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Abstract This paper addresses the question of maximizing 
classifier accuracy for classifying task-related mental activ­
ity from Magnetoencelophalography (MEG) data. We pro­
pose the use of different sources of information and introduce 
an automatic channel selection procedure. To determine an 
informative set of channels, our approach combines a vari­
ety of machine learning algorithms: feature subset selection 
methods, classifiers based on regularized logistic regression, 
information fusion, and multiobjective optimization based on 
probabilistic modeling of the search space. The experimental 
results show that our proposal is able to improve classifica­
tion accuracy compared to approaches whose classifiers use 
only one type of MEG information or for which the set of 
channels is fixed a priori. 

Keywords Brain computer interface • MEG • Multiobjec­
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1 Introduction 

The practical and scientific implications of using brain elec­
trical activity as a way to interact with the external world are 

numerous, and their investigation is still at an early stage. 
Brain computer interfaces (BCIs) (Lebedev and Nicolelis 
2006; Wolpaw et al. 2002) can translate electrical signals into 
commands without the need for motor intervention. They 
have been used intensively to provide communication and 
control to people with severe muscular or neural handicaps 
(Hoffmann et al. 2008; Iturrate et al. 2009; Nicolelis 2003), 
but they can also be used, for example, to conduct cognitive 
experiments (Carmena et al. 2003; Tan et al. 2009), improve 
human behavior, and facilitate interaction in special environ­
ments (Rossini et al. 2009), etc. 

For analysis, a BCI can be divided into a signal acquisition 
module and a signal processing module (Wolpaw et al. 2002). 
Signal acquisition is executed using electroencephalography 
(EEG), MEG, or other techniques for recording brain activ­
ity. In this paper, we focus on the analysis of MEG data. Due 
to its cost and technical requirements, MEG is of limited use 
in practical BCI implementations. However, it is essential 
for investigating brain activity that cannot be extracted from 
EEG signals. In the BCI signal processing module, features 
are first selected over the original signal. The selected fea­
tures are then translated into device commands. We will focus 
on the feature selection step and, in particular, on the con­
ception of accurate and robust classification strategies able 
to deal with MEG data. 

A variety of classification algorithms have been used to 
analyze brain data in the context of BCI applications (Lotte 
et al. 2007). Nevertheless, these methods have mainly been 
applied to EEG data where the number of sensors is usu­
ally smaller than in MEG. Support vector machines (SVM) 
(Vapnik 2000) and linear discriminant analysis (LDA) 
(Mclachlan 1992) are the two classifiers mostly applied to 
classification of MEG data. 

Besserve et al. (2007) use a linear SVM classifier based 
on spectral power and synchrony features extracted from 



continuous epochs of MEG data. SVM was also applied in 
Asano et al. (2009) to features extracted using an adaptive 
spatial filter approach. The MEG observations related to hand 
movement were initially prewhitened by the application of 
generalized eigenvalue decomposition that eliminated sta­
tionary interferences. Rieger et al. (2008) applied linear 
SVM to time- and wavelet-derived frequency representations 
of MEG data. The task was to predict, from single-trial-
event-related magnetic fields recorded during the encoding 
of briefly visible natural scene photographs, whether a person 
would be able recognize the photograph later on. 

Waldert et al. (2007) applied a regularized LDA to decode 
directions from MEG signals of the human contralateral 
motor cortex during center-out movements (four targets). 
Time domain features extracted from different time win­
dows were used as inputs to the regularized LDA classifier. 
Bianchi et al. (2010) recently used MEG to investigate the 
evoked response components most suitable for use in a clas­
sical P300-based BCI interface speller protocol. They used 
a stepwise LDA fed with data relative to the first 800 ms 
of the signal following the visual stimulations. Wang et al. 
(2010) performed dimension reduction and MEG data trans­
formation using an LDA that maximized linear discrimina­
tion among different movement directions. 

The analysis of brain signals is frequently based on a priori 
knowledge about the physiological mechanisms that deter­
mine the brain activity (Wolpaw et al. 2002). Slow cortical 
potentials, P300, /x and /3 rhythms, and other types of elec­
trophysiological signals used for BCI are associated with 
specific brain areas, and this information is implicitly or 
explicitly used by the signal acquisition or signal process­
ing modules. However, there may be cases where the exper­
imenter is interested not only in maximizing the accuracy of 
the mental task prediction based on the brainwave recorded 
data but also in investigating how information from different 
brain areas contributes to the predictions. Even if information 
is recorded from the same areas, subject and trial variabil­
ity is frequently a source of poor BCI performance. In such 
cases, the interpretability of the machine learning techniques 
used for processing the data is even more essential. 

This paper analyzes a machine learning technique that 
does not consider a priori information of how the brain data 
are related to the task under consideration. We address a clas­
sification problem whose objective is to predict, based on 
MEG data, the direction in which a subject is covertly focus­
ing his or her attention. In this type of problem, attention 
is paid to a given stimulus without eye or head movement. 
It has recently been shown that high-accuracy classification, 
with potential BCI applications, can be achieved based solely 
on covert attention (van-Gerven et al. 2009; van-Gerven and 
Jensen 2009). 

Our approach incorporates a number of novel alternatives 
for dealing with common problems experienced by BCI clas­

sification algorithms. To select a convenient (informative) 
original signal transformation procedure, we evaluate differ­
ent ways to process the original signals (e.g., raw data, chan­
nel time series correlations, interaction graphs). To deal with 
noisy features and outliers and to increase the classifier gener­
alization capabilities, we use a fast regularization-based clas­
sifier (Zou and Hastie 2005) that can deal with thousands of 
features. To further improve the classifier accuracy while try­
ing to enhance robustness (accuracy variation across differ­
ent subjects), we use a feature subset selection (FSS) method 
based on multiobjective optimization with probabilistic mod­
eling of the search space. Finally, we propose new ways to 
extract physiologically relevant information from the learned 
classifiers. 

Our analysis is in response to a challenge recently posed 
as part of a brain MEG data analysis competition.1 Although 
the general approach described in this paper can be applied to 
other problems, we use the competition's task-related mental 
activity classification problem as an illustrative example of a 
successful application. 

The paper is organized as follows. In Sect. 2, the gen­
eral problem is described, and the experiments in which the 
brain data were acquired are explained. Section 3 introduces 
the main components of the proposed classification algo­
rithm. The optimization approach to channel subset selection 
is explained in Sect. 4. The experimental framework, numer­
ical results and discussion of the experiments are presented in 
Sect. 5, and work related to our proposal is briefly reviewed 
in Sect. 6. Finally, Sect. 7 concludes the paper. 

2 Description of the problem 

What follows is a general account of the experimental pro­
cedure. The data used in this paper were originally collected 
from the work presented in van-Gerven et al. (2009). For 
more details see van-Gerven et al. (2009). 

