the FACETS hardware system into the PyNN concept
(Bruderle and Mdiller et al, 2009; Bruderle, 2009) is a cru-
cial aspect of the presented neuromorphic workflow. One
) . ) . important motivation for this approach is to create a bridge
Fig. 6: Schematic of theardware abstraction layei.e. the between the communities of neuromorphic engineers and

stack of software modules for the automated and bidirecs .o modelers, who have been working in rather separate

tional translation between PyNN model descriptions and apf)rojects so far. The back-end agnostic concept of PyNN

propriate hardware configuration and control patterns. Thﬁow also offering the possibility to port existing experinte

:nd'v'd;al modules are: A Py’;]hct;n codn'([jrol Iayer,;mmapplngbetween the supported software simulators and the FACETS
ayer that operates on a graph-based data contaiivapp- hardware system, allows to benchmark and verify the hard-

Mode), and low-level layers that deliver the generated hardWare model. The API of PyNN is easy to learn, especially

ware configurat@on patterns and control sequences via a deﬂ)’r scientists who have already worked with software sim-
icated communication protocol. ulators. Hence, PyNN represents an optimal way to provide

Hardware Abstraction Layer
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pyNN.nest pyNN.pcsim pyNN.brian pYNN.hardware.facets pyNN.neuron  pyNN.neuroml
4 4 t

L L
PyNEST } { PyPCSIM { Brian } Python Control Layer

Native Interpreter DI TSRS [ HOC H NeuroML
Configuration
Low-Level API & Communication t

NEURON

Simulator-Specific
PyNN Module

Python Interpreter

Simulator Kernel NEST PCSIM

Fig. 7: Schematic of the simulator-independent modelinglege PyNN. Like various established software simulatbes
FACETS neuromorphic hardware systems have been integratethe PyNN unification and standardization concept.

non-hardware experts a convenient interface to work witt2.2.2 Mapping Process
the FACETS neuromorphic devices. In general, PyNN in-
terfaces to neuromorphic systems make it possible to forfhe mapping process determines a valid routing network
mulate transparent tests, benchmarks and feature requegtenfiguration and parameter value set as initial setup data
and therefore can influence and boost biologically orientedor the FACETS hardware system. This takes into account
hardware development. They might, eventually, support théopology constraints between hardware blocks such as con-
establishment of such emulation devices as useful modelingectivity, connection counts, priorities and distancewel
tools. as sourcef/target counts. Figure 8 depicts the single sfeps o
On top of PyNN, a library of analysis tools called Neuro-the mapping process as described by Ehrlich et al (2010).
Tools (NeuroTools, 2008) is being developed, which builds The mapping is accomplished in the three main steps of
upon the interface and data format standards, but also eflacementRoutingand Parameter Transformation & Cal-
ploits the possibility to incorporate third-party Pythooda  ibration, with an appropriatd®re- and PostProcessingf
ules e.g. for scientific computing and plotting (Oliphant,the configuration data. As the first three main steps are ex-
2007; Jones et al, 2001; Langtangen, 2008; Hunter, 2007pplained in more detail in the following we will shortly sum-
Thus, for all supported software simulators and for thenarize the functionality of the remaining parts.
FACETS neuromorphic hardware systems, all stages of neu- Starting with a neural architecture defined via PyNN, the
ral modeling experiments - description, execution, resulfirst mapping step dPreProcessingeads in a description of
storage, analysis and plotting - can be performed fronthe hardware (see Section 2.2.3), described using the novel
within the PyNN and NeuroTools framework. query languagé&MPath (see Section 2.2.4). It sets up an
internal representation for both the hardware and the bio-
Simulations as Reference for Translation and Calibration logical model in the form of a directed graph callédaph
The hardware-specific PyNN approach incorporates quantModel(see Section 2.2.4). Optionally, a so-calReMap-
tative bidirectional translation methods between the aeur pingnetlist of the biological model can be streamed out into
morphic system dynamics and the biological domain, bott@ file. Following placement and routing, the same applies
in terms of electrical variables and the different time do-for the PostProcessingvith a PostMappingnetlist, which
mains. This translation incorporates calibration rouitret ~ includes the possibility to obtain a PyNN script that repre-
minimize the impact of transistor-level fixed-pattern mois Sents the (possibly distorted) network ultimately realine
on the behavior of neural and synaptic circuits. The transthe hardware back-end.
lation and calibration scheme developed for the FACETS The individual steps of the process are automatically ini-
hardware systems directly involves reference software sintiated and partly controllable via the PyNN module for the
ulations for the biologically relevant gauging of hardwareFACETS hardware system. Furthermore a stand-alone soft-
parameters, heavily exploiting the PyNN paradigm of uni-ware name@raViTois provided for the analysis of the map-
fied setup descriptions. Section 2.2.7 provides more detaiPing results (see Section 2.2.9).
on this.
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Fig. 9: Example FACETS wafer-scale hardware setup from
Ehrlich et al (2010): 12 FPGAs control 48 DNCs, which are
} connected to 384 HICANN ASICs.

2.2.4 The GraphModel Container

A data model calle@raphModelWendt et al, 2008) repre-
sents both the targeted biological and the configurable-hard
ware structure within the mapping software. It can be char-
acterized as a hierarchical hyper graph and consists of ver-
Fig. 8: Mapping PyNN neural network model descriptionstices (data objects) and edges (relationships betweerethe v
onto the configuration space of the wafer-scale hardwartices). A vertex contains a single data value. An edge can be
system. The three main processing steps, all operating dime of the following types:
one unified data container (GraphModel), aa the plac-
ing of neurons onto the available circuitry)(the realiza-
tion of _s;ynaptic_ co_nnections by appropriat_ely configuringnamed: forms a directed and named relation between
the avallable_routlng infrastructure on the device, ant) @he any two vertices in the model
transforr_nahon of neuron and synapse parame_ters into COfyper: assigns a vertex to a named edge, characteriz-
respondmg parameter values offe_red by the_ hlghly config- ing the edge in more detail
urable device. The latter step can involve calibration tata
tune individual sub-circuits such that the effect of unadvoi The major advantage of this graph approach are the imple-
able transistor-level variations onto the mapped models ig1entation convenience and efficiency as well as the flexibil-
minimized. ity to achieve the complex requirements from both the bio-
logical and the hardware model. Due to the structure of the
graph model it can be easily (de-)serialized, providingesav
2.2.3 Internal Hardware Description and restore functionality. Via the path-based query-laggu
GMPath(Wendt et al, 2010) information can be dynamically
Prior to the mapping process we have to define the harqetrieved from and stored to the models. The GraphModel is
ware in an abstract manner. For this purpose we utilize thfsed to store all information during the configuration pro-
path languag&MPathto set up an appropriate GraphModel cess j.e. the models themselves, the mapping, routing and
(both described in Section 2.2.4) as a versatile interfal re parameter transformation algorithms data and their result
resentation. Figure 10 shows the graph model representation of a bi-
In Figure 9 a FACETS wafer-scale hardware setup - alsg)ogical network (calle®ioGrapH and its hardware repre-

applied in Ehrlich et al (2010) - is illustrated. As descdbe sentation (calletiardwareGraph, connecting elements via
in Section 2.1, the fundamental layer of the FACETS wafery,gmed edges after a placement step.

scale hardware is an array of reticles shown as light gray

squares, housing the HICANN circuitry that implementSthe Query Language GMPatfio retrieve information from
neural functionality, with a second layer of DNCs above.5q propagate data to the graph models, the path-based
The third and topmost layer represents a regular grid °&uery language&sMPath was developed, providing a uni-
FPGAs, colored dark gray. versal interface for placing and routing algorithms as well

hierarchical: models a parent-child relationship, stitiog
the model
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. S ~ Fig. 11: An example GMPath request to retrieve all assigned
Fig. 10: A simplified example of two graph models, assign-neyrons of the biological model.

ing neural elements to hardware components.

. ) . o ] - minimize neural connection count cluster-wise
as for configuration, visualization and analysis tools (dfen comply with parameter limitations

et al, 2010). Based on so-called navigational steps, a path comply with cluster capacities (neural capacity of hard-
request can enter the model at any point (node or edge) and |, .0 elements)
addresses iteratively the logical environment by . minimize routing distances

- shifting the focus hierarchically up- or downward
- shifting the focus back and forth along edges

- filtering according names

- concatenating sub-queries

In order to achieve these objectives with user-defined
weightings in acceptable computation time, a force-based
optimization heuristic was developed. This algorithm bal-
ances modeletbrces(special implementations of the opti-

The results are lists of nodes or edges and serve the rgtization objectives) in an-dimensional space until an equi-
guesting software as model information input. Becausesof itlibrium is reached and a final separation step assigns data
string based format and the ability to address nodes or edgedbjects to clusters with affine properties. Despite thidpro
unambiguously, the queries can be created conveniently aheim being NP-complete, significantly improved results can
dynamically at runtime and can be used to extend and modbe found with this algorithm in an acceptable computation
ify the models. time, as compared to a fast random placement.

