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1 Introduction

In order to act efficiently in unknown environment and col-
laborate with human, robots must be able to control and
adapt their behaviors. On the contrary of classical motor
control approach, Human-Robot Interaction and imitation
paradigms take into account that a human partner can in-
fluence and improve both the behavior and the behavioral
learning of a robot. Our past work, following a develop-
mental approach [47], along with collaborations with devel
opmental psychologists, cognitive psychologists andaeur
biologists have led us to understand that the tasks and be-
haviors cannot be reduced to a set of controlled parameters.
Behaviors rather emerge from the dynamics of perception

action coupling [26, 48]. The behavior is built upon a wide
range of interactions at different levels. A behavior léagn
system must be able to capture the dynamseasorimo-

tor attractors describing the behaviors. In such conditions,
the issues of learning, adapting and sharing these attsacto
Abstract Imitation and learning from human require an ad-are fundamental in order to achieve natural and intuitive no
equate sensorimotor controller to learn and to encode théerbal human-robot interaction. What are the constraints o
behaviors. We present the Dynamic Muscle PerAc (DM-the low level motor control to learn such attractors? What
PerAc) model to control a multi DOF robot arm. In the origi- kind of model of motor control should be used and how can
nal Perception-Action (PerAc) model, path following orgea it be learned ?

reaching behaviors correspond to the sensorimotor attsact  |mpedance control enhances optimal control in the case
resulting from the dynamics of learned sensorimotor assocbf interaction with the environment (Sec. 2.1). In impedanc
ations. The DM-PerAc model, inspired by human musclesgontrol, position and velocity constraints determine thoven
permits to combine impedance-like control with the capaments with respect to the desired trajectory. In the frame-
bility of learning sensorimotor attraction basins. We deta work of human robotinteraction, regression based solafi®,
a solution to incrementally learn on-line the DM-PerAc vi- 10] can learn the desired trajectories from data obtained du
suomotor controller. Postural attractors are learned Bp&d  ing the task demonstration by a human (Sec. 2.2). The tra-
ing the muscle activations in the model depending on moveectories result from mixtures of adapted kernels. Impedan
ment errors. Visuomotor categories merging visual and procontrol can be linked to muscle activations (Sec. 2.3). Tiou
prioceptive signals are associated with these muscleaactivthe hypothesis of a desired trajectory is usually kept while
tions. Thus, the visual and proprioceptive signals activatfocusing on the link between muscle activations and the im-
the motor action generating an attractor which satisfies botpedance control parameters (stiffness,...). On the cgntra
visual and proprioceptive constraints. This visuomotar-co e defend the Perception-Action (PerAc) approach claim-
troller can serve as a basis for imitative behaviors. Beside ing that behaviors correspond to sensorimotor attractoesg-
the muscle activation patterns can define directions of moveng from the dynamics of multiple learned sensorimotor as-
mentinstead of postural attractors. Such patterns candae ussociations (Sec. 3).

in state-action couples to generate trajectories like & thin our first works on the emergence of imitation [27, 3], we
PerAc model. We discuss a possible extension of the DMshowed that an arm controller using the learning of visuo-
PerAc controller by adapting the Fukuyori's controlleréds motor associations to build an homeostatic controller can
on the Langevin's equation. This controller can serve nofead to the emergence of low level imitative behaviors if the
only to reach attractors which were not explicitly learnatd b perception is ambiguous (i.e. when mistaking partner'sihan
also to learn the state/action couples to define trajectorie for its own hand). However, this visuomotor controller had
several limitations. In particular, it did not allow the cod
ing of trajectories by state-action couples like in the RerA
approach. We thus propose, in this paper, a model called
Dynamic-Muscle PerAc to control a robot arm with mul-
tiple Degrees-of-Freedom (Sec. 4). The DM-PerAc model
is based on simple models of muscles and joints with dy-
namic equations corresponding to impedance control. This

Received: date / Accepted: date

Keywords visuomotor control impedance control
perception-action loopneural network

ETIS UMR CNRS 8051, ENSEA, University Cergy Pontoise F-3500
Cergy Pontoise, France
E-mail: {rengerve,andry,gaussig@ensea.fr),



2 Antoine de Rengerveé et al.

DM-PerAc model learns the inverse kinematic model by2.2 Learning tasks from human with regression techniques
learning visuomotor associations. It also learns postitral

tractors to link perception (visuomotor categories) with a The trajectories can be directly learned from training data

tions coded as muscle activations i.e. it also learns the in-, . . : :
: : ) obtained during a task demonstration by a human. In order to
verse dynamic model. The behavior and properties of th

. . . fearn how to fulfil atask, a human teacher can provide feed-
DM-PerAc visuomotor controller are evaluated in Section 5 . . . .
L . ) back or data which are integrated in a sensorimotor model of
Like in our previous works [3], the DM-PerAc visuomo-

. o . the task. Function approximation based on local regression
tor controller is a good bootstrap for imitative behaviors

. - techniques [5] is efficient to learn forward or inverse mod-
(Sec. 6.2). Besides, the muscle activation patterns can bq . I

. . : ..~ els of robot control. Learning an initial model from a human
used in state/action couples to code trajectories like én th

PerAc model (Sec. 6.1). We introduce the Fukuyori's COn_demonstratlon reduces the size of the space to be explored.

. . _ . Demonstrations facilitate and improve a subsequent rein-
troller to improve performance in Section 6.3 and we dis-,

) ) . . _ forcement learning [57]. More recent, the Locally Weighted
cuss its possible role to learn trajectories with the DMARer N ; :
: : Projection Regression algorithm (LWPR) [63] merges both
model in Section 7.

the incremental learning properties of the Receptive Field
Weighted Regression (RFWR) algorithm [59] and the pro-
jection of input data in order to reduce the dimensionality

2 State of the art of on-line, incremental motor control problem. The authors ShOWGd a dempnstration with.a .30-
for learning from interaction DOF SARCOS humanoid robot learning the dynamic in-

verse model and performing eight-shaped trajectories with
2.1 Impedance control its arm.

Regression techniques to learn models of motor control were

In optimal control theory [62], the desired trajectory is analso used in learning from demonstration paradigm [4]. The
optimal trajectory crossing given via-points and minimiz- Dynamic Movement Primitives (DMP) [37, 58, 34, 38] are
ing some movement variables like jérk21]. The motor bas_e_d on the RFWR algorithm. The primitives are (_:ontrol
control should be flexible enough to allow physical inter-Policies that are activated depending on a local basis func-
action with the environment. Studies of movement propertion- They provide motor control as a second order dynamic
ties have led to impedance control model [35] as an apSyStém. The combination of primitives shapes the attractor
proximation of neuro-muscular properties. According @ th landscape to produce the desired trajectory. This combina-
equilibrium trajectory hypothesis [20], motor programs ar tion depends on a phase variable which gives the tempo-
internally represented as the trajectories of an equiibri ral reference of the movement. The approximated function
point. Impedance control is efficient to control maniputato 1S the time-dependent trajectory, and locally weighted re-
acting in contact with the world [15]. Impedance control is 9r€Ssion of training data determines the parameters of the
also a usual controller for prostheses and exoskeletorhwhidasis functions (number, centers, bandwidths) and the con-
involve direct physical interaction with a human [41]. Im- tribution of corresponding primitives. The DMP algorithm
pedance control is based on a second order “damped mazldows interesting properties of spatial and temporal invar
spring’-like system (1) enabling constrained motion, dyia 2"c€ and was applied to learn discrete and rhythmic move-

interaction and obstacle avoidance. ments. However, the correspondence problem [50] was com-
pletely eluded as the training data were obtained from4joint

dv angle recording system on the human. A particular coupling

ME =K(Xo—X)+B(Mo—V) (1) must be introduced in the dynamic equation of the phase

variable in order to tackle correctly perturbations. The ac

with V the velocity andX is the Cartesian position of the tion of this coupling is to slow the evolution of the phase
end effector. The coefficielt (equivalent to the spring stiff- Variable when there are perturbations.

ness) and B represent the constraints related to the positi®Milarly, a Gaussian Mixture Model (GMM) can also learn
commandX, and the speed commakfg respectively. Some & model of a demonstrated task by encoding propriocep-
other versions of impedance control use the proprioceptivive and Cartesian information in Gaussian kernels [10g Th
information (e.g. [1]) instead of the Cartesian positioe: B learning is based on an Expectation-Maximization process
sides, the via-points, which are necessary to compute tnahich adapts the Gaussian kernels to describe probabilis-

desired trajectoryXo(t), Vo(t)), can be learned from watch- tically the input data obtained in a training session. Then,
ing [49]. given partial information like only the Cartesian position

Gaussian Mixture Regression extracts the probable propri-
1 In the minimum-jerk approach, the movements maximize the@CePtion to control a robotic arm. Depending on the task,
smoothness of the motion. vision or motion capture devices can track particular ele-
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categorization/competition

ments (e.g. spoon, human head) [12, 13]. Still, the compu-
tation of the 3D Cartesian coordinates of the visual markers = 8
requires particular calibrations of the external devi¢gs]

uses a dynamical second order motor controller and Hidden Xy [
Markhov Models (HMM) instead of GMM. HMM encodes R S
the sequential dependencies in the task, whereas the motor.—» »
controller now implements impedance control. A trade-off '

—I/—> one to one links

—f}—> one to all links

motor
C output

between the position constraint and the speed constraint is St o L—

managed depending on the variance in the demonstrated tra- c4 | AA; . '
jectories. This version of the model is similar to DMP. The . N Place-goton s
main difference is that the learning of the constraints on, - S3 ’ )

the position and the velocity profile can take into account
the mutual influence between different Degrees-of-Freedom * ..
which is not the case with DMP. Some recent works [44, 54] «
studied the on line adaptation of the control stiffness fromy,

the position variations and haptic feedback. This adapati Fig. 1 a) PerAc modelb-d) Examples of built dynamics in 2D spaces.

of the control improved the quality of the collaboration be-p) Fixed point attractorc) Limit cycle in the case of navigation exper-
tween Human and robot [54]. iment.d) Trajectory following. In b) and d), the gray dotted lines are
the Voronoi boundaries. The plain black line is a trajecaynple.

