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Abstract Imitation and learning from human require an ad-
equate sensorimotor controller to learn and to encode the
behaviors. We present the Dynamic Muscle PerAc (DM-
PerAc) model to control a multi DOF robot arm. In the origi-
nal Perception-Action (PerAc) model, path following or place
reaching behaviors correspond to the sensorimotor attractors
resulting from the dynamics of learned sensorimotor associ-
ations. The DM-PerAc model, inspired by human muscles,
permits to combine impedance-like control with the capa-
bility of learning sensorimotor attraction basins. We detail
a solution to incrementally learn on-line the DM-PerAc vi-
suomotor controller. Postural attractors are learned by adapt-
ing the muscle activations in the model depending on move-
ment errors. Visuomotor categories merging visual and pro-
prioceptive signals are associated with these muscle activa-
tions. Thus, the visual and proprioceptive signals activate
the motor action generating an attractor which satisfies both
visual and proprioceptive constraints. This visuomotor con-
troller can serve as a basis for imitative behaviors. Besides,
the muscle activation patterns can define directions of move-
ment instead of postural attractors. Such patterns can be used
in state-action couples to generate trajectories like in the
PerAc model. We discuss a possible extension of the DM-
PerAc controller by adapting the Fukuyori’s controller based
on the Langevin’s equation. This controller can serve not
only to reach attractors which were not explicitly learned but
also to learn the state/action couples to define trajectories.
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1 Introduction

In order to act efficiently in unknown environment and col-
laborate with human, robots must be able to control and
adapt their behaviors. On the contrary of classical motor
control approach, Human-Robot Interaction and imitation
paradigms take into account that a human partner can in-
fluence and improve both the behavior and the behavioral
learning of a robot. Our past work, following a develop-
mental approach [47], along with collaborations with devel-
opmental psychologists, cognitive psychologists and neuro-
biologists have led us to understand that the tasks and be-
haviors cannot be reduced to a set of controlled parameters.
Behaviors rather emerge from the dynamics of perception
action coupling [26, 48]. The behavior is built upon a wide
range of interactions at different levels. A behavior learning
system must be able to capture the dynamicalsensorimo-
tor attractors describing the behaviors. In such conditions,
the issues of learning, adapting and sharing these attractors
are fundamental in order to achieve natural and intuitive non
verbal human-robot interaction. What are the constraints on
the low level motor control to learn such attractors? What
kind of model of motor control should be used and how can
it be learned ?

Impedance control enhances optimal control in the case
of interaction with the environment (Sec. 2.1). In impedance
control, position and velocity constraints determine the move-
ments with respect to the desired trajectory. In the frame-
work of human robot interaction, regression based solutions [37,
10] can learn the desired trajectories from data obtained dur-
ing the task demonstration by a human (Sec. 2.2). The tra-
jectories result from mixtures of adapted kernels. Impedance
control can be linked to muscle activations (Sec. 2.3). Though,
the hypothesis of a desired trajectory is usually kept while
focusing on the link between muscle activations and the im-
pedance control parameters (stiffness,. . . ). On the contrary,
we defend the Perception-Action (PerAc) approach claim-
ing that behaviors correspond to sensorimotor attractors emerg-
ing from the dynamics of multiple learned sensorimotor as-
sociations (Sec. 3).
In our first works on the emergence of imitation [27, 3], we
showed that an arm controller using the learning of visuo-
motor associations to build an homeostatic controller can
lead to the emergence of low level imitative behaviors if the
perception is ambiguous (i.e. when mistaking partner’s hand
for its own hand). However, this visuomotor controller had
several limitations. In particular, it did not allow the cod-
ing of trajectories by state-action couples like in the PerAc
approach. We thus propose, in this paper, a model called
Dynamic-Muscle PerAc to control a robot arm with mul-
tiple Degrees-of-Freedom (Sec. 4). The DM-PerAc model
is based on simple models of muscles and joints with dy-
namic equations corresponding to impedance control. This
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DM-PerAc model learns the inverse kinematic model by
learning visuomotor associations. It also learns posturalat-
tractors to link perception (visuomotor categories) with ac-
tions coded as muscle activations i.e. it also learns the in-
verse dynamic model. The behavior and properties of the
DM-PerAc visuomotor controller are evaluated in Section 5.
Like in our previous works [3], the DM-PerAc visuomo-
tor controller is a good bootstrap for imitative behaviors
(Sec. 6.2). Besides, the muscle activation patterns can be
used in state/action couples to code trajectories like in the
PerAc model (Sec. 6.1). We introduce the Fukuyori’s con-
troller to improve performance in Section 6.3 and we dis-
cuss its possible role to learn trajectories with the DM-PerAc
model in Section 7.

2 State of the art of on-line, incremental motor control
for learning from interaction

2.1 Impedance control

In optimal control theory [62], the desired trajectory is an
optimal trajectory crossing given via-points and minimiz-
ing some movement variables like jerk1 [21]. The motor
control should be flexible enough to allow physical inter-
action with the environment. Studies of movement proper-
ties have led to impedance control model [35] as an ap-
proximation of neuro-muscular properties. According to the
equilibrium trajectory hypothesis [20], motor programs are
internally represented as the trajectories of an equilibrium
point. Impedance control is efficient to control manipulators
acting in contact with the world [15]. Impedance control is
also a usual controller for prostheses and exoskeleton which
involve direct physical interaction with a human [41]. Im-
pedance control is based on a second order “damped mass
spring”-like system (1) enabling constrained motion, dynamic
interaction and obstacle avoidance.

M
dV
dt

= K(X0−X)+B(V0−V) (1)

with V the velocity andX is the Cartesian position of the
end effector. The coefficientK (equivalent to the spring stiff-
ness) and B represent the constraints related to the position
commandX0 and the speed commandV0 respectively. Some
other versions of impedance control use the proprioceptive
information (e.g. [1]) instead of the Cartesian position. Be-
sides, the via-points, which are necessary to compute the
desired trajectory (X0(t),V0(t)), can be learned from watch-
ing [49].

1 In the minimum-jerk approach, the movements maximize the
smoothness of the motion.

2.2 Learning tasks from human with regression techniques

The trajectories can be directly learned from training data
obtained during a task demonstration by a human. In order to
learn how to fulfill a task, a human teacher can provide feed-
back or data which are integrated in a sensorimotor model of
the task. Function approximation based on local regression
techniques [5] is efficient to learn forward or inverse mod-
els of robot control. Learning an initial model from a human
demonstration reduces the size of the space to be explored.
Demonstrations facilitate and improve a subsequent rein-
forcement learning [57]. More recent, the Locally Weighted
Projection Regression algorithm (LWPR) [63] merges both
the incremental learning properties of the Receptive Field
Weighted Regression (RFWR) algorithm [59] and the pro-
jection of input data in order to reduce the dimensionality
problem. The authors showed a demonstration with a 30-
DOF SARCOS humanoid robot learning the dynamic in-
verse model and performing eight-shaped trajectories with
its arm.
Regression techniques to learn models of motor control were
also used in learning from demonstration paradigm [4]. The
Dynamic Movement Primitives (DMP) [37, 58, 34, 38] are
based on the RFWR algorithm. The primitives are control
policies that are activated depending on a local basis func-
tion. They provide motor control as a second order dynamic
system. The combination of primitives shapes the attractor
landscape to produce the desired trajectory. This combina-
tion depends on a phase variable which gives the tempo-
ral reference of the movement. The approximated function
is the time-dependent trajectory, and locally weighted re-
gression of training data determines the parameters of the
basis functions (number, centers, bandwidths) and the con-
tribution of corresponding primitives. The DMP algorithm
shows interesting properties of spatial and temporal invari-
ance and was applied to learn discrete and rhythmic move-
ments. However, the correspondence problem [50] was com-
pletely eluded as the training data were obtained from joint-
angle recording system on the human. A particular coupling
must be introduced in the dynamic equation of the phase
variable in order to tackle correctly perturbations. The ac-
tion of this coupling is to slow the evolution of the phase
variable when there are perturbations.
Similarly, a Gaussian Mixture Model (GMM) can also learn
a model of a demonstrated task by encoding propriocep-
tive and Cartesian information in Gaussian kernels [10]. The
learning is based on an Expectation-Maximization process
which adapts the Gaussian kernels to describe probabilis-
tically the input data obtained in a training session. Then,
given partial information like only the Cartesian position,
Gaussian Mixture Regression extracts the probable propri-
oception to control a robotic arm. Depending on the task,
vision or motion capture devices can track particular ele-
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ments (e.g. spoon, human head) [12, 13]. Still, the compu-
tation of the 3D Cartesian coordinates of the visual markers
requires particular calibrations of the external devices.[11]
uses a dynamical second order motor controller and Hidden
Markhov Models (HMM) instead of GMM. HMM encodes
the sequential dependencies in the task, whereas the motor
controller now implements impedance control. A trade-off
between the position constraint and the speed constraint is
managed depending on the variance in the demonstrated tra-
jectories. This version of the model is similar to DMP. The
main difference is that the learning of the constraints on
the position and the velocity profile can take into account
the mutual influence between different Degrees-of-Freedom
which is not the case with DMP. Some recent works [44, 54]
studied the on line adaptation of the control stiffness from
the position variations and haptic feedback. This adaptation
of the control improved the quality of the collaboration be-
tween Human and robot [54].