Figure 11 exemplarily shows subsequent navigational Figure 12 illustrates a placement process, divided into
steps of an executed path request, which enters the abstraet optimization step, which sorts the given biological net-
hardware model at its root, addresses all existing HICANNwork for optimal hardware utilization with regard to the in-
nodes and finally follows incoming mapping edges to theiput source variability, and an assignment step, defining the
origins, the neurons of the biological model. physical realization of neural elements on the hardware sys

tem.
2.2.5 Neuron Placement

2.2.6 Connection Routing
The process of assigning neural elements like neurons,
synapses or their parameters to distinct hardware elenisentsThe routing step allocates and configures the hardware re-
calledplacementlt can be characterized as a multi-objectivesources for establishing the synaptic connections in the al
optimization problem, the solution of which significantly ready placed BioGraph. Given the fixed amount of available
influences the overall mapping results. Typical algorithmi resources it is not evident a priori whether arbitrary netwo
approaches create clusters of cells with common propertigspologies are always perfectly reproducible.
that are mapped to the same HICANN building blocks. Pos-  Synaptic connections can in principle be established via
sible optimization objectives are: the L1 and L2 infrastructure (see Section 2.1.3). In the ap-

. minimize neural input/output variability cluster-wise proach described here, all intra-wafer connectivity isedu
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MC;JIE!-OPjetC_tive space. It is performed HICANN-wise. Biological data is
prmLaron e Countn first acquired from the so-calleBioGraph of the Graph-
Model (see Section 2.2.4) and then transformed into a hard-
ware configuration, which is stored back into thard-

wareGraph For an adequate biology-to-hardware transla-

£
§ tion several constraints have to be considered, such as hard
2 ware imperfections and shared or correlated parameters in
. the microchip.
Assigment For the membrane circuits, a two-step procedure was
""" developed to translate the 18 biological parameters from
1 - .
2 synapse/ synapse/ synapse/ the PyNN dgs_cnpﬂon to the _24 electrllcal parameter; of the
g NBelt;rcT(n N;t;rc?(n N;t;;cla(n HICANN building block. The first step is to scale the biolog-
k. ical neuron model parameters in terms of time and voltage.

At this stage, the desired acceleration factor is chosen and
Crossbar | applied to the two time constants of the neuron model. Then,
Switch Element the biological voltage parameters are transformed to match
the voltage levels of the HICANN building block. The sec-
Fig. 12: An example placement, divided into an optimizationond step is to translate those intermediate values to agprop
and assignment step. ate hardware parameters. For this purpose, each part of the
membrane circuit was characterized in transistor-levet si
ulations, which were used to establish the translation-func
tions between the scaled AdEx parameters and their hard-
ware counterparts.

exclusively on L1. The L2 network is reserved for inter-
wafer connections in a multi-wafer system.

The intra-watfer routing algorithms were developed in However, due to transistor size mismatch in the hard-

close cooperqﬂon with the watfer deS|gn (Fieres et al, 20082/vare, these translation functions are expected to diftenfr
Some hard-wired features of the L1 infrastructure are thus

. . . . . neuron to neuron. A calibration software has been developed
laid out to optimally suit the routing requirements. Thetrou P

N . . . to automatically parameterize these translation funstfon
ing itself is performed in two stages. The first stage estab- yp

lishes connections on a HICANN-to-HICANN level via the each neuron. For each neuron model parameter, the- soft-
. . . L ware will send a spectrum of values to the HICANN build-
horizontal and vertical L1 buses, mainly by configuring the.

bus repeaters and sparse crossbars (see Figure 5). Inthe dng block, and measure the resulting membrane potentials of
b b g i {he current cell. It will then deduce the corresponding AdEXx

ond stage the signals are routed from the vertical L1 bus
: . . arameters from these measurements, and store the value
lanes into the synapse arrays via the sparse switch matri-". " .
: airs into a database. After a given number of measurement
ces, the synapse drivers and the address decoders of the

: L points, the algorithm will compute the relation between the
synapses, the latter not being shown in Figure 5. :
. . . ._hardware parameters sent to the floating gates and the AdEx
The algorithms were proven in various test scenarios: : L .
. arameters, and store this function into the databaserd-igu
Homogeneous randomly connected networks with up tQ .. L )
. 3illustrates the calibration software architecture.
16,000 neurons, locally connected networks (according to L :
: Once the calibration step is done, the database can be
Tao et al, 2004) as well as a model of a cortical column

. . maticall nver f biological neuron pa-
(following Binzegger et al, 2004 and Kremkow et al, 2007)used to auto "’?‘ cally convert a set of biolog caineuron pa
) . . rameters to their hardware counterparts, allowing onflihe-
with 10,000 neurons. It turns out that in typical cases only .
onversion of neuron parameters for the wafer-scale hard-

a small amount of unrouted connections must be acceptea
Wware system.

mainly due to limited resources in the second routing stage. . : .
y gstag Concerning the synapses, there are mainly two restric-

However, it was also shown that by decreasing the density of . . L
. . " lons ensuing from the chip design: 256 synapses of the

the neuron placing the routing can be generally facilitated .

. . same row share the maximal conductagggand the short

at the expense of a larger portion of idle hardware synapses. - . . .
. . : teérm plasticity mechanism, and weights are restricted to a
The routing algorithms proved to be also applicable for, ", . . : .
4-bit resolution. By averaging over all active synapses, th

the benchmarks described later in this publication, see Se ) . . -

: . ransformation algorithm determingsax and sets the digi-

tion 2.4 and Ehrlich et al (2010). . . . ; . .
tal weights accordingly, usingtochastic roundingo avoid

. systematic errors.
2.2.7 Parameter Transformation y

The parameter transformation maps parameters of given
neuron and synapse models into the hardware parameter
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form and gathers statistical data. One can selectivelysacce
Database AdEx single nodes inside the data structure and visualize tbair ¢

Simulation text, dependencies and relations with other nodes in the sys
1 1 tom.
Datab — 9 .
I:tearf;z: — Calibration S T
Oscilloscope Floating Gates
Interface Interface
. Hardware
Oscilloscope  <—
System
Fig. 13: Architecture of the calibration software. The main|
component, the calibration controller, executes the calib

tion algorithms and communicates with the hardware, the
oscilloscope and the database via dedicated interfaces. Th
calibration software also incorporates an AAEx model sim-

ulator to compare software and hardware results. The example of the GraViTo views showsree viewon

the left which is utilized to browse the hierarchical sturet

of the graph model and examine contents and connections
of individual nodes. Th&-D viewon the right provides a
virtual representation of the FACETS wafer-scale hardware
In order to further demonstrate the versatility of thesysten_w for interactive_ly browsing its arc_hitecture and_—con
GraphModel-based mapping flow introduced in secfiguration. It also provides a global overview over the sm_gl
tion 2.2.4, we briefly outline the adoption of this procedurgh@rdware components and the networks they form. Various
to the operation of the FACETS chip-based systems (Se%tatIStICS such as h|stograms for utilization of the crassb
Section 2.1.5). This integration avoids code redundanc§' the synaptic connection lengths are gathered and can be
by unifying the previously independent PyNN back-endsdisplayed. . . _ o
and allows to map neural architectures onto inter-condecte Another option for a systematic mapping analysis arises
chips beyond single-chip boundaries (Jeltsch, 2010). Duffom the previously mentioned possibility to re-transkie

to the flexible design of the mapping framework, the trans0onfigured HardwareGraph contents via the mapping edges
lation of the PyNN description into the biological graph throughthe BioGraph intoBostMappind®yNN script. This
representation (see Section 2.2.2) and the placing ofdpiolo script |ntr|_nS|caIIy contains all model distortions (_:ade‘(g_/

ical neurons onto their hardware counterparts (see Sectidh® Mapping process, e.g. lost synapses and discretized or
2.2.5) could be kept completely unchanged. Necessary eliPPed parameter values. Exploiting the PyNN concept, it
tensions were limited to the development of a new internaf@n then be directly evaluated with a software simulator to
hardware model that captures all features of the chip-baségtract possible functional consequences of the structura
system as well as adapted versions of the routing and tpfdistortions, avolldln.g |nterfere.nces.W|.th c_)thereffed{e lon-
parameter translation (described in Section 2.2.6 and 2.2.Wafer communication bandwidth limitations.

respectively) to match the different network topology and .

electrical parameters. Together with the low-level evesitd 2-2-10 Hardware Low-Level Interfacing

tribution network established by Friedmann (2009), neura'la\ ialized protocol of the cl oblective AR®)
network models can now be scaled to multiple chips. specialized profocol of the class selective pro-
tocolsis used to provide a fast and reliable communication

channel with the neuromorphic hardware device. In the OSI
model? this corresponds to the transport layer.

The applicatiorGraph Visualization Tool — GraViTas de- Con.figura'.tion and experimental d_ata is bidirectionally
scribed by Ehrlich et al (2010) aids in analyzing the mapping}r"’msm'tted via two 168is Ethernet links per FPGA. In
results. GraViTo, as shown in Figure 14, integrates several® automatic Repeat reQuest

modules that display graph models in textual and graphical® Open Systems Interconnection model

Fig. 14: Screenshot of the GraViTo application.

2.2.8 Application of the Mapping Flow onto the FACETS
Chip-Based System

2.2.9 Mapping Analysis and Visualization
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order to handle up to @Bytgs of traffic while keeping the A purely software-stack-based test has been developed
load of the host computer as low as possible, several softhat establishes a reliable ARQ connection between two host
ware techniques have been applied to the protocol implezomputers via 10 Gigabit Ethernet. With a hardware-specific
mentation. Various features of existing transport prokco version of this protocol, i.e. with frame sizing and protbco
notably TCP, have been implemented, including congestiowindow size, it delivers 10Bis (Schilling, 2010).
avoidance, RT¥ estimation and packet routing to keep the
connection in a stable and bandwidth maximizing regime.