2.1 Experimental framework 

Fifteen subjects were instructed to covertly pay attention to 
different spatial locations of a screen (top, right, bottom, and 
left) during the registration of MEG information. The goal 
then was to analyze the recorded MEG data to detect, at the 
single-trial level, which of the four directions the subjects 
were paying attention to. 

We focus on a 1-D version of the problem that was part 
of an open challenge to evaluate the accuracy of different 

The winner (ex aequo) of this challenge, held at the BIO-
MAG 2010 conference, was an implementation of the approach 
described in this paper. See http://megcommunity.org/index.php? 
option=com_content&view=article&id=2&Itemid=24 for details of the 
challenge. 

http://megcommunity.org/index.php


machine learning techniques. The competition was focused 
on attention to the left and right (i.e., the problem was defined 
as one of binary classification), and data from only 4 of the 
original 15 subjects were used. The rules of the competition 
established that contestants should report the classification 
rate (proportion of correctly classified trials) for each subject 
as computed using leave-one-out cross validation and report 
the classification procedure. Artifact removal was allowed, 
but trials could not be rejected. Contestants were advised to 
prevent overfitting, e.g., if multiple algorithms were tried, 
then they were to be tested on the first subject and applied 
blindly to the remaining subjects. The data used for the chal­
lenge are described in van-Gerven et al. (2009). 

Using the competition as a benchmark for introducing our 
approach, we are able to follow a clear evaluation method­
ology that is based on the competition rules and common to 
all the participants. It also serves to facilitate future compar­
isons with other methods since the experimental procedure 
and the data are publicly available. 

2.2 Experimental data 

The subjects viewed a screen with a central fixation cross and 
four squares at 7.5° of visual angle to the top, right, bottom, 
and left of the fixation cross. At regular intervals, a small 
arrow was displayed at the location of the fixation cross to 
indicate the direction to which subjects should covertly pay 
attention without moving their eyes from the fixation cross. 
A total of 128 trials were made per condition (top, right, 
bottom, and left) in eight subsequent sessions, interspersed 
by 1-min rests. Each trial started with a 400-ms presenta­
tion of the cue, after which subjects had 2,500 ms to covertly 
refocus their attention in the indicated direction. After this 
delay period, the square in the indicated direction turned 
either green or red for 40 ms. To facilitate task engagement 
and behaviorally measure task compliance, the subjects were 
asked to count the number of times the target location turned 
green over all eight sessions. There was a 1,500-ms rest 
between trials. The task was implemented in Presentation 
software (Neurobehavioral Systems, Albany, CA, USA). 

Data were downsampled from 1,200 to 300 Hz. No further 
artifact rejection was performed. For each trial, the power 
spectrum was computed in the 5-70-Hz frequency range 
using a Hanning window for the period from 0.5 to 2.5 s 
after cue offset using 100-ms intervals. Preprocessed trials 
for the left and right conditions of each subject were avail­
able. Each trial was 2.5 s long and started -0 .5 s before the 
cue, indicating which way the subject had to direct his or 
her attention. A total of 274 MEG channels were measured. 
Figure la shows a diagram of the location of the channels 
from which MEG information was extracted. 

(a) (b) 

Fig. 1 MEG channel localization, a The complete set of 274 channels. 
b 86 Channels covering occipitoparietal brain areas 

3 Factors in MEG data analysis 

We distinguish three main factors that influence the classifi­
cation accuracy: 

• Type of information used for classification, 
• Type of classifier, 
• Channels from which the information is extracted. 

In Sects. 3.1-3.3, these factors are explained, and we pres­
ent the particular characteristics of our approach designed to 
take them into consideration. 

3.1 Type of information used for classification 

One of the elements that critically impacts classification is 
the particular information upon which the classification task 
is based. In our approach, we try different information pro­
cessing variants before applying the classifier. In all cases, 
the starting point is the time series output from the Nt = 
128 x 2 = 256 trials, for / = 274 channels and k = 4 
subjects. There are a total of 256 x 274 x 4 = 280, 576 
time series. Each original time series comprises the period 
from -0.5 to 2.5 s at 100-ms intervals. Following van-Gerven 
et al. (2009), we use the period from 0.5 to 2.5 s following 
cue offset as the attention time only. This should counteract 
the influence of cue-evoked potentials. The MEG output data 
correspond to 600-component numerical vectors. 

We apply four types of processing procedures (raw 
data, correlations between channels, interaction graphs con­
structed from correlations, and a representation that com­
bines raw and correlation data) to the initial set of raw time 
series, i.e., each processing procedure tries to extract a dif­
ferent characteristic feature from the data. 

3.1.1 Raw data 

In this approach, the original set of 600 time points is reduced 
to a set of 60 components by averaging a time window com­
prising 10 points in each component. Following previous 
work Kelly et al. (2005) and van-Gerven and Jensen (2009) 



where occipitoparietal alpha-band (8-14 Hz) EEG activity 
was used as a feature for left/right spatial attention classifi­
cation, we assume that the relevant information for the classi­
fication is included in the range 0-14 Hz. Even after applying 
this modification we call the resulting information type "raw 
data." The classifier will receive a vector of n = 60 x 274 = 
16, 440 features. 

3.1.2 Correlations between channels 

This approach takes advantage of any interaction between 
different brain regions during the solution of a recognition 
task. 

We compute the correlation matrix between the time series 
corresponding to all the channels for a given trial. The corre­
lation between two channels is computed as the correlation of 
their respective 600-component numerical vectors contain­
ing the channel measurements at each time point. A sym­
metric matrix W274X274 is constructed for each trial. The 
classifier will receive a vector of n = 274;273 = 37,401 

Q>—® 

features corresponding to the upper triangular part of the 
correlation matrix (without the main diagonal). 

3.1.3 Interaction graphs constructed from correlations 

The correlation matrix is used to construct interaction graphs 
between the different channels. The idea is that further anal­
ysis of the graph using topological measures from network 
theory can serve to reveal local and global information that 
is not directly recognizable from the correlation values. 

The interaction graph G = {V,A) is such that V = 
[vi,..., VZIA] is the set of vertices (channels) and the arc 
dij = (vi, Vj) goes from vertex vi to vertex VJ. Arcs are 
determined as follows: 

lh) 

(vi,Vj) if 

(vj,Vi) if 

no arc otherwise 

i < j and cr tj > 0.5 
i < j and cr ' j -0.5 

where cr ij is the correlation coefficient between channels i 
and;. 

The interaction graph is an arbitrary way to represent 
strong correlations (below -0.5 or above 0.5) between pairs 
of channels. We expect that if there are higher-order inter­
action patterns between the channels, at least some of them 
could be unveiled by a topological analysis of these graphs. 
These patterns could, in turn, be more informative for a clas­
sifier than raw data or pairwise correlations between the chan­
nels. 

Figure 2a shows a possible correlation matrix for five 
channels. The corresponding interaction graph is shown in 
Fig. 2b. 