2.3 Adaptation of muscle activations and impedance
control

In the case of human arm control, the actions are gener-
ated by muscle contraction. The VITE model [7] is based
on equations describing the muscle activations. The result-
ing dynamics is similar to the dynamics produced by an im-
pedance controller [32]. However, the VITE model also as-
sumes a target position to drive muscle activations. In itera-
tive and adaptive control [61], the behavior can be adapted
by changing the control parameters instead of changing the
command. Considering the adaptation properties at the level
of muscular control [8, 22], the authors proposed a muscle
centered model of adaptive and iterative control to maintain
a posture or to follow a trajectory under disturbances [25].
The controller takes into account a feedforward torque com-
mand and a feedback control to generate the final torque
command. The feedforward torque command is generated
by muscular activation. The feedback controller is propor-
tional derivative. Such control can be equivalent to impedance
control if the apparent inertia is assumed to vary and to be
equal to the inherent inertia of the robot. The muscle acti-
vations are adapted in order to reduce the feedback error.
Indeed, in the model [25], the adaptation of the muscle ac-
tivities directly induces changes of the feedforward torque
and of the stiffness in the feedback controller. Feedforward
torque modification enables to compensate an applied ex-
ternal force. In the case of rapidly varying disturbances, the
stiffness of the feedback controller is increased, so the ro-
bustness of the controller also increases. However, increas-
ing the stiffness from a muscular point of view is energy
consuming. So, the stiffness will tend to decrease when the
unpredictable perturbations cease to occur. This model per-
mitted to maintain a desired posture or to follow an a-priori
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Fig. 1 a) PerAc model.b-d) Examples of built dynamics in 2D spaces.
b) Fixed point attractor.c) Limit cycle in the case of navigation exper-
iment.d) Trajectory following. In b) and d), the gray dotted lines are
the Voronoi boundaries. The plain black line is a trajectorysample.

given trajectory. The principle of adapting the muscle acti-
vations should not be reduced to adapting the parameters of
the impedance control. This principle is also interesting to
learn the perception-action coupling.

3 The Perception-Action model and arm control

Since many years, we have defended the Perception-Action
approach (PerAc, [26]) claiming that, in an active system,
coupling perception and action enables to build behaviors.
Fast on-line learning of associations between sensory sig-
nals and motor signals is sufficient to build sensorimotor at-
traction basins. Let us consider the sensorimotor system of
an agent acting in a given environment (or state space) and
having 2 sensation vectorsXr andXg (Fig. 1a). Firstly, the
proprioception vectorXr represents the coarse feedback in-
formation from the execution of the motor command or the
direction of the goal (if the goal is in immediate neighbor-
hood). It can be considered as a reflex or a regulatory path-
way that links proprioceptive sensation to the motor com-
mandAc. Secondly, the global sensory vectorXg represents
more global information about the environment. A local but
robust distance measure (metric) can be computed to com-
pare global sensory vectors. In the PerAc model (Fig. 1a),
the global sensory vector is categorized and a competition
(soft-WTA) between the categories allows to define recog-
nition activitiesR. On the basis of the distance measure, the
categories which best represent the current state are deter-
mined. Categories are associated with concurrent actions es-
timated from the proprioceptive vectorXr. An action field is
thus defined. This action field associates particular actions
(movement vectors or forces) to areas of the state space ac-
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cording to the recognized categories. Depending on the built
action field, the dynamics of the system can be shaped to
produce interesting behaviors i.e. attractor points, limit cy-
cles or trajectories. Figure 1b-d shows examples of dynam-
ics defined in a 2D space. In Figure 1b and d, the Voronoi di-
agram shows for any point of the space which category wins
the recognition competition. The associated action is thus
performed as long as the state of the system is in the same
Voronoi area. A trajectory sample is given in Figure 1b. The
system reaches the boundary of the Voronoi area where it
started, then it follows this boundary to the defined attractor
point. Whatever the initial position is, the learned dynamics
leads the system to the attractor point with a similar kind
of trajectory. The attraction basin emerges from the system
dynamics generated by the state/action couples. Figure 1c
shows a configuration of action field that produces a limit
cycle. No time basis is necessary. As the system moves, it
reaches another area of the action field and performs the
corresponding action which brings and maintains the sys-
tem close to the followed limit cycle. Not using a time ba-
sis has several advantages. No synchronization of the time
reference is needed, which is quite a complex process, es-
pecially when there are perturbations of the trajectory. The
learning is also more direct, and can be performed on-line
very rapidly because the model simply learns what should
be done in a directly sensed context.
A similar kind of state/action combination can also produce
a simple trajectory following (Fig. 1d) Indeed, partial limit
cycle construction can provide a dynamics with which the
system behaves as if it is “attracted” by a trajectory and re-
mains in its close vicinity. In the state/action configuration
of Fig. 1d, the system can only get closer to an “equilib-
rium” path where, due to the alternate category recognition,
the effects of the associated actions tend to equilibrate. The
system is maintained in the vicinity of this path. Depend-
ing on the orientation of the learned movement actions, the
system will tend more to reach the trajectory or to move for-
ward. By allowing the system to come back to the trajectory,
the PerAc model can manage perturbations.
The PerAc model has been proved to be an efficient control
for navigation and path following [31], with good robust-
ness against perturbations like obstacle avoidance. In these
works, the learned categories are place-cells based on vi-
sual recognition of the robot location (see [31] for details).
The state/action associations are learned on-line from inter-
action with a teacher [30]. When the robot moves away from
the desired trajectory, the human teacher changes its orien-
tation to correct its behavior. This feedback is used to learn
new place-cell/orientation couples to complete the sensori-
motor control and to modify the robot behavior. This sen-
sorimotor learning enables the robot to follow trajectories
(limit cycles, Fig. 1c) and even to reach particular locations
which become attractors for the dynamical system. In the

PerAc approach, the perception is considered as the result
of learning sensation/action associations allowing a globally
consistent behavior while facing an object. For instance, by
learning sensorimotor associations, a robot can learn how to
return to a given object which can be interpreted as the fact
that the robot “perceives” the object [48].

The same sensorimotor association principle can be a
basis for the emergence of low level imitative behaviors [27].
In the case of arm control, we showed [3] that an imitation
of directly observed gestures can appear as a side effect of a
homeostatic visuomotor controller with perceptual ambigu-
ity. During a first phase, the system learns associations be-
tween visual and motor signals building a visuomotorhome-
ostat. Due to low visual capabilities, the robot is unable to
discriminate its own hand from the hand of a teacher (ambi-
guity of perception). As the control architecture implements
a homeostat, the system tends to maintain the equilibrium
between visual and proprioceptive information. If a differ-
ence is perceived, then the system acts to come back to the
equilibrium state. To do so, the robot moves its arm so that
its proprioceptive configuration corresponds to the perceived
visual stimuli according to its sensorimotor learning. As a
result of these movements, the demonstrator’s gestures are
imitated [3]. The correspondence problem [50] is avoided
as the robot only imitates what is observed with its own ca-
pabilities.

In the model of [3, 45], the control was performed in the
visual space. A forward kinematic model allowed to esti-
mate the visual position of the robot hand. This position was
then compared with the perceived visual position to generate
movements (see [3] for details). A first drawback was that
erratic estimations of the visual position of the robot hand
produced an erratic control. Because the forward model learn-
ing was based on Self-Organizing Maps [43], false estima-
tions could occur until learning convergence. So, the con-
troller should not be used before the end of learning. The
learning process was not incremental. Finally, the trajec-
tories were not coded by sensorimotor couples like in the
PerAc model. Indeed, the motor commands were extracted
from the Dynamic Neural Fields [60] by using an ad hoc
readout mechanism. This solution presented interesting prop-
erties (memory, bifurcation) (see Sec. 5.4), but was only able
to define attractor positions. Moreover, we were not able to
explain how the readout process could be learned or tuned.
Here, we are interested in a model that can bootstrap imi-
tative behaviors and can also code trajectories according to
the PerAc approach. The model should also be incremental
and able to managed multiple Degrees of Freedom.

In [40] [3], the authors developed arm controllers which
work in spaces different from the motor space, reducing the
number of dimensions. The difficulty is then to extract a
motor command from the control in the lower dimension
space. In the DM-PerAc model, we use the alternate solu-
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tion consisting in performing the control in the propriocep-
tive space. The generation of the motor command is simpli-
fied whereas the difficulty is to learn sensorimotor attractors.
The resulting motor controller should be able to learn either
a particular movement or a postural attractor. In the next sec-
tion, we describe the Dynamic-Muscle PerAc (DM-PerAc)
model which provides a common coding basis for both as-
pects of the control. The DM-PerAc model is based on a
simplified model of joints and muscles where both particu-
lar movements and postural attractors are coded as muscu-
lar activations. We also detail how visuomotor attractor are
learned by the DM-PerAc model.

4 Dynamic-Muscle PerAc model

We now present our model called Dynamic Muscle PerAc to
control a robotic arm. This model combines control equiv-
alent to impedance control with the PerAc principle. The
parameters and equations of the DM-PerAc model are all
summarized in Appendix A.