2.3 Adaptation of muscle activations and impedance
control given trajectory. The principle of adapting the muscle-acti

vations should not be reduced to adapting the parameters of
In the case of human arm control, the actions are genethe impedance control. This principle is also interestimg t
ated by muscle contraction. The VITE model [7] is basedearn the perception-action coupling.
on equations describing the muscle activations. The result
ing dynamics is similar to the dynamics produced by an im-
pedance controller [32]. However, the VITE model also as3 The Perception-Action model and arm control
sumes a target position to drive muscle activations. laiter
tive and adaptive control [61], the behavior can be adapte8ince many years, we have defended the Perception-Action
by changing the control parameters instead of changing th@pproach (PerAc, [26]) claiming that, in an active system,
command. Considering the adaptation properties at thé leveoupling perception and action enables to build behaviors.
of muscular control [8, 22], the authors proposed a muscl&ast on-line learning of associations between sensory sig-
centered model of adaptive and iterative control to maintai nals and motor signals is sufficient to build sensorimoter at
a posture or to follow a trajectory under disturbances [25]traction basins. Let us consider the sensorimotor system of
The controller takes into account a feedforward torque coman agent acting in a given environment (or state space) and
mand and a feedback control to generate the final torquieaving 2 sensation vecto¥s andXgq (Fig. 1a). Firstly, the
command. The feedforward torque command is generatgaroprioception vectoX; represents the coarse feedback in-
by muscular activation. The feedback controller is proporformation from the execution of the motor command or the
tional derivative. Such control can be equivalentto impeaa direction of the goal (if the goal is in immediate neighbor-
control if the apparent inertia is assumed to vary and to b&ood). It can be considered as a reflex or a regulatory path-
equal to the inherent inertia of the robot. The muscle actiway that links proprioceptive sensation to the motor com-
vations are adapted in order to reduce the feedback erranandAc. Secondly, the global sensory vecky represents
Indeed, in the model [25], the adaptation of the muscle acmore global information about the environment. A local but
tivities directly induces changes of the feedforward t@rqu robust distance measure (metric) can be computed to com-
and of the stiffness in the feedback controller. Feedfodwar pare global sensory vectors. In the PerAc model (Fig. 1a),
torque modification enables to compensate an applied exhe global sensory vector is categorized and a competition
ternal force. In the case of rapidly varying disturbandes, t (soft-WTA) between the categories allows to define recog-
stiffness of the feedback controller is increased, so the ranition activitiesR. On the basis of the distance measure, the
bustness of the controller also increases. However, isereacategories which best represent the current state are deter
ing the stiffness from a muscular point of view is energymined. Categories are associated with concurrent actons e
consuming. So, the stiffness will tend to decrease when thégmated from the proprioceptive vect&s. An action field is
unpredictable perturbations cease to occur. This model pethus defined. This action field associates particular astion
mitted to maintain a desired posture or to follow an a-priorilmovement vectors or forces) to areas of the state space ac-
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cording to the recognized categories. Depending on thée buiPerAc approach, the perception is considered as the result
action field, the dynamics of the system can be shaped tof learning sensation/action associations allowing aalgb
produce interesting behaviors i.e. attractor points,tliegi ~ consistent behavior while facing an object. For instange, b
cles or trajectories. Figure 1b-d shows examples of dynaniearning sensorimotor associations, a robot can learn bow t
ics defined in a 2D space. In Figure 1b and d, the Voronoi direturn to a given object which can be interpreted as the fact
agram shows for any point of the space which category wintghat the robot “perceives” the object [48].

the recognition competition. The associated action is thus The same sensorimotor association principle can be a
performed as long as the state of the system is in the sanisis for the emergence of low level imitative behavior§.[27
Voronoi area. A trajectory sample is given in Figure 1b. Thein the case of arm control, we showed [3] that an imitation
system reaches the boundary of the Voronoi area where # directly observed gestures can appear as a side effect of a
started, then it follows this boundary to the defined attnact homeostatic visuomotor controller with perceptual ambigu
point. Whatever the initial position is, the learned dynesni ity. During a first phase, the system learns associations be-
leads the system to the attractor point with a similar kindween visual and motor signals building a visuomdiome-

of trajectory. The attraction basin emerges from the systergstat. Due to low visual capabilities, the robot is unable to
dynamics generated by the state/action couples. Figure kgscriminate its own hand from the hand of a teacher (ambi-
shows a configuration of action field that produces a limitguity of perception). As the control architecture implettsen
cycle. No time basis is necessary. As the system moves, & homeostat, the system tends to maintain the equilibrium
reaches another area of the action field and performs thgetween visual and proprioceptive information. If a differ
corresponding action which brings and maintains the sysence is perceived, then the system acts to come back to the
tem close to the followed limit cycle. Not using a time ba- equilibrium state. To do so, the robot moves its arm so that
sis has several advantages. No synchronization of the timgs proprioceptive configuration corresponds to the peszki
reference is needed, which is quite a complex process, egisual stimuli according to its sensorimotor learning. As a
pecially when there are perturbations of the trajectorye Thresult of these movements, the demonstrator’s gestures are
learning is also more direct, and can be performed on-lingnitated [3]. The correspondence problem [50] is avoided

very rapidly because the model simply learns what shoul@s the robot only imitates what is observed with its own ca-
be done in a directly sensed context. pabilities.

A similar kind of state/action combination can also produce |, the model of [3, 45], the control was performed in the
a simple trajectory following (Fig. 1d) Indeed, partial im y;ig;4] space. A forward kinematic model allowed to esti-

cycle construction can pr(zvide a d¥’namics with which theém e the visual position of the robot hand. This position was
system behaves as if it is “attracted” by a trajectory and régen compared with the perceived visual position to geperat
mains in its close vicinity. In the state/action Conflgunay_ movements (see [3] for details). A first drawback was that
of F'?' 1d, the system can only get closer to an “equilib-gr4iic estimations of the visual position of the robot hand
rium” path where, due to the alternate category recognition, o4y ced an erratic control. Because the forward modetiear
the effects of the associated actions tend to equilibrdie. T ing was based on Self-Organizing Maps [43], false estima-
system is maintained in the vicinity of this path. Depend-jons could occur until learning convergence. So, the con-
ing on the orientation of the learned movement actions, th&jier should not be used before the end of learning. The
system will tend more to reach the trajectory or to move forgarning process was not incremental. Finally, the trajec-
ward. By allowing the system to come back to the trajectoryyyries were not coded by sensorimotor couples like in the

the PerAc model can manage perturbations. PerAc model. Indeed, the motor commands were extracted
The Pe.rAc_modeI has been prqved to be an efficient contrg}ym the Dynamic Neural Fields [60] by using an ad hoc
for navigation and path following [31], with good robust- o440yt mechanism. This solution presented interestiogpr
ness against perturbations !lke obstacle avoidance. E‘Etheerties (memory, bifurcation) (see Sec. 5.4), but was onlly ab
works, the learned categories are place-cells based on \s gefine attractor positions. Moreover, we were not able to
sual recognition of the robot location (see [31] for dejails gypjain how the readout process could be learned or tuned.
The state/action associations are learned on-line froemn-int Here, we are interested in a model that can bootstrap imi-
action with a teacher [30]. When the robot moves away froMive hehaviors and can also code trajectories according t

the desired trajectory, the human teacher changes its-oriefla perac approach. The model should also be incremental
tation to correct its behavior. This feedback is used tolear 54 aple to managed multiple Degrees of Freedom.

new place-cell/orientation couples to complete the sénsor In [40] [3], the authors developed arm controllers which

motor control and to modify the robot behavior. This sen- . . .
. . ) - work in spaces different from the motor space, reducing the
sorimotor learning enables the robot to follow trajectsrie

o ) . .~ number of dimensions. The difficulty is then to extract a

(limit cycles, Fig. 1c) and even to reach particular locasio . . :
) . motor command from the control in the lower dimension
which become attractors for the dynamical system. In the
Space. In the DM-PerAc model, we use the alternate solu-
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tion consisting in performing the control in the proprioeep also based on couples of antagonist muscles (hereaftet note
tive space. The generation of the motor command is simpli4+- and—) around the joints with each muscle approximated
fied whereas the difficulty is to learn sensorimotor attrescto as a contractile element. However, unlike [42] and [65], we
The resulting motor controller should be able to learn eitheuse a simplified linear model of contractile element which
a particular movement or a postural attractor. In the next se generates torque instead of force. In the DM-PerAc model,
tion, we describe the Dynamic-Muscle PerAc (DM-PerAc)the torque generator is a spring with variable stiffnessreas
model which provides a common coding basis for both asthe damping element is a simple viscous damper (Fig. 2).
pects of the control. The DM-PerAc model is based on arhe varying stiffness is given by the muscle activatidns
simplified model of joints and muscles where both particu-The joint positions are controlled with the equations [2-8]
lar movements and postural attractors are coded as musclis these equations are the same for each joint, the joint in-
lar activations. We also detail how visuomotor attract@r ar dexj is not displayed. Besides, the time st€pdependency
learned by the DM-PerAc model. is only indicated to disambiguate terms when different time

steps are involved in the same equation. For each joint, the

agonist and the antagonist muscles generate the apparent
4 Dynamic-Muscle PerAc model torquest™ andt~ (2).