In matters of performance the framework is divided into2-3 Virtual Hardware
three mainly independent processthgeads(see Figure 15, o
receiver threadRX, sender threa@X andresendthread) to An executable specification of the _FACETS Wafer-sca_le
exploit the speed-up in execution of modern multiproceshardware system serves as a versatile tool not only during
sor systems. Performance critical data, e.g. spike data c&lgVvice design and optimization, but also as a test bench for
be placed inshared memonand passed to and from the all involved software layers. It |s_afunct|onal mod_el _thanc
hardware abstraction layers such as to avoid unnecessa?§ Used to explore the behavior and characteristics of the

copying. These shared data structures have to be protectétf! wafer-scale system in its final phase of development.

against concurrent accesses which imposes an additional _
overhead in processing time. Thus, to keep the number &-3.1 Implementation
system calls and context switches small, access to data lo-

cated in shared memory is protected by means of custofﬁhe so-calledvirtual hardware is a detailed simulation
built user-space fencing and locking methods. of the final hardware platform and has been implemented

in C++/SystemC (Mogginger, 2010). The virtual hardware
replicates its physical counterpart in all aspects regardi

:] functionality and configuration space. Every module of the

[ ] real hardware has its functional counterpart in the virtual
[ } { } device, where especially the interface and cqmmunlcatlon
structures accurately correspond to the physical system. |

Shared Memory implements all analog and mixed-signal modules such as
Experiment i i ili-
(Conﬁggmorlsz Ctrl) Ad.Ex neurons and dyngmlc synapses (depressing and facm
config (GM*) tating), as well as all units responsible for L1 and L2 rogtin

sendST (GM¥)

recysT (GM") Compared to analog and R¥d_hardware simulations, this
model is tuned towards simulation speed using behavioral
models of all relevant functional components. However, it
is possible to replace individual modules by more sophisti-
cated models, all the way down to simulating single wires
on the chip.

The current implementation of the virtual hardware dif-
fers from the real hardware system in several aspects, most
of them meeting efficiency considerations. The executable
system specification is not operated from a host PC but di-
rectly from higher software layers, such that the host-to-
system communication is not simulated. Furthermore, the
configuration of the HICANN building block and its com-
ponents is not conducted via packets received from L2, as
the software implementation of the used protocol is stifl un
Fig. 15: Configuration and runtime control steps in the hardder development. Instead, every HICANN obtains its con-
ware abstraction layer: THexperimentmodule acquires the figuration via direct access to the GraphModel (see Sec-
configuration data from the Mapping Process (see SectiofiPn 2-2.4). Despite these differences the virtual harewar
2.2.2 and Figure 8), generates a hardware-specific represdfMmains a proper replica of the FACETS wafer-scale sys-

tation of this data and triggers the transfer to the hardwarte™M Providing equal functionality while not suffering from
system. hardware-specific constraints like transistor-level infgpe

tions from the manufacturing process.

Configuration

Hardware Configuration Classes

Hardware APl &
Communication

11 Round Trip Time .
12 Register Transfer Level
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2.3.2 Analysis And Verification Based On Virtual HardwareMemory benchmark model, a total numberNf = 9 hy-
percolumns and a sub-sampling\gf. = 8 minicolumns per

With its functionality and flexibility, the virtual hardwaris  hypercolumn has been used.

an essential tool for the development of the software frame-  The arrangement of the cells in the local microcircuit to-

work operating the FACETS wafer-scale hardware This ingether with connection probabilities is shown in Figure.16a

cludes the PyNN interface and the placement, routing and

parameter transformation algorithms (see Sections 2ri2l1 a

2.2.2), which can already be tested and verified despite the s00um

real hardware not yet being available. The development of o

a hardware system, which shall be useful in a neural mod-| ¢

eling context, can be strongly supported already during its||

design phase by determining constraints inherent to the sys| |

tem architecture, such as communication bottlenecks or the |

effect of shared and digitized parameters. Their influence| |

can be evaluated without the interference of hardware im-|

perfections or a missing calibration. Such studies buitd th
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basis for improvements in the hardware design or, if pos- APyramidal @it @ rsne
sible, the development of software-based corrections. The
virtual hardware can be used from PyNN-like any other sup- (a) L2/3 network architecture

ported software simulator, thereby also offering an early
modeler’s perspective onto the capabilities of the future
FACETS wafer-scale platform. Any PyNN-model, in par-
ticular the benchmark models described in Section 2.4, can
be applied to this setup. Their output can later be analyzed
and compared to reference software simulations, revealing
the impact of hardware constraints onto the model behav-
ior, e.g. the loss of certain synaptic connections durirgy th
mapping process.

2.4 Benchmark Model Library (b) L2/3 model with 9 HC and 8 MC each

We will now present a set of experiments that serve a&ig. 16: Schematic detailing the network arrangement and
benchmarks for the previously described mapping procesd!! the excitatory and inhibitory pathways between différe
The setups are implemented in PyNN and have been cogell groups and their connection densities in the L2/3 At-
tributed by FACETS project partners. They not only covertractor Memory network model. (a) Connectivity densities
various Computationa| aspects like memory, pattern rdeognOf the Sub-sampled network model. See the text for further
tion, robust information propagation in networks or dynami description. (b) Cartoon of a network with 9 hypercolumns
switching between different functional modes, but alsg/ver (HC). Each hypercolumn has 8 circularly arranged minicol-

different structural characteristics. umn (MC). The large disc at the center of each hypercolumn
represents a population of basket cells. Dashed lines show
2.4.1 Layer 2/3 Attractor Memory Model mutually exciting minicolumns that are distributed over di

ferent hypercolumns, forming a pattern.

The model used here remains faithful to the model of neo-

cortical layers 2/3 in Lundgvist et al (2006), and in doing so

retains the modularity that is the key aspect of this archite N the default variant of the model, each minicolumn
ture (Lundqvist et al, 2010). It represents a patch of cortegonsists of 30 pyramidal cells densely connected to other
arranged on a hexagonal topology\f. hypercolumnseach Pyramidal cells in the same minicolum®:{s »vx = 25%)
separated by 500m, in agreement with data from cat cere- and tworegular spiking non pyramida(RSNP) cells that
bral cortex recordings. Each hypercolumn is further subdiProject toPwswerve= 70% of the pyramidal cells. Each hy-
vided intoN, minicolumns, and various estimates suggesPercolumn has 8 basket cells, with each pyramidal cell in
that there are about 100 minicolumns bundled into a hype@ Minicolumn targetingfr.qxs = 70% of neighboring bas-
column (Mountcastle, 1997; Buxhoeveden and Casanov&et cells, and each basket cell targetigs vz = 70% of
2002). For the default version of the Layer 2/3 Attractorn€ighboring pyramidal cells. The extent of basket cell in-
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Martin, 2004). Apart from these local connections, pyra-
midal cells located in different hypercolumns are also con-
nected globally B,c..c = 17%). The cartoon in Figure 16b
shows how the minicolumns in different hypercolumns, de-
noted by dashed lines, are connected. We developed meth-
ods to scale this architecture up or down by means of both
N.c and N, without losing its functionality. They are de-
scribed in Section 2.5.1 and experimentally applied in Sec-
tion 3.2.

Thus, a set of mutually exciting minicolumns distributed (a) Phase space trajectory projection
over different hypercolumns represents a stored pattean or
attractor of the network dynamics. RSNP cells in a minicol-
umn also receive long-range excitation. They are excited by
distant pyramidal cells, given their home minicolumn is not
part of the active pattern, thus inhibiting the pyramiddlsce
in the minicolumn. In this network, we can store as many
patterns as the number of minicolumns in a hypercolumn,
but by allowing for overlapping memory patterns the num-
ber of stored patterns can be increased significantly.

Figure 17 shows a raster plot of the activity of the net-
work, when all pyramidal cells are excited by individual
Poisson inputs of the same rate.

hibition is limited to its home-hypercolumn (Douglas and Attractor 3 W
. Point of View
”
Cd

Attractor 2

Attractor 1

0 2 4 mV
—t—

(The projection plane is perpendicular to the main diagonal.)

(b) Mean voltage trajectory

0 ;500 1000 1500 2000 2500 3000 3500
Time [ms]

0 4 8Hz
-

Fig. 17: Raster plot of characteristic activity of an L2/3 At

tractor Memory network with 9 hypercolumns and 8 attrac-
tors. (c) Mean rate trajectory

(The projection plane is perpendicular to the main diagonal.)