4.1 Control of joint position with a simplified muscle
model

Different models like Hill’s model [33] and Huxley’s model [36]
have been developed describing different properties of the
muscles. In the lumped-parameter nonlinear antagonistic mus-
cle model [64, 65], the movements of a joint are produced by
a couple of antagonist muscles. The muscles are simulated
by Hill’s muscle model. This model is based on three com-
ponents: a contractile element, a series elastic element and
a parallel elastic element. In [42], the two elastic elements
are neglected to focus on the dominant contractile element.
The contractile element can be approximated by a force gen-
erator in parallel with a damping element [24]. The force
generator implements the force-length relation in muscles
with the force that can be modulated by neural signals [65].
The damping element implements the force-velocity rela-
tion given by [33].
Our model, called Dynamic-Muscle PerAc (DM-PerAc), is

θ

θ

A,σ

A,σ

Fig. 2 Simplified model of muscle control relying on a spring damped
model of muscles. Damping properties are hypothesized as mechanical
property of the arm still related to the muscle stiffness.

also based on couples of antagonist muscles (hereafter noted
+ and−) around the joints with each muscle approximated
as a contractile element. However, unlike [42] and [65], we
use a simplified linear model of contractile element which
generates torque instead of force. In the DM-PerAc model,
the torque generator is a spring with variable stiffness whereas
the damping element is a simple viscous damper (Fig. 2).
The varying stiffness is given by the muscle activationsA.
The joint positions are controlled with the equations [2-8].
As these equations are the same for each joint, the joint in-
dex j is not displayed. Besides, the time step (t) dependency
is only indicated to disambiguate terms when different time
steps are involved in the same equation. For each joint, the
agonist and the antagonist muscles generate the apparent
torquesτ+ andτ− (2).

{

τ+ =−A+ ·θ+−σ+ · θ̇+

τ− =−A− ·θ−−σ− · θ̇− (2)

whereA+ (resp.A−) is the muscle activation andσ+ (resp.
σ−) is the damping2 of the agonist (resp. antagonist) mus-
cle. The angular valuesθ+ and θ− are measured respec-
tively from the full flexion positionθmax and from the full
extension positionθmin (3).

θ+ = θ −θmax , θ− = θ −θmin and θ ∈ [θmin,θmax]

(3)

with θ the angular position of the joint.
The dynamical equation of the system links the rota-

tional acceleration̈θ and the moment of inertiaI with the
torques generated by the agonist and antagonist muscles given
by (2) and the torqueτe given by external forces.

I · θ̈ = τ++ τ−+ τe

=−A+ ·θ+−σ+ · ˙θ+−A− ·θ−−σ− · ˙θ−+ τe
(4)

Equations (3) and (4) gives the equation (5) whereσ =σ++

σ−:

I · θ̈ = A+ · (θmax −θ )−A− · (θ −θmin)−σ · θ̇ + τe (5)

In the absence of external torques/forces (τe = 0), the
system defines an attractor at the convergence pointθeq =
A+·θmax+A−·θmin

A++A− . To simplify this controller, the angular po-
sitionsθ of the joint are normalized so that for each joint,
they vary between 0 and 1.

θmin = 0< θ < θmax = 1 , θ+ = 1−θ and θ− = θ (6)

2 The damping can be constant. However, controlled movementsare
improved if the damping varies with the stiffness. For instance, the
damping can be defined as proportional to the square root of the stiff-
ness like in [25].
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In this particular case, our control equation (5) is equivalent
to (7) with θeq =

A+

A++A− with K = A++A−.

θ̈ =
K
I
· (θeq −θ )−

σ
I
· θ̇ (7)

The equation (7) corresponds to a classical mass-spring-damping
system with a stiffnessK and an equilibrium positionθeq.
The equilibrium position is unchanged when bothA+ and
A− are multiplied by the same factor. Such a factor only
modifies the equivalent stiffnessK. An adaptation of the
stiffnessK and the dampingσ controls the rise time, over-
shoot and settling time. The controller was simulated using
discrete time with a time increment∆ t. With I the moment
of inertia andτ the sum of the torquesτ = τ+ + τ−, the
equations of the dynamical system are:






θt = θt−∆ t + θ̇t ·∆ t
θ̇t = θ̇t−∆ t + θ̈t ·∆ t
θ̈t = τt/I

(8)

The variablesθt , θ̇t , θ̈t correspond respectively toθ , θ̇ , θ̈ in
the equations [2-7].

In our model (5), the generated torque depends on the ac-
tivation A of the muscles and on the lengths of the muscles
(indeed the anglesθ ). This dependance to the muscle length
makes our model look like the ”lambda” model of Feld-
man [17, 18]. In the Theory of the Equilibrium Point [19],
also named Theory of Threshold Control, the motor con-
trol is based on threshold functions (λ ) defining the acti-
vation of the agonist and antagonist muscles. However, in
our model, the activation thresholds are not controlled. The
activation of the muscles is directly the controlled parame-
ter. Therefore, our model is closer to the ”alpha” model as
described in [6]. In the alpha-model, the generated torque
is directly controlled by the muscle activations producing
the equilibrium point trajectories and adapting the stiffness.
Following our simple model of muscle, in our model, the
generated torques depend on both the activation of muscles
(i.e. their stiffness) and on the muscle lengths. Our model
has also a major difference with the alpha-model as it asso-
ciates muscle activations with learned visuomotor configu-
rations instead of relying on a temporal sequence of muscle
activations. In the next section, we explain how the muscle
activations are learned and associated with the recruited vi-
suomotor categories in order to allow motor control.

4.2 Categorization of proprioceptive and visual space

The DM-PerAc model can use the previously described sim-
plified muscle model with learned visuomotor associations
to build a visuomotor controller (Fig. 3). Visual and pro-
prioceptive signals are merged into visuomotor categories
which are associated to the muscular activations determining

the arm movements i.e. defining postural attractors. First,
we present how the visual and proprioceptive categories are
learned and computed. In the next section, we will present
how the visuomotor categories are built from the learned vi-
sual and proprioceptive categories. We will also detail how
the postural attractors are learned as muscle activations asso-
ciated with the visuomotor categories. Both processes occur
alternatively and participate to the sensorimotor babbling
process allowing the robot to learn how to act.

Proprioceptive categories are recruited during a sensori-
motor exploration process. Considering the agonist/antagonist
muscles, the proprioceptive information is defined by the an-
gular positions of the controlled jointsP= [θ+

1 . . .θ+
N θ−

1 . . .θ−
N ]

(indexm3). Each valueθ+/− is positive and normalized with
respect to the agonist or antagonist references (see Fig. 2).
The categorization of the proprioceptive input is described
by (9) and (10). The proprioceptive inputsP are encoded
into categoriesSP with Gaussian responses depending on a
variance parameterβ P. The variance parameterβ P enables
to increase or to reduce the selectivity of the sensory cate-
gories. They are recruited with a process based on Adaptive
Resonance Theory [14]. If the current inputP is too different
from any encoded sensory patternWP

i , i.e. if the recognition
SP

i is under a vigilance thresholdλ P, then a new categoryir
is recruited (εP = 1). The current sensory inputP is stored
on the weightsWP

ir to theithr category. Even though a slow
adaptation of the encoded categories is also possible, we do
not consider it in this article.














SP
i = exp(−∑m(Pm−W P

im)
2

2β P )

∆W P
ir j = εP · (Pm −WP

irm)

with εP = H (λ P −max
i
(SP

i ))

(9)

with the Heaviside functionH (x) = 1 if x > 0 and 0 oth-
erwise. The recognition activitiesSP are normalized to give
the output of the recognition processRP (10).

RP
i =

SP
i

∑SP (10)

The outputRP
i can be interpreted as the probability that the

sensory categoryi is the current sensory state of the robot.
In practice, we approximated the sensory categorization pro-
cess to a winner-takes-all which corresponds to the variance
parameterβ P tending to 0 i.e. the selectivity for the cate-
goriesRP

i is maximal.
In our robotic setup, the visual information is captured

by a single camera. A visual feature detector (e.g. color de-
tector) enables to extract points of interest. The information
is then projected over two 1D fields or vectors using popula-
tion coding. Each vector codes the accumulated salience for
the projected points of interest. The retina-centered vectors

3 Bold letters indicates vectors whereas plain letters are scalars.
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Fig. 3 Architecture of the visuomotor arm controller. Both visualand proprioceptive information are categorized. The visual input is associated
with the proprioceptive input. The visuomotor categories are then associated with the muscle activations defining the motor attractors. The visual
input activates the associated visuomotor categories and thus the corresponding motor attractors.

are then converted into body-centered vectors by a transfor-
mation using the pan and tilt angles of the camera. The body-
centered vectors are computed as Dynamic Neural Fields [60].
Thus, they exhibit bifurcation and memory properties which
are interesting in this attentional processing context. The co-
ordinates(v1,v2) of the maximally salient point in this field
are considered as the visual input. The visual categories are
updated and learned using the equations (11) based on the
equations (9).














RV
k =

SV
k

∑SV with SV
k = exp(−∑l(Vl−WV

kl )
2

2βV )

∆WV
kr l = εV · (Vl −WV

krl)

with εV = H (λV −max
k
(SV

k ))

(11)

The recruitment of a visual categoryRV
k increases the vig-

ilance thresholdλ P of the proprioceptive categorization in
order to facilitate the recruitment of a proprioceptive cate-
gory if none already encodes the current posture.