We now present our model called Dynamic Muscle PerActo( t+ = —A* .8+ — g+ .67
control a robotic arm. This model combines control equiv-{ T =-A -0 -0 -6 (2)
alent to impedance control with the PerAc principle. The
parameters and equations of the DM-PerAc model are alvhereA™ (resp.A™) is the muscle activation ana™ (resp.
summarized in Appendix A. 0~) is the damping of the agonist (resp. antagonist) mus-
cle. The angular value8™ and 6~ are measured respec-
tively from the full flexion position6ax and from the full
4.1 Control of joint position with a simplified muscle extension positioMn (3).
model
+ -_ . .
Different models like Hill's model [33] and Huxley's modaig] 0 0~ omex » &7 = 0= bhin and 6 & [6inin, Oas]
have been developed describing different properties of the (3)
muscles. In the lumped-parameter nonlinear antagonists&zm . .
cle model [64, 65], the movements of a joint are produced b)‘/v'th 8 the angu.lar posmop of the joint. .
a couple of antagonist muscles. The muscles are simulated The dynamical equation of the system links the rota-

by Hill's muscle model. This model is based on three comlional acceleratior® and the moment of inertia with the

ponents: a contractile element, a series elastic elemeht afPrdues generated by the agonist and antagonist muscss giv
a parallel elastic element. In [42], the two elastic elersentPY (2) @nd the torque. given by external forces.

are neglected to focus on the dominant contractile elemen}. -

. . O =T"+T7T +T1¢

The contractile element can be approximated by a force gen- = AT O ot Bt A O —0 -0 41 4)
erator in parallel with a damping element [24]. The force - €
generator implements the force-length relation in muscle
with the force that can be modulated by neural signals [65]
The damping element implements the force-velocity rela-

tion given by [33]. B At L0 A (B—0i)— - €
Ourmodel,calledDynamic-MuscIePerAc(DM-PerAc),isI O=A" (Brex—8) ~A"- (6~ bn) ~ -6+ Te ®)

Equations (3) and (4) gives the equation (5) where o+ +

In the absence of external torques/forces=€ 0), the

system defines an attractor at the convergence [Baint
%. To simplify this controller, the angular po-
sitions 8 of the joint are normalized so that for each joint,

they vary between 0 and 1.

Bhrin=0<0<Bmx=1,06"=1-6 and 6 =6 (6)

2 The damping can be constant. However, controlled moveraeats
Fig. 2 Simplified model of muscle control relying on a spring dampedimproved if the damping varies with the stiffness. For ins& the
model of muscles. Damping properties are hypothesized esan&al  damping can be defined as proportional to the square rooeaftiff-
property of the arm still related to the muscle stiffness. ness like in [25].
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In this particular case, our control equation (5) is eq@mdl  the arm movements i.e. defining postural attractors. First,

to (7) with B = A+A+—+A, with K = AT+ A", we present how the visual and proprioceptive categories are
learned and computed. In the next section, we will present
0 — K, (Beq— 6) — 9.6 (7)  howthe visuomotor categories are built from the learned vi-
I I

sual and proprioceptive categories. We will also detail how
The equation (7) corresponds to a classical mass-sprimgpidgihe postural attractors are learned as muscle activatgses a
system with a stiffnes& and an equilibrium positioBeq. ciated with the visuomotor categories. Both processesroccu
The equilibrium position is unchanged when bdth and ~ alternatively and participate to the sensorimotor balgplin
A~ are multiplied by the same factor. Such a factor onlyprocess allowing the robot to learn how to act.
modifies the equivalent stiffnedé. An adaptation of the Proprioceptive categories are recruited during a sensori-
stiffnessk and the dampingr controls the rise time, over- motor exploration process. Considering the agonist/amtisg
shoot and settling time. The controller was simulated usingnuscles, the proprioceptive information is defined by the an

discrete time with a time increment. With | the moment  gular positions of the controlled joinBs= (6" ... 63 6; ... 6]
of inertia andt the sum of the torques = T + 7, the (indexm?). Each valu@t/~ is positive and normalized with

equations of the dynamical system are: respect to the agonist or antagonist references (see Fig. 2)
, The categorization of the proprioceptive input is desatibe
& =6-a+6&- At by (9) and (10). The proprioceptive inpuBsare encoded
& =6-a+6- At (8) into categories® with Gaussian responses depending on a
& =1/l variance parametgd”. The variance parametg@f enables

) i . oo to increase or to reduce the selectivity of the sensory cate-
The varla_blesﬂt, &, & correspond respectively ,0,6 in gories. They are recruited with a process based on Adaptive
the equations [2-7]. Resonance Theory [14]. If the current infuis too different

In ourmodel (5), the generated torque depends on the affom any encoded sensory patt&i?, i.e. if the recognition

tivation A of the muscles and on the lengths of the musclesp is under a vigilance threshokf’, then a new categoiy
(indeed the angleB). This dependance to the muscle Iengthis recruited €7 = 1). The current sensory inp@tis stored

makes our model look like the "lambda” model of Feld- on the Weightswﬁ’ to theit,h category. Even though a slow

man [17, 18]. In the Theory of the Equilibrium Point [19], 4qantation of the encoded categories is also possible, we do
also named Theory of Threshold Control, the motor CONt ot consider it in this article

trol is based on threshold functions)(defining the acti-
vation of the agonist and antagonist muscles. However, i = exp(_Zm(Pm*VwrjnF)
our model, the activation thresholds are not controlledg Th AWP — P (R ZEWP ) ©)
activation of the muscles is directly the controlled parame Wit'#g; _ %(;p _ 'r;%x(sp))
ter. Therefore, our model is closer to the "alpha” model as i
described in [6]. In the alpha-model, the generated torque . , )
is directly cor[1t20IIed by tif)e muscle activzgtions produci(rqlgw'th, the Heaviside T‘%”Ct'oc‘ff(_x) =1ifx>0 gnd 0 Ot,h'
the equilibrium point trajectories and adapting the sti€is. erwise. The recognition _a_ct|V|t|eS° are normalized to give
Following our simple model of muscle, in our model, thethe output of the recognition proceRS (10).
generated torques depend on both the activation of muscles Sp
(i.e. their stiffness) and on the muscle lengths. Our modeR = ST (10)
has also a major difference with the alpha-model as it asso- 2
ciates muscle activations with learned visuomotor configuThe outputRP can be interpreted as the probability that the
rations instead of relying on a temporal sequence of muscléensory categoryis the current sensory state of the robot.
activations. In the next section, we explain how the musclen practice, we approximated the sensory categorization pr
activations are learned and associated with the recruited Vcess to a winner-takes-all which corresponds to the vagianc
suomotor categories in order to allow motor control. parametei3” tending to O i.e. the selectivity for the cate-
goriesRP is maximal.

o ) _ ) In our robotic setup, the visual information is captured

4.2 Categorization of proprioceptive and visual space by a single camera. A visual feature detector (e.g. color de-
. ) . tector) enables to extract points of interest. The inforomat

Th_e DM-PerAc model canuse the pr_ewouslydescrlbe_d SIMis then projected over two 1D fields or vectors using popula-
plified muscle model with learned visuomotor assoclationg;, , coding. Each vector codes the accumulated salience for

to,bu'ld a wsyomotor controIIer_(Flg. _3)' Visual and PrO- the projected points of interest. The retina-centeredorsct
prioceptive signals are merged into visuomotor categories

which are associated to the muscular activations detenguini 3 Bold letters indicates vectors whereas plain letters aatase
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Sensori-motor attractors | Motor attractors command
motor commands ,
- #

Fig. 3 Architecture of the visuomotor arm controller. Both visaald proprioceptive information are categorized. The Visyaut is associated
with the proprioceptive input. The visuomotor categoriestaen associated with the muscle activations defining thimnattractors. The visual
input activates the associated visuomotor categoriestargithe corresponding motor attractors.

are then converted into body-centered vectors by a transfothe attractor posturg’. The connection weightvz;/i\k/M are
mation using the pan and tilt angles of the camera. The bodyncreased depending on the co-activated visaié] and pro-
centered vectors are computed as Dynamic Neural Fields [@]oceptive §) categories (12):

Thus, they exhibit bifurcation and memory propertieswhich .~ | \ M

are interesting in this attentional processing contexé ddr AW ™ =€ SD (f(sp) (R — W) (12)
ordinates(vy, v2) of the maximally salient point in this field it sVM 5 constant learning rate. The functibiis defined

are considered as the visual input. The visual categorées a 1Y — _ ;
by f(X) =1if X max(X) and f(X) = 0 otherwise. The

updated and learned using the equations (11) based onthe =~ = .
equations (9). co-activation is only learned when the arm is close enough

to the posturé:f, so the learning is modulated by the factor

RY — S with & — exp(— 31 (M 7WQ|/)2) S that checks if the similarity measug is high enough.
v Z_va v 2BV 1 Incorrect visuomotor associations can be progressively fo
AW = €7 (M —Wigy) (1) gotten.