1 -0.82 0.43 0.02 0.94 

-0.82 1 0.13 0.89 -0.04 

0.43 0.13 1 0.15 0.88 

0.02 0.89 0.15 1 -0.73 

0.94 -0.04 0.88 -0.73 1 

(a) (b) 

Fig. 2 Example of interaction graph construction, a Correlation 
matrix, b Interaction graph 

Once interaction graphs have been constructed, the fol­
lowing local topological measures are computed for each 
node: 

1. Betweenness centrality Measure of node centrality in 
graph. It is higher for vertices that occur on many short­
est paths between other vertices. 

2. Pair distance Average distance (defined as the length of 
the shortest path between two vertices) between each 
node and the other vertices. Disconnected vertices are 
assigned a very high, unattainable, distance value. 

3. Node eccentricity Maximum of vertex finite distances 
to all other vertices. 

4. Clustering coefficient Ratio of actually existing connec­
tions between the node's neighbors and the maximal 
number of such possible connections. 

5. Indegree Mean indegree of vertices. 
6. Outdegree Mean outdegree of vertices. 
7. Motif frequency, M=3 Motifs (Milo et al. 2002) are 

small network building blocks defined by their size M 
and interconnection patterns. We compute the motif fre­
quencies of all motifs of size M = 3. Since only 5 of the 
13 possible motifs appear at least once in all the graphs, 
these are the only motifs considered in our analysis. 
These motifs are shown in Fig. 3. 

8. Maximum modularity Gives a modularity value corre­
sponding to a network module decomposition computed 
using Newman's spectral optimization method, gener­
alized to directed networks (Leicht and Newman 2008). 

9. Vertex participation coefficient The participation coef­
ficient (Guimera and Amaral 2005) defines how well 
distributed the links of a node are between different 
modules. It is close to 1 if the links are uniformly distrib­
uted among the modules and 0 if all the links fall within 
one module. The same modules used to compute the 
maximum modularity value are employed to compute 
the vertex participation coefficient. 

In addition, a number of global topological measures are 
computed for the whole graph: 



Fig. 3 All motifs (M = 3) that appear in interaction graphs learned 
from MEG data 

1. Assortativity coefficient Computed as the Pearson cor­
relation coefficient between pairs of linked nodes. 

2. Characteristic path length Global mean of finite entries 
of graph distance matrix. 

3. Network radius Minimum eccentricity of network ver­
tices. 

4. Network diameter Maximum eccentricity of network 
vertices. 

5. Network density Average connection density of network, 
i.e., number of connections present in network out of all 
possible connections (n2 — n). 

6. Number of vertices Number of vertices in the network.2 

7. Number of edges Number of edges in network. 

The number oflocal features is niocai = 274x 13 = 3, 562 
and the number of global features is ngi0bai = 7. The clas­
sifier receives n = 3, 569 features, which is a considerably 
smaller number than in the previous two approaches. Com­
putation of the topological measures is implemented using 
the brain connectivity toolbox (Sporns 2002).3 

3.1.4 Approach based on raw and correlation information 

We also try an approach conjointly using raw information 
and correlation coefficients between channels (Raw+Corre-
lation representation). This implies the use of a vector of 
n = 53,841, which is a huge amount of features. This sug­
gests the need to use efficient feature selection techniques to 
reduce the number of features. 

3.2 Type of classifier 

The response variable Z for the classification problem 
is binary (0 = subject is covertly paying attention to 
the left, 1 = subject is covertly paying attention to the 
right). The classifier of choice is a regularized logistic 
regression classifier in which the logistic regression sig­
moid function represents the class-conditional probabili­
ties through a linear function of the vector of predictor 
variables v: 

Although this feature was automatically added to the classification 
vector and used in the experiments, we noticed later that it was not 
informative since all the graphs have the same number of vertices. 
3 http://sites.google.eom/a/brain-connectivity-toolbox.net/bct/metrics. 
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where fio is called the intercept and /? the vector of regression 
coefficients. The model is fitted by regularized maximum 
(binomial) likelihood using an elastic net (Zou and Hastie 
2005). 

The elastic net solves the following general problem: 
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where N is the number of observations, A e 1 , 0 < ) . < 1, 
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is the elastic-net penalty, and p is the number of features. 
Pa(P) is a compromise between the ridge-regression or I2 
penalty (a = 0) and the lasso or l\ penalty (a = 1). 

3.2.1 Classifier evaluation and selection of lambda 

To evaluate the classifier accuracy for a given data set, we 
use cross validation. Two possible alternatives are employed, 
leave-one-out and two-fold cross validation. We use leave-
one-out cross validation as a thorough, definite validation of 
the classifier. Two-fold cross-validation is used as a faster 
estimate of the classifier accuracy. In this case, only one par­
tition of the data set is used for the classification experi­
ment. No variance of the classifier accuracy is computed. In 
Sect. 4.1 we explain the rationale behind the use of two-fold 
cross validation in this case. 

An important issue for the elastic-net and other regulariza-
tion techniques is the selection of the optimal a and A values. 
In most of the experiments presented in this paper a = 1, 
i.e., the lasso penalty is applied. Nevertheless, in Sect. 5, we 
present results on the influence of a on prediction accuracy. 
As regards the A value, the elastic-net implementation we use 
outputs the prediction attained by the classifier for a set of 
A values. This information can be employed to select the A 
to be used to evaluate the test cases. In this paper we choose 
the A that maximizes the accuracy of the training set. This 
means that the classification phase involves the computation 
of the model parameters and one additional validation step 
where these parameters are used to predict the outcome for 
the training set. 

http://sites.google.eom/a/brain-connectivity-toolbox.net/bct/metrics


3.3 Multiobjective FSS search 

Channel selection will be used as a way to improve the clas­
sification results. On the one hand, we want to maximize the 
results accuracy for each of the subjects. On the other hand 
we would like to output a set of channels that, in terms of 
the results accuracy, is robust across individuals. Generally, 
intersubject variability determines that a subset of predictive 
features that works well for a given individual may produce 
poor results when used on a different subject. The set of opti­
mal channels may also depend on the type of information 
selected. 

To balance these two potentially conflicting goals, the 
optimal channels are searched using a multiobjective approach 
where each objective corresponds to the accuracy produced 
by the classifier for one subject. Each possible set of channels 
will have four (probably different) accuracy values, one for 
each subject. The question is then how to find a set of solu­
tions x that can be considered accurate for at least some of 
the subjects and robust if all the subjects are considered. One 
possibility is to find the Pareto set of solutions, a common 
practice in multiobjective optimization (Coello et al. 2007). 

Let a binary vector x, with binary components xi e 
(0, 1} i e { 1 , . . . , 274}, represent a possible selection of 
channels, xi = 1 means that channel i has been selected to 
pass its corresponding information to the classifier, whereas 
Xi = 0 means that no information from channel i will be 
included in the classifier. We consider a maximization prob­
lem with k = 4 accuracy objective functions /;(x) -> 
R,i e { 1 , . . . , k}, where the vector function f maps each 
solution x e X e {0, 1}" to an objective vector f(x) = 
( / i (x ) , . . . , /* (x ) )eR*. 

