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Preprint

Coordinate invariance as a fundamental constraint on the form of stimulus-specific
information measures

Lubomir Kostal� and Giuseppe D’Onofrio

Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic

The value of Shannon’s mutual information is commonly used to describe the total amount of information that
the neural code transfers between the ensemble of stimuli and the ensemble of neural responses. In addition, it is
often desirable to know which stimulus features or which response features are most informative. The literature
offers several different decompositions of the mutual information into its stimulus or response-specific components,
such as the specific surprise or the uncertainty reduction, but the number of mutually distinct measures is in fact
infinite. We resolve this ambiguity by requiring the specific information measures to be invariant under invertible
coordinate transformations of the stimulus and the response ensembles. We prove that the Kullback-Leibler
divergence is then the only suitable measure of the specific information. On a more general level we discuss the
necessity and the fundamental aspects of the coordinate invariance as a selection principle. We believe that our
results will encourage further research into invariant statistical methods for the analysis of neural coding.
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1. INTRODUCTION

An information theoretic framework has been applied suc-
cessfully to a wide range of neuroscientific problems, as re-
viewed for example in Borst and Theunissen [1], Dimitrov et al.
[2], McDonnell et al. [3], including a quantification of different
aspects of information processing in neural systems [4–10].
Most frequently, the studies investigate the mutual informa-
tion between stimuli and responses in order to quantify the
amount of information the neural systems transfer. Formally,
information-theoretic methods rely on the probabilistic descrip-
tion of both the stimulus ensemble and the neuronal system,
which relates the stimulus feature, or intensity, to some par-
ticular response [1, 11, 12]. Since the amount of information
transmitted depends on the stimulus probability distribution, the
mutual information represents an indispensable mathematical
tool for the description of the efficient coding hypothesis [13–
17].

Mutual information, however, is an average quantity, which
describes the total information transfer between the stimulus
and response ensembles as a single number. It is often im-
portant to know which stimulus intensities or which response
features are most informative. Several decompositions of the
mutual information into its stimulus and response-specific com-
ponents are being used in the literature [18–21]. These specific
information measures generally provide mutually incompatible
values, and there are various arguments favoring one measure
over the others, such as in DeWeese and Meister [18], Bezzi
[21], Yarrow et al. [22], also reviewed by Thomson and Kristan
[23] and more recently by Wibral et al. [10]. Nevertheless,
most of the studies employ multiple measures of the specific
information, see, e.g., Bezzi [21], Olypher et al. [24], Butts and
Goldman [25], Lansky et al. [26], Kastner and Baccus [27].

� E-mail: kostal@biomed.cas.cz

It has been demonstrated in a series of recent papers [28–30]
that the choice of stimulus units has a deep impact on the in-
ference about the neural decoding accuracy. Reference frame
invariance is one of the cornerstones of modern physics [31],
however, it is rarely considered in the field of computational
neuroscience. For example, the amount of transmitted infor-
mation is a priori expected to be independent from the model
parameterization or the choice of measurement units. In fact,
as shown in this paper, the individual specific information ex-
pressions may depend on the frame of reference even though
the mutual information itself is an invariant quantity. We argue
that the invariance principle is a logical necessity, which helps
us to resolve the ambiguity in the choice of possible specific
information measures.

The paper is organized as follows. After presenting the basic
methodology, we employ the classical model of an auditory
nerve fiber [32] responding to a natural-like sound intensity
distribution [33, 34], to illustrate the dramatic impact of an
apparently benign and frequently used information-preserving
transformation of the response. We prove our central result in
Theorem 1, which states that the requirement for transformation
invariance significantly restricts the form of possible specific
information measures. The Kullback-Leibler divergence [35]
is shown to hold a unique position under mild and reasonable
technical assumptions. We also identify special stimulus and
response reference frames, in which the other popular specific
information measures become equal to the Kullback-Leibler
divergence.

Finally in Section 4, we discuss the implications of our find-
ings from a broader point of view. We provide some alterna-
tive and indirect reasons to justify the prominent place of the
Kullback-Leibler divergence within the specific decomposi-
tion of the mutual information. Ultimately, we speculate that
the reference frame invariance should be considered a general
and fundamental selection criterion whenever several possible
methods are at hand. In particular, if the subjective choice of
measurement units leads to contradictory inference, invariant
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method should be used instead. We hope that our conclusions
will stimulate prospective research within this area, focusing
not only on the decoding precision [29] or information-like
aspects, but also on more general statistical methods used in
computational neuroscience.