Fig. 18: (a) Construction of phase space projection plots as

Whenever an attractor becomes stronger than the otheggown e.g. in (b) and (c): The trajectory inaimensional
(which happens randomly), it completely suppresses thejphase space (heme= 3) is projected to a hyper-plane per-
activity for a short period of time. pendicular to the main diagonal. (b) Trajectory projectibn

Pyramidal cells in an active attractor are in a so-calledhe attractor network state evolving in 8-dimensional mean
UP-state, where their average membrane potential is a fewpltage and (c) mean rate phase space. Axis values represent
mV above its rest value. When plotting the trajectory of thethe projected offset from a base value, which is the neuron
system in potential space, with each axis representing th@sting potential (in mV) for the voltage traces and OHz for
average membrane potential of all neurons inside an attrathe rate traces. The curve becomes thicker and darker as the
tor, a projection along the main diagonal (the line which isphase space velocity decreases.
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equidistant to all axes) will yield a typical star-like patt

(see Figure 18). 6001 |
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also weaker patterns may become active at times. Time [ms]
2.4.2 Synfire Chains Fig. 20: Raster plot of characteristic RS activity of the Syn

fire Chain without (top) and with (bottom) feedforward in-
Similar to classicaBynfire Chain model@iesmann et al, hibition. Note the constant spike packet width in case of the
1999: Aviel et al, 2003; Kumar et al, 2008, 2010), the ver-ctive feedforward inhibition mechanism.
sion chosen as a mapping benchmark consists of a chain
of neuron groups connected in_a feedforwa}rq fashigq, wiﬂ}_4_3 Self-Sustained Al States
a certain delay in between. This allows spiking activity to

propagate along the chain in a given direction (see Figrandomly connected networks of integrate-and-fire neurons
ure 19). In addition to this, the benchmark Synfire Chaingre known to display asynchronous irregular (Al) activity
model implements feedforward inhibition by subdividing gtates. where neurons discharge with a high level of ir-
each group into eegular spiking(RS), excitatory (80%) and  reqularity, similar to stochastic processes, and with a low
afast spiking(FS), inhibitory (20%) population (Kremkow |eye| of synchrony (Brunel, 2000). These states were also
etal, 2010b,a). Inhibitory cells are also activated by feed  found in various other network models, including those us-
ward projections of excitatory cells from the previous grpu ing conductance-based (Vogels and Abbott, 2005) and non-
but project only locally onto the excitatory populationbét  jinear integrate-and-fire neuron models (Destexhe, 2009).
same group with a small delay. This allows a fine controlrhey were shown to have properties very similar to the
over the duration of spiking in a single group and preventyjischarge patterns observed in awake animals (El Boustani
temporal broadening of the signal as it gets passed dowg | 2007). Because cortical neurons are characterized by
along the chain. In the original model of Kremkow et al hoplinear intrinsic properties (Connors and Gutnick, 7990
(2010D), a Synfire Chain group consists of 100 RS and 23 choice of an Al state benchmark is based on the AdEx
FS cells. Every cell, RS or FS, receives a total of 60 excitaneyron model. These nonlinear IF cells are implemented in
tory inputs from the previous RS population. Additionally, {he FACETS wafer-scale hardware (see Section 2.1.2) and

every RS cell receives input from all 25 inhibitory neuronsyeproduce several cell classes observed experimentally in
of the FS population within its own group. The inhibition is ¢ortex and thalamus (see Destexhe, 2009).

tuned such that every excitatory neuron gets to spike gxactl e particularity of the Al benchmark model is that it
once upon activation (see Figure 19). allows testing the influence of the various cell classes en th
genesis of Al states by varying the different cellular pmpe
Group 1 Group 2 Group n ties. The model considers the most prominent cell classes in
cerebral cortex, such as tregular spiking(RS) cell, thefast
Stim“'us spiking(FS) cell, thdow-threshold spikéLTS) cell and the

;W‘ | ::é ::é burstingcells of the thalamus. It was found that randomly

connected networks of RS and FS cells with conductance-

based synaptic interactions can sustain Al states, but only

Fig. 19: Schematic of the Synfire Chain benchmark modelif the adaptation currents (typical of RS cells) are not too
strong. With strong adaptation, the network cannot sustain
Al states.

Methods to scale the size of this model up or down are  To the contrary, adding another cell class characterized
available and described in Section 2.5.1. Different aethit by rebound responses (the LTS cell) greatly enhanced the
ture sizes are used to benchmark the quality of the previppustness of Al states, and networks as small as about 100
ously described mapping process. See Section 3.3 for evaleurons can self-sustain Al states with a proportion of 5%
uation data based on scaled benchmark models. of LTS cells. Interestingly, if two of such networks (one it

Pulse Packet
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strong adaptation, another one with LTS cells) are reciprobandwidth impose rather inflexible constraints on parame-
cally connected, the resulting 2-layer network can geeeratters such as number of neurons and synapses or the amount
alternating periods of activity and silences. This patisrn of accessible data. On the other hand, as VLSI hardware
very similar to the Up- and Down-states observed in corticals, inevitably, subject to manufacturing process variaio
activity during slow-wave sleep (Steriade, 2003). Redgcin individual circuits have varying characteristics, whicinc
the adaptation leads to sustained Al states, and is reminisnly be compensated by calibration to a certain degree. As
cent of the transition from sleep to wakefulness, a sort oéll these effects influence the dynamics of an emulated net-
“wakening” of the network. In the context of this paper, we work simultaneously, it is usually very difficult to identif
use two variants of such networks as benchmarks: First, the connection between an individual cause and its effect.
network of RS, FS and LTS cells as a minimal model of Al The most straightforward solution is to artificially impose
states. Second, a 2-layer cortical network displaying Up anindividual hardware-specific distortions on software danu
Down states. The latter is depicted in Figure 21. tions, identify their impact on the network’s dynamics and
find, if possible, suitable compensation mechanisms.

Cortex Layer A

AAAA A A A rsc 2.5.1 Network Scaling
... 00 Q\X/, Q@O - sc It is very often the case that the robustness of a network
scales together with its size, or, in specific cases, with the
size or number of individual components. However, before

. ‘/\‘ oo FsCells analyzing the effects of distortions, it is indispensabldé-
:y"g: 5% jt vise a way of scaling the (undistorted) network without in-
...A A A A fluencing its dynamics. We have developed specific rules for

Cortex Layer B scaling two of our three benchmark models, in order to both

. . ) explore and learn how to circumvent the limitations of the
Fig. 21: Schematic of the Self-Sustained Al States bend}iardware

mark model. It consists of two cortical layers A and B. Every

Iaygr has an_excitatory and an inhibitory population, edch OLayer 2/3 Attractor MemoryThe most obvious and natu-
which c_ontams certain sets of pell types (RS, FS, LTS) th al scaling of an attractor memory network lies in changing
detgrmme the netyvork dyr_1am|cs (see text for details). _Th‘tahe number of attractors, i.e. in this particular case thanu
excitatory populations project onto every other popufatio ber of minicolumns per hypercolumn. Also, the size of the

while the inhibitory populations only act within their laye attractors can be evenly scaled by changing the number of
units per attractor, i.e. the number of hypercolumns. Binal

Also this model can be scaled up and down in its sizdhe size of the minicolumns itself can be scaled, by varying
in order to benchmark the PyNN-to-hardware mapping proghe number of neurons per column (excitatory and inhibitory
cess. In its default version, layer A consists of 1600 excitaPOPulations can be individually tuned by changing the num-
tory RS and 400 inhibitory FS cells. Layer B contains 4000€" Of pyramidal and RSNP/basket cells, respectively).
excitatory neurons, 90% of which are RS and 10% of which 1 n€se changes would heavily affect the network dynam-
are LTS type, as well as 100 inhibitory FS cells. Within aiCS: Were they not accompanied by corresponding modifica-
single layer the connection probability is 2% for a networktions in the network connectivity. The behavior of the net-
size of 2000 cells. For smaller networks as for layer B theVork is likely to remain unchanged if the excitation/inhi-
connection probability is rescaled inversely to the nekwor bition patterns of each neuron are kept intact. This is most

size. The inter-layer connectivity is excitatory only arash €2@sily accomplished by keeping both the excitatory and the
a connection probability of 1%. inhibitory fan-in of each neuron constant without modifyin

synaptic weights. To this end, simple scaling formulae-(lin

ear with respect to size and number of the afferent popula-
2.5 Analysis Based on Software Simulations tions) for the connection probabilities between poputstio

have been derived.
Compared to pure software simulators, dedicated neuro- Figure 22 shows a scaling example where the number
morphic hardware suffers more from limitations and im-of attractors is varied. At first glance, it may seem that the
perfections, which may either directly distort the morphol characteristic attractor dynamics are affected, as thegee
ogy of the emulated network or influence its dynamics inattractor dwell times decrease from about 300 ms to under
more subtle ways. On one hand, physical limitations such a800 ms. However, this is only an apparent effect, as the tem-
size and number of implemented circuits or communicationporary dominance of individual attractors is a result oflloc
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Therefore, modifying a population size by a factorsim-

ply requires that all connection probabilities are modified
by a factor Ya. Some difficulties may arise when popula-
tions become too small, as the binomial connection distribu
tion diverges away from a symmetric Gaussian, favoring a
smaller number of afferent connections and leading to activ
ity attenuation and eventually to a break in the pulse trans-
mission (Kumar et al, 2010). The straightforward remedy
is offered by the PyNN clagsi xedNumberPreConnector
which guarantees a constant but randomly distributed hum-
ber of inputs. If populations become too small to accommo-
date the required number of connections, synaptic weights
can be increased to compensate for the synaptic loss. The
same can be done to cope with synapse loss resulting from
the mapping process, as described in Section 3.1.1. Figure
23 shows a scaling example where both size and number of
populations are varied.
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Fig. 22: L2/3 network, scaled down to 9 hypercolumns (HC 5000 !
with 3 attractors and scaled up to 8 hypercolumns with = ! ! !
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tors means there is more competition among them, whi ! ‘
in mathematical terms translates to shorter, smaller faictt 200 400
tions in the input rate, therefore leading to decreasingldw
times. When only two attractors are stimulated, the dynam-

ics are not influenced by the total number of attractors in the Fig. 23: Synfire Chain scaling examples.
network, which supports our scaling rules.
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(b) 32 populations with 200 excitatory neurons each

Synfire Chain with Feedforward InhibitioScaling the Syn-

fire Chain is a comparatively simple task, as there are nd.5.2 Simulating Hardware Imperfections

feedback or recurrent connections. Scaling the number of

units does not require any changes in connectivity. Whefror this study, we have investigated several distortiontmec
the number of neurons per unit is changed, the dynamicgnisms which can be replicated in software simulations and
can be kept unmodified (synchronous firing within a popu-do not require the presence of the actual hardware.