Vv
with €% = (A _mf‘x(sz)) The activities of the neurons in the visuomotor layer are

computed with the following equations (13):
The recruitment of a visual categoF;X increases the vig-

ilance thresh_old\P of the proprioceptive catggorizgtion in R,VM = zﬁgm with SVM — RiF’. Z(Q(W'W) . R}{)
order to facilitate the recruitment of a proprioceptiveecat

gory if none already encodes the current posture. (13)

n
VM
gWYMy = 1if <NEX—VY5V%) >05
0 otherwise
4.3 Associating learned visuomotor categories with muscle
activations A weightW)/M contributes either as a factor 1 or 0 in the up-
date equation. The connection with maximal weight, among
The visual and proprioceptive signals are merged in a vithe input connections to a neurdonalways gives a factor
suomotor layer. There is a bijection between the propriecepequal to 1. Other connections can be “active” (factor equal
tive categories and the visuomotor categories. Wheneverta 1) if their weights are close enough to the maximum. Sev-
new proprioceptive category is recruited, a new visuomotoeral visual categories can then activate the same visuamoto
category§’M is also recruited and associated with it. Thecategory. The normalization of the activities of the visual
visuomotor category is then associated with the muscle aa:-ategoriesR}(’ ensures that the activities of the visuomotor
tivationsA maintaining the categorized posture. The aim ofcategorieS’M are always smaller than 1. The saturation of
the visuomotor learning process is to determine which Visuahe neural activities is thus avoided. Besides, when the-exp
categoryR‘k’ is maximally activated when the arm reachesnentntends tot-c only the connection with maximal weight



8 Antoine de Rengerveé et al.

H . . selection of last learned ke 1 i B -
is equal to 1 and any others are null. We consider this parc}eisg%?'ies v Visiomotor ategory mei?g,f;‘“ﬁ“g —#> lﬁi&'i;“;!;ﬂ%i‘i‘gms
ticular case in the experiments. topological

proprioception neuromodulation

The learning is performed on-line and fast. It is also incre-,
mental. By modifying some parameters (vigilancg/AV or
varianceB”/BY) of the sensory categorization process, new’
visual and proprioceptive categories can be added on-line
and are directly available for the visuomotor control. The
vigilance parameter determines how much categories can
overlap. Increasing the vigilance, i.e. allowing more ever
lapping, will increase the number of recruited categories.
The variance parameter of the Gaussian kernels can be de-
creased with a similar result. If the variance is reduceel, th
selectivity of the categories increases and more categorie

global .

neuromodulation
00 e increasing neural

activities

o] visuomotor
®| categories

proprioceptive 'ﬁ
categories

L stiffness factor
conditioning

A

P
comparison
desired
sl’el(s)ggning + . ﬁ
D o
s °l —

+

+

e e
muscles

B

product

A

will be recruited. Maintaining the vigilance level enabtes .
maintain a certain level of overlapping and thus of interfer SR Y,
modulation to learn postural attractors nc

ences during learning.
AS a result Of a Vlsuomotor aSSOC|at|0n |earn|ng’ a V|_F|g 4 Neural network |earning the muscle activations to maintiaén
robotic arm in desired proprioceptive configurations. béay is based

sual input can elicit visuomotor categories which acuvateOn a neuromodulation process increasing the welgifisso the mus-

motor actions (muscle activations) to drive the arm to theyje activationsA enable to maintain the desired posture. A second neu-
proprioceptive configuration associated with the visual-co romodulation loop induces the normalization of the stisfi¢ of the

straint. When a new visuomotor category is recruited, thélifferent joints to avoid saturating the muscle activasion
muscle activations enabling to maintain the visuomotor con
figuration (in practice maintaining the proprioceptive €on 1

fouration i h | 4. Muscle activafi i andR’} = 0), so only the corresponding weight&* are
'guration 1S enoug ) are learned. Muscle activation Coellly, . yifiaq. When the system learns the muscle activations,
cients are learned on-line in a perception-action prodés.

censory-motor loop is essential. As the svstem acts. it COno other visuomotor category can be learned, the visuomo-
Y r10op 1 . yS 1 COy, exploration is suspended. The exploration resumes when
rects or modifies its motor commands on-line to malntalq

the desired : £ th h " he motor control meets the condition (no more correction).
€ desired posture ot the arm. The corrective move.mentﬁhe learning equation (16) is based on a positive and a neg-
are learned by increasing the adequate connection weght

I N Sétive term and one learning factor:
the muscle activation neuroAs= [A; ... Aon| = [AT,AT].
The activities of the visuomotor categorigé™ determine AWA = (L —th) - ( €*-Cn-R™M . (1—WA)
the muscle activation& with (14): m —a” WA - maxK; _”;']C]+) (16)
mi C

An=3 W -R™M (14)

' whereg” is a learning rateg” is a decay rate an ™ =
where the weightVZ; is the learned activation off" mus-  x if x > 0 and 0 otherwise. The positive term in (16) in-
cle to maintain the arm in the proprioceptive configurationcreases the muscle activations thus changes the attractor s
i. In order to learn the muscle activations, the propriocepthat the equilibrium posture matches the desired pofture
tive configuration corresponding to a recruited visuomotorThis adaptation is based on the correction sighdktailed
category is stored. This proprioceptive sigRab then used below (17). The role of the negative term in (16) is to nor-
as a supervision for the muscle activation learning. The demalize the stiffnes; of the jointsj to the constant value
sired positionPy, is learned in one shot by associatiRgo  nc*. As the negative term changes all muscle activations
RYM when theif” visuomotor category is recruited. The cor- with the same factonr®, it does not modify the equilib-
responding update and learning equations are (15): rium posture, only the stiffness is modified. This normal-
N B WM .. B p ization process is necessary to avoid the saturation of both
Pn = IZW”“ TR with Wey = P — Wi, (15) the weightsW/ and the neural activitieAy, which would
revent any further correction of the movements.

During the muscle activation learning process, the systerﬁmhe part of the architecture in the gray rectangle in Figure 4

selects a visuomotor configuration that is to be learned (fOf’s dedicated to the computation of the correction sighal

![n_sta?ce thehla;zt rec ruited :nsuomf(_)tor Cf tegp)nyThfhrobot For each joint, the sign&l compares the desired movements
rles fo reach the visuomotor configuration using th€ assocy,o ity the current movements (17) to determine if a

ate_d propnp cep tive configuratidnto correct .movements. muscle should contract more i.e. if the muscle activations
This selection induces that only the target visuomotor con-

figuration is active (with, the selected configuratioR},{M = 4 In practice, the range of activities wig 1] and we usedc = 0.1
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associated to the target visuomotor configuration should belose to the postural target, so no more corrections aresnece
increased. sary. The learning of this posture can then stop and the motor
exploration resumes. Sometimes, the arm may be blocked
by an obstacle (possibly itself). The current version of the
architecture does not include an obstacle avoidance @oces
(still, a security module can block movements to prevent
damages), so the muscles may only be more and more con-
tracted without correcting the position. The deadlock & br
ken when the predictio® of the continuous correction fi-
nally compensates the detected correctivand stops the
MP = 7 (Pn— Pn—thp) (18) learning. The motor exploration can then resume and the
) ) o muscle activations related to this unsuccessfully leapusd
wherethp is a threshold under which no correction is re- 4| attractor, is not used for the control. Interestingly51],
guested. Itd_efme_sthe accuracy constraint for the movesnent o o uthors hypothesized that the role of dopamine could
The correction signaCr (17) does not change the mus- 515, pe to detect novelty and maintain or repeat recent ac-
cle activations if the current movemei, already reduces s hroviding the adequate context for learning. In our
the muscle_length i.e. Pm is decreasmg. This condition al- case, detecting unpredicted situations (correctionsjrein-
lows to avoid overshooting the correction of the movementSy,ip, the learning of a given posture instead of resuming the
This condition is computed bWim(t) = 5 (Pn(t —At) —  15t0r exploration.
Pm(t)) with Mm = 1 when no change of the muscle activa-  x¢ mentioned above, the weighté? and the muscle

tion should occur. _ . activationsA are boundedA € [0,1]V) due to the learn-
The learning factor (L —thy)) induces that muscle acti- , je (16). Hence, the muscle activatiohare multiplied

yations are Iearne(_:i during a variable periqd of time_depe_ndﬁy a constant stiffness fact@ increasing the amplitude of
ing on the comparison betwe_en_the learning enabling” sigy, o apparent stiffness. The resulting equilibrium pointris
nalL and the thresholth, . This signalL evaluates the need changed whereas the apparent stiffness is now eq@lo
to continue adapting the muscle activations (19). The previous dynamic equation (5) becomes (21):
L(t) = [#(L(t — At) —th.) - § [Cm—Cm|* A _
1= AL~ A0 ~th) 3 [Cn=Cnl 19) 6= G- (AL (Bmau— ) — A] (6 — 6mn)
YLt = At) +tg(t)] —0j- 6+ TjetNj

Cm = ' (Mg — Mm) (17)

Each neuron in the desired movement lay#t evaluates

the need to contract the muscete(M2 = 1 or 0) to correct

the posture. To do so, the equatiorMff, (18) determines if

the muscle “lengthPy, (i.e. 81 or 67) should be reduced to
match the desired “lengtt®,,.