2. METHODS

Let s be the stimulus intensity, or feature, taking values in
a continuous set of possibilities denoted as S. The naturally
unpredictable character of stimulation is formally described in
terms of the random variable S , which is defined by the proba-
bility distribution (or density) function �S .s/,

R
S �S .s/ D 1

[12]. The function �S assigns the probability that S falls within
the interval Œs; sCds/, Pr.s � S � s C ds/ D �S .s/ ds, to all
elements of the stimulus sample space S . The sample space S
and the probability distribution �S taken together are denoted
as the stimulus ensemble [36, p. 13].

The response, r , of the neural system to some stimulus, s, is
typically modeled stochastically [37–40]. Whether r is the fir-
ing frequency, spike timing precision or some other characteris-
tics [11, 41–44] is largely immaterial for information-theoretic
methodology. In the following we assume that r takes values in
a continuous set R and that the neural model, i.e., the informa-
tion channel, is generally defined by the conditional distribution
function fRjS .r jS D s/ of the response random variable R.
The marginal (or unconditional) distribution function, pR.r/
is given by

pR.r/ D

Z
S
fRjS .r js/�S .s/ ds: (1)

The critical quantity generally required for the implementa-
tion of the information-theoretic framework is the joint proba-
bility distribution of both stimuli and responses,

fS;R.s; r/ D fRjS .r js/�S .s/: (2)

The mutual information, I.S IR/, between stimuli and re-
sponses is then

I.S IR/ D

Z
S

Z
R
fS;R.s; r/ log

fS;R.s; r/

�S .s/pR.r/
dr ds: (3)

The value of I.S IR/ is the maximum amount of information
that can be communicated reliably, under as low a probability
of decoding error as desired, through the information chan-
nel fRjS subject to the input statistics �S [36]. Traditionally,
I.S IR/ is used in neuroscience to describe how much infor-
mation the neural code transfers about the stimulus ensemble,
e.g., how much the sequence of postsynaptic currents tells us
about the input train of action potentials [1, 4, 7, 9, 45–47]. The
mutual information is not causal (or directional), it generally
holds I.S IR/ D I.RIS/ [36].
In order to gain insight into how much information the re-

sponses of a neuron convey about a particular stimulus, the
stimulus-specific information, i.sIR/, is implicitly defined as

I.S IR/ D

Z
S
�S .s/ i.sIR/ ds; (4)

see, e.g., DeWeese and Meister [18] or Bezzi [21]. The units of
i.sIR/ are therefore the same as that of I.S IR/, that is ’nats’
for a natural logarithm in Eq. (3) or ’bits’ if the logarithm base
is 2. This quantity is typically computed for sensory neurons
that selectively respond to sensory stimuli [48]. Analogously
to the stimulus-specific information in Eq. (4) one defines the
response-specific information, i.r IS/, by

I.S IR/ D

Z
R
pR.r/ i.r IS/ dr: (5)

Neither the decomposition in Eq. (4) nor the one in Eq. (5)
determines the specific information uniquely.
The most frequent expression for the specific information,

denoted in the following as ih, is based on the difference of
two entropy (uncertainty) values [10, 21, 26, 49]. The average
response uncertainty h.R/ across the whole stimulus ensemble
is given by the marginal response distribution from Eq. (1),

h.R/ D �

Z
R
pR.r/ logpR.r/ dr; (6)

while the uncertainty in the response given some particular
stimulus value is

h.Rjs/ D �

Z
R
fRjS .r js/ logfRjS .r js/ dr: (7)

The stimulus-specific information ih.sIR/ is then the difference

ih.sIR/ D h.R/ � h.Rjs/: (8)

An analogous expression to Eq. (8) it also employed outside
the neuroscientific context, e.g., in Dubuis et al. [50].
The second popular expression for the stimulus-specific in-

formation, iKL.sIR/, is based on the concept of the Kullback-
Leibler divergence [35, 51], and is often denoted as the ’specific
surprise’ [18, 20, 21, 49],

iKL.sIR/ D

Z
R
fRjS .r js/ log

fRjS .r js/

pR.r/
dr: (9)

Finally, Butts [19] argued in favor of the stimulus-specific
information issi.sIR/, which is based on the analogue of Eq. (8)
for the response-specific case,

issi.sIR/ D

Z
R
ih.r IS/fRjS .r js/ dr (10)

D

Z
R
fRjS .r js/

Z
S

�
fS jR.Qsjr/ logfS jR.Qsjr/

� �S .Qs/ log�S .Qs/
�
dQs dr:

Note that any weighted combination of ih; iKL and issi yields a
“new” valid formula for the specific information.