lation) if the number of inputs per neuron remains the same.
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A first limitation of the hardware lies in the fact that ax- on learning. But so far there are no studies about the effect
onal and dendritic delays can not be programmed and the iof low weight resolutions and limited update frequencies
trinsic delays caused by the hardware communication infraen the functionality of single synapses and consequently
structure are very small when translated to biological-realneuronal networks. In the following, two directions of sgud
time. This means that, effectively, the hardware can not aowill be outlined and one detailed example will be given.
curately reproduce the dynamics of networks which rely on  First, the question of a required minimal resolution for
delayed transmission of action potentials between two consynaptic weights and their optimal update frequency is in-
municating neurons. vestigated. However, those two restrictions may be dom-

Two further distortion sources lie within the synaptic inated by production process variations that set the upper
circuits of the HICANN building blocks. Since the synap- limit for the functionality of the synapses. Production pro
tic weight resolution in a neuromorphic hardware system ixess variations cause the supposedly identical circuits fo
limited (see Section 2.1.2), large differences betweeagyn causal and acausal correlation measurement to differ due
tic weights which are mapped to the same synapse driveo variations in their transistors. This asymmetry limhe t
may cause significant changes to the synapses at the lowa&ecuracy of detecting correlations or in other words causes
end of the weight spectrum. Also, from our experience witha correlation offset. With respect to learning neuronat net
the FACETS chip-based systems (Briiderle and Milller et alvorks (e.g. Davison and Frégnac, 2006), we are especially
2009), we know that variations in the manufacturing processterested in the effects of hardware synapses on theityabil
can lead to a spatial synaptic weight jitter of up to 40% ofto detect synchronous input when embedded into an appro-
the intended valuex = 0.4y, assuming a Gaussian distribu- priate architecture.
tion), even after calibration. This might be fatal for netk® Secondly, the dynamics of discretized STDP are ana-
which rely on precise tuning of synaptic weights. lyzed based on the assumption that the weight discretiza-

Because of the limited bandwidth of the communicationtion is the most crucial restricting component influencing
layers (see Section 2.1.3), synapses may be lost during tllee dynamics of single synapses and whole networks. This
biology-to-hardware mapping process. Ensuing distostionanalysis is carried out with respect to the equilibrium viaig
depend strongly on the network topology and can becomdistribution that is obtained by evaluating an initial sgtia
arbitrarily high for sufficiently large and densely conreztt weight value in sequence. Within this sequence of weight
networks. evolution, the probability for causal evaluation is equal t

Additionally, neuron loss can also become a key factorthe one for acausal evaluation. Analytical equilibrium-dis
not necessarily due to hardware limitations (usually, pyna tributions (van Rossum et al, 2000) as well as numerical
tic loss becomes significant long before the number of netequilibrium distributions of continuous weights are used a
work neurons exceeds the number of neurons available camreference.
the hardware), but as an option to counteract synaptic loss Here, we shall discuss in detail one analysis on the ef-
by controlled reduction in the number of neurons. fect of low resolution weights within a neuronal network. In

Although it does not apply to the three benchmark netorder to isolate the functionality of a single synapse from
works we have studied, the hardware neuron model itselietwork effects a simple network is defined (Figure 40A). A
may become a limiting factor, when trying to map modelspopulation of pre-synaptic neurons is connected to a single
which rely on more complex neurons. However, we con-ost-synaptic neuron. THatermediate Giitig STDP model
sider this to be an unlikely case, as the AdEx model has beg&tig et al, 2003; Morrison et al, 2008) is used for the con-
shown to successfully reproduce a wide variety of spike patstruction of the look-up table (see Section 2.1.2). Develop
terns (Brette and Gerstner, 2005; Destexhe, 2009; Millneing synaptic weights are compared for either correlated or
etal, 2010) and has also proven very successful in emulatingncorrelated pre-synaptic input. Correlation within the-p
biological spiking activity (Naud et al, 2008). This is nbet  synaptic population is generated by a multiple interaction
case for the FACETS chip-based neuromorphic system (sgeocess (Kuhn et al, 2003), whereas in the uncorrelated case
Section 2.1.5), which only offers simple leaky integratela  the firing pattern of the pre-synaptic neurons are those of
fire neurons. Section 3.2 describes a setup where the missiRpisson processes. Results for the effect of discrete wgeigh
adaptation mechanism was compensated by tuning severah this network are presented in Section 3.2.4.
other parameters. To avoid expensive changes of the chip layouts, the

hardware restrictions are analyzed with preparative sofw
2.5.3 Analysis and Development of STDP in Hardware ~ simulations. Therefore the standard STDP synapse model

of the software simulator NEST (Gewaltig and Diesmann,
Synaptic plasticity on the highly accelerated FACETS2007) was modified by introducing a causal and acausal ac-
wafer-scale hardware (for a detailed description see &ecti cumulation circuit, a digital weight value and global weigh
2.1.2) provides a promising architecture for doing redearcupdate controllers. In the following we will call this the
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hardware inspired modelAs a reference mode&nother 3.1.1 Distortion Mechanisms and Compensation Strategies
software synapse model with continuous weight values anBased on Software Simulations
continuous weight updates, but with a symmetric nearest-
neighbor spike pairing scheme was implemented. Even with a virtual version of the hardware system being
Further analysis with focus on the weight update fre-available, software simulations remain a powerful analysi
quency is in progress. In the current prototype of thetool, especially since they offer access to the full range of
HICANN building block the causal and acausal accumu-dynamic variables of the modeled neural network, some of
lation circuits will be reset commonly, if a weight update Which may be inaccessible on the virtual hardware. In the
is performed. Such a common reset distorts the counterbdellowing, we will demonstrate the effects of different dis
ancing effect of the accumulation circuit receiving less co tortion mechanisms via software simulations and propose
relations, because the common reset suppresses the circgfveral methods to either circumvent or counteract them.
to ever elicit a weight update. Consequently the dominating hese methods are chosen such as to lie within the possi-
accumulation circuit, in terms of eliciting weight updates bilities of the hardware system.
drives all synaptic weights to its corresponding boundary
value. For future improvements, the performance gained bliayer 2/3 Attractor MemoryThe functionality of the L2/3
adding a second reset line to reset both accumulation tSrcuinetwork is best determined by a combined analysis of spike
independently will be compared to the performance gain duand voltage data. While a visual inspection of a raster plot
to a more detailed readout of these circuits. Details abowaf all neurons usually provides a good basis for evaluation,
these additional studies will be presented in a publicatio@ more thorough investigation of UP/DOWN-state statistics
that is in preparation. requires the analysis of voltages from a relatively larganu
ber of individual cells. Both the extraction of the full spik
data and of multiple voltage traces are not possible on the
3 Results hardware, making the use of software simulations indispens

. . _ able for a proper evaluation of the effects of mapping distor
In the following, a summary of results is provided, all tjgns.

of which have been acquired by means of the workflow | order to replicate a biologically plausible pattern of
described in Section 2. The presented data demonstrai&anal and dendritic delays, we have implemented a net-
the functionality of both the PyNN-to-hardware mappingyork geometry as exemplified in Figure 24, with distance-
framework and the virtual wafer-scale hardware system, agependent delays. When setting all delays to zero, we have
the applied benchmark models are shown to exhibit the ex;pserved no significant changes in the network dynamics.
pected functionality when processed by this environmentrhis is not unexpected, as this model relies more on firing

Examples of mapping-specific distortion analyses based oiytes rather than precise spike timing in order for paricul
reference software simulations are provided and discussegkiractors to become activated.

The effect of discretized synaptic weights, as implemented
in the FACETS wafer-scale hardware, is analyzed in the con-
text of an STDP benchmark. Scalability questions regard
ing the graph-based data structure for the mapping proce
are considered on the basis of experimental data. Furthe
more, we present first results of a successful application ¢
the presented AJEx neuron circuit calibration scheme ac
quired with a HICANN prototype.

3.1 Benchmark Results

The benchmark models and their target output descriptior
described in Section 2.4 represent an essential tool to te
and verify the workflow presented in this article on a high,
functional level. This is important especially in the cotite
of studies on neural network dynamics, where the identifi-
cation of erroneous components from the analysis of sparig. 24: Geometry of the L2/3 Attractor Memory model, the
tiotemporal spike patterns can be very difficult due to a lackunit on the axes igm.

of insight and intuition in the field of neural informationgpr

cessing principles.
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Depending on the amount of spatial synaptic weight jit-work becomes remarkably resilient, tolerating values gk hi
ter, the network shows varying levels of tolerance. For valas 40% (see Figure 26).
ues up to 25%, the dynamics only suffer minor changes. At
50% jitter, spontaneous activation is completely supgess
but activation via input from L4 remains functional, exltibi
ing the same phenomena of pattern completion and rivalr
as seen in the undistorted case (see Figure 25).
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Fig. 26: Synaptic loss tolerance of an L2/3 Attractor Mem-
o ory network. Synaptic loss was assumed homogeneous over
3500 all populations.
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In contrast to synaptic loss, the loss of pyramidal neu-
rons (which make up about 87% of the network) has only
little effect on the network dynamics, even up to values as
high as 50%, regardless of the number of minicolumns or

Because of its intricate connectivity, which spans botH'YPercolumns present (see Figure 27). It is, for example,
local and global scales, the Layer 2/3 Attractor Memory netPOSSible to have a functioning network with as little as 12
work was expected to be quite sensitive to synaptic loss. |rpyram|dal cells per minicolumn. This cwcumstance has ma-
deed, if the synapse loss is localized to certain attractord®’ cOnsequences for synapse loss compensation.
they become either inactive (for excitatory synapse loss) o YWhen synapse loss increases beyond a certain limit,
dominant (for inhibitory synapse loss). However, if syreps intra-attractor excitation and mter—a_ttractor inhibiti be-
loss is spread homogeneously over all populations, the net°Me 100 weak for attractor dynamics to emerge. The to-
tal number of synapses scales linearly with the total num-
ber of neurons (when network scaling conserves the affer-

Fig. 25: Effects of spatial weight jitter on a L2/3 Attractor
Memory network with 9 hypercolumns and 3 attractors.
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ent fan-in, as described in Section 2.5.1), so reducing th
neuron count represents a straightforward way of circum
venting synapse loss. This can be achieved by reducing tt 700
number of attractors (which may, however, not always be
desirable) or by reducing the number of neurons per attrac
tor by decreasing either the total number of hypercolumn
or the neuron count per minicolumn.