(21)

In ourimplementation, the learning is triggerégl{) =1 ;0  For each jointj, a noise termm; is also added in the motor
otherwise) when a new visuomotor categgris recruited. command producing varying exploratory movements to help
Therefore, the muscle activations are directly learned afthe learning of the muscle activations.

ter the recruitment of each visuomotor category ensuring

that motor commands are associated to all visuomotor cate-

gories. Yet, the muscle activation learning may also be trigs Experimental results

gered by other signals, like a random signal arbitrarily se-

lecting categories to refine the associated motor comman@:1 Postural attractor learning

The muscle activation learning continues as long as there

is unexpected correction of the muscle activations. Sucihe process to learn postural attractors was tested and vali
unexpected correction is determined by comparing for eacfatedina simulatiohof the Katana arm used in our robotics
muscle occurring correctioBy with its predictioném. The experiments (Fig. 5 and 6). In this experiment, the exter-
occurrence of an unexpected correction increases the valfi@l torquete was null. As the arm moves, the muscle ac-
of the signalL, thus extending the learning time period. Thetivations are increased so that each joint is maintained at
forgetting factory* modulates the time period during which the desired position (Fig. 5). The progressive adaptatfon o
no unexpected corrections must occur before the attractéh® muscle activations depends on random movements (7).
adaptation ends. The predictiGrof the corrections is learned Still, the arm finally stabilizes at the desired posture (Big

by conditioning withC the unconditional stimulus arRMM As the muscle activations increase, the shifts of the equi-

the conditional stimulus (20). librium point due to learning become smaller and smaller.
R c . c um R This property results from the ratio in the equation of the
— R ' . — C.RYM, — +
G =3 Wi - R with AWy, = £7-R™- (Cn=Cm) (200 e qitibrium point ;e = 1), So, the equilibrium po-
J

. c . sition converges to the desired position while the stiffnes
The learning rate™ is small to have a memory effect. The

learned muscle activations are expected to maintain the arm® with the software Webots (Cyberbotics)
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A ! Bt the external torque is the following gravitational torque-
" 0.8, . . .
cstffness) —atracted - _masx g*lexsin(0) with the massna, the gravity constant
@“wjﬂ.nmm g = 9.81 and the lengthe between the rotational axis and
. J— 0.2 U the gravity center. In order to compensate this torque, the
wonia T muscle opposing to the gravity contributes more to maintain
fime (s) time (s) the posture (Fig. 7c). This solution is more energy efficient

Fig. 5 Webots simulation of a Katana arm. Learning a postural@ttra and accurate than simply increasing the overall impedance.

tor in the 4 DOF motor space. The evolution of the muscle attn —\+ 4 ragponds to the change of reciprocal activation level
and of the resulting equilibrium point is given for th& 2articulation

of the arm. A uniform random noisé<0.5, 0.5]) is added to the torque observable in human motor behawor_s in equivalent circum-
command. When the movement of a joint is in the direction sjipdo  Stances [22]. The movements resulting from the learn con-
the target direction, the corresponding muscle activasdncreased.  troller are shown in Figure 7d. Figure 7e shows that the er-

As the stiffness increases, the shift of the position of theilérium 4 yade is indeed below the accuracy threshold used during
point at each correction becomes smaller enabling to parogradi-

ent descent toward the target position. Besides, a biggaress in- learning.

creases the robustness to the noise. We also tested the impact of increasing the noise level of
n; (in (21)) which corresponds to stochastic perturbations
® Euclidian distance to target .
1 § 015 of the movements. If the controller was learned with a low
0.8 § noise level, the movements are strongly perturbed by the
06 = 01 noise. The position error while maintaining the learned pos
< od € 005 ture has a strong variance (Fig. 7f). Then, the posturaattr
0.2 < 0 - tor was learned with the increased noise level (Fig. 7g-h).
.o 8 As a result, the muscle activations are also increased which
© - . . . .
0 20 20 60 2 0.0 50 40 60 corresponds to increasing the stiffness (Fig. 7h). So, the p

time (s) time (s)

duced movements are less perturbed by the noise (Fig. 7i-j).
Fig. 6 The attractor learning test is reproduced 10 times. LeftaMe  oyr model can learn how to maintain a posture control under
position of the learned attractor for joint 2 with the limasthe gray s . - .

area representing the standard deviation. Right: Averadestandard a gravitational torque, ‘?‘nd It can a|39 Increase t_he SBﬁn(.a
deviation of Euclidean target distance in the normalizedtjspace. ~ Of the movement to resist to stochastic perturbations durin

The red line is the distance constrating for each joint proprioception.  learning.
The mean distance to the target decreases down to this aionstr

(Kj = AJ?r +AJ-*) increases. The behavior adaptation is quite5.3 DM-PerAc visuomotor controller
slow because of the low frequency of the hardware control
loop of the Katana arm (about 7 Hz). Another major con-We validated the visuomotor controller in the same 3D sim-
straint is the speed encoding in the robot arm firmware. Verylation of a Katana robot arm as in previous section. In Fig-
low speed is not available because of the discretizatiomeoft ure 8(a-c), the robot performs a motor babbling with param-
values. Instead of an unnatural freezing of movements whegters inducing a low selectivity and thus a very low level of
the speed should be very close to null, the articulationp keeaccuracy for the recruited visual and proprioceptive state
rotating at the fixed minimal speed. These small oscillation simple test to evaluate the visuomotor learning is to repro-
give in fact a more natural aspect to the idle movements ofluce a trajectory given in the visual space. A star shaped tra
the arm. The feeling of a frozen system is avoided duringectory is given as visual input to the system (Fig. 8b). The
human robot interaction. In this experiment, there was narajectory resulting from the visual processing of the arm
external torque. The reason is that the servo-controllers @end effector tracking is displayed. The robot tries to fallo
the Katana electrical robotic arm is not compatible with ex-the trajectory but because of its sparse learning, the perfo
ternal perturbations. This is a strong limitation of thediar mance is very limited. In the developmental process of the
ware. We performed simulations to show that our model carobot, the parameters determining the sparsity of learning
also manage this case. may be changed to recruit more visual and proprioceptive
categories (Fig. 8(d-f)). The new visuomotor attractoes ar
integrated on-line to the initial learning. The performant
5.2 Maintaining a particular posture under external torque the system is increased. Figure 9 displays the visual tajec
ries of the desired and real position of the arm end effector.
In order to show that our model can also cope with externalhe mean square error is shown with the mean error and
torques, we use a simple simulation of a 1D arm (Fig. 7a)the standard deviation to compare the evolution of the per-
First, the muscle activations are learned in the case ofia graformance with the inclusion of more attractors. The same
itational torque (Fig. 7b-c). In the equation of control Y21 kind of performance could have been obtained by directly
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Fig. 7 a) A simple 1D model of an arm is used to test muscle activé¢iaming under gravitational torque. The parametergar®.81, ma= 2kg
andle= 0.4m. The anglef is normalized with respect to the movement raf@é&rt/4]. b) Trajectories for 30 samples of posture control learning
c¢) Evolution of the muscle activations during learning. Thascle opposing to the gravity contributes much more thanother one. d) 10
examples of trajectories produced by one of the learneduposbntrollers. e) Corresponding position error with ezsgo the target (85). f)
The noise leveh; is increased (from Q to 15). The movements are then less accurate. g-h) The postat®kis learned like in b-c) but with
the increased noise levg} = 1.5. i-j) As a result, the accuracy in reaching the target jmsis improved (lower variance).

learning with the parameters increasing the selectivithef
coding.

To sum up figures 8 and 9, learning a postural attractor
takes time, and learning many attractors will slow the explo
ration of the whole motor space, but provide a better coding
resolution and therefore a more accurate trajectory. Thus,
very accurate trajectories could only be reproduced at the
cost of a longer exploration and learning phase. In previous
studies [3] we have simulated with the PerAc model that the —
learning time of all the possible sensorimotor associatain
a 6DOF model of the Katana robotic Arm with a high reso-
lution CCD camera would require hundreds of thousands of
movements. Taking a mean approximation of the time nec-
essary to perform one simple movement with our mechan-
ical robot, we have calculated that the whole exploration
and learning of all the possible categories would require
more than three years (without optimization). Such amount
of time is still applicable to the DM-PerAc model, since
the number of possible categories (if we consider purely the—
maximal amount possible) is similar. Of course, such a com-
putation is a caricature, since the creation of categosibg i
definition a mean to avoid systematic learning.
Nevertheless, several considerations lead us to think that
such algorithms are consistent with the developmentaksour
of a human baby :

— this time course (several years), taken as an order of
magnitude is acceptable, compared to the time needed
to develop the coordination of the whole human body

20 attractors. The robot can hence perform simple tasks
even if with limited accuracy. Such fast acquisition of
coarse and elementary actions is crucial in term of be-
havior and is consistent with developmental psychology
: coarse actions support early imitation to communicate
before the age of 9 months [9], or object grasping before
the age of 9 months [46], and of course early sensory-
motor exploration before the first year [29].