The main result of this paper relies on the description of
the same neuronal information transfer in different coordinate
systems. That is, we investigate the impact of the choice of
measurement units for the stimulus and the response. Such
choice is formally described in terms of functions

x D '.s/; (11)
y D �.r/; (12)
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which map the stimuli and response ensembles as ' W S !
X D '.S/ and � W R! Y D �.R/. We restrict ourselves to
regular transformations of the reference frame, so that '; � are
strictly monotonic and differentiable within the interior of their
domains of definition [29]. The corresponding probability den-
sity functions �X .x/; fY jX .yjx/ in the regularly transformed
units are given by [52]

�X .x/ D �S
�
'�1.x/

� ˇ̌
P'�1.x/

ˇ̌
; (13)

fY jX .yjx/ D fRjS
�
��1.y/

ˇ̌
'�1.x/

� ˇ̌
P��1.y/

ˇ̌
; (14)

where P'�1.x/ D d'�1.x/= dx and '�1 denotes the inverse
function to ' (and similarly for P��1).

The reference frame invariance means that the values of the
stimulus-specific information evaluated in the .s; r/-frame and
in the transformed .x; y/-frame are equivalent,

i.sIR/ D i.xIY /
ˇ̌
xD'.s/
YD�.R/

: (15)

The mutual information itself is well known to be invariant with
respect to invertible transformations of the reference frame,
I.S IR/ D I.X IY / [36, 53]. The same arguments for proving
the invariance apply also to the generalized conditional mu-
tual information, i.e., mutual information conditioned on the
��algebra generated by the random variable [54]. Therefore,
non-symmetric (causal) information measures based on the
conditional mutual information, such as transfer entropy [55]
and directed information [56], are also invariant.

3. RESULTS

3.1. Example: Non-invariance leads to contradictory inference

We illustrate the key problem of non-invariant information
measures, which yields incongruent inference about the specific
information from equal stimulus intensities. As an example
we choose the joint stimulus-response probability distribution
fS;R constructed as follows.
The conditional distribution fRjS is derived from the clas-

sical model of a cat auditory nerve fiber responding to the
characteristic 8 kHz sound frequency [32]. The mean rate-level
function, �.s/, of the model is

�.s/ D
10cs=20rm

10tE=20.1C 10�tI =2010s=10/c=3 C 10cs=20
C rsp;

(16)
where the stimulus, s, is the sound pressure level of pure tones
and �.s/ is the average firing frequency (rate), i.e., the number
of action potentials per second (Fig. 1, solid white line). The
parameter values corresponding to the nerve fiber with low
spontaneous activity [32] are given as: tE D 89:4 dBSPL is
the response threshold, tI D 100 dBSPL is a parameter related
to the two-tone suppression model [57], rm D 135:1 is the
maximum rate change that can be observed in response to a
pure tone stimulus, rsp D 0:5 is the spontaneous discharge
rate, and c D 1:77 is a model constant. The response spike
count distribution in auditory nerve fibers is approximately

Figure 1. Probabilistic description of the stimulus-response model.
The average firing frequency as a function of the sound intensity (solid
white line) of a cat auditory nerve fiber best responding to 8 kHz
pure tones [32]. The spread of standard deviation from the mean
response (dashed white line) is Poisson-like, the conditional response
distribution is Gaussian (Eq. 17). The stimulus distribution�S .s/ (top)
approximates the sound intensity ensemble in a natural environment.
The joint stimulus-response distribution fS;R.s; r/ (color) provides
the complete description from the information-theoretic point of view
(Eq. 3). The marginal response distribution pR.r/ (right) is calculated
from Eq. (1), and the mutual information is I.S IR/ :D 1:19 bit (Eq. 3).

Poisson [32, 58]. For simplicity we assume that the response
distribution is Gaussian with mean �.s/ and standard deviation
�.s/ D

p
�.s/ (Fig. 1, dashed lines),

fRjS .r js/ D
1p

2��.s/
exp

�
�
Œr � �.s/�2

2�.s/

�
: (17)

The stimulus distribution �S .s/ describes the typical en-
semble of sound intensities, such as animal vocalizations in
the natural environment, which is approximately modeled as a
Gaussian on the sound pressure level scale [34]. We set�S to be
normal with mean 55 dB SPL and standard deviation 5 dB SPL
(Fig. 1), in accord with Wen et al. [33], Sun et al. [34].