Elimination of pyramidal neurons (without re-scaling
the fan-in) is a much more efficient method in terms of
synapse number reduction, as the total synapse count h
an approximately quadratic dependence on the number | 100"
neurons per minicolumn. Since, for this particular network '
model, attractor dynamics are largely insensitive to pyra
midal cell elimination, as described above, this becomes a
method of choice when dealing with harsh bandwidth limi-

tations. . _ Fig. 28: (a) High synaptic loss destroys attractor dynamics
Especially in cases where synapse loss is relatively smaleveral methods for compensating or counteracting this ef-
and inhomogeneous, afferent synaptic input can be restorggct are presented in the text above. (b) shows the results of

by increasing the corresponding synaptic weights (see Fitcompensation by modified synaptic weights.
ure 28). While it is always possible to hereby establish the

required average firing rates of individual populationss th
compensation mechanism needs to be used cautiously, ag@ns. This can be achieved by increasing the corresponding
can influence spike train statistics and neuron input-dutpisynaptic time constants and decreasing the corresponding
curves. synaptic weights simultaneously (see Figure 29).

Spatial synaptic weight jitter may effectively cancel it-
Synfire Chain with Feedforward Inhibitiohe Synfire self out for large numbers of synapses, but can lead to
Chain model presented in Section 2.4.2 relies heavily on deskewed afferent input, especially in smaller networks. De-
layed transmission of action potentials between inhigitor pending on the amount of spatial jitter (variance of the un-
and excitatory populations. Eliminating these delays eaus derlying Gaussian, see Section 2.5.2), this might lead-to in
afferent EPSPs and IPSPs to overlap, possibly leading téividual excitatory neurons not firing, as a consequence of
suppression of efferent spikes (Kremkow et al, 2010a). Thig too low average afferent weight. This causes a chain reac-
makes a direct mapping of the model to the FACETS wafertion which leads to an increasing number of silent neurons
scale hardware impossible. However, as the hardware offefgr every subsequent population in the Synfire Chain, ulti-
the possibility of tuning synaptic time constants of indivi mately causing the activity to die out (see Figure 30a).
ual neurons, it is possible to compensate for missing delays Synapse loss has qualitatively the same effect, only man-
by adjusting the rising flank of EPSPs for the inhibitory neu-ifests itself much stronger, as it is not symmetrically dis-
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(b) 60% synapse loss, compensation by modified weights
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Fig. 29: (a) Delayed spike propagation is essential in the (b) Impact of synapse loss on signal propagation

original Synfire Chain model.(b) By modifying synaptic pa-
rameters (see text for details), effective afferent spikes
can be reproduced without propagation delays.

Fig. 30: (a) Sufficiently high spatial weight jitter causes a
breakdown of signal propagation along the Synfire Chain.
(b) Synapse loss is even more critical, completely attenuat
ing the signal after only few iterations.

tributed around zero. Even relatively low values of around

2% ComP'ete'Y suppress.the propagation O_f the_signal aﬁes‘.'oftware workflow and the general capability of the system
only few iterations (see Figure 30b). Both distortion mechat0 serve as a neural modeling platform.

nisms can be effectively compensated by increasing exci- getore applying the benchmark experiments (see Sec-
tatory synaptic weights (see Figure 31). Since all excitagg, 5 4, e determined the maximum reachable bandwidth
tory neurons within a population spike only once, simultaneof the L2 links (FPGA-to-DNC and DNC-to-FPGA) with
ously, modification of synaptic weights does not affect epik the aid of the virtual hardware. We have found that — despite

train statistics. the Poisson distribution of spiking activity — the achieved

The othgr obvious way of compgnsatlng synapse loss 'Bandwidth corresponds to the one theoretically expected
by decreasing the overall network size, as described for t om the data link speed and pulse packet sizes

L2/3 Attractor Memory network. This can be achieved by 1,4 gathered results were used to enhance the routing

decreasing either the number of populations or their sizq)f L2 pulse events to the wafer (see Section 2.2.6), which

Since the mapping algorithm tends to cluster neurons frofgiqyintes external spike sources over all available hsj

the same population together on neighboring HICANNS, reg oy, that the bandwidth provided by a given hardware setup

ducmg populaﬂoq sges IS morg efficient for reducing thels fully exploited. The application of this is crucial, when

required communication bandwidth. it comes to the realization of network models with either
high input rates as the Layer 2/3 attractor memory model, or

3.1.2 Analysis Based on Virtual Hardware highly correlated input as for the Synfire Chain, where hun-

) ] ) . dreds of spikes need to be delivered within a very small time
The benchmark experiments were simulated with the virtual i, yow Having these limitations in mind, one can choose

hardware, thereby verifying the functionality of the whole,[he size of the hardware setup properly before actually map-
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of the used parameters, i.e. the pulse volley only reached

unstable
Lo ~ single spike the second group. Nevertheless, we were able to regain the
mmm -~ 2 spikes benchmark functionality by compensating the synapse loss
0.8 2 W more than 2 spikes through either strengthened weights or downscaled neuron

populations (see Section 3.1.1).

0.6

1500

Synapse Loss

0.2f
1000 | 5

0.0
10

Weight Scale

Neuron #

Fig. 31: Synapse loss blocks the propagation of the sign: 5%} ; ; i ;
along the synfire chain (white zone). A synapse loss prob X
ability of p can be compensated very efficiently by scaling i | i
the weights by a factor af /(1— p) (thick black line:a = 1, | A | J
thick black line:a = 2.5). Note that the thin black line stays % 0 T T e— 16‘2, 50
within the light gray area that denotes a stable propagatio Time [ms]

with one spike per neuron. Increasing the synaptic weights.

even more, effectively overcompensating the synapse Iosg,'g' 32: Synfire Chain with 16 groups connected to a loop,

results in multiple spikes being fired by the excitatory neu-S'ml'”""ted on the virtual hardware.

rons (dark gray and black zone). The total number of spikes
per burst is limited by the refractory period and the time un-

tilthe firsf[ inhit.)it-ory spike, meaning that the signal does n Layer 2/3 Attractor Memory ModeT he presented software
broaden indefinitely. framework also performed very well when mapping such
an elaborated neural architecture like the Layer 2/3 attrac

ping neural experiments onto the FACETS wafer-scale hard®" memory .model onto the (thua!) FACETS wafer-scale
ware, in a way that all requirements are considered in term@ardware: Figure 33 shows the spike output of the default
of spatial and temporal issues (i.e. neuron / synapse afgodelwith 2376 neurons simulated on a virtual wafer snip-
bandwidth resources). pet containing & 2 reticles. This successful replication of
the benchmark’s dynamics not only underscores the correct

Synfire ChainThe Synfire Chain model with feedforward Qperation of the placing and routing algorithms (see Sec-

inhibition was successfully run on the virtual FACETS tions 2.2.5 and 2.2.6), but also indicates that the transder

wafer-scale hardware. The stable propagation of pulse Vo}lon from biological to hardware models (see Section 2.2.7)

leys from one group to the next is plotted in Figure 32. Inworks properly and does not distort the model’s behavior,

this case the network consisted of 16 groups with 100 exconcretely in this example a variety of different shortter

citatory and 25 inhibitory each, the groups were connecteBlaSt'C'ty settings could be transferred to shared harewar

to form a loop such that the activity would be sustained in_conﬂguraﬂons.