In our application, each objective function /; (x) will cor­
respond to the classification accuracy obtained for subject i 
when information extracted from the channels represented in 
x is used by the classifier. We expect that informative sets of 
channels will produce, on average, higher accuracies among 
all the subjects. However, it is also important to detect chan­
nels that are relevant for particular subjects. The Pareto set 
of solutions will contain the sets of channels that are glob­
ally and individually most informative. The concept of dom­
inance is at the heart of the Pareto front approximation. It 
is assumed that the underlying dominance structure is given 
by the Pareto dominance relation "y dominates x" that is 
defined as Vx, y e X, x <r y <=>• ft(x) < ft(y)Wi, 
where T = {/i,..., / *} . The Pareto (optimal) set is given 
as {x e {0, 1}" \$y e {0, 1}" \ {x} : x <T y}. It con­
tains solutions that are nondominated. The associated Pareto 
front contains the vector of function evaluations for each of 
the Pareto set members. The extreme points of the Pareto set 
include the solutions that maximize each of the objectives. In 
our case, these solutions are the set of vectors that maximize 
accuracy for each of the subjects. 
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Fig. 4 Example of a Pareto front computed using as objectives the 
classification accuracies for two different subjects 

The computation of the Pareto set is relatively simple. 
Each solution is compared to all other candidate solutions. 
If a solution is not dominated by any other solution from 
the candidate set, it belongs to the Pareto set of solutions; 
otherwise it is discarded from the Pareto set. Figure 4 shows 
an example of a Pareto front computed using the accuracies 
of only two subjects. In Fig. 4, each blue dot corresponds 
to a different set of channels. The location of the point is 
determined by the classification accuracies for two different 
subjects as computed using the information extracted from 
the respective channels. The 10 nondominated solutions that 
form the Pareto front are marked by a red circle. 

We claim that the multiobjective approximation provides 
a wider perspective of the way in which intersubject vari­
ability operates. It also serves to identify individual features 
that consistently participate in solutions with a high accuracy. 
The optimization algorithms used to find a Pareto-set approx­
imation are described in Sect. 4.2. Figure 5 shows how the 
classification of task-related mental activity for a single sub­
ject is accomplished using different sources of information. 
Figure 6 shows a diagram describing how each channel sub­
set is evaluated using the classification accuracies computed 
for different subjects. 

4 Channel subset selection 

In the previous section we saw that accuracy results could be 
improved by appropriately selecting the brain regions from 
which channel information is fed to the classifier. In previ­
ous approaches (van-Gerven et al. 2009), this selection was 
made based on physiological knowledge about the brain areas 
thought to be involved in the mental task considered. We 
take a different approach to selecting the relevant channels. 



Fig. 5 Classification of task-related mental activity for a single subject 
using different sources of information 

Fig. 6 Evaluation of candidate solutions in channel selection based on 
multiobjective optimization 

Channel selection is posed as a multiobjective optimization 
problem where the feature multiset selection is carried out 
in a wrapper way. The quality of a candidate set of channels 
is based on the vector of four accuracy values, one accuracy 
value for each of the four subjects. 

4.1 Problem representation and function evaluation 

Since we intend to use a wrapper approach assisted by an 
optimization method (Saeys et al. 2007), two-fold cross val­
idation is applied in place of the leaving-one-out cross-vali­
dation method. For the analyzed problems, leave-one-out is 
simply too costly to be affordable for an optimization heuris­
tic, particularly for the large number of features considered in 
our case. Certainly, we can expect the same set of features to 
have different accuracy values when evaluated with two-fold 
or leave-one-out cross validation. However, we use two-fold 
cross validation as an estimate of the desired accuracy met­
ric. This less accurate, but also less costly, metric will serve 
to guide the search for optimal solutions. 

4.2 Genetic algorithms and estimation of distribution 
algorithms for multiobjective optimization 

Evolutionary algorithms (EAs) are commonly applied to 
find Pareto-set approximations in multiobjective optimiza­
tion problems. They use populations of solutions and apply 
selection based on the fitness of the solutions. We try three 
different EAs—one genetic algorithm (GA) (Goldberg 1989; 
Holland 1975) and two estimation of distribution algorithms 
(EDAs) (Larranhaga and Lozano 2002; Muhlenbein and PaaB 
1996; Pelikan et al. 2002). GAs apply what are known as 
crossover and mutation operators to recombine solutions and 
visit new points from the search space. EDAs are similar to 
GAs. However, they replace traditional crossover and muta­
tion operators by the estimation and sampling of probabilistic 
models. EDAs have been successfully applied to FSS prob­
lems (Armananzas et al. 2011; Inza et al. 2000; Mendiburu 
et al. 2006) and were recently proposed for application to 
problems of neuroscience (Santana et al. 2010a,b). The idea 
of using these three different optimization algorithms is that 
together they would allow us to try different ways of explor­
ing the search space. For our analysis of the solutions, docu­
mented in the experimental section (Sect. 5), we took an equal 
number of executions from each algorithm and extracted the 
best solutions found from this complete set. 

Our GA uses one-point crossover and bitwise mutation 
(Goldberg 1989). In the case of EDAs, the choice of the 
probabilistic model and the particular class of learning and 
sampling methods is fundamental. The models may differ 
in the order and number of the probabilistic dependencies 
that they represent. A variety of learning and sampling tech­
niques can be used depending on the type of representation 
and other characteristics of the optimization problem. In par­
ticular, there may be important differences between EDA 
implementations for single and multiobjective problems. 
Enforcing the population diversity needed to guarantee a 
good covering of the Pareto set is particularly important for 
multiobjective problems, and specialized learning and sam­
pling methods may be conceived to fulfill this goal. 

Algorithms 1 and 2 respectively show the pseudocodes of 
GA and EDA for multiobjective optimization problems. In 
both algorithms, the selection method employed uses Pareto 
ranking selection (Coello et al. 2007) where individuals are 
ordered according to the Pareto front to which they belong. 
Individuals in the first front (nondominated solutions) come 
first, followed by individuals that are only dominated by oth­
ers in the first front and so on. Within each front, they are 
ordered according to the average rank of their fitness func­
tions. After the entire population has been ordered, trunca­
tion selection is applied to select the best T percentage of the 
population. 