The complete joint probability distribution, fS;R.s; r/, then
follows from Eq. (2). The amplitude of fS;R.s; r/ is visualised
by the ’heatmap’ plot in Fig. 1, together with the marginal re-
sponse distribution, pR.r/, given by Eq. (1). The value of mu-
tual information for this system is I.S IR/ :D 1:19 bit (Eq. 3).
Next we examine the impact of regular coordinate transfor-

mations in Eqs. (11) and (12) on the stimulus-specific measures
of information. Since regular transformations are bijective,
they are also intuitively expected to be information-preserving.
However, it turns out that out of Eqs. (8)–(10) only iKL.sIR/
is invariant in the sense of Eq. (15),

iKL
�
'.s/I �.R/

�
D iKL.sIR/; (18)
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while for the other measures it holds

ih
�
'.s/I �.R/

�
D ih.sIR/

C

Z
R
log

ˇ̌
P�.r/

ˇ̌�
pR.r/ � fRjS .r js/

�
dr;

(19)

issi
�
'.s/I �.R/

�
D issi.sIR/C

Z
R

Z
S
log

ˇ̌
P'.Qs/

ˇ̌
�
�
�S .Qs/ � fS jR.Qsjr/

�
fRjS .r js/ dQs dr:

(20)

Indeed, from the definition of iKL in Eq. (9), and by using
Eqs. (13) and (14), one has

iKL
�
xIY

�
D

Z
Y
fY jX .yjx/ log

fY jX .yjx/

pY .y/
dy

D

Z
Y
fRjS

�
��1.y/

ˇ̌
'�1.x/

� ˇ̌
P��1.y/

ˇ̌
� log

fRjS
�
��1.y/

ˇ̌
'�1.x/

� ˇ̌
P��1.y/

ˇ̌
pR
�
��1.y/

�ˇ̌
P��1.y/

ˇ̌ dy:

(21)

Eq. (18) then follows from dr D jP��1.y/j dy and Eqs. (11)
and (12). Similarly, from the definition in Eq. (8),

ih
�
xIY

�
D �

Z
Y
pR
�
��1.y/

� ˇ̌
P��1.y/

ˇ̌
log

h
pR
�
��1.y/

�
�
ˇ̌
P��1.y/

ˇ̌i
dy C

Z
Y
fRjS

�
��1.y/

ˇ̌
'�1.x/

�
�
ˇ̌
P��1.y/

ˇ̌
log

h
fRjS

�
��1.y/j'�1.x/

�ˇ̌
P��1.y/

ˇ̌i
dy

D ih.sIR/
ˇ̌̌
sD'�1.x/

RD��1.Y /

C

Z
Y

ˇ̌
P��1.y/

ˇ̌
log

ˇ̌
P��1.y/

ˇ̌
�

h
fRjS

�
��1.y/j'�1.x/

�
� pR

�
��1.y/

�i
dy; (22)

and Eq. (19) follows since P�
�
��1.y/

�
D 1= P��1.y/. By the

same argument, Eq. (20) follows from the expression

issi
�
xIY

�
D

Z
Y
fRjS

�
��1.y/j'�1.x/

�ˇ̌
P��1.y/

ˇ̌
�

Z
X

n
fS jR

�
'�1. Qx/

ˇ̌
��1.y/

�
� log

h
fS jR

�
'�1. Qx/

ˇ̌
��1.y/

� ˇ̌
P'�1. Qx/

ˇ̌i
� �S

�
'�1. Qx/

�
� log

h
�S
�
'�1. Qx/

� ˇ̌
P'�1. Qx/

ˇ̌ioˇ̌
P'�1. Qx/

ˇ̌
d Qx dy: (23)

Note that for every regular transformation '.s/ of the stimulus
and for every linear transformation of the response �.r/ D
ar C b, with a ¤ 0 and b real, the integral on the right-hand
side of Eq. (19) is zero, i.e., ih.s; R/ is invariant with respect to
linear transformations of the response. By similar arguments,
issi.s; R/ is invariant with respect to linear transformations of
the stimulus.

In order to highlight the (apparently paradoxical) situation, in
which the information content within the same neuronal system

Figure 2. Non-invariant stimulus-specific information measures yield
incompatible results under invertible, information-preserving transfor-
mations. (A) Information gained from sound intensities (dB SPL) in
the auditory nerve fiber model (Fig. 1), where neuronal response is
the firing frequency. Two classic information measures are shown: the
uncertainty reduction (ih, Eq. 8, solid line) and the specific surprise
(iKL, Eq. 9, dashed line). The quantities ih and iKL are known to
have distinct properties, therefore the dependence of their profiles
on the stimulus s differ. (B) Neuronal response is the inverse value
of the firing frequency, which is invertible, hence no information
loss is expected. However, the profile of ih changes dramatically be-
tween (A) and (B), e.g., the least informative stimulus in (A) becomes
approximately the most informative in (B). The explanation is that ih
depends not only on the stimulus-response model per se but also on
the arbitrarily chosen frame of reference (Eq. 19). On the other hand,
the coordinate invariance of iKL guarantees consistent results across
different reference frames (Eq. 18).