4.3 Associating learned visuomotor categories with muscle
activations

The visual and proprioceptive signals are merged in a vi-
suomotor layer. There is a bijection between the propriocep-
tive categories and the visuomotor categories. Whenever a
new proprioceptive category is recruited, a new visuomotor
categorySVM

i is also recruited and associated with it. The
visuomotor category is then associated with the muscle ac-
tivationsA maintaining the categorized posture. The aim of
the visuomotor learning process is to determine which visual
categoryRV

k is maximally activated when the arm reaches

the attractor postureSP
i . The connection weightsWVM

ik are
increased depending on the co-activated visual (RV

k ) and pro-
prioceptive (SP

i ) categories (12):

∆WVM
ik = εVM ·SP

i · ( f (SP
i ) · f (RV

k )−WVM
ik ) (12)

with εV M a constant learning rate. The functionf is defined
by f (Xl) = 1 if Xl = max

l
(Xl) and f (Xl) = 0 otherwise. The

co-activation is only learned when the arm is close enough
to the postureSP

i , so the learning is modulated by the factor
SP

i that checks if the similarity measureSP
i is high enough.

Incorrect visuomotor associations can be progressively for-
gotten.
The activities of the neurons in the visuomotor layer are
computed with the following equations (13):


























RVM
i =

SV M
i

∑SVM with SVM
i = RP

i ·∑
k

(g(WVM
ik ) ·RV

k )

g(WVM
ik ) = 1 if

(

WVM
ik

max
k

(WVM
ik )

)n

> 0.5

0 otherwise

(13)

A weightWV M
ik contributes either as a factor 1 or 0 in the up-

date equation. The connection with maximal weight, among
the input connections to a neuroni, always gives a factor
equal to 1. Other connections can be “active” (factor equal
to 1) if their weights are close enough to the maximum. Sev-
eral visual categories can then activate the same visuomotor
category. The normalization of the activities of the visual
categoriesRV

k ensures that the activities of the visuomotor
categoriesSVM are always smaller than 1. The saturation of
the neural activities is thus avoided. Besides, when the expo-
nentn tends to+∞ only the connection with maximal weight



8 Antoine de Rengervé et al.

is equal to 1 and any others are null. We consider this par-
ticular case in the experiments.
The learning is performed on-line and fast. It is also incre-
mental. By modifying some parameters (vigilanceλ P/λV or
varianceβ P/βV ) of the sensory categorization process, new
visual and proprioceptive categories can be added on-line
and are directly available for the visuomotor control. The
vigilance parameter determines how much categories can
overlap. Increasing the vigilance, i.e. allowing more over-
lapping, will increase the number of recruited categories.
The variance parameter of the Gaussian kernels can be de-
creased with a similar result. If the variance is reduced, the
selectivity of the categories increases and more categories
will be recruited. Maintaining the vigilance level enablesto
maintain a certain level of overlapping and thus of interfer-
ences during learning.

As a result of a visuomotor association learning, a vi-
sual input can elicit visuomotor categories which activate
motor actions (muscle activations) to drive the arm to the
proprioceptive configuration associated with the visual con-
straint. When a new visuomotor category is recruited, the
muscle activations enabling to maintain the visuomotor con-
figuration (in practice maintaining the proprioceptive con-
figuration is enough) are learned. Muscle activation coeffi-
cients are learned on-line in a perception-action process.The
sensory-motor loop is essential. As the system acts, it cor-
rects or modifies its motor commands on-line to maintain
the desired posture of the arm. The corrective movements
are learned by increasing the adequate connection weights to
the muscle activation neuronsA = [A1 . . . A2N ] = [A+,A−].
The activities of the visuomotor categoriesRVM determine
the muscle activationsA with (14):

Am = ∑
i

W A
mi ·R

VM
i (14)

where the weightW A
mi is the learned activation ofmth mus-

cle to maintain the arm in the proprioceptive configuration
i. In order to learn the muscle activations, the propriocep-
tive configuration corresponding to a recruited visuomotor
category is stored. This proprioceptive signalP̂ is then used
as a supervision for the muscle activation learning. The de-
sired positionP̂m is learned in one shot by associatingP to
RVM

ir when theithr visuomotor category is recruited. The cor-
responding update and learning equations are (15):

P̂m = ∑
i

W P̂
mi ·R

VM
i with W P̂

mir = Pm −W P̂
mir (15)

During the muscle activation learning process, the system
selects a visuomotor configuration that is to be learned (for
instance the last recruited visuomotor categoryir). The robot
tries to reach the visuomotor configuration using the associ-
ated proprioceptive configuration̂P to correct movements.
This selection induces that only the target visuomotor con-
figuration is active (withir the selected configuration,RVM

ir =

+
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Fig. 4 Neural network learning the muscle activations to maintainthe
robotic arm in desired proprioceptive configurations. Learning is based
on a neuromodulation process increasing the weightsW A

mi so the mus-
cle activationsA enable to maintain the desired posture. A second neu-
romodulation loop induces the normalization of the stiffnessK of the
different joints to avoid saturating the muscle activations.

1 andRVM
i6=ir

= 0), so only the corresponding weightsW A are
modified. When the system learns the muscle activations,
no other visuomotor category can be learned, the visuomo-
tor exploration is suspended. The exploration resumes when
the motor control meets the condition (no more correction).
The learning equation (16) is based on a positive and a neg-
ative term and one learning factor:

∆W A
mi = H (L− thL) · ( εA ·Cm ·RVM

i · (1−WA
mi)

−αA ·W A
mi ·max

j
[K j − nc]+) (16)

whereεA is a learning rate,αA is a decay rate and[x]+ =

x if x > 0 and 0 otherwise. The positive term in (16) in-
creases the muscle activations thus changes the attractor so
that the equilibrium posture matches the desired postureP̂.
This adaptation is based on the correction signalC detailed
below (17). The role of the negative term in (16) is to nor-
malize the stiffnessK j of the joints j to the constant value
nc4. As the negative term changes all muscle activations
with the same factorαA, it does not modify the equilib-
rium posture, only the stiffness is modified. This normal-
ization process is necessary to avoid the saturation of both
the weightsW A

mi and the neural activitiesAm which would
prevent any further correction of the movements.
The part of the architecture in the gray rectangle in Figure 4
is dedicated to the computation of the correction signalC.
For each joint, the signalC compares the desired movements
MD with the current movementsM (17) to determine if a
muscle should contract more i.e. if the muscle activations

4 In practice, the range of activities was[0,1] and we usednc = 0.1



On-line Learning and Control of Attraction Basins for the Development of Sensorimotor Control Strategies 9

associated to the target visuomotor configuration should be
increased.

Cm = H (MD
m −Mm) (17)

Each neuron in the desired movement layerMD evaluates
the need to contract the musclem (MD

m = 1 or 0) to correct
the posture. To do so, the equation ofMD

m (18) determines if
the muscle “length”Pm (i.e.θ+ or θ−) should be reduced to
match the desired “length”̂Pm.

MD
m = H (Pm − P̂m− thD) (18)

wherethD is a threshold under which no correction is re-
quested. It defines the accuracy constraint for the movements.
The correction signalCm (17) does not change the mus-
cle activations if the current movementMm already reduces
the muscle length i.e. ifPm is decreasing. This condition al-
lows to avoid overshooting the correction of the movements.
This condition is computed byMm(t) = H (Pm(t − ∆ t)−
Pm(t)) with Mm = 1 when no change of the muscle activa-
tion should occur.
The learning factor (H (L− thL)) induces that muscle acti-
vations are learned during a variable period of time depend-
ing on the comparison between the “learning enabling” sig-
nalL and the thresholdthL. This signalL evaluates the need
to continue adapting the muscle activations (19).

L(t) = [H (L(t −∆ t)− thL) ·∑
m
[Cm − Ĉm]

+

+γL ·L(t −∆ t)+ tg(t)]+
(19)

In our implementation, the learning is triggered (tg(t) = 1 ; 0
otherwise) when a new visuomotor categoryir is recruited.
Therefore, the muscle activations are directly learned af-
ter the recruitment of each visuomotor category ensuring
that motor commands are associated to all visuomotor cate-
gories. Yet, the muscle activation learning may also be trig-
gered by other signals, like a random signal arbitrarily se-
lecting categories to refine the associated motor command.
The muscle activation learning continues as long as there
is unexpected correction of the muscle activations. Such
unexpected correction is determined by comparing for each
muscle occurring correctionCm with its predictionĈm. The
occurrence of an unexpected correction increases the value
of the signalL, thus extending the learning time period. The
forgetting factorγL modulates the time period during which
no unexpected corrections must occur before the attractor
adaptation ends. The predictionĈ of the corrections is learned
by conditioning withC the unconditional stimulus andRVM

the conditional stimulus (20).