We use two different EDA variants. Each variant cap­
tures and uses different relationships between the problem 



Algorithm f: GA for multiobjective optimization 

1 DQ <r- Sample M individuals using a uniform distribution 

2 t « - l 
3 do{ 
4 Evaluate D (_i 

5 ^ f - i *"~ Select iV individuals from Dt-\ using Pareto 
ranking selection 

6 Randomly select a mating-pool of individuals from the 
selected set 

7 Generate Dt by applying recombination and crossover on 
the mating-pool 

8 } until Stop criterion is met 

variables, effectively implementing diverse search strategies. 
The first variant considered uses a univariate marginal prod­
uct model in which all variables are independent, i.e., no 
dependencies are represented in the model. The joint prob­
ability distribution of the univariate marginal distribution 
algorithm (UMDA) (Muhlenbein and PaaB 1996) can be fac-
torized as follows: 

n 

PUMDA(X) = n ^ t a ) - (7) 
[ = 1 

The second model learns a probabilistic model based on 
a tree. In this model, each variable may depend on no more 
than one variable, called the parent. The probability distri­
bution /?Tree(x) used by Tree-EDA (Santana et al. 2001) is 
defined as 

n 

£>Tree(x) = \\piXi | p a f e ) ) , (8) 

i = l 

where pa(X;) is the parent of variable Xi in the tree, and 
p(Xi | pa(Xj)) = p(Xi) when pa(X;) = 0, i.e., when Xi is 
the root of the tree. Probabilistic trees can be represented by 
acyclic connected graphs. 

Algorithm 2: EDA for multiobjective optimization 

1 DQ <r- Sample M individuals using a uniform distribution 

2 t « - l 
3 do{ 
4 Evaluate Dt_\ 

5 ^ f - i *"~ Select N individuals from Dt-\ using Pareto-
ranking selection 

6 Learn a probabilistic model from Df^^ 

7 Dt <r- Sample M individuals from the probabilistic model 

8 } until Stop criterion is met 

The stop criterion used for the algorithms was to reach a 
maximum number of generations. 

The computational cost of multiobjective optimization 
EAs depends on the population size, the number of gener­
ations, and the evolutionary operators used. The main dif­

ference between the three variants of the used EAs is in the 
complexity of the algorithms used for combining the solu­
tions during the reproduction step. The complexity of the GA 
crossover operator is linear in the selected population size, 
i.e., O(N). The learning algorithm used by UMDA is linear 
in the selected population size and the number of variables, 
i.e., O(Nn). Finally, the learning algorithm used by Tree-
EDA is quadratic in the number of variables and linear in the 
selected population size, i.e., 0(Nn2). 

4.3 Extended approach: improving accuracy by augmenting 
the amount of information 

In some cases, when a set of channels is given a priori or the 
channels have been found using a particular type of infor­
mation, it would be interesting to find out how new different 
types of information added to the classifier would modify the 
classification. This will only be applied in situations where 
additional information is added to the classifier for which 
the currently used information is insufficient for achieving 
the targeted classification accuracy. Instead of searching the 
solution using the raw+correlation information, as discussed 
in Sect. 3.1.4, we search for the optimal set of channels using a 
particular type of information (as in Sects. 3.1.1-3.1.3). Once 
the optimal set of channels has been found, new features are 
added to the classifier. We apply this approach to find the set 
of channels using raw data, and once the optimal channels 
have been found, the classifier is invoked passing a vector 
comprising the original features selected from raw data and, 
additionally, the correlation features for each of the selected 
channels as features. 

5 Experiments 

In this section we investigate the combination of factors that 
produces the best classification accuracy both globally and 
for each of the subjects. Our analysis is focused on the type 
of information and the set of channels. In addition, we empir­
ically investigate a number of issues that influence classifica­
tion and should be taken into account to interpret the results 
produced by the algorithm. We start by presenting an over­
view of the experiments and the questions these experiments 
address. The subsequent sections present the results for these 
experiments and discuss the results. 

5.1 Overview of the experiments 

As stated in Sect. 3.2, the parameter a of the logistic classifier 
sets a compromise between the ridge-regression or h penalty 
(a = 0) and the lasso or l\ penalty (a = 1). A necessary ini­
tial step for the application of the classifier is evaluating the 
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influence of a in the accuracy results. In Sect. 5.2 we carry 
out this evaluation for all subjects and types of information. 

A fundamental question we address is whether the use of 
different types of information can produce different results 
in terms of accuracy. This is an important step of the experi­
mental procedure since one of the assumptions made in this 
paper is that the use of different sources of information can 
improve the classification results in the analysis of MEG 
data. A related question is whether the use of information 
from all the channels can be more effective in terms of accu­
racy than information constrained to a particular brain area 
(in this case, the occipitoparietal region). The questions of 
which is the most informative type of information and the 
right choice of the channels are very related. Therefore, we 
address them together in Sect. 5.3. 

The next issue addressed in our experiments is whether the 
multiobjective approximation approach is able to detect the 
most informative channel sets for each of the subjects. To this 
end we run the three variants of the multiobjective EAs and 
compute the Pareto-set approximations using the combined 
output of these three variants. Then we compute the best accu­
racies achieved for each of the subjects and each type of infor­
mation. This analysis is presented in Sect. 5.4, where we also 
inspect the Pareto sets and identify thebest subsets of channels 
for each individual and type of information. 

Another important question that we investigate is whether 
the channel sets contained in the Pareto sets found for a num­
ber of subjects can be useful in the classification of other sub­
jects and with downsampled frequencies. We call this type of 
study a robustness analysis, and it is addressed in Sect. 5.5, 
where we evaluate the Pareto sets computed from the four 
subjects in a larger set of 15 subjects and using less informa­
tion from the original brain signals. 

Finally, in Sect. 5.6 we show how the parameters learned 
by the logistic classifier can be used for determining the dif­
ferent contribution of channels to the classification accuracy. 
Allowing one to determine the channel relevance is an added 
value of this type of classification algorithms. We further 
extend the analysis of the logistic classifier parameters by 
identifying, on the basis of these parameters, the time peri­
ods of the recorded time series that are more informative for 
the classification task. 

All the optimization algorithms (GA, UMDA, and Tree-
EDA) are implemented using the MATEDA-2.0 software 
(Santana et al. 2010c), a modular implementation of estima­
tion of distribution algorithms programmed in Matlab (The 
Math Works 2007) that can be used to implement genetic and 
other classes of EAs. The computation of all network mea­
sures is implemented using the brain connectivity toolbox 
(Sporns 2002). We use the Matlab implementation of the reg­
ularized logistic classifier proposed in Friedman et al. (2010), 
which uses cyclical coordinate descent, computed along the 
regularization path. Routines for data processing and analy­

sis of the experiments were programmed by the authors in 
Matlab. 

5.2 Study of the alpha parameter 

As an initial step we investigate the effect of the parameter a 
on the accuracy of the classification results. For each subject 
and each type of information, classification accuracy is com­
puted for a e {0.1, 0 .2 , . . . , 1.0}. To reduce the computa­
tional time overheads, channel selection is constrained to the 
set of 86 occipitoparietal channels. Figure 7 shows the curves 
describing the variation in the accuracy as a function of a. 

A first conclusion from analyzing Fig. 7 is that there 
are only minor differences in the accuracy values due to 
variations in a. We also find that raw+correlation informa­
tion (black lines) achieves improvements in the classification 
rate over the correlation type of information (blue lines) for 
all the subjects. Compared with the use of raw information 
(red lines), the raw+correlation information clearly produces 
higher accuracy for subjects 1 and 2. However, for subjects 3 
and 4, the difference is not so clear. We also observe that, 
at least in some situations, interaction graphs (green lines) 
can improve the classification given by correlation values. 
This applies to the fourth subject and may indicate that, in 
this case, higher-order patterns of correlations are captured 
by the computed graph measures. Based on these results, 
in the remaining experiments presented in this section, we 
arbitrarily set a = 1, which corresponds to the lasso penalty. 