depends on the arbitrarily chosen reference frame, we choose
to inversely rescale the response value,

�.r/ D
1

r
; (24)

while keeping the stimulus scale unaffected, '.s/ D s. The
transformation in Eq. (24) is strictly monotonic and differen-
tiable for r > 0. Theoretically, no information is being lost if
we use y D 1=r instead of r as the response value. Heuristi-
cally, the particular choice for the inverse scaling in Eq. (24)
can be motivated by the general relationship between the mean
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firing frequency and the mean interspike interval. Let hN.�/i
denote the expected number of spikes within some time window
�, and let hT i be the mean interval between two spikes. By
describing the neuronal firing as a stationary point process in
equilibrium it holds [37, 59]

hN.�/i

�
D

1

hT i
: (25)

Therefore, 1=�.s/ from Eq. (17) can be thought of as being the
mean interspike interval. Note though that 1=r itself cannot be
interpreted as the actual intesrpike interval [42].
The information measures ih.sIR/ and iKL.sIR/, for the

model in Fig. 1, are compared in Fig. 2. The profiles of the
two measures as a function of sound intensity differ, consis-
tent with their distinct properties [10, 18, 21, 25]. Since the
response transformation in Eq. (24) is invertible, no change
in information gain is expected when using the .s; 1=r/-frame
instead of the .s; r/-frame of reference. However, the profile of
ih changes significantly between Fig. 2A and Fig. 2B. Particu-
larly, within the interval Œ40; 60� dB SPL, the function ih.s; R/
is monotonically decreasing while ih.s; 1=R/ is monotonically
increasing, and the least informative stimulus in Fig. 2A be-
comes the most informative one in Fig. 2B, approximately. The
explanation of the ’paradox’ relies on Eq. (19), which shows
that ih depends not only on the stimulus-response model, as a
physical object, but also on the arbitrary frame of reference for
the response. On the other hand the coordinate invariance of
iKL proves to be crucial, guaranteeing consistent results across
different coordinate systems.

We also note that the logarithmic rescaling '.s/ / log.s/, is
frequently employed whenever the coding range of the stimulus
spans several orders of magnitude [60–62]. The impact of such
stimulus rescaling on the decoding accuracy in the model given
by Eq. (17) was analyzed in Kostal and Lansky [28], and more
generally in Kostal [29]. Analogously to Eq. (24), we may
consider the transformation �.r/ D log.r/ of the response.
The measures of stimulus-specific information ih.s; R/ and
ih.s; log.R// again exhibit different behaviors, qualitatively
similar to Fig. 2 (not shown).

3.2. Invariant specific information measures

As demonstrated by Eqs. (18)–(20), iKL.sIR/ is the only in-
variant stimulus-specific information measure among the three
possibilities defined by Eqs. (8)–(10). In the following we prove
a stronger statement, however, that the reference frame invari-
ance determines iKL uniquely, under certain mild assumptions.
To the best of our knowledge, this claim constitutes a novel
finding.

Before proceeding to our main result, some preliminary con-
siderations are appropriate. The mutual information I.S IR/
has the same value if one replaces, in Eq. (4), i.sIR/ with the
specific information

i 0.sIR/ D ˛i.sIR/ � .˛ � 1/I.S IR/C�.s/; (26)

where ˛ is a real number and the function �.s/ is arbitrary,
except for the constraintZ

S
�S .s/�.s/ ds D 0: (27)

If i.sIR/ is invariant under coordinate transformations, so is
i 0.sIR/ given by Eq. (26). However, �.s/ implicitly depends
on �S , making i 0.sIR/ not universal, therefore it is reasonable
to set �.s/ D 0. The class of possible measures defined by
Eq. (26) then simplifies: i 0.sIR/ is either constant (equal to
I.S IR/ for ˛ D 0) or proportional to the original i.sIR/ plus
a constant. For convenience, we will consider only such i.sIR/
that do not contain any constant term.
Our main result can be formulated as follows.