definitely. However, this model proved to be very sensitive

to distortions: If more than 2 neurons of a group do not fire S€!-Sustained Al StateBhe cortical network with self-

the Synfire Chain will die out immediately, because the |o_sustaining Al states was also successfully realized on the

cal inhibition comes up too early and prevents the excitaYirtual hardware. The single-layer cortical model was im-

tory cells from spiking. This happens also due to the lack oplemented fpr dlf_'ferent sizes and par_ameter_sets,_ where the
synaptic delays in the current implementation of the hargmodel functlopallty was preser_vc_aq without distortionseTh
ware, as only L1 connections are used for the routing of neutyvo-layer cort!cal network exh|b|t|ng Up .and Down states
ral events within the network. For upscaled versions of thié/vas.also reallzgd at the default Slze_W'th 2500 cells and
model and a restricted hardware size, where the mappin\qalry'ng adaptation parameters, see Figure 34 for an exem-
process yields a synapse loss larger than 5%, the functioR}a"Y raster plot together with a reference software simula
ality could not be sustained according to the high sengitivi 10" With NEURON.
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Fig. 33: Raster plot of the Layer 2/3 Attractor Memory

model simulated on the virtual hardware: firing activity is  2so0
shown only for pyramidal cells, default size with 9 hyper-

columns and 8 attractors. 2000

3.2 Cross-Platform Implementation of a Benchmark Model 1500

Neuron #

As a demonstration of the versatility of the methodological
framework discussed in the previous sections, this section
will present the implementation of one of our benchmark
models on three different back-ends: the software simula-  soof
tor NEST, the FACETS chip-based system and the virtual :
wafer-scale hardware. For this purpose, we have chosen the
L2/3 Attractor Memory model, due to its challenging con-
nectivity patterns and the interesting high-level functib

ity it displays. Because of the limited size of the chip back-

end, the original model needed to undergo some profounglig. 34: Raster plot of the two-layer cortical network ex-
changes, which will be detailed in the following sections.  hibiting Up and Down states simulated with NEURON (a)
and on the virtual hardware (b). Horizontal lines depict the
3.2.1 FACETS Chip-Based Neuromorphic System limits between RS, FS and LTS neurons of layers A and B.
The first cortical layer consists of 2000 cells, the second of
One ASIC in the current version of the FACETS chip-based00 cells. 10% of all cells are initially stimulated to in@uc
system as described in Section 2.1.5 offers 192 fully inasynchronous irregular firing in the whole network. The first
terconnectable leaky integrate-and-fire neurons withcstat |ayer is per se not self-sustaining, i.e. the activity dias o
synapses. Since the original model requires 2376 adaptingter a while, the second smaller layer is able to sustain its
neurons interconnected through plastic synapses, we had 4etivity due to a large number of LTS cells. The sparse con-
heavily modify the network configuration in order to keep nectivity between the two layers assures that the actinity i

its functionality. Reducing the total number of neuronsiiro - the first is reactivated by excitatory input from the second
2376 to 192 was done following the scaling rules describehyer.

in 2.5.1. In this context, the observation that pyramidéisce

can be lost without significantly affecting the dynamics of

the network became extremely useful. In order to providéninicolumn remained constant at 2. Thus, this setup imple-
re|ative|y |Ong dwell timesy we have chosen a Setup WitHT]entS the Original model architecture with exaCtly 192 neu-
only three attractors and four hypercolumns (i.e. four mini rons. See Figure 35 for a schematic of the resulting architec
columns per attractor). The number of basket cells per hyture.

percolumn was reduced from the original 8 to 6, while the ~ Due to a lack of neural adaptation and synaptic plastic-
number of pyramidal cells per hypercolumn was reducedty (which are both crucial in the original model, as they

from the original 30 to 12. The number of RSNP cells perimit the pyramidal cell UP-state duration), we needed to

1000

2 R e\ e y i E
2000 3000 4000 5000

Time (ms)

(b) Virtual Hardware
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Fig. 35: Geometry of the scaled-down L2/3 Attractor Mem- (@) Poisson inputwith an overall rate of 750, 1 and 550 Hz

ory network model. Note the greatly reduced number of hy-
percolumns (HC) and of pyramidal cells per minicolumn
(MC) as compared to Figure 24.

adapt the neuron parameters (leak conductance, reset, re:
threshold and reversal potentials) and synapse charmacteri
tics (weight, decay time constant) in such a way as to retair
as much as possible of the original dynamics, on average
One additional constraint which needed to be taken into ac-  sof -
count was the limited range of synaptic weights available on
the neuromorphic chip. We were able to compensate this, tc
some extent, by modifying the connection densities amonc ST e ;
the neuron populations. o w0 00 3000 s 5000

One important consequence is that because the networ Time [ms]
is unable to adapt, its dynamics change significantly. If one  (b) Poisson input with an overall rate of 750, 700 and 650 Hz
would only remove adaptation and plasticity, without chang
ing other parameters, the first attractor which becomes acti
vated would last indefinitely. Therefore, the removal ofthe
two mechanisms needs to be accompanied by a reduction ¢
intra- and inter-columnar excitation. This in turn cauges t
network to become much more input driven, which mani-
fests itself in an extreme sensitivity of attractor dwethéis
towards the momentary input activity. Dwell times become
more erratic and even small changes in the average inpu
rate cause attractors to become either dominant or viytuall ~ sof
inactive.

Also, due to the limited input bandwidth of the ASIC
(for the chosen architecture: 64 channels at about 80 Hz) _ - :
some degree of input correlation was inevitable, as each o o 1000 2000 3000 2000 5000
the 144 pyramidal cells requires a Poisson stimulation of Time [ms]

300 Hz. In order to maintain attractor stability, we havecho  (¢) Poisson input with an overall rate of 700, 800 and 600 Hz

sen to have no overlapping inputs for different attractors..
bping 1np . : ﬁ:|g. 36: Raster plots of scaled-down L2/3 Attractor Memory
(and thus zero correlation, for the Poisson input we have

used). This, on the other hand, leads to an increased inpﬁgtrvggzr?;gs;;c;;s chip-based neuromorphic system.

correlation among pyramidal cells belonging to the same at-
tractor, which, in absence of adaptation, tends to prolong
attractor dwell times.
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Figure 36 shows L2/3 Attractor Memory benchmark re-
sults acquired with the FACETS chip-based system: (a) At- 150 °
tractors have been excited by Poisson input with an overal
rate of 750, 1 and 550 Hz, respectively. Note the relatively
long dwell times, which are mostly due to high correlations
among pyramidal inputs within an attractor. The discreganc
in the input activity needed to ensure a balanced activatior
of attractors 1 and 3 is due to hardware manufacturing fluc-
tuations, which appear to be very complex in nature, often 50| .. ..
interacting with each other and being highly dependent on
the ongoing activity on the chip. (b) Attractors have been
excited by Poisson input with an overall rate of 750, 700

=
o
o

Neuron #

and 650 Hz, respectively. Note the large fluctuations in at- ~ 0F—4———— = o060 5000
tractor dwell time due to lack of adaptation which leads to Time [ms]
strongly input-driven dynamics. Also note that, in contras (a) Poisson input with overall rate of 550, 1 and 550 Hz

to Figure 36a, when attractor 2 becomes active, the input ac-
tivity of attractor 3 required an increase of 100 Hz in order
to achieve balanced activation. The most likely cause is ca:  5°[ ~
pacitive cross-talk between the analog circuits, whichegar
depending on the throughput rate. (c) Attractors have beer
excited by Poisson input with an overall rate of 700, 800
and 600 Hz, respectively. Note that only a slight increase of
the attractor 2 input rate, with respect to the other atbract
results in almost complete dominance of attractor 2. Again,
this is due to the lack of adaptive mechanisms. sof

100 -

Neuron #

3.2.2 Virtual Hardware

The scaled-down version of the L2/3 Attractor Memory net- 0= ~T600 7000 —o56 2000 5000
work model was successfully implemented on thtual Time [ms]
hardware(see Section 2.3). No changes had to be applied (b) Poisson input with overall rate of 700 Hz

to the model in order to realize it on the FACETS wafer-
scale virtual hardware, as the HICANN building block im-
plements AdEx-type neurons, which include the dynamics
of the leaky integrate-and-fire neurons from the chip-basec
system. The scaled-down model passed through the whol
mapping process described in Sections 2.2.2, 2.2.5, 2.2.
and 2.2.7 and was finally mapped and simulated on a snippe
of 2 x 2 reticles of a wafer.

The results of the virtual hardware simulation of the :
scaled-down L2/3 Attractor Memory network can be seen  sof
in Figure 37, where the individual attractors were stimu-
lated with different rates. Depending on the specific stim-
ulation, the network reliably exhibits the same behavior as
reference software simulations, which are described in the o 1000 2000 3000 2000 5000
following section. Figure 38 shows the 3-D visualization of Time [ms]
the network model and its mapping onto the wafer with the (c) Poisson input with overall rate of 700, 800 and 700 Hz
GraViTo software (see Section 2.2.9).

T o s = e e e

T

100

Neuron #

Fig. 37: Scaled-down L2/3 Attractor Memory network simu-
lated with thevirtual hardware Attractors have been excited

3.2.3 NEST Simulator by Poisson input with different overall rates.

The same PyNN script as in the previous sections was even-
tually used with the software simulator NEST, as a means of
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comparison to aideal simulation environment. By provid-
ing identical parameter settings, one can hereby gain a goo  wof
perspective for gauging the effects of the hardware-initere
fluctuations.

The results are practically identical to the ones from the
virtual hardware, perhaps not surprisingly, as it is not-sub
ject to hardware-specific manufacturing process fluctnatio
(see Figures 37 and 39).

Also, due to its small size, does the network not pose any 5o}
challenge to the mapping algorithm, making the hardware
realization a perfect replica of its software counteraiitl, S : i _
the successful emulation offers a convincing proof of the B B e

=
o
o

Neuron #

efficacy of our mapping work flow. 0% 0 -’10.00 ' zobb 3000 . 40‘06 » 5000
The chip-based neuromorphic device, on the other hand Time [ms]
is subject to the full range of hardware-specific distoion (a) Poisson input with overall rate of 550, 1 and 550 Hz

Nevertheless, the resulting network dynamics agree well
with the NEST results, requiring only small adjustments
in the input activity. These results are expected to greatly °f °
improve on the wafer-scale hardware, thanks to the supe
rior architecture of the HICANN units. Also, a much more
complex neuron model and the availability of both short-
and long-term synaptic plasticity mechanisms will make the
wafer-scale hardware much more capable of emulating bio-
logically accurate network models. o
As a conclusion, we note that the software results are in =~ so| “
very good agreement with the ones generated by our hard
ware back-ends, thus supporting our work flow concept anc
solidifying the position of our neuromorphic hardware as a

=
o
o

Neuron #

universal modeling tool. The particularly appealing featu 0= T050 2050 3000 000 5000
especially from a neural modeling perspective, is the seam: Time [ms]
less transition from software simulation to hardware emula (b) Poisson input with overall rate of 700 Hz

tion, which, from the perspective of the PyNN user, is ac-
complished by modifying a single line of code.
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Fig. 38: 3-D view of the scaled-down L2/3 Attractor Mem- (c) Poisson input with overall rate of 700, 800 and 700 Hz

ory network model (see Figure 35) and its mapping to the

wafer generated by the GraViTo software (Section 2.2.9). Fig. 39: Scaled-down L2/3 Attractor Memory network sim-
ulated with the NEST software. Attractors have been excited
by Poisson input with different overall rates.
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Fig. 40: A STDP evaluation network layout with variable correlatidaresgthc. Gray circles represent neurons, arrows
synapses. The spike trains of neurons contain random (fdexckcorrelated (red) spikeB.Mean (thick line) and standard
deviation (shaded area) of reference STDP synapses witblatad (green) and uncorrelated (blue) pre-synapticameur
Thin lines are single example trac&s.Like B, but with hardware inspired STDP synaps@sWeight distributions after
1000s for referencg)< 0.001) and hardware inspire@ & 0.05) STDP synapses.