5.3 Channels from which information is extracted 

We conduct an exploratory set of experiments to evaluate the 
accuracy of the classifier for a changing number of channels 
and using the different types of information. We consider 
two different scenarios: (1) the classifier receives informa­
tion from all channels (274) and (2) the classifier receives 
only information about the occipitoparietal channels (86) 
(Fig. lb). Table 1 shows the results obtained for the accu­
racy where leave-one-out cross validation was always used. 

Looking at Table 1, we find that the classifier accuracy is 
variable depending on the channels providing the informa­
tion. Even if regularization implicitly makes a feature subset 
selection by setting to zero the coefficients of features that do 
not support relevant information for the classification task, 
channel preselection can improve the classification results. 

In Table 1, we underline the cases where using a smaller 
number of channels (occipitoparietal channels) improves the 
accuracy of the classifier that uses all the information. Notice 
that when a channel is excluded, a complete set of variables 
(those features that represent the corresponding type of infor­
mation extracted from that channel) is not given as classi­
fier input. For instance, using raw data and constraining the 



n1? 0.2 0.3 0.4 D.S 0.8 07 0.8 0.9 1 

a 

Subject 1 

Raw o Corr Graph — i — Raw+Corr 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 1 

Subject 2 

1 i i i ' i ' i 

Raw e Corr Graph —*— Raw+Corr 

_ i i _ _i i i i i_ 
01 0 2 0 3 O.J 0.5 0.6 0 7 0 8 0 9 1 

a 

Subject 3 

u 

i 
< 

Subject 4 

Fig. 7 Accuracy of the classification results as a function of parameter a for each of the subjects and each type of information. The initial channel 
set comprises the occipitoparietal channels 

Table 1 Classification accuracy with all channels (All) and occipitoparietal channels (OP) for all the subjects (rows) and the four types of information 
used (in columns) 

Subject 

1 
2 
3 
4 

Raw 

AU 

0.7362 
0.7835 
0.7323 
0.7953 

OP 

0.7283 
0.7717 
0.7520 
0.6929 

Correlation 

All 

0.8031 
0.8071 
0.6654 
0.5669 

OP 

0.8081 
0.7677 
0.6850 
0.5039 

Graph 

All 

0.6596 
0.5906 
0.4528 
0.4321 

OP 

0.7126 
0.6614 
0.5236 
0.5827 

Raw+Corr 

AU 

0.8504 
0.8189 
0.7677 
0.7677 

OP 

0.8622 
0.8583 
0.7520 
0.7283 

number of channels to 86, this means that only 86 x 60 = 
5,160 features will be fed to the classifier. 

5.4 Classification experiments 

In the next step, we apply multiobjective optimization to 
find a set of channels that, if fed to the classifier, outputs a 
high classification accuracy. For each subject and each type 
of information we run each of the three EAs 10 times. All 

EAs use a population size of M = 50 individuals, selection 
parameter T = 0.5, and a maximum of 100 generations. The 
solutions evaluated by these runs are the basis of a postpro­
cessing step where the best channel sets are selected for each 
type of information. All the steps that lead to finding the best 
classifiers are described in Algorithm 3. 

Notice that in step 4 the accuracies are computed using 
leave-one-out cross validation instead of the two-fold cross 
validation employed by the EAs. Consequently, PS/ may not 



Algorithm 3: Steps for finding the best classifiers 

Given a type of information I, run 10 executions of each mul-
tiobjective EA 

Collect in the set A; all the selected populations for each gen­
eration of the EAs 
Find the Pareto set PS; from A; 

Using leave-one-out cross-validation, estimate the set of clas­
sification accuracies cy(x), j = 1, . . . , 4 for each vector x € 
PSi 
For each subject j , find the vector x e PS; such that one cy (x) 
is maximized, j = 1, . . . , 4 

Find also the vector x e PS; such that ^ £ cy (x) is maxi­
mized 

Table 2 Best classification results forthe different types of information 

Subject 

Optimizing 
1 
2 
3 
4 
Best mean 

1 
2 
3 
4 
Best mean 

1 
2 
3 
4 
Best mean 

1 
2 
3 
4 
Best mean 

1 
2 
3 
4 
Best mean 

Raw information 
0.7598 
0.6850 
0.7559 
0.6890 
0.7244 

0.7992 
0.8425 
0.7677 
0.7913 
0.7953 

Correlation values 
0.8425 
0.7953 
0.7953 
0.8189 
0.8268 
Interaction 
0.7480 
0.6890 
0.6890 
0.6378 
0.7087 

0.7638 
0.8228 
0.7835 
0.7244 
0.7795 

graphs 
0.6535 
0.7126 
0.6339 
0.5945 
0.6614 

0.7244 
0.7756 
0.7953 
0.7441 
0.7835 

0.7087 
0.6890 
0.7520 
0.6811 
0.7520 

0.5787 
0.5039 
0.6693 
0.5551 
0.5827 

Raw+Correlation information 
0.8701 
0.8031 
0.8228 
0.8228 
0.8504 

0.8228 
0.8505 
0.8150 
0.8150 
0.8150 

Extended information 
0.8701 
0.8661 
0.8386 
0.8228 
0.8386 

0.7953 
0.8425 
0.8346 
0.8189 
0.8346 

0.7638 
0.7480 
0.7913 
0.7913 
0.7913 

0.7480 
0.6693 
0.8031 
0.7323 
0.8031 

0.7441 
0.7874 
0.7677 
0.8425 
0.8386 

0.6339 
0.5748 
0.5118 
0.6732 
0.6417 

0.4646 
0.5315 
0.4882 
0.6063 
0.5433 

0.7362 
0.7717 
0.7992 
0.7992 
0.7874 

0.7480 
0.7126 
0.7362 
0.8031 
0.7362 

be a Pareto set if the c vector values estimated in step 4 
are taken as the objective values. The best accuracy value for 
each subject corresponds to extreme points of the Pareto front 
and are computed in step 5 of Algorithm 3. As a measure of 
global behavior, the average of the accuracies is computed in 
step 6. 