Theorem 1. Assume that i.sIR/ can be expressed as a func-
tional

i.sIR/ D

Z
R
g
�
�S .s/; fRjS .r js/; pR.r/; fS jR.sjr/

�
dr;
(28)

where g is a suitable function. Then the only coordinate-
invariant measure of specific information, i.e., the function
i.sIR/ for which Eqs. (4) and (15) hold, is given by Eq. (9),

i.sIR/ D iKL.sIR/ D

Z
R
fRjS .r js/ log

fRjS .r js/

pR.r/
dr: (29)

Proof. It generally holds

fS jR.sjr/ D
fRjS .r js/�S .s/

pR.r/
; (30)

therefore it is sufficient to consider g as a function of
�S .s/; fRjS .r js/ and pR.r/ only. Due to the substitution rule
it holds

i.sIR/ D

Z
R
g
�
�X
�
'.s/

�
P'.s/;

fY jX
�
�.r/

ˇ̌
'.s/

�
P�.r/; pY

�
�.r/

�
P�.r/

�
dr;

(31)

and therefore, by the inverse function theorem P�
�
��1.y/

�
D

1= P��1.y/, we obtain

i.sIR/
ˇ̌
sD'�1.x/

RD��1.Y /

D

Z
Y
P��1.y/

�g

�
�X .x/

P'�1.x/
;
fY jX .yjx/

P��1.y/
;
pY .y/

P��1.y/

�
dy

(32)

By definition, it also holds

i.xIY / D

Z
Y
g
�
�X .x/; fY jX .yjx/; pY .y/

�
dy; (33)

and due to the invariance property in Eq. (15) the right-hand
sides in Eqs. (32) and (33) must be equal. Since the transfor-
mation ' is arbitrary, it must be that the function g does not
depend on the distribution �X .
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We introduce the function Qg as

Qg

�
fRjS .r js/;

fRjS .r js/

pR.r/

�
D g

�
fRjS .r js/; pR.r/

�
; (34)

noting that pR.r/ D 0 also implies fRjS .r js/ D 0 for all s so
that the ratio is well defined everywhere. By using Eq. (34) in
Eqs. (32) and (33), and by comparing their right-hand sides we
see that it must hold

Qg

�
fY jX .yjx/

P��1.y/
;
fY jX .yjx/

pY .Y /

�
D

1

P��1.y/
Qg

�
fY jX .yjx/;

fY jX .yjx/

pY .Y /

�
;

(35)

almost everywhere. However, Eq. (35) is satisfied only if Qg is
such that

Qg

�
fRjS .r js/;

fRjS .r js/

pR.r/

�
D fRjS .r js/ q

�
fRjS .r js/

pR.r/

�
;

(36)

where the q is a function of the ratio fRjS .r js/=pR.r/. Substi-
tuting Eq. (36) into Eq. (28), and comparing Eq. (4) with the
definition of mutual information in Eq. (3), yields q.�/ D log.�/
as the only possible function, hence proving Eq. (29).

The information measures similar to issi in Eq. (10) contain
double integration, which is not covered by Eq. (28). However,
a small extension of Theorem 1 allows us to treat them as well.
The following corollary is a direct consequence of Theorem 1
applied to the case of response-specific information defined by
Eq. (5).
Corollary 1. Let i.r IS/ satisfy Eq. (5) and

i.r IS/ D

Z
S
g
�
�S .s/; fRjS .r js/; pR.r/; fS jR.sjr/

�
ds;
(37)

where g is a suitable function. Then the only coordinate-
invariant measure of the response-specific information is

i.r IS/ D iKL.r IS/ D

Z
S
fS jR.sjr/ log

fS jR.sjr/

�S .s/
ds: (38)

The invariance conditions for the class of stimulus-specific
information measures similar to Eq. (10) then follow from
the Lemma 1.
Lemma 1. The stimulus-specific information

i.sIR/ D

Z
R
i.r IS/fRjS .r js/ dr (39)

is invariant if and only if the response-specific information
i.r IS/ is given by Eq. (38).
Proof. The invariance condition together with the substitution
rule require

i.sIR/ D

Z
R
i.r IS/ fY jX

�
�.r/j'.s/

� ˇ̌
P�.r/

ˇ̌
dr

D

Z
Y
i.yIX/fY jX .yjx/

ˇ̌
xD'.s/

dy (40)

D i.xIY /
ˇ̌
xD'.s/
YD�.R/

:

However, Eq. (40) holds only if

i.r IS/ D i.yIX/
ˇ̌
XD'.S/
yD�.r/

; (41)

that is, if the response-specific information is invariant, given
by Eq. (38).