In addition of these elementary actions, the DM-PerAc
model can let the category creation continue in order to
improve the capabilities of the robot. New visual and
proprioceptive categories can be recruited while the mo-
tor babbling is resumed. Therefore, the robot can con-
tinuously evaluate the co-occurring proprioceptive and
visual inputs to improve its visuomotor model with the
newly learned categories. The visuomotor associations
can be progressively updated as the system continues its
babbling.

Altogether, these characteristics allow to speculate abou
when the babbling should stop. We can formulate the hy-
pothesis that the visuo-motor babbling goes on while the
agent has not received remarkable repeated feedback.
The feedback could be purely “physical” (for example a
tactile sensory motor contingency, for example when an
object is grasped) or “social” (the expression of a care-
giver) and modulate the strength of the learning. Thus,
fast coarse actions and long progressive learning can be
complementary in a global progress loop.

(even if we limit to the coordination of one arm or one Interestingly, classical developmental psychology stsdiso
hand). We just have to refer to the time needed to masterbserve that such progress loop are guided by the cephalo-
some movements in sports such as a golf swing, or theaudal (the more the limbs are far from the head, the later
time to learn to write. Progressive learning is still prasenthey are available and mature to be implied in actions) and

after months or years.

the proximo-distal (the more the articulation are far frdva t

— if the maximal learning time is very long, DM-PerAC al- root of the limb, the later they are available and mature to be
low a very fast learning of simple trajectories with 10 to implied in actions) laws. These laws reflect constraint ef th
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body development that imposes a step by step process of theg 208

motor control. One of the consequence of this scheme is to - _,,

>

constrain a coarse to fine learning where each change in the 0 100 200 300 0 100 200 300
child’s developmentresult in an increasingly refined lafel
skill development [56].

«~ 60
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In[16], several regression algorithms (including LWPR])63 300‘/ o i 300 305

were compared on the visuomotor control learning and per-

formance. The evaluation task is target tracking by the arm s
end effector of a robot. The system must produce the move-
ments to reach a target given by its visual position, thus the
learned inverse kinematic models are compared. A stereo
camera detects the target, and its 3D Cartesian position is

o
o
o

visual error (deg)
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visual error (de

computed. In most of the tests, the target follows a staresthap % 100 200 300

trajectory path in a vertical plane. The regression alporg
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Fig. 9 Comparison between the trajectories from initial (Leftdhanl-

learn a forward kinematic model in order to perform theymn) and consecutive learning (Right hand column). Inigatning:
tracking, thus focusing the exploration process on the motanean error 6.0 degrees, standard deviation 3.5 degreese€idive
space to perform the task. The forward model allows to estiléarning: mean error 4.3 degrees, standard deviation g/gee.
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mate the Jacobian matrix of the kinematic model, the inver-
sion of this matrix and the 3D position of the target provide
the motor control of the robotic arm. In this article, we have
tested the DM-PerAc visuomotor controller on tracking a
target moving on a star shaped trajectory. In our experiment
protocol, the visuomotor learning is open-ended. Also, the
target coordinates are simulated (no occlusion) in the 2D vi
sual space. The trajectories after learning are compatable
those obtained in [16]. Still, the regression techniques pr
duce smoother trajectories more accurate at the pointgof th
star path. However, inverting the Jacobian matrix requires
a specific processing in order to avoid singularities. Such a
matrix inversion is not satisfying in the perspective of the
developmental approach and is also difficult to model as a
biologically plausible process.

5.4 Bifurcation property of the DM-PerAc controller

We compare the properties of the DM-PerAc controller with
the properties of the Dynamic Neural Field based controller

Fig. 8 Simulation of on line learning and adaptation of sensorimo-Dynamic Neural Fields (DNF) based on Amari equation [2]
tor attractors with a 4 DOF arm and a 2D camera. Left hand colum are a solution to motor control used to navigate [60], [31] or

presents the results after an initial sparse learning aadigiht hand
column gives the results after learning continued withriesy param-
eters inducing more selectivity in the state recruitmehDuring the
motor babbling, the robot recruits visual states (red diaasp and
proprioceptive states (black circles). Each propriosepttate is as-
sociated with one visual state (blue link). After learning, the visual
input is artificially switched to a star shaped trajectonthe visual
space (dark line). According to the visual state recognjtibe robot
moves so the arm end effector trajectory tries to follow tleial in-
put (gray dashed-liner) Movements performed in the 3D Cartesian
space during the star shaped trajectory reproductipAs the parame-
ters changes, the robot can complete its previous learryimgdouiting
more visual states and proprioceptive staggd.he movements of the
arm matches more closely to the star shaped trajectory iviteal
spacef) Corresponding movements in the 3D Cartesian space.

to control a robotic arm [39, 3]. Biological studies showed
that the activations of some neurons in the motor cortex are
correlated with the direction of the movement to be per-
formed [28]. In DNF, the activity profile of the field takes the
shape of a Gaussian centered on the input stimuli. Besides,
the derivative of the activity profile can provide the dynam-
ics of the control [60]. Dynamic Neural Fields have inter-
esting dynamical properties: memory to filter non stable or
noisy stimuli and bifurcation capabilities enabling rela
and coherent decision when multiple stimuli are presented.
In Figure 10, we show that (i) the trajectories generated
by the DM-PerAc model can be analyzed and integrated to
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trajectories trajectories

1 1 able in the model, but some others processes could complete
the DM-PerAc architecture to obtain this property.

@ (.5 @ 0.5
6 Use and extensions of the DM-PerAc model
% 5 10 15 20 % 5 10 15 20 . . . .
a) time (s) b) time (s) 6.1 Encoding trajectories with the DM-PerAc controller
velocity profile velocity profile
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0.4 + -
o 9 - G.K=G.A'=5, A=0
o) o 0.2 I A
& & 1 e e
0.2 0 Y =
02 \__/ R R R
05 o6 — - __ - ~..F ..
C) 0 0.5e 1d) 0 0.59 1 o 04F - -
DNF equivalent activity profile DNF equivalent activity profile
1.05

. / \/ . 0.9
[} [}
o o
0.95 0.8
0.7,
0 0.5 1 0 0.5 1
e) 0 f) 0

Fig. 10 Bifurcation capabilities in the DM-PerAc controller. Topw

(a-b) shows the trajectories (blue lines) and the two lehatgactors
(black dashed lines). The middle row (c-d) displays the &rgteloc-

ity profiles in function of the proprioceptiof. The bottom row (e-
d) gives the perception activity profile equivalent to théwties in a

Dynamic Neural Field. In left hand column, the learned attoes are
distinct whereas in the right hand one they are closer lieguih one
merged behavioral attractor.

Fig. 11 a) Trajectories in 1D space with an asymetric muscle acti-
vation pattern (a muscle is inactive). Trajectories stamnf different
random positions. Activation signals aB A" =G-K =5,A" = 0.
The control parameters ace= 5, At = 0.05 and the moment of inertia

| = 1. b-c) Attraction basins in a bounded 2D spg6el]? with DM-
PerAc model. Given the learned position/movement coupbéesck
diamonds, thick black lines), a force field is generated (sgray

) ] ) o - points and lines). For each joint, only one of the agonisagonist
build the DNF equivalent profile of activity, and (ii) there muscles is activated like in a). Initial (circle) and finagj¢gre) points
are bifurcation capabilities in our controller. In our £ghe of the trajectories are indicatetd) Vector field corresponding to one

state space i, 1]. Trajectories generated by the DM-PerAc learned proprioception/activation couplgd) Four state/action cou-

. . . ples are learned. Four trajectories with different stgrpoints are rep-
controller are averaged into the actioh8) depending on resented in the 2D state space. With only four couples, thiesycan

the state of the system (position). In practiée(6) is dis-  learn a loop trajectory. The size of the loop depends on thedshus
cretized into a vector with components that are the valueis related to the damping and the stiffnes. c) o = 10,G-K = 10.

for different 6. The result is thus the velocity profile given i"gc‘r’e;;g‘t*ﬁz (1)2';]Zetﬁ;hgg‘rferi?;tﬁzrg;hi system are the time
in Fig 10c and d. In [48], we proposed that the actfanis e '
the derivative of a potential function defining the percempti

of the system. The actioAc is thus spatially integrated to It is possible to use the learned postural attractors in a

obtain the perceptioRer (22). time based sequence with the attractors that are sucdgssive

and transiently activated. This process was used in the work

vk, Pery — / Ac(6)d6 + cee 22) desc_rlbed in Sgcnon 6.2.. Hovv.eve.r, the DM_—PerAc archnec—
[0.k/n] ture is not limited to using this kind of trajectory coding.