3.2.4 Analysis and Development of STDP in Hardware  coefficients as low as = 0.05 a resolution of 4 bits is still
sufficient to detect synchronous pre-synaptic firing.

The effects of discrete synaptic weights on networks is ana-

lyzed by means of a simple network (Figure 40A). Ten pre-

synaptic neurons are connected to one post-synaptic neurdm Software Performance

using both the reference and the hardware inspired STDP

synapses as described in Section 2.5.3. In order to analyZde usability of any hardware modeling platform strongly

effects of discrete weights isolated from other hardwaee sp depends on the time needed for configuration and repro-

cific constraints the weight update frequency is set equal tgramming, thus the benchmarks introduced in Section 2.4

the time resolutio = 0.1 ms of the software simulator. The @lso serve as tests fecalabilityin terms of time and space.

spike rates of the pre-synaptic neurons are adapted in such Figure 41 shows that the space consumption foBioe

way that the post-synaptic neuron is firing at about 10 HzModeldata grows almost linearly depending on the number

In case of correlated pre-synaptic neurons their cormeiati Of neurons and the synaptic dengikyn Thus, for the given

coefficient isc = 0.05 (Kuhn et al, 2003). Varying the in- benchmarks, the model sizes for networks with a neuron

put spike rates or the correlation coefficient does not changc0UntNsjo < 10° and an approximate averaggyn < 10%

the conceptual outcome. As the currently implemented harcitay within an acceptable limit of 10 GByte. Furthermore,

ware synapses have a weight resolution of 4 bits, this resébe placement algorithms, in spite of the cubical problem,

lution is used to test the performance of the hardware. ~ 9row belowO(n?) and as such fulfill the requirement of a
Figure 40 shows the mean weight traces for runs witffeasonable runtime for complex mapping problems (Ehrlich

correlated pre-synaptic neurons as well as for separate ruft al, 2010).

with uncorrelated pre-synaptic neurons. In case of harewar

inspired STDP synapses (Figure 40C) the standard devia- 800

Synfire Chain o

tions of the mean weight traces are much larger than those 700 F L2/3 Attractor A
Self-Sustained Al &

of the reference STDP synapses. These increased deviations
are due to the large weight steps between adjacent discrete
weights. Applying a t-test to the synaptic weight distribu-
tion after 1000s shows that the hardware inspired STDP

w1
o o
o o

Model Size [MBytel
S
o
o

synapses can nevertheless distinguish between uncedelat 300
and correlated input. For hardware inspired STDP synapses 200 |
the probability that the synaptic weights of both populasio 100 |
are separated ig = 0.02, compared tg = 2- 108 for the

reference STDP synapses. This ability of distinction deter 103 10*
. e . . . . Number of Neurons
mines the ability of detecting synchronous input, which is
fundamental for most STDP applications. For correlatiorFig. 41: Mapping process scaling in terms36Modelsizes
(Ehrlich et al, 2010).
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3.4 HICANN Prototype Calibration 4 Discussion

In order to provide an example of its functionality, the €ali Within the FACETS research project, a novel type of neu-
bration framework described in Section 2.2.7 has been usedmorphic hardware system has been developed. The de-
to reproduce a biologically relevant tonic spiking neuron o vice combines massive acceleration, large network sizets an
the HICANN prototype. First, a reference simulation of aa high configurability with the possible advantages inher-
tonic spiking neuron using the AdEx model was createdent to analog designs, such as power efficiency and a time-
For this simulation, the adaptation and exponential termsontinuous operation. Following this strategy, neurorharp
were disabled. The simulated neuron showed a firing ratengineering has the potential to step out of its niche and pro
of 53.4Hz, which due to the speedup factor of the HICANN vide new and relevant input to neuroscience, e.g. towasgls th
system corresponds to 534kHz in the hardware domain. understanding of cortical dynamics. Still, as we noticed du
The calibration was performed on a hardware neuronng the development of our specific system and during first
and the calibration data was stored in the database. Then, texperiments with prototypes, the originally availablehtec
biological parameters from the reference simulation weraiques and tools were clearly insufficient for exploiting th
sent to the database, which provided the necessary hardwaretential of such devices in a modeling context. It is our ex-
parameters in return. The floating gates of the correspgndirmperience that the quality of interfaces that make hardware
neuron on the HICANN prototype were then programmedlexibility actually usable is as essential as the electroni
with these values. The results are shown in Figure 42. Aftesubstrate itself.
calibration, the hardware neuron showed a firing rate of 536 The presented work approaches this challenge by intro-
kHz, which is very close to the reference simulation. ducing a methodological framework that establishes a bal-
ance between the configuration complexity and potential
of a novel hardware system on the one hand and the us-
ability and spectrum of possible applications for modelers
without a hardware background on the other. This neuro-
morphic modeling workflow has been depicted both in its
conceptual whole and by means of detailed component de-
700 1 scriptions. It represents one major outcome of the inter-
disciplinary collaboration among FACETS partners, thgreb
integrating expertise and progress in the fields of physio-

900

800

Membrane Potential [mV]

600 T

0 5 . 10 15 20 logically well-founded cortex modeling, hardware enginee
T"“E[“_S] _ ing and community-driven software development. The mul-
(@) Reference simulation titude of the described components and their structured in-

teraction reflects the comprehensiveness we are aiming at.
We showed experimental data that provide a proof of
mature functionality of the implemented stack of model-
800 to-hardware translation tools. The experimental resuits o
mapping distortion studies on the basis of our virtual wafer
scale hardware system and reference software simulations
700 represent examples of ongoing analysis work that continu-
ously improves our software layer stack, the hardware de-
sign and our neuromorphic modeling experience. A dedi-

900

Membrane Potential [mV]

600 T

0 5 10 15 20 cated follow-up publication focusing on these analysis ef-
Time fus] forts is in preparation. In particular, this work soon to be
(b) Hardware neuron recording published will focus on computational aspects and address

Fig. 42: C _ b h ¢ imulati many questions that remain open at this point, especially
Ig. 42: Comparison between the reference simulation (aeoncerningthe computational and functional limitatidmestt

and the membrane recording of the hardware neuron aft%rre imposed to the network models by the presented con-
calibration (b). cepts

The architectures in the presented benchmark collection
already now cover a wide spectrum of computationally in-
teresting aspects and relevant connectivity structures. B
although the workflow presented in this paper enables us
to successfully realize these benchmarks with the FACETS
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hardware devices, further validation of the introduced-conBrainScaleS (2010) Project websitehttp://www.
cepts will be required. Important features like the syrmapti brainscales.eu
plasticity mechanisms and large regions of the technicallBrette R, Gerstner W (2005) Adaptive exponential integrate
available hardware configuration space have not yet been and-fire model as an effective description of neuronal ac-
systematically explored with our workflow in network con-  tivity. J Neurophysiol 94:3637 — 3642
texts. And, as soon as alternative neuromorphic devicés witBrette R, Rudolph M, Carnevale T, Hines M, Beeman D,
a comparable degree of configurability and size (but pos- Bower JM, Diesmann M, Morrison A, Goodman PH, Har-
sibly different solutions and components) will be avaiabl  ris Jr FC, Zirpe M, Natschlager T, Pecevski D, Ermentrout
from other groups, all applicable aspects of the described B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller
neuromorphic workflow will have to be tested also with E, Davison AP, El Boustani S, Destexhe A (2006) Simu-
these platforms. lation of networks of spiking neurons: A review of tools
In addition to such necessary investigations, we plan to and strategies. Journal of Computational Neuroscience
extend the set of models that we use to benchmark and tune 3(23):349-98
our workflow. So far the realization of a large variety of Briderle D (2009) Neuroscientific modeling with a mixed-
biologically relevant structures has been the primary goal signal VLSI hardware system. PhD thesis, Ruprecht-

of iteratively applying the depicted optimization process Karls-Universitat Heidelberg
second focus will be put on computationally powerful archi-Briderle D, Muller E, Davison A, Muller E, Schemmel J,
tectures in general, independent of their biological glailis Meier K (2009) Establishing a novel modeling tool: A

ity. Building upon this work, the presented methodological python-based interface for a neuromorphic hardware sys-
framework with the neuromorphic hardware system at its tem. Front Neuroinform 3(17)
core will eventually be used to approach open neuroscierBruderle D, Bill J, Kaplan B, Kremkow J, Meier K, Miller
tific questions. E, Schemmel J (2010) Simulator-like exploration of cor-
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