Finally, we remark that is possible to introduce stimulus-
specific measures that are defined by multiple integrals over
S andR. Consider the following equality, based on �S .s/ DR
R fS jR.sjr/pR.r/ dr and on the re-labeling of integration
variables,

I.S IR/ D

Z
S
�S .s/i.sIR/ ds D

D

Z
R
pR.r/

Z
S
fS jR.sjr/i.sIR/ ds dr

D

Z
S
�S .s/

Z
R
fRjS .r js/

�

Z
S
fS jR.Qsjr/i.QsIR/ dQs dr ds:

(42)

Thereupon Eq. (42) can be used to define a new specific in-
formation, i 0.sIR/, as a functional of the original i.sIR/. By
employing Bayes rule,

i 0.sIR/ D

Z
R
fRjS .r js/

Z
S

fRjS .r jQs/�S .Qs/

pR.r/
i.QsIR/ dQs dr:

(43)

The process outlined in Eq. (42) can be iterated indefinitely,
producing a sequence of mutually different stimulus-specific
information measures in.sIR/; n � 1, where

in.snIR/ D

Z
i0.s0IR/

n�1Y
iD0

fRjS .ri jsiC1/fS jR.si jri / dsi dri :

(44)

The quantitity in.sIR/ is mentioned for completeness only as
its practical relevance seems limited. By repeated application
of Lemma 1 it follows that in.sIR/ is invariant only if i0.sIR/
is given by Eq. (29).
Consequently, it is generally impossible to find transforma-

tions '; � such that any two different stimulus- or response-
specific measures of information would become numerically
equal. However, it is possible to find these coordinate trans-
formations for the simplest case. It follows from Eq. (19) that
there exists the response transformation y D �.r/ such that

iKL.sIY / D ih.sIY / (45)

holds for all stimuli in the transformed coordinates, even if
iKL.sIR/ ¤ ih.sIR/ in the original coordinates. By requiring
Eq. (45) and substituting from Eqs. (8) and (9) into Eq. (19)
we obtain that it must be

�.r/ D

Z r

�1

pR. Qr/ d Qr: (46)
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In other words, Eq. (45) holds if the transformed marginal
response variable Y is uniform on Œ0; 1�. By symmetry, the
stimulus transformation x D '.s/ of the form

'.s/ D

Z s

�1

�S .Qs/ dQs (47)

yields

iKL.r IX/ D ih.r IX/ (48)

for the transformed response-specific information. Applying
the same process to the requirement, e.g., iKL.sIY / D issi.sIY /
reveals that generally no such � exists. The right-hand side of
Eq. (20) can be written as

R
R fRjS .r js/g.r/ dr , where g.r/ is

a function of r only, while Eq. (9) cannot be written in this way.

4. DISCUSSION

The requirement for the invariance of physical laws under in-
vertible and differentiable coordinate transformations has a long
history, and represents one of the foundations of modern phys-
ical theories [31, 63]. Generally, inferences and predictions
should be independent from the arbitrarily and freely chosen
frame of reference. In the context of this paper, the probabil-
ity distributions fRjS .r js/ and fY jX .yjx/ describe the same
neuronal model, just as �S .s/ and �X .x/ describe the same
stimulus ensemble, as a physical object. Therefore, there is no
persuasive preference for the .s; r/-parameterization over the
.x; y/-parameterization, perhaps besides convenience. Further-
more, the value of specific information is generally given in
bits (or nats), which is by definition independent from either
of the measurement units of the stimulus or the response. The
transformed value, i.xIY /, should therefore not depend on '; �
or their derivatives, in principle. Therefore the reference frame
independence of i.sIR/ or i.r IS/ is not only natural, but in
fact a necessary requirement.
Although the invariance property of iKL, proven in Theo-

rem 1, is sufficient to justify its prominence among the possible
measures of specific information, there are other, perhaps indi-
rect, reasons why iKL measures the informative importance of
individual stimuli intensities uniquely.
The measure iKL.sIR/ describes not only how informative

are the individual stimulus values in the ensemble, but also how
sensitive is the value of I.S IR/ to a small change in the proba-
bility of S 2 Œs; sC ds�. To see this we calculate the functional
derivative of I.S IR/ with respect to the stimulus distribution
�S . Let F be the convex set of all possible stimulus distribu-
tion functions, and denote I Œ�S � � I.S IR/ to emphasise the
functional dependence. The directional derivative ıgI Œ�S � of
I.S IR/ at a given S � �S in the ’direction’ of the distribution
function g 2 F is defined as

ıgI Œ�S � D lim
"#0

I Œ.1 � "/�S C "g� � I Œ�S �

"
; (49)

where " 2 Œ0; 1� [7, 64, 65]. We evaluate Eq. (49) by substitut-
ing Eqs. (1) and (2) into Eq. (3), and after changing the order

of the limit and the integration, the result can be manipulated
into the form

ıgI Œ�S � D

Z
S

�
g.s/ � �S .s/

�
iKL.sIR/ ds: (50)

That is, the directional perturbation of the stimulus distribution
function changes the total information to be

I Œ.1 � "/�S C "g�
:
D .1 � "/I Œ�S �C "

Z
S
g.s/ iKL.sIR/ ds;