Now, we consider the case where only one of the muscles
wherePer is a vector of dimensionwith components equal around a joint is activated (activation different of 0) vehil
to the integration of the actiofic at different position® =  the other one is inactive. This configuration of activation
k/n. The integration constamtt is chosen so the maximal signals induces movement toward the extreme limit of joint
component value d?er is equal to 1. The perception profile (full flexion or extension) (Fig. 11a). At the lower level of
Per is equivalent to the activity profile of a DNF, and shows motor control, the muscle activations can be either inter-
bifurcation properties (see Fig 10). The DM-PerAc modelpreted as defining a postural attractor or as defining locally
can produce behaviors similar to those obtained with théhe movementto be performed (orientation and strength). As
use of an explicit DNF without the need to define the wholeexplained in Section 3, such associations between sensory
field. However, the property of memory is not directly avail- categories and actions can define trajectories. The studied
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task is simply to reproduce a loop in the 2D motor space.
Among four encoded states, each of them are associate
with two 1D controllers i.e. four muscle activation coeffi-

cients each. The muscle activations correspond to the demo
strated direction of movement. For each joint, only one of
the muscle activation (agonist or antagonist) is diffex@nt -
null. An example of a vector field in 2D space defined by ondig. 12 Example of imitation behaviord.eft : Low level imitation of

. S P : . meaningless gestures. Qualitative comparison of imitgéstures per-
state/action couple is given in Fig. 11b. An attraction basi formed in front of the robot. Perception ambiguity and a hostatic

can effectively be generated (Fig. 11c and d). The trajectosontroller induce movements to maintain perceptual elyiiiin. The

ries in the 2D state space show that the stifftesnd the  robot performs low level imitation of directly observed gess.Mid-

damp"']w' Control the movement Speed and thus can Chang@e and rlght . Gesture imitation can be used to bring the arm end-
- ; " - ffector toward objects (here, to grasp a can) or interggtarts of the

the size of the Ioop. Trajecjtorlgs could b_e enCOded_usmg_th(;%nvironment. It can become a common basis for learning bgroas

low level state/mgscle activation assomatpns. This ngdl_ tion and learning by doing.

can thus be a basis for both posture and trajectory encoding.

In the next section, we will focus on learning stable podtura

6.3 Attractor selection and visuomotor control refining
attractors.

The refining potential of the DM-PerAc model can be en-
hanced by the “Yuragi” (fluctuations) based attractor selec
tion model [23] which relies on the following Langevin’s
equation (23):

A-x=E&-f(X)+n (23)

The visuomotor controller based on the DM-PerAc modelwhereA is a time constant, the vectodescribes the state of
can be used for the emergence of low level imitative behawthe system and the functidns the dynamics of the attractor
iors and can even be a basis for deferred imitation. An arnselection model. The main constraint that this attractocfu
controller, based on learning visuomotor associations, cation f must respect is to define attractors. For instance, the
let low level imitation emerge [3]. In a first phase of bab-function f can simply derive from a potential function with
bling, the robot learns its body schema as multiple associattractor points. Other particular examples of definitiohs
tions between the visual position of its arm end effector andhe functionf can be found in [23, 52]. When the coeffi-
the joint configuration of its arm. If the robot visual pereep cient is big, the termé - f(x) predominates. The state of
tion is enough limited (using only movement information orthe system converges to one of the attractors definefl by
the detection of colored patches), the robot can look at thEeedback on the current movement performance modulates
hand of an interacting human and still believes it is its owrthe coefficien€. The feedback gives more influence to the
hand. According to the previously learned visuomotor assoattractor functionf or to the stochastic exploration temn
ciations, this situation can induce an incoherence betweefis a result, the system can switch from exploration between
the visual information from the teacher’s hand and the mothe different known attractors to exploitation of the cletse
tor information from the hand of the robot. As the controllerattractors. According to the feedback, the functfocan be

is a homeostat, it tends to maintain equilibrium between thadapted so that some attractors are shifted toward thesdesir
visual and the motor signals. Thus, the robot tries to reducpositions. Thus, the desired positions can be learned.

the visuomotor incoherence by moving its hand to match th&he principle of muscle activation learning (Sec. 4.3) in DM
visual input. Low level imitation emerges as the movement®erAc is quite similar. The first difference is that the func-
of the robot follow the movements of the human (Fig. 12).tion f depends on the muscle contraction. During muscle
In the next stage of development of the robot, this low levehctivation learning, only one visuomotor category is activ
visuomotor controller can be the basis for learning from obso only one postural attractor is active. The exploration is
servation. We consider that the learning robot can now menpartly due to the noise on the motor command and also to
orize the sequence of the visual positions demonstrated ke oscillations of the arm (when the stiffness is still low)
the teacher while it is inhibiting its own movement [52]. During learning, the muscle activations are changed so that
Then, as the robot internally rehearses the encoded visutile resulting attractor is effectively shifted toward the- d
sequence, the predicted visual position of the next state casired position. So, this process can be seen as a low level
be given to the low level visuomotor controller. The robotuse of the “Yuragi” principle.

reproduces the demonstrated sequence of gestures accord-The “Yuragi” principle can also be use in DM-PerAc
ing to what was perceived during the demonstration. Thevhen all the visuomotor categories are available. The move-
robot is capable of doing some deferred imitation [52, 53]. ment dynamics is influenced by all the attractors associated

6.2 Imitative behaviors with the DM-PerAc controller
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Fig. 13 Visual target reaching with a visuomotor controller usihg tYuragi” principle. The feedback is based on the targstagtice in the visual
space. A known attractor can match the target (a,b) or tigetaan be between learned attractors (¢ay) Trajectories of the robot arm end
effector in the visual space. The black circles corresporitie learned attractors and the black cross is the visuggttéo be reached. The stars
are the starting positions for each trigh,d) Evolution of the distance between the arm end effector aedaiget in the visual space (number of
pixels). Dark gray dash-line shows the average distandeetattractors. The light gray line shows the threshold undech the target is reached.
a: Trajectories while reaching a learned attractor, 2 atbracactivated, 2 trials with different starting positiobsCorresponding evolution of the
target distancec: Trajectories while reaching a not previously learned fpmsj 4 attractors activated, 6 trials with different sitagtpositions.d:
Corresponding evolution of the target distance. In botlesathe arm end effector reaches the target, although, wienat a learned position,
the reaching can be quite long due to the random exploration.

to these categories and activated by visual and propriocegtates are associated with asymmetric muscle activations t
tive information. In that case, the “Yuragi” principle alls  generate movements in particular directions. In secti@n 6.
to improve the accuracy of the movements. In Figure 13, weve showed that imitative behaviors can be obtained with the
tested the reaching of a visual position using the “Yuragi"DM-PerAc visuomotor controller. This controller can also
principle [52]. The robot arm end effector reaches the \lisuabe a basis for higher level encoding and imitation behaviors

target both when it is near the visual position of a learned  yntil now, we mainly experimented the DM-PerAc model
attractor (Fig. 13(a-b)) and when it is between the learne@n a Katana robotic arm. However, the hardware of this reboti
attractors (Fig. 13(c-d)). While performing tasks, theabb device is limited for impedance control. In particular, the
can use the “Yuragi” principle to reach targets which wereseryo-controller of the Katana arm does not allow to man-
not explicitly learned as attractors. When necessary, a negge external perturbations like gravitational torque. ¢t-S
attractor could be recruited to learn how to reach a targejon 5.2, we showed in a simple 1D arm simulation that the
that would otherwise be long to reach. The performance ofyMm-PerAc model can accurately learn a postural attractor
the visuomotor controller could be imprOVEd for partiCUlarunder a gravitationa| torque_ However, the impedance con-
cases without recruiting many useless attractors. trol was learned instead of performing an on-line adaptatio

to perturbations. In future work, the adaptation procedls wi

be added to the model. Also, in future work, we will exploit
7 Conclusion-discussion the full potential of the DM-PerAc model to control move-

ments of a hydraulic torso robot called TIROThis robot
Our previous works enabled to explain trajectory learningvas developed with the aim of allowing physical interaction
(PerAc model [26]) and imitative behaviors [3]. Even thoughand compliance. Impedance control is fully compatible with
these different works have in common the sensorimotor fearthis hardware. With the DM-PerAc model, the visuomotor
ing principle, their properties could not directly be com- controller of the robot TINO can be learned. Besides, the
bined due to motor control issues. We propose the DynamidM-PerAc model is also a good basis to study imitative be-
Muscle PerAc (DM-PerAc) model to control a robot arm haviors and interaction.

with multiple DOF (Sec. 4). It combines the principles of  |n this article, the motor control is based on a spring
the PerAc model with a simple model of agonist/antagonisbased model of muscles ; however, we do not pretend that
muscles where the muscle activations determine the movenodifying the stiffness of these spring-like muscles corre
ments of the robotic arm. The low level motor control is sponds to an accurate model of neuro-muscular control. The
equivalent to impedance control. The DM-PerAc model cantest-length of the muscles, motor reflexes and other physi-
incrementally learn on-line the visuomotor control of theological properties are also important. Still, the aim af th
robot arm. During a motor babbling process, propriocepbM-PerAc model is to allow sensorimotor dynamics learn-
tive and visual categories are recruited and associated tghg with the generated behaviors that can be either atiracto

gether (kinematic model) depending on co-activation. Theyostures or trajectory following. Using muscle activation
DM-PerAc model then learns the postural attractors asso-

ciated with the visuomotor categories to define the visuo=75 The robot TINO was co-funded by the french projects INTER-

motor control. Trajectories can also be coded by combiningcT and SESAME TINO, the Robotex and the CNRS. The robot only
state/action couples like in the PerAc model (Sec. 6.1). Thescently arrived in ETIS lab.
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has the advantage to make learning easier whatever the dgitioning. The orientation to follow (action) could be esti
namics is (postural attractor or trajectory). mated by integrating the followed orientation while mov-