Ĉm = ∑
i

WC
mi ·R

VM
i with ∆WC

mir = εC ·RVM
ir · (Cm − Ĉm) (20)

The learning rateεC is small to have a memory effect. The
learned muscle activations are expected to maintain the arm

close to the postural target, so no more corrections are neces-
sary. The learning of this posture can then stop and the motor
exploration resumes. Sometimes, the arm may be blocked
by an obstacle (possibly itself). The current version of the
architecture does not include an obstacle avoidance process
(still, a security module can block movements to prevent
damages), so the muscles may only be more and more con-
tracted without correcting the position. The deadlock is bro-
ken when the prediction̂C of the continuous correction fi-
nally compensates the detected correctionC and stops the
learning. The motor exploration can then resume and the
muscle activations related to this unsuccessfully learnedpos-
tural attractor, is not used for the control. Interestingly, in [51],
the authors hypothesized that the role of dopamine could
also be to detect novelty and maintain or repeat recent ac-
tions providing the adequate context for learning. In our
case, detecting unpredicted situations (corrections) canmain-
tain the learning of a given posture instead of resuming the
motor exploration.

As mentioned above, the weightsW A
mi and the muscle

activationsA are bounded (A ∈ [0,1]N) due to the learn-
ing rule (16). Hence, the muscle activationsA are multiplied
by a constant stiffness factorG increasing the amplitude of
the apparent stiffness. The resulting equilibrium point isun-
changed whereas the apparent stiffness is now equal toG ·K.
The previous dynamic equation (5) becomes (21):

I j · θ̈ j = G · (A+
j · (θ j,max −θ j)−A−

j · (θ j −θ j,min))

−σ j · θ̇ j + τ j,e +η j
(21)

For each jointj, a noise termη j is also added in the motor
command producing varying exploratory movements to help
the learning of the muscle activations.

5 Experimental results

5.1 Postural attractor learning

The process to learn postural attractors was tested and vali-
dated in a simulation5 of the Katana arm used in our robotics
experiments (Fig. 5 and 6). In this experiment, the exter-
nal torqueτe was null. As the arm moves, the muscle ac-
tivations are increased so that each joint is maintained at
the desired position (Fig. 5). The progressive adaptation of
the muscle activations depends on random movements (7).
Still, the arm finally stabilizes at the desired posture (Fig. 6).
As the muscle activations increase, the shifts of the equi-
librium point due to learning become smaller and smaller.
This property results from the ratio in the equation of the

equilibrium point (θ j,eq =
A+

j

A+
j +A−

j
). So, the equilibrium po-

sition converges to the desired position while the stiffness

5 with the software Webots (Cyberbotics)
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Fig. 5 Webots simulation of a Katana arm. Learning a postural attrac-
tor in the 4 DOF motor space. The evolution of the muscle activation
and of the resulting equilibrium point is given for the 2nd articulation
of the arm. A uniform random noise ([−0.5,0.5]) is added to the torque
command. When the movement of a joint is in the direction opposite to
the target direction, the corresponding muscle activationis increased.
As the stiffness increases, the shift of the position of the equilibrium
point at each correction becomes smaller enabling to perform a gradi-
ent descent toward the target position. Besides, a bigger stiffness in-
creases the robustness to the noise.

Fig. 6 The attractor learning test is reproduced 10 times. Left: Mean
position of the learned attractor for joint 2 with the limitsof the gray
area representing the standard deviation. Right: Average and standard
deviation of Euclidean target distance in the normalized joint space.
The red line is the distance constraintthD for each joint proprioception.
The mean distance to the target decreases down to this constraint.

(K j = A+
j +A−

j ) increases. The behavior adaptation is quite
slow because of the low frequency of the hardware control
loop of the Katana arm (about 7 Hz). Another major con-
straint is the speed encoding in the robot arm firmware. Very
low speed is not available because of the discretization of the
values. Instead of an unnatural freezing of movements when
the speed should be very close to null, the articulations keep
rotating at the fixed minimal speed. These small oscillations
give in fact a more natural aspect to the idle movements of
the arm. The feeling of a frozen system is avoided during
human robot interaction. In this experiment, there was no
external torque. The reason is that the servo-controllers of
the Katana electrical robotic arm is not compatible with ex-
ternal perturbations. This is a strong limitation of the hard-
ware. We performed simulations to show that our model can
also manage this case.

5.2 Maintaining a particular posture under external torque

In order to show that our model can also cope with external
torques, we use a simple simulation of a 1D arm (Fig. 7a).
First, the muscle activations are learned in the case of a grav-
itational torque (Fig. 7b-c). In the equation of control (21)

the external torque is the following gravitational torqueτe =

−ma ∗ g ∗ le∗ sin(θ ) with the massma, the gravity constant
g = 9.81 and the lengthle between the rotational axis and
the gravity center. In order to compensate this torque, the
muscle opposing to the gravity contributes more to maintain
the posture (Fig. 7c). This solution is more energy efficient
and accurate than simply increasing the overall impedance.
It corresponds to the change of reciprocal activation level
observable in human motor behaviors in equivalent circum-
stances [22]. The movements resulting from the learn con-
troller are shown in Figure 7d. Figure 7e shows that the er-
ror made is indeed below the accuracy threshold used during
learning.
We also tested the impact of increasing the noise level of
η j (in (21)) which corresponds to stochastic perturbations
of the movements. If the controller was learned with a low
noise level, the movements are strongly perturbed by the
noise. The position error while maintaining the learned pos-
ture has a strong variance (Fig. 7f). Then, the postural attrac-
tor was learned with the increased noise level (Fig. 7g-h).
As a result, the muscle activations are also increased which
corresponds to increasing the stiffness (Fig. 7h). So, the pro-
duced movements are less perturbed by the noise (Fig. 7i-j).
Our model can learn how to maintain a posture control under
a gravitational torque, and it can also increase the stiffness
of the movement to resist to stochastic perturbations during
learning.

5.3 DM-PerAc visuomotor controller

We validated the visuomotor controller in the same 3D sim-
ulation of a Katana robot arm as in previous section. In Fig-
ure 8(a-c), the robot performs a motor babbling with param-
eters inducing a low selectivity and thus a very low level of
accuracy for the recruited visual and proprioceptive states. A
simple test to evaluate the visuomotor learning is to repro-
duce a trajectory given in the visual space. A star shaped tra-
jectory is given as visual input to the system (Fig. 8b). The
trajectory resulting from the visual processing of the arm
end effector tracking is displayed. The robot tries to follow
the trajectory but because of its sparse learning, the perfor-
mance is very limited. In the developmental process of the
robot, the parameters determining the sparsity of learning
may be changed to recruit more visual and proprioceptive
categories (Fig. 8(d-f)). The new visuomotor attractors are
integrated on-line to the initial learning. The performance of
the system is increased. Figure 9 displays the visual trajecto-
ries of the desired and real position of the arm end effector.
The mean square error is shown with the mean error and
the standard deviation to compare the evolution of the per-
formance with the inclusion of more attractors. The same
kind of performance could have been obtained by directly
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a)

e
θ τ

b) c) d) e)

f) g) h) i) j)

Fig. 7 a) A simple 1D model of an arm is used to test muscle activationlearning under gravitational torque. The parameters areg= 9.81,ma= 2kg
andle = 0.4m. The angleθ is normalized with respect to the movement range[0,5π/4]. b) Trajectories for 30 samples of posture control learning.
c) Evolution of the muscle activations during learning. Themuscle opposing to the gravity contributes much more than the other one. d) 10
examples of trajectories produced by one of the learned posture controllers. e) Corresponding position error with respect to the target (0.85). f)
The noise levelη j is increased (from 0.1 to 1.5). The movements are then less accurate. g-h) The posture control is learned like in b-c) but with
the increased noise levelη j = 1.5. i-j) As a result, the accuracy in reaching the target position is improved (lower variance).

learning with the parameters increasing the selectivity ofthe
coding.

To sum up figures 8 and 9, learning a postural attractor
takes time, and learning many attractors will slow the explo-
ration of the whole motor space, but provide a better coding
resolution and therefore a more accurate trajectory. Thus,
very accurate trajectories could only be reproduced at the
cost of a longer exploration and learning phase. In previous
studies [3] we have simulated with the PerAc model that the
learning time of all the possible sensorimotor associations of
a 6DOF model of the Katana robotic Arm with a high reso-
lution CCD camera would require hundreds of thousands of
movements. Taking a mean approximation of the time nec-
essary to perform one simple movement with our mechan-
ical robot, we have calculated that the whole exploration
and learning of all the possible categories would require
more than three years (without optimization). Such amount
of time is still applicable to the DM-PerAc model, since
the number of possible categories (if we consider purely the
maximal amount possible) is similar. Of course, such a com-
putation is a caricature, since the creation of categories is by
definition a mean to avoid systematic learning.
Nevertheless, several considerations lead us to think that
such algorithms are consistent with the developmental course
of a human baby :

– this time course (several years), taken as an order of
magnitude is acceptable, compared to the time needed
to develop the coordination of the whole human body
(even if we limit to the coordination of one arm or one
hand). We just have to refer to the time needed to master
some movements in sports such as a golf swing, or the
time to learn to write. Progressive learning is still present
after months or years.

– if the maximal learning time is very long, DM-PerAC al-
low a very fast learning of simple trajectories with 10 to

20 attractors. The robot can hence perform simple tasks
even if with limited accuracy. Such fast acquisition of
coarse and elementary actions is crucial in term of be-
havior and is consistent with developmental psychology
: coarse actions support early imitation to communicate
before the age of 9 months [9], or object grasping before
the age of 9 months [46], and of course early sensory-
motor exploration before the first year [29].