Table 2 shows the objective vectors comprising the best 
accuracy for each of the subjects when each type of infor­
mation is used. A row of the table displays the four accu­
racies estimated for a given channel set that is included in 
the Pareto set of solutions. For each type of information, five 

Table 3 Best absolute results achieved using all types of information 

Subject 1 2 3 4 Type 

1 0.8701 0.7953 0.7480 0.7480 Extended 
1 0.8701 0.8228 0.7638 0.7362 Raw+Corr 
2 0.8031 0.8505 0.7480 0.7717 Raw+Corr 
3 0.8386 0.8346 0.8031 0.7362 Extended 
4 0.8228 0.8189 0.7323 0.8031 Extended 
Mean 0.8504 0.8150 0.7913 0.7874 Raw+Corrf 

rows are presented. The first four rows respectively corre­
spond to the solutions that maximize the accuracy for each 
of the four subjects. Therefore, the main diagonal of these 
four rows comprises the best accuracy achieved among all 
the channel sets for each subject. The last row (best mean) 
shows the objective vector with the highest average accuracy 
among the four subjects. Also, for each type of informa­
tion, Table 3 summarizes this information by displaying the 
best absolute classification accuracies found for each subject. 
The best classification accuracy for each subject among all 
types of information is underlined. Results showed improve­
ment over previously achieved accuracies reported in van-
Gerven et al. (2009) for all the subjects. The improvement 
was particularly remarkable for subjects 3 and 4 for which 
previously best known accuracy values were around 0.72 and 
0.65, respectively. 

Figure 8 shows (as dot points) the scalp location of the 
best subset of channels learned for each individual using the 
raw+correlation information. The color represents the aver­
age accuracy of each channel computed from the Pareto front. 
The average accuracy of channel i is computed as the average 
accuracy of all objective vectors whose corresponding solu­
tion in the domain includes channel i. Green spots correspond 
to channels that were not present in any of the solutions com­
prised by the Pareto set. The figure indicates that green spots 
are equal across individuals, whereas the color of the other 
channels changes only slightly. 

The information about the best single solution for each 
subject, as displayed in Fig. 8, is not very informative because 
the number of selected channels is relatively large and it is 
difficult to detect any particular pattern. One alternative for 
refining our analysis is to identify channels that are often in 
the solutions comprised by the Pareto set. Figure 9 shows 
(as dot points) the scalp locations of channels included in at 
least 80 % of the Pareto set for the four types of information 
considered. These are expected to be channels, for the con­
sidered type of data, that reliably provide relevant features 
for the classification task. In Fig. 9 the colors represent the 
frequency with which each channel is present in the Pareto 
sets. 

Figure 9 shows that most of the channels frequently 
included in Pareto solutions are located around the occipito­
parietal region. There are also channels selected from other 



Subject 1 Subject 2 

Subject 3 Subject 4 

Fig. 8 Best subsets of channels learned for each individual using a 
raw+correlation information scheme 

Raw inf. Corr. values 

Inter, graphs Raw+Corr 

Fig. 9 Channels that were in at least 80 % of Pareto-set solutions for 
each information type 

areas; in particular some channels are detected in the fron­
tal area. These results seem to indicate that important gains 
in interpretability can be attained when a set of solutions is 
used instead of a single one. We must be aware, though, that 
the optimal solutions found by EAs and other multiobjective 
optimization methods are correlated by the way in which 
the search was conducted. This could mean that a channel is 
often in a Pareto set due to the way the EA works. This effect 
can be countered by using several runs or different variants 
of the search procedure, as in our approach. 

5.5 Evaluating the robustness of the Pareto-set solutions 

We are interested in further evaluating the robustness of the 
solutions included in the Pareto set. We focus the analysis on 
the set of 152 Pareto solutions found for the raw+correlation 
type of information and extend the evaluation of the classi­
fication accuracy to the original set of 15 subjects. For each 
of the 15 subjects, the brain signals are downsampled from 
1, 200 to 60 Hz. This implies that we are using approximately 
one fifth of the signal information that was used in the previ­
ous classification experiments for which signals were down-
sampled from 1, 200 to 300 Hz. Therefore, we do not expect 
to achieve the same classification accuracy results. We do 
not expect neither that the Pareto sets of channels found for 
four subjects will necessarily be good for the other eleven 
subjects. However, we can compare them with the subset 
of occipitoparietal channels given the known physiological 
mechanism involved in covert attention. 

Figure 10 shows the classification accuracy achieved in 
the complete set of 15 subjects and with the raw+correlation 
type of information for all the channels, the occipitoparietal 
channels, and the best solution of the Pareto set using only 
four subjects. The best solution depends on each new sub­
ject. It is the set of channels from the Pareto set that gives 
the highest accuracy (out of the 152 values) for each of the 
new 11 subjects. It can be seen that for 14 out of 15 sub­
jects the classification accuracy of all the channels and the 
occipitoparietal channels can be improved by using subsets 
of channels that belong to the Pareto set obtained for four of 
the subjects. For some subjects the accuracy improvement 
can be over 10 %. What we want to emphasize at this point 
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Fig. 10 Classification accuracy achieved in the complete set of 15 sub­
jects and with the raw+correlation type of information. Different sub­
sets of channels have been used: all the channels, the occipitoparietal 
channels, and the best solution of the Pareto-set computed using only 4 
subjects 



is that the Pareto set of solutions found for a reduced set of 
subjects can be used as a reservoir of potential solutions for 
other subjects. We can also think of situations where brain 
signals from many subjects are available and an initial clus­
tering step is applied to select a subset of exemplar subjects 
for which the channel multiobjective optimization step will 
be conducted subsequently. 

5.6 Analyzing the parameters of the logistic models 

Through channel selection the classifier is able to reduce the 
data used for classification, focusing on the most task-related 
informative brain areas. However, the information coming 
from all the channels is not necessarily equally relevant for 
the classifier in informative terms. The relevance of a channel 
will depend on the contribution of the features associated to 
each channel. Notice that selecting a channel means that all 
the features coming from that channel will be used for clas­
sification (e.g., for raw information there are 60 features for 
each channel). One way to assess the relevance of a channel 
is to inspect the logistic model parameters associated with 
the feature variables coming from it. Regularized classifiers 
tend to set the parameters corresponding to those variables 
that are not relevant for classification to zero. 

We compute the frequencies with which the parameters 
corresponding to each feature have been set to zero in all the 
solutions (set of channels) that belong to the Pareto set of 
solutions. The most relevant features from each channel are 
expected to be those most frequently selected by the clas­
sifier across solutions. Additionally, we do not expect the 
channels that have the parameters for all their variables set 
to zero to be important for classification. Due to the com­
plexity of the optimization problem, it may occur that chan­
nels whose features do not contribute to the classification are 
selected by the optimization algorithm. Therefore, determin­
ing the feature relevance can be seen as a refinement of our 
channel selection method. It will improve the quality of the 
extracted biological information, discarding channels whose 
corresponding features are seldom identified by the classifier 
as relevant. 

We analyze the set of 152 Pareto solutions found for the 
raw+correlation type of information. For this type of infor­
mation a channel i may be relevant because either the vari­
ables representing raw information from channel i or the 
variables representing correlation information that involves 
channel i are frequently nonzero in the classifiers. To analyze 
the different sources of relevance, we separate the analysis 
of these two cases. Figure 11 shows the channels that, on the 
basis of the analysis of their corresponding nonzero coeffi­
cients in the regularized models, are identified as relevant 
because their contribution comes from the raw information. 
These channels are represented by black dots. The colors 
indicate the average absolute value of coefficients. 