The computational cost of the DM-PerAc visuomotoring. The orientation to follow could also be demonstrated to
controller can be reduced in different ways. The neurong passive robot. In the DM-PerAc model (Fig 14a), a direct
corresponding to categories (visual, proprioceptiveyais ~ conditioning is possible but a particular process is nergss
motor) not yet recruited can be ignored in the neural upIO extract the unconditional stimulus from a passive demon-
date process. Also, the number of visual to visuomotor link$tration. Changes of proprioception cannot be directly con
(WYM) may be reduced by using some lists of links dynami-verted into muscle activations (for instance, the muscte ac
cally managed according to the recognition of the visual an@ivations must change to perform the same movement ma-
proprioceptive categories. This solution would allow te us hipulating objects with different masses). The “Yuragié&d

far fewer links than if considering the whole set of visual to(Sec. 6.3), adapted to the DM-PerAc model, can be a po-
visuomotor links. tential solution to this issue. We believe that “Yuragi” &de

We gave solutions to learn attractor points as they gr&ould allow to locally learn combinations of attractors defi
used in the visuomotor controller for imitation behaviors.N9 NOtonly postural attractors but also particular spesm v
The learning of trajectories or paths is not described is thitors- Still, the remaining issues are what the adequate feed

article. In the DM-PerAc model, postural attractors can b&?@ck is and how it can be learned from a demonstration.
used as via-points to encode trajectories and we used thidnally, using the same encoding and the same kind of learn-
kind of solution in deferred imitation [52]. However, a cor- INg; the robot should be able to learn trajectories like in
rect encoding of dynamic trajectories should rely on stetégn Fig.14b mixing posture attractors and trajectory shaping.
couples defining attraction basins, like in the PerAc model

(Sec. 3). The advantage is that agonist and antagonist mus-

cles would not need to be active at the same time. The stiff-

ness and the energy consumption can be reduced. In future

work, we will study the activation patterns generated by thi Appendices

trajectory encoding model. In particular, we want to exelor
whether and how the state-action coding may allow the tri

) ) A Summary of the parameters and equations used in
phasic pattern of movement observed in humans [55]. the Dynamic-Muscle PerAc model

Although we proved that the DM-PerAc model enables
dynam'c‘_al trajectory gnchlng, the I?am'ng of the adegjuatrne gifferent parameters and equations presented in titteaare re-
state/action couples is still an ongoing issue. In the PerAgpectively summarized in Table 1 and Table 2.
model, the states and actions were associated by direct con- The proprioceptive (visual) categorization depends onvibge

lance parameteA” (AV) and the parameteBP (8Y) of the Gaus-
sian similarity measure. High vigilance values would imgat re-

proprioceptive inputs 5 proprioceptive reinforcement cruited categories overlgp. We usB =AY = 0.005 to ayoid interfer-
o| categories ences between categories. The values of the Gaussian perarase
o / very low so the categories are selective enough. Duringeaming
g <Z)S . step, different values are used to increase progressivelpamber of
A | direct At learned categorie3{ = 0.002 thengP = 0.001, andﬁV_ =2.10*
H ! conditioning > thenpY = 5-1075). During the tests, the vision must drives the move-
i ; muscles ments, so the proprioceptive categories must be less isel¢ican the
E i o]~ > visual categoriesd” = 0.1 andgY =5-109).
‘ _j modulation equivalent (Sl . In the experiments, the muscle activation learning dependse learn-
T to conditioning ing factore” = 103 and the decay factar® = 10-%. As the learning
a) for posture learning noise DM-PerAc factor is small, the stiffness; of each joint changes slowly. Still, the

equilibrium position is rapidly adapted because it depenrdthe ratio
of the muscle activations. Also, the decay must be slow emtwigllow
the learning. With an error threshdlap = 0.01, the muscle activations
around a joint are adapted if the position error is over a reftth of
the rotational range.

l The parametersh, and y- define the dynamics of the “learning en-

able” signalL i.e. determine the amount of time to learn each postural
attractor. The used values aie = 10 and y~ = 0.95 so the motor
exploration resumes after a time period of about 10 secorntout
b) ~—0O .

correction of the movements.

Fig. 14 a) Possible solutions to learn muscle activations in the Dy-

namic Muscle PerAc model. b) Example of dynamic trajectorthw

postural attractors and trajectory shaping constrairdth Bomponents ~ Acknowledgements This work was supported by the INTERACT French

can be coded similarly in the DM-PerAc architecture. project referenced ANR-09-CORD-014.
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Table 1 DM-PerAc Model: parameter summary with values used in érpants for the open parameters

A = [A4, ..., Aon] muscle activation (stiffness)

AT,A~ : activation of agonist() and antagonist() mus-
cles for each jointA = [A1,A7])

C : comparison of desired and current movements,
determines the need to correct muscle activations,

modulates the increase 4

o

prediction ofC for a given visuomotor category
in RYM

G : stiffness factor, counterbalancing the bounded

muscle activationé (ex: G = 60)

K : stiffness

i,im, Ir : indexes of proprioceptive category, winning pro-
prioceptive category and next recruited proprio-

ceptive category
I : moment of inertia (ext = 1)

j : index of joint

k km, k- : indexes of visual category, winning visual cate-

gory and next recruited visual category
| : visual coordinates

L : attractor learning signal

m : index of muscle
MP M : desired muscle shortening, current muscle short-
ening

n : exponent, used in the update of the visuomotor

categories (exn = 100)
N : number of joints
RP,RY,RYM : normalized activities 08°,S’ andS'M

P = [P ... Py = [PTP~] proprioceptive input

P*,P~ : agonist and antagonist proprioceptive input
6j.max, Bj,min : maximal and minimal angular value of a joint

(66, ...],(6;6; ...]

SP, S . recognition activities of proprioceptive and visual
categories respectively

t,t—At : currenttime step, previous time step

WP

6, é,-, é,- . rotation angle of a joint, velocity, acceleration

Gj*, e; . positive angular value measured in the agonist or

thp : threshold on target distance to estimate desired
movement (exthp = 0.01)

th, : threshold on L under which current attractor
learning is stopped (exh, = 107°)

V : visual input (coordinates in visual field)

i W\k’I . learning weights to proprioceptiv&?) or visual
(SY) categories

WS, : learning weights t&
WA : learning weights té\
WM learning weights t®VM

a® : decay factor of muscle activation learning/$;)
(ex:a”® =104
BP, BV : variance parameter of the Gaussian kernels of
proprioceptiveP or visualV categories.
e . learning factor of muscle activatiol\] learning
(ex: e =1073)

C

eC : learning factor of the predictor @ (ex: €€ = 0.2)

eP, &V : learning factor of proprioceptivé or visualV cat-
egorizations.

y- : forgetting factor of the attractor learning sigral
(ex: y- = 0.95)

AP, AV vigilance of proprioceptive categorizati®ror vi-
sual categorizatiol. (ex: AP =AY = 0.05)

oj : damping (exoj = 11)

antagonist reference (see Fig. 2)

Bjeq - e_quilibrium point resulting from muscle activa-
tions

AL visuomotor category, merging visual and proprio- Tj,Te : rotational torque, external torque
ceptive signals
General tools
Heaviside function: .77’(x) = 1 if x> 0, 0 otherwise
Kronecker symbol: Gj=1ifi=j, 0otherwise
Xt =xif x> 0, 0 otherwise
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Table 2 DM-PerAc Model: equation summary

Motor control based on commands of stiffness of agd
nist/antagonist muscles around the jointsj?

T =A -6 —0f -6 —(A -6 —0; -6])
Which is simplified from additional constraints (6) as:
K +

—'-(ej,eqfej)f— 6; with Kj = Al +A; and6) e = AT A
l

-1

+A’
Update and learning of the proprioceptive and visual categoes
Proprioceptive categories (ind&»based on the muscle propriocepti
=[6,,6;....6,,6,,...] (indexm):
m(Pn—WH)?
RC = i; with § = exp(— Z—Bp—))
AW = P (P —WF) with &P =

irm

A/ (AP —max(§))

Visual categories (indek):

RY = & with § =

AW, =&V - (Vi —WY)) with &V

W2
@(p(_ 2 (VlzﬁVWkl ) )
— AV

- max(§))

Visuomotor association learning

AWM = £ (1(SF) - £ (RY) ~W™)
with f(X)=1if X = mlax(X|) and 0 otherwise

Visuomotor categories update

R = fow  with §™ =R 5,(gW™) - RY)

VMY _ 1 i Wi i
andg(W ") =1 if <W> > 0.5 and 0 otherwise

Postural attractor learning
Supervision signal based on incorrect movements:

Cm = (ME — M) where
MR = 7 (Pn — Pn—thp) andMpm(t) = 2 (P (t — At) — P(t))
=3I W5H - RM with

Wn'?i, = €7 (Pn—Wy, ) (on recruitment of a ne\R}{M)

SignalL indicating whether attractor learning should continue:
L(t) = 2 (L{t—At) —th)- ¥ [Cn—Ca] T + V- L(t - At)
G SWE R With AW, — &R G- Cr)

Muscle activation update and learning:

An=3iWA -RMwith A= [AT,AS,...,A[LA, ..
AWA = (L—th)) - ( €A-Cn-RM. (1-W5)
—a” WA -max(Kj —nc|*)

During attractor learning(> th;), after the recruitment of the visu
motor categonyi;, a bias on the activation ensures tﬁﬁrf“‘ =1and

VM _
i T 0.

a The time step is only written when a signal at different time st
is used
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