– In addition of these elementary actions, the DM-PerAc
model can let the category creation continue in order to
improve the capabilities of the robot. New visual and
proprioceptive categories can be recruited while the mo-
tor babbling is resumed. Therefore, the robot can con-
tinuously evaluate the co-occurring proprioceptive and
visual inputs to improve its visuomotor model with the
newly learned categories. The visuomotor associations
can be progressively updated as the system continues its
babbling.

– Altogether, these characteristics allow to speculate about
when the babbling should stop. We can formulate the hy-
pothesis that the visuo-motor babbling goes on while the
agent has not received remarkable repeated feedback.
The feedback could be purely “physical” (for example a
tactile sensory motor contingency, for example when an
object is grasped) or “social” (the expression of a care-
giver) and modulate the strength of the learning. Thus,
fast coarse actions and long progressive learning can be
complementary in a global progress loop.

Interestingly, classical developmental psychology studies also
observe that such progress loop are guided by the cephalo-
caudal (the more the limbs are far from the head, the later
they are available and mature to be implied in actions) and
the proximo-distal (the more the articulation are far from the
root of the limb, the later they are available and mature to be
implied in actions) laws. These laws reflect constraint of the
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body development that imposes a step by step process of the
motor control. One of the consequence of this scheme is to
constrain a coarse to fine learning where each change in the
child’s development result in an increasingly refined levelof
skill development [56].

In [16], several regression algorithms (including LWPR [63])
were compared on the visuomotor control learning and per-
formance. The evaluation task is target tracking by the arm
end effector of a robot. The system must produce the move-
ments to reach a target given by its visual position, thus the
learned inverse kinematic models are compared. A stereo
camera detects the target, and its 3D Cartesian position is
computed. In most of the tests, the target follows a star shaped
trajectory path in a vertical plane. The regression algorithms
learn a forward kinematic model in order to perform the
tracking, thus focusing the exploration process on the motor
space to perform the task. The forward model allows to esti-

a) d)

b) e)

c) f)

Fig. 8 Simulation of on line learning and adaptation of sensorimo-
tor attractors with a 4 DOF arm and a 2D camera. Left hand column
presents the results after an initial sparse learning and the right hand
column gives the results after learning continued with learning param-
eters inducing more selectivity in the state recruitment.a) During the
motor babbling, the robot recruits visual states (red diamonds) and
proprioceptive states (black circles). Each proprioceptive state is as-
sociated with one visual state (blue link).b) After learning, the visual
input is artificially switched to a star shaped trajectory inthe visual
space (dark line). According to the visual state recognition, the robot
moves so the arm end effector trajectory tries to follow the visual in-
put (gray dashed-line).c) Movements performed in the 3D Cartesian
space during the star shaped trajectory reproduction.d) As the parame-
ters changes, the robot can complete its previous learning by recruiting
more visual states and proprioceptive states.e) The movements of the
arm matches more closely to the star shaped trajectory in thevisual
space.f) Corresponding movements in the 3D Cartesian space.

Fig. 9 Comparison between the trajectories from initial (Left hand col-
umn) and consecutive learning (Right hand column). Initiallearning:
mean error 6.0 degrees, standard deviation 3.5 degrees. Consecutive
learning: mean error 4.3 degrees, standard deviation 2.5 degrees.

mate the Jacobian matrix of the kinematic model, the inver-
sion of this matrix and the 3D position of the target provide
the motor control of the robotic arm. In this article, we have
tested the DM-PerAc visuomotor controller on tracking a
target moving on a star shaped trajectory. In our experiment
protocol, the visuomotor learning is open-ended. Also, the
target coordinates are simulated (no occlusion) in the 2D vi-
sual space. The trajectories after learning are comparableto
those obtained in [16]. Still, the regression techniques pro-
duce smoother trajectories more accurate at the points of the
star path. However, inverting the Jacobian matrix requires
a specific processing in order to avoid singularities. Such a
matrix inversion is not satisfying in the perspective of the
developmental approach and is also difficult to model as a
biologically plausible process.

5.4 Bifurcation property of the DM-PerAc controller

We compare the properties of the DM-PerAc controller with
the properties of the Dynamic Neural Field based controller.
Dynamic Neural Fields (DNF) based on Amari equation [2]
are a solution to motor control used to navigate [60], [31] or
to control a robotic arm [39, 3]. Biological studies showed
that the activations of some neurons in the motor cortex are
correlated with the direction of the movement to be per-
formed [28]. In DNF, the activity profile of the field takes the
shape of a Gaussian centered on the input stimuli. Besides,
the derivative of the activity profile can provide the dynam-
ics of the control [60]. Dynamic Neural Fields have inter-
esting dynamical properties: memory to filter non stable or
noisy stimuli and bifurcation capabilities enabling reliable
and coherent decision when multiple stimuli are presented.

In Figure 10, we show that (i) the trajectories generated
by the DM-PerAc model can be analyzed and integrated to
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Fig. 10 Bifurcation capabilities in the DM-PerAc controller. Top row
(a-b) shows the trajectories (blue lines) and the two learned attractors
(black dashed lines). The middle row (c-d) displays the angular veloc-
ity profiles in function of the proprioceptionθ . The bottom row (e-
d) gives the perception activity profile equivalent to the activities in a
Dynamic Neural Field. In left hand column, the learned attractors are
distinct whereas in the right hand one they are closer resulting in one
merged behavioral attractor.

build the DNF equivalent profile of activity, and (ii) there
are bifurcation capabilities in our controller. In our tests, the
state space is[0,1]. Trajectories generated by the DM-PerAc
controller are averaged into the actionsAc(θ ) depending on
the state of the system (position). In practice,Ac(θ ) is dis-
cretized into a vector with components that are the values
for differentθ . The result is thus the velocity profile given
in Fig 10c and d. In [48], we proposed that the actionAc is
the derivative of a potential function defining the perception
of the system. The actionAc is thus spatially integrated to
obtain the perceptionPer (22).

∀k,Perk =

∫

[0,k/n]
Ac(θ )dθ + cste (22)

wherePer is a vector of dimensionn with components equal
to the integration of the actionAc at different positionsθ =
k/n. The integration constantcst is chosen so the maximal
component value ofPer is equal to 1. The perception profile
Per is equivalent to the activity profile of a DNF, and shows
bifurcation properties (see Fig 10). The DM-PerAc model
can produce behaviors similar to those obtained with the
use of an explicit DNF without the need to define the whole
field. However, the property of memory is not directly avail-

able in the model, but some others processes could complete
the DM-PerAc architecture to obtain this property.

6 Use and extensions of the DM-PerAc model

6.1 Encoding trajectories with the DM-PerAc controller
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Fig. 11 a) Trajectories in 1D space with an asymetric muscle acti-
vation pattern (a muscle is inactive). Trajectories start from different
random positions. Activation signals areG ·A+ = G ·K = 5, A− = 0.
The control parameters areσ = 5, ∆t = 0.05 and the moment of inertia
I = 1. b-c) Attraction basins in a bounded 2D space[0,1]2 with DM-
PerAc model. Given the learned position/movement couples (black
diamonds, thick black lines), a force field is generated (small gray
points and lines). For each joint, only one of the agonist/antagonist
muscles is activated like in a). Initial (circle) and final (square) points
of the trajectories are indicated.b) Vector field corresponding to one
learned proprioception/activation couple.c)d) Four state/action cou-
ples are learned. Four trajectories with different starting points are rep-
resented in the 2D state space. With only four couples, the system can
learn a loop trajectory. The size of the loop depends on the speed thus
is related to the dampingσ and the stiffnessK. c) σ = 10,G ·K = 10.
d) σ = 5,G ·K = 10. The other parameters of the system are the time
increment∆t = 0.05 and the moment of inertiaI = 1.

It is possible to use the learned postural attractors in a
time based sequence with the attractors that are successively
and transiently activated. This process was used in the work
described in Section 6.2. However, the DM-PerAc architec-
ture is not limited to using this kind of trajectory coding.
Now, we consider the case where only one of the muscles
around a joint is activated (activation different of 0) while
the other one is inactive. This configuration of activation
signals induces movement toward the extreme limit of joint
(full flexion or extension) (Fig. 11a). At the lower level of
motor control, the muscle activations can be either inter-
preted as defining a postural attractor or as defining locally
the movement to be performed (orientation and strength). As
explained in Section 3, such associations between sensory
categories and actions can define trajectories. The studied
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task is simply to reproduce a loop in the 2D motor space.
Among four encoded states, each of them are associated
with two 1D controllers i.e. four muscle activation coeffi-
cients each. The muscle activations correspond to the demon-
strated direction of movement. For each joint, only one of
the muscle activation (agonist or antagonist) is differentof
null. An example of a vector field in 2D space defined by one
state/action couple is given in Fig. 11b. An attraction basin
can effectively be generated (Fig. 11c and d). The trajecto-
ries in the 2D state space show that the stiffnessK and the
dampingσ control the movement speed and thus can change
the size of the loop. Trajectories could be encoded using the
low level state/muscle activation associations. This coding
can thus be a basis for both posture and trajectory encoding.
In the next section, we will focus on learning stable postural
attractors.