(51)
for " small enough.
Second, assuming that the set F of all possible stimulus

distributions is both convex and compact, and I Œ�S � a strictly
convex functional [7, 36, 64], there exists a unique �0 2 F
such that the value of mutual information attains its maximum,
denoted as

C D I Œ�0� D max
�S2F

I Œ�S �: (52)

The necessary and sufficient condition for such �0 is that
ıgI Œ�0� � 0 for all g 2 F [64]. The value of iKL.sIR/ can
thus be used to check whether the maximum of I.S IR/ has
been attained. Due to Eq. (50) the maximum is attained if and
only if (see also Gallager [36, p. 91])

iKL.sIR/ � C; (53)

with equality for all s in the support of �0.s/, assuming that
Eq. (1) is evaluated at �S D �0. In other words, the max-
imum value of I.S IR/ is achieved only if all stimulus val-
ues with nonzero probability are equally informative in terms
of iKL. The condition in Eq. (53) can be generalized to the
optimization of I.S IR/ subject to average values of certain
constraining functions, e.g., to the metabolic cost of neuronal
activity [8, 9, 47, 66, 67]. If w.s/ is the metabolic cost asso-
ciated with stimulus intensity s, and the goal is to maximize
I.S IR/ subject to

R
�S .s/w.s/ ds � W , then, due to Kuhn-

Tucker conditions [68], Eq. (53) becomes

iKL.sIR/ � c C �w.s/; (54)

where c is a constant and � � 0 is the Lagrange multiplier [69,
p. 147].

Finally, we remark that iKL.s; R/ also exhibits the desirable
property of additivity, i.e., the information accumulates over
subsequent response observations to a given stimulus. If R1
and R2 are two generally non-independent response random
variables (given some stimulus intensity S D s) it holds [35,
Theorem 2.2]

iKL.sI fR1; R2g/ D iKL.sIR1/C iKL.sIR2jR1/; (55)

by using the factorization of the joint probability distribu-
tions, fR1;R2jS .r1; r2js/ D fR2jS;R1

.r2js; r1/fR1jS .r1js/ and
pR1;R2

.r1; r2/ D pR2jR1
.r2jr1/pR1

.r1/, in Eq. (9). A sym-
metric relationship holds for iKL.r IS/. As shown in DeWeese
and Meister [18], iKL.s; R/ is non additive when conditioned
on multiple stimulus values,

iKL.fs1; s2gIR/ ¤ iKL.s1IR/C iKL.s2js1IR/; (56)
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unlike ih.sIR/, which is additive in the sense of both Eqs. (55)
and (56) [10, 21]. However, Eq. (56) should not discourage us
from choosing iKL as the proper specific information measure.
It is the additivity of the form of Eq. (55), which stands as a
prerequisite in the classical axiomatic approach to information
theory, see Kullback [35, p. 12] and references therein. On a
more fundamental level, the mutual information in Eq. (3) is
essentially the expected value (with respect to the joint distri-
bution fS;R) of the likelihood ratio [36]

I.sI r/ D log
fRjS .r js/

pR.r/
D log

fS jR.sjr/

�S .s/
: (57)

The quantity I.sI r/ is symmetric, additive and invariant, and
plays a key role in several modern developments within the
field of information theory [70, 71].

5. CONCLUSIONS

Taken together, our results can be summarized into the fol-
lowing three main points.

First, by employing the classical model of the auditory nerve
fiber [32], we demonstrate that just by evaluating the neuronal
response in two equivalent parameterizations we obtain abso-
lutely incongruent results about the information content of the

corresponding sound intensities.
Second, the requirement for reference frame invariance helps

us to resolve the ambiguity in the choice of possible specific
information measures, and identify the Kullback-Leibler di-
vergence iKL (specific surprise) as the unique solution to the
problem. We also point out that a change in mutual information,
due to a perturbation in the stimulus distribution, is expressed in
terms of the Kullback-Leibler divergence and not in terms of the
other specific information measures. Similarly, the necessary
and sufficient conditions for achieving the maximal information
transfer (capacity or capacity-cost), lead to iKL. The sensitivity
to perturbations and the capacity-achieving conditions are not
related to the coordinate invariance problem per se, nonethe-
less, they confirm the prominent role of the Kullback-Leibler
divergence from additional points of view.
Third, we argue that the transformation invariance is a fun-

damental and necessary criterion, which should be imposed on
any framework or methodology used in computational neuro-
science. If no invariant method exists for the given task then
the proper coordinate system should be identified from other
principles [29, 30]. We hope that our conclusions will stimu-
late further research focusing on special reference frames and
suitable invariant methods for the analysis of neural code.
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