Subject 1 Subject 2 

Subject 3 Subject 4 

Fig. 11 Channels that were identified as relevant due to their contri­
bution coming from the raw information, as a result of the analysis 
of their corresponding non-zero coefficients in the regularized models. 
The raw+correlation type of information was used 

Subject 1 Subject 2 

Subject 3 Subject 4 

Fig. 12 Channels that were identified as relevant due to their contribu­
tion coming from the correlation information, as a result of the analysis 
of their corresponding non-zero coefficients in the regularized models. 
The raw+correlation type of information was used 

Similarly, Fig. 12 shows the channels identified as rele­
vant because their contribution comes from the correlation 
information components. In this case, the figure represents 
the channels involved in each pairwise correlation detected as 
relevant. For the two cases considered, we set a threshold for 
the minimal number of times that the coefficients correspond­
ing to the features of each channel should be different from 
zero. This threshold is 80 for the raw type of information and 



50 for the correlation type of information. Only those chan­
nels whose coefficients satisfy these constraints are shown 
in Figs. 11 and 12. 

Figure 11 shows that the number of relevant channels 
is less than the number of selected channels of the sin­
gle solution shown in Fig. 8. Selected channels are also 
more related to the information available a priori about brain 
areas involved in the studied brain processes. By contrasting 
Figs. 11 and 12, we recognize two different situations con­
cerning the variable contribution of raw data and the channel 
correlations to classification accuracy. 

The first situation, illustrated by subject 1, is when the 
number of channels whose contribution is due to the corre­
lations is higher than the number of channels whose contri­
bution is determined by the raw data. The second situation, 
illustrated by subject 2, is the opposite. For this subject, only 
a few of the channels have coefficients associated with the 
correlation features that are above the fixed threshold. What 

we want to emphasize here is that the information captured 
by logistic regression models may be useful for classifying 
individuals according to the different dynamics involved in 
their mental activity. This classification could be useful to 
explain intersubject variability and eventually to tailor BCI 
to the particular characteristics of the subjects. 

It is also interesting to look at the periods of the recorded 
time series that are more informative for the classification 
task. Since the raw data corresponding to each channel are 
codified using 60 variables, we can look at the coefficients 
learned by the models for each of these variables at each 
channel. Fixing a threshold based on the number of non­
zero coefficients produced by each variable, we can give 
estimates about the relevance of each time period. We have 
computed the number of nonzero coefficients for each of 
the 60 variables in all the solutions of the Pareto set for the 
raw+correlation type of information and for each subject. 
Figure 13 shows the total number of nonzero coefficients 
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Fig. 13 Number of non-zero coefficients for each of the 60 variables describing the raw information component of the raw+correlation information 
and summed from all channels represented by the 152 solutions of the Pareto set 



computed from all the Pareto solutions and adding all the 
channels. 

Figure 13 shows a very strong contribution of nonzero 
coefficients during the initial periods of the time series for 
subjects 1, 3, and 4. For these subjects the highest contri­
butions come from the first variables. A different trend is 
observed for subject 2, where the highest contributions are 
in the middle of the recorded time series. A channel-specific, 
differential analysis of the informative value of the time vari­
ables can be expected to provide a better understanding of this 
question. This type of analysis, which could serve to reveal 
physiologically relevant information in the data, is left for 
future work. 

6 Related work 

Several approaches that apply regularization methods to 
extract information from MEG and EEG have been proposed 
Haufe et al. (2010); Valdes-Sosa et al. (2005); van-Gerven 
and Jensen (2009). The approach most related to our work is 
presented in van-Gerven et al. (2009), where sparse logistic 
regression using lasso regularization is used to solve the same 
classification problem but using a different type of predict­
ing variable. In Obermaier et al. (2001), GAs are combined 
with hidden Markov models (HMMs) for classification in 
an offline EEG-based BCI. The authors found that the use of 
asymmetrical classifiers derived from the GA-based proposal 
performed significantly better than the HMM classifier. 

A number of methods based on the analysis of time series 
extracted from MEG have been proposed for assessing func­
tional connectivity between brain regions (Darvas and Leahy 
2007). These include, for example, the use of covariance, 
mutual information, coherence, de Lange et al. (2008) use 
cross-frequency amplitude coupling to identify interactions 
between different brain areas during imagined actions. It is 
important to emphasize that just because two or more regions 
share mutual information during a given task does not imply 
a causal relationship between these regions. Furthermore, 
correlations between the information collected by channels 
may be due to artifacts in the registering procedure and not 
to neuron activity. 

Importantly, the use of network topological measures to 
analyze graphs constructed from MEG data is not new. In 
Bucolo et al. (2008) and DiGrazia et al. (2009), the syn­
chronization likelihood, a statistical measure of dependence 
between channels, is used to construct an interaction graph 
to investigate the occurrence of small-world phenomena in 
MEG data. Bucolo et al. and DiGrazia et al. extracted topo­
logical measures (clustering coefficient, path length, mean 
degree) to characterize the differences in the three different 
phases of the evaluated experimental protocol. 

7 Conclusions and future work 

In this paper we have proposed a unified approach that com­
bines a number of methods to improve classification accu­
racy when covert spatial attention is used for BCI. We assert 
that by combining raw information with features extracted 
from the time series correlations, it is possible to achieve 
a higher accuracy than by using only one type of informa­
tion. To further improve the results accuracy, we have shown 
that multiobjective optimization using EAs is a valid alter­
native for selecting accurate subsets of channels. Using the 
output Pareto set of solutions, we conducted a global anal­
ysis of the classification problem. Instead of focusing on 
a single solution, we showed that by inspecting the Pareto 
sets, it is possible to unveil knowledge about the chan­
nels that are more frequently involved in accurate classifi­
cation. 

From our results we have confirmed that regularized 
logistic regression is a very suitable classifier. It increases 
the classifier generalization capabilities and incorporates 
numerous features into the classification task. This is a par­
ticularly important characteristic for MEG analysis since 
usually information coming from hundreds of channels is 
available. The use of surrogate accuracy values in the form 
of two-fold cross-validation accuracies during the EA evolu­
tion has proved to reduce the cost of the evolutionary search 
and pointed the search in the right direction. Also, the idea 
of extending the information passed to the classifier by add­
ing features that were not originally included in the search 
for the optimal classifier has shown that it is possible to 
improve accuracy with no added cost associated with the 
search. 

Although current BCIs use electrophysiological signals 
representing brain events that are reasonably well defined 
anatomically and physiologically (Wolpaw et al. 2002), the 
exploration of signal features that exhibit more complex rela­
tionships to the underlying difficult-to-explain brain events 
remains a promising path for BCI development. Machine 
learning techniques used for classification are appropriate 
for this task. They should be able to provide compact but 
still legible characterizations (models) of the signal features. 
Furthermore, it should be possible to identify distinctive pat­
terns in the brain dynamics of different subjects from the 
analysis of these models. 
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