6.2 Imitative behaviors with the DM-PerAc controller

The visuomotor controller based on the DM-PerAc model
can be used for the emergence of low level imitative behav-
iors and can even be a basis for deferred imitation. An arm
controller, based on learning visuomotor associations, can
let low level imitation emerge [3]. In a first phase of bab-
bling, the robot learns its body schema as multiple associa-
tions between the visual position of its arm end effector and
the joint configuration of its arm. If the robot visual percep-
tion is enough limited (using only movement information or
the detection of colored patches), the robot can look at the
hand of an interacting human and still believes it is its own
hand. According to the previously learned visuomotor asso-
ciations, this situation can induce an incoherence between
the visual information from the teacher’s hand and the mo-
tor information from the hand of the robot. As the controller
is a homeostat, it tends to maintain equilibrium between the
visual and the motor signals. Thus, the robot tries to reduce
the visuomotor incoherence by moving its hand to match the
visual input. Low level imitation emerges as the movements
of the robot follow the movements of the human (Fig. 12).
In the next stage of development of the robot, this low level
visuomotor controller can be the basis for learning from ob-
servation. We consider that the learning robot can now mem-
orize the sequence of the visual positions demonstrated by
the teacher while it is inhibiting its own movement [52].
Then, as the robot internally rehearses the encoded visual
sequence, the predicted visual position of the next state can
be given to the low level visuomotor controller. The robot
reproduces the demonstrated sequence of gestures accord-
ing to what was perceived during the demonstration. The
robot is capable of doing some deferred imitation [52, 53].

Fig. 12 Example of imitation behaviors.Left : Low level imitation of
meaningless gestures. Qualitative comparison of imitatedgestures per-
formed in front of the robot. Perception ambiguity and a homeostatic
controller induce movements to maintain perceptual equilibrium. The
robot performs low level imitation of directly observed gestures.Mid-
dle and right : Gesture imitation can be used to bring the arm end-
effector toward objects (here, to grasp a can) or interesting parts of the
environment. It can become a common basis for learning by observa-
tion and learning by doing.

6.3 Attractor selection and visuomotor control refining

The refining potential of the DM-PerAc model can be en-
hanced by the “Yuragi” (fluctuations) based attractor selec-
tion model [23] which relies on the following Langevin’s
equation (23):

Λ · ẋ = ξ · f (x)+η (23)

whereΛ is a time constant, the vectorx describes the state of
the system and the functionf is the dynamics of the attractor
selection model. The main constraint that this attractor func-
tion f must respect is to define attractors. For instance, the
function f can simply derive from a potential function with
attractor points. Other particular examples of definitionsof
the function f can be found in [23, 52]. When the coeffi-
cientξ is big, the termξ · f (x) predominates. The state of
the system converges to one of the attractors defined byf .
Feedback on the current movement performance modulates
the coefficientξ . The feedback gives more influence to the
attractor functionf or to the stochastic exploration termη .
As a result, the system can switch from exploration between
the different known attractors to exploitation of the closest
attractors. According to the feedback, the functionf can be
adapted so that some attractors are shifted toward the desired
positions. Thus, the desired positions can be learned.
The principle of muscle activation learning (Sec. 4.3) in DM-
PerAc is quite similar. The first difference is that the func-
tion f depends on the muscle contraction. During muscle
activation learning, only one visuomotor category is active
so only one postural attractor is active. The exploration is
partly due to the noise on the motor command and also to
the oscillations of the arm (when the stiffness is still low).
During learning, the muscle activations are changed so that
the resulting attractor is effectively shifted toward the de-
sired position. So, this process can be seen as a low level
use of the “Yuragi” principle.

The “Yuragi” principle can also be use in DM-PerAc
when all the visuomotor categories are available. The move-
ment dynamics is influenced by all the attractors associated
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a) b) c) d)

Fig. 13 Visual target reaching with a visuomotor controller using the “Yuragi” principle. The feedback is based on the target distance in the visual
space. A known attractor can match the target (a,b) or the target can be between learned attractors (c,d).(a,c) Trajectories of the robot arm end
effector in the visual space. The black circles correspond to the learned attractors and the black cross is the visual target to be reached. The stars
are the starting positions for each trial.(b,d) Evolution of the distance between the arm end effector and the target in the visual space (number of
pixels). Dark gray dash-line shows the average distance to the attractors. The light gray line shows the threshold underwhich the target is reached.
a: Trajectories while reaching a learned attractor, 2 attractors activated, 2 trials with different starting positions. b: Corresponding evolution of the
target distance.c: Trajectories while reaching a not previously learned position, 4 attractors activated, 6 trials with different starting positions.d:
Corresponding evolution of the target distance. In both cases, the arm end effector reaches the target, although, when it is not a learned position,
the reaching can be quite long due to the random exploration.

to these categories and activated by visual and propriocep-
tive information. In that case, the “Yuragi” principle allows
to improve the accuracy of the movements. In Figure 13, we
tested the reaching of a visual position using the “Yuragi”
principle [52]. The robot arm end effector reaches the visual
target both when it is near the visual position of a learned
attractor (Fig. 13(a-b)) and when it is between the learned
attractors (Fig. 13(c-d)). While performing tasks, the robot
can use the “Yuragi” principle to reach targets which were
not explicitly learned as attractors. When necessary, a new
attractor could be recruited to learn how to reach a target
that would otherwise be long to reach. The performance of
the visuomotor controller could be improved for particular
cases without recruiting many useless attractors.

7 Conclusion-discussion

Our previous works enabled to explain trajectory learning
(PerAc model [26]) and imitative behaviors [3]. Even though
these different works have in common the sensorimotor learn-
ing principle, their properties could not directly be com-
bined due to motor control issues. We propose the Dynamic
Muscle PerAc (DM-PerAc) model to control a robot arm
with multiple DOF (Sec. 4). It combines the principles of
the PerAc model with a simple model of agonist/antagonist
muscles where the muscle activations determine the move-
ments of the robotic arm. The low level motor control is
equivalent to impedance control. The DM-PerAc model can
incrementally learn on-line the visuomotor control of the
robot arm. During a motor babbling process, propriocep-
tive and visual categories are recruited and associated to-
gether (kinematic model) depending on co-activation. The
DM-PerAc model then learns the postural attractors asso-
ciated with the visuomotor categories to define the visuo-
motor control. Trajectories can also be coded by combining
state/action couples like in the PerAc model (Sec. 6.1). The

states are associated with asymmetric muscle activations to
generate movements in particular directions. In section 6.2,
we showed that imitative behaviors can be obtained with the
DM-PerAc visuomotor controller. This controller can also
be a basis for higher level encoding and imitation behaviors.

Until now, we mainly experimented the DM-PerAc model
on a Katana robotic arm. However, the hardware of this robotic
device is limited for impedance control. In particular, the
servo-controller of the Katana arm does not allow to man-
age external perturbations like gravitational torque. In Sec-
tion 5.2, we showed in a simple 1D arm simulation that the
DM-PerAc model can accurately learn a postural attractor
under a gravitational torque. However, the impedance con-
trol was learned instead of performing an on-line adaptation
to perturbations. In future work, the adaptation process will
be added to the model. Also, in future work, we will exploit
the full potential of the DM-PerAc model to control move-
ments of a hydraulic torso robot called TINO6. This robot
was developed with the aim of allowing physical interaction
and compliance. Impedance control is fully compatible with
this hardware. With the DM-PerAc model, the visuomotor
controller of the robot TINO can be learned. Besides, the
DM-PerAc model is also a good basis to study imitative be-
haviors and interaction.

In this article, the motor control is based on a spring
based model of muscles ; however, we do not pretend that
modifying the stiffness of these spring-like muscles corre-
sponds to an accurate model of neuro-muscular control. The
rest-length of the muscles, motor reflexes and other physi-
ological properties are also important. Still, the aim of the
DM-PerAc model is to allow sensorimotor dynamics learn-
ing with the generated behaviors that can be either attractor
postures or trajectory following. Using muscle activations

6 The robot TINO was co-funded by the french projects INTER-
ACT and SESAME TINO, the Robotex and the CNRS. The robot only
recently arrived in ETIS lab.
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has the advantage to make learning easier whatever the dy-
namics is (postural attractor or trajectory).

The computational cost of the DM-PerAc visuomotor
controller can be reduced in different ways. The neurons
corresponding to categories (visual, proprioceptive, visuo-
motor) not yet recruited can be ignored in the neural up-
date process. Also, the number of visual to visuomotor links
(WVM) may be reduced by using some lists of links dynami-
cally managed according to the recognition of the visual and
proprioceptive categories. This solution would allow to use
far fewer links than if considering the whole set of visual to
visuomotor links.

We gave solutions to learn attractor points as they are
used in the visuomotor controller for imitation behaviors.
The learning of trajectories or paths is not described in this
article. In the DM-PerAc model, postural attractors can be
used as via-points to encode trajectories and we used this
kind of solution in deferred imitation [52]. However, a cor-
rect encoding of dynamic trajectories should rely on state/action
couples defining attraction basins, like in the PerAc model
(Sec. 3). The advantage is that agonist and antagonist mus-
cles would not need to be active at the same time. The stiff-
ness and the energy consumption can be reduced. In future
work, we will study the activation patterns generated by this
trajectory encoding model. In particular, we want to explore
whether and how the state-action coding may allow the tri-
phasic pattern of movement observed in humans [55].

Although we proved that the DM-PerAc model enables
dynamical trajectory encoding, the learning of the adequate
state/action couples is still an ongoing issue. In the PerAc
model, the states and actions were associated by direct con-
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to conditioning
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Fig. 14 a) Possible solutions to learn muscle activations in the Dy-
namic Muscle PerAc model. b) Example of dynamic trajectory with
postural attractors and trajectory shaping constraints. Both components
can be coded similarly in the DM-PerAc architecture.

ditioning. The orientation to follow (action) could be esti-
mated by integrating the followed orientation while mov-
ing. The orientation to follow could also be demonstrated to
a passive robot. In the DM-PerAc model (Fig 14a), a direct
conditioning is possible but a particular process is necessary
to extract the unconditional stimulus from a passive demon-
stration. Changes of proprioception cannot be directly con-
verted into muscle activations (for instance, the muscle ac-
tivations must change to perform the same movement ma-
nipulating objects with different masses). The “Yuragi” idea
(Sec. 6.3), adapted to the DM-PerAc model, can be a po-
tential solution to this issue. We believe that “Yuragi” idea
could allow to locally learn combinations of attractors defin-
ing not only postural attractors but also particular speed vec-
tors. Still, the remaining issues are what the adequate feed-
back is and how it can be learned from a demonstration.
Finally, using the same encoding and the same kind of learn-
ing, the robot should be able to learn trajectories like in
Fig.14b mixing posture attractors and trajectory shaping.

Appendices

A Summary of the parameters and equations used in
the Dynamic-Muscle PerAc model

The different parameters and equations presented in this article are re-
spectively summarized in Table 1 and Table 2.

The proprioceptive (visual) categorization depends on thevigi-
lance parameterλ P (λV ) and the parameterβ P (βV ) of the Gaus-
sian similarity measure. High vigilance values would implythat re-
cruited categories overlap. We useλ P = λV = 0.005 to avoid interfer-
ences between categories. The values of the Gaussian parameters are
very low so the categories are selective enough. During the learning
step, different values are used to increase progressively the number of
learned categories (β P = 0.002 thenβ P = 0.001, andβV = 2 · 10−4

thenβV = 5·10−5). During the tests, the vision must drives the move-
ments, so the proprioceptive categories must be less selective than the
visual categories (β P = 0.1 andβV = 5·10−5).
In the experiments, the muscle activation learning dependson the learn-
ing factorεA = 10−3 and the decay factorαA = 10−4. As the learning
factor is small, the stiffnessK j of each joint changes slowly. Still, the
equilibrium position is rapidly adapted because it dependson the ratio
of the muscle activations. Also, the decay must be slow enough to allow
the learning. With an error thresholdthD = 0.01, the muscle activations
around a joint are adapted if the position error is over a hundredth of
the rotational range.
The parametersthL and γL define the dynamics of the “learning en-
able” signalL i.e. determine the amount of time to learn each postural
attractor. The used values arethL = 10−5 andγL = 0.95 so the motor
exploration resumes after a time period of about 10 seconds without
correction of the movements.

Acknowledgements This work was supported by the INTERACT French
project referenced ANR-09-CORD-014.
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Table 1 DM-PerAc Model: parameter summary with values used in experiments for the open parameters

A = [A1, . . . , A2N ] muscle activation (stiffness)

A+, A− : activation of agonist (+) and antagonist (+) mus-
cles for each joint (A = [A+,A−])

C : comparison of desired and current movements,
determines the need to correct muscle activations,
modulates the increase ofWA

mi

Ĉ : prediction ofC for a given visuomotor categoryi
in RV M

G : stiffness factor, counterbalancing the bounded
muscle activationsA (ex: G = 60)

K : stiffness

i, im, ir : indexes of proprioceptive category, winning pro-
prioceptive category and next recruited proprio-
ceptive category

I : moment of inertia (ex:I = 1)

j : index of joint

k, km, kr : indexes of visual category, winning visual cate-
gory and next recruited visual category

l : visual coordinates

L : attractor learning signal

m : index of muscle

MD, M : desired muscle shortening, current muscle short-
ening

n : exponent, used in the update of the visuomotor
categories (ex:n = 100)

N : number of joints

RP, RV ,RVM : normalized activities ofSP,SV andSV M

P = [P1 . . . P2N ] = [P+P−] proprioceptive input

P+, P− : agonist and antagonist proprioceptive input
[θ+

1 θ+
2 . . . ], [θ−

1 θ−
2 . . . ]

SP, SV : recognition activities of proprioceptive and visual
categories respectively

SVM : visuomotor category, merging visual and proprio-
ceptive signals

t, t −∆t : current time step, previous time step

thD : threshold on target distance to estimate desired
movement (ex:thD = 0.01)

thL : threshold on L under which current attractor
learning is stopped (ex:thL = 10−5)

V : visual input (coordinates in visual field)

WP
im, WV

kl : learning weights to proprioceptive (SP) or visual
(SV ) categories

WC
mi : learning weights tôC

WA
mi : learning weights toA

WV M
ik : learning weights toRV M

αA : decay factor of muscle activation learning (WA
mi)

(ex: αA = 10−4)

β P, βV : variance parameter of the Gaussian kernels of
proprioceptiveP or visualV categories.

εA : learning factor of muscle activation (A) learning
(ex: εA = 10−3)

εC : learning factor of the predictor ofC (ex:εC = 0.2)

εP, εV : learning factor of proprioceptiveP or visualV cat-
egorizations.

γL : forgetting factor of the attractor learning signalL
(ex: γL = 0.95)

λ P, λV : vigilance of proprioceptive categorizationP or vi-
sual categorizationV . (ex: λ P = λV = 0.05)

σ j : damping (ex:σ j = 11)

θ j, θ̇ j, θ̈ j : rotation angle of a joint, velocity, acceleration

θ+
j , θ−

j : positive angular value measured in the agonist or
antagonist reference (see Fig. 2)

θ j,max, θ j,min : maximal and minimal angular value of a joint

θ j,eq : equilibrium point resulting from muscle activa-
tions

τ j,τe : rotational torque, external torque

General tools
Heaviside function:H (x) = 1 if x > 0, 0 otherwise

Kronecker symbol: δi j = 1 if i = j, 0 otherwise

[x]+ = x if x > 0, 0 otherwise
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Table 2 DM-PerAc Model: equation summary

Motor control based on commands of stiffness of ago-
nist/antagonist muscles around the jointsja

τ j = A+
j ·θ

+
j −σ+

j · θ̇+
j − (A−

j ·θ
−
j −σ−

j · θ̇−
j )

Which is simplified from additional constraints (6) as:

θ̈ j =
K j

I j
·(θ j,eq−θ j)−

σ j

I j
· θ̇ j with K j =A+

j +A−
j andθ j,eq =

A+
j

A+
j +A−

j

Update and learning of the proprioceptive and visual categories
Proprioceptive categories (indexi) based on the muscle proprioception
P= [θ+

1 ,θ+
2 . . . ,θ−

1 ,θ−
2 , . . .] (indexm):

RP
i =

SP
i

∑SP with SP
i = exp(−∑m(Pm−W P

im)
2

2β P )

∆W P
irm = εP · (Pm −W P

irm) with εP = H (λ P −max
i
(SP

i ))

Visual categories (indexk):

RV
k =

SV
k

∑SV with SV
k = exp(−∑l (Vl−WV

kl )
2

2βV )

∆WV
kr l = εV · (Vl −WV

kr l) with εV = H (λV −max
k

(SV
k ))

Visuomotor association learning

∆WV M
ik = εVM ·SP

i · ( f (SP
i ) · f (RV

k )−WV M
ik )

with f (Xl) = 1 if Xl = max
l
(Xl) and 0 otherwise

Visuomotor categories update














RV M
i =

SVM
i

∑SV M with SVM
i = RP

i ·∑k(g(W
V M
ik ) ·RV

k )

andg(WV M
ik ) = 1 if

(

WVM
ik

max
k

(WVM
ik )

)n

> 0.5 and 0 otherwise

Postural attractor learning
Supervision signal based on incorrect movements:



























Cm = H (MD
m −Mm) where

MD
m = H (Pm − P̂m − thD) andMm(t) = H (Pm(t −∆t)−Pm(t))

P̂m = ∑iW
P̂
mi ·R

V M
i with

W P̂
mir = εP · (Pm −Wmir ) (on recruitment of a newRV M

ir )

SignalL indicating whether attractor learning should continue:










L(t) = H (L(t −∆t)− thL) ·∑
m
[Cm −Ĉm]

++ γL ·L(t −∆t)

Ĉm = ∑i W
C
mi ·R

VM
i with ∆WC

mir = εC ·RVM
ir · (Cm −Ĉm)

Muscle activation update and learning:

Am = ∑iW
A
mi ·R

VM
i with A = [A+

1 ,A
+
2 , . . .,A

−
1 ,A

−
2 , . . .]

∆W A
mi = H (L− thL) · ( εA ·Cm ·RV M

i · (1−W A
mi)

−αA ·W A
mi ·max

j
[K j −nc]+)

During attractor learning (L > thL), after the recruitment of the visuo-
motor categoryir, a bias on the activation ensures thatRV M

ir
= 1 and

RV M
i 6=ir

= 0.

a The time stept is only written when a signal at different time step
is used
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