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Abstract Wasps and bees perform learning flights when

leaving their nest or food locations for the first time dur-

ing which they acquire visual information that enables

them to return successfully. Here we present and test

a set of simple control rules underlying the execution

of learning flights that closely mimic those performed

by ground-nesting wasps. In the simplest model we as-

sume that the angle between flight direction and the

nest direction as seen from the position of the insect

is constant and only flips sign, when pivoting direction

around the nest is changed, resulting in a concatenation

of piece-wise defined logarithmic spirals. We then added

characteristic properties of real learning flights, such as

head saccades and the condition that the nest entrance

within the visual field is kept nearly constant to de-

scribe the development of a learning flight in a head-

centered frame of reference assuming that the retinal

position of the nest is known. We finally implemented

a closed-loop simulation of learning flights based on a

small set of visual control rules. The visual input for

this model are rendered views generated from 3D recon-

structions of natural wasp nesting sites and the retinal

nest position is controlled by means of simple template-

based tracking. We show that naturalistic paths can be

generated without knowledge of the absolute distance

to the nest or of the flight speed. We demonstrate in

addition that nest-tagged views recorded during such

simulated learning flights are sufficient for a homing
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agent to pinpoint the goal, by identifying nest direction

when encountering familiar views. We discuss how the

information acquired during learning flights close to the

nest can be integrated with long-range homing models.
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Learning flights · Visual servoing · Homing

1 Introduction

Bees and wasps perform learning flights at the nest and

at food locations during which they acquire visual infor-

mation that allows them to pinpoint such places of sig-

nificance on subsequent returns (reviewed in Zeil et al.

1996, 2009; Zeil 2012; Collett and Zeil 2018). The flights

have a distinct organization with the insects turning

back to face the goal and then (as shown in the ex-

ample of Fig. 1 a,b) pivoting around it along arcs at

increasing distance from the goal (Lehrer 1993; Collett

and Lehrer 1993; Zeil 1993a; Collett 1995; Hempel de

Ibarra et al. 2009; Collett et al. 2013; Philippides et al.

2013; Riabinina et al. 2014; Stürzl et al. 2016; Robert

et al. 2018; Lobecke et al. 2018) and increasing height

above ground (Zeil 1993a; Zeil et al. 1996). As they fly

along arcs, the insects turn head and body in such a

way that the goal location is seen (at least in Cerceris

wasps) at relatively constant lateral positions in the

left visual field during counter-clockwise arcs and in the

right visual field during clockwise arcs (e.g. Zeil 1993a;

Stürzl et al. 2016). Counter-turning is not continuous

but saccadic with head saccades being followed by body

saccades. Head orientation is kept relatively constant

between saccades (Zeil et al. 2007, 2009; Boeddeker

et al. 2010; Riabinina et al. 2014; Boeddeker et al. 2015;

Stürzl et al. 2016) and the retinal position of the nest

is visually controlled (Zeil 1993a; Samet et al. 2014).
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Fig. 1 Examples and characteristic properties of learning flights performed by Cerceris wasps. a,b) Top-down and side view
of the first 8 arcs of a learning flight. 2D projections of the insect’s path are shown overlayed on camera images. The position of
the nest is indicated by a red dot. c) Flight direction relative to the nest δ of three recorded learning flights. Thick black curves
show median-filtered values. Note that the “raw” flight direction angle values were computed from 3D positions estimated
every 4 ms from high-speed stereo videos. The resulting values are noisy, in particular close to the nest, where movement
between frames is small. d) Distribution of the absolute value of the flight direction angle |δ| based on data from 7 learning
flights. e) Time-course of the gaze angle (green) as well as the nest azimuth (red) and elevation angle (black) for the first 8
arcs of a learning flight. The beginning and end of each arc is indicated by blue dashed vertical lines. For most flights, the
range of the gaze angle increases with number of arcs, while the nest elevation angle stays approximately constant. The nest
azimuth is positive for counter-clockwise arcs (nest in left visual field) and negative for clockwise arcs (nest in right visual
field). f) Distribution of the nest elevation angle with a peak near −45◦ (data from 7 learning flights).

The execution of learning flights is crucial for suc-

cessful and efficient homing (e.g. Wagner 1907; Opfin-

ger 1931; Tinbergen 1932; Tinbergen and Kruyt 1938;

Zeil 1993b) and their choreography must reflect fun-

damental constraints of visual navigation and in par-

ticular of the acquisition process underlying the navi-

gational competence of central place foraging insects.

However, it remains unclear how this learning process

is controlled and what is learnt when during its exe-

cution. Current suggestions regarding the latter ques-

tion range from discrete snapshot acquisition at the

end of arcs (e.g. Collett 1995; Zeil et al. 1996) or be-
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tween saccadic changes in gaze direction (Stürzl et al.

2016) to the (additional) acquisition of motion parallax

cues (Zeil 1993b; Brünnert et al. 1994; Lehrer and Col-

lett 1994; Dittmar et al. 2010; Dittmar 2011; Riabin-

ina et al. 2014; Boeddeker et al. 2015; Lobecke et al.

2018). In natural environments, static snapshots, asso-

ciated with information on goal direction, are sufficient

for successful homing (e.g. Graham et al. 2010; Naren-

dra et al. 2013; Stürzl et al. 2016) but insects clearly

also learn non-pictorial cues to the presence and dis-

tance of landmarks (Zeil 1993b; Brünnert et al. 1994;

Lehrer and Collett 1994; Dittmar et al. 2010; Dittmar

2011) presumably by monitoring the motion parallax

generated by both their learning and return flight ma-

noeuvres (Zeil 1993b; Riabinina et al. 2014; Boeddeker

et al. 2015; Lobecke et al. 2018).

One way of trying to understand the design princi-

ples of learning flights and walks is to attempt to quan-

tify the navigational information they may convey in

principle, which has been attempted assuming the ac-

quisition of a series of panoramic views (e.g. Baddeley

et al. 2009; Graham et al. 2010; Narendra et al. 2013;

Dewar et al. 2014; Stürzl et al. 2015, 2016). However,

ideally, the full “information content” of these learn-

ing routines can only be assessed (and manipulated) by

simulating and modifying their full spatial and tempo-

ral dynamics. The ultimate aim would be to implement

learning flights on flying platforms which would allow

us to simulate and test in natural environments the ac-

quisition and use of visual information for homing.

With this aim in mind, we document here the de-

velopment of synthetic learning flights based on a set

of simple and insect-inspired control rules. Our learning

flight model can in future be both modified to under-

stand the within and across species variability of these

learning routines and be implemented in simulations

and flying platforms with the aim of investigating the

functional significance of their choreography for homing

performance.

2 Models of Learning Flights

In this section we present models for generating learning

flight paths with increasing complexity and descriptive

power. Important parameters of these models are (see

Fig. 2 and Fig. 4)

– φ, r, z: cylindrical coordinates describing the posi-

tion of the wasp – more exactly the position of the

wasp’s head – in the nest-centered coordinate sys-

tem (φ: polar angle or azimuth, r: radial distance,

z: height);

– δ: angle of flight direction relative to nest direction;

x

v

x

φ

y

δ

Nest

|δ| − 90°

Fig. 2 Illustration of the parameters describing an arc of an
idealized learning flight. The flight direction angle δ, the angle
between the current flight direction and the wasp-nest-vector
−x determines the path. Note that δ < 0 as shown. The nest
is at the origin of the coordinate system.

– γ: head orientation (yaw angle) in nest-centered co-

ordinate system – the only angle to describe head

orientation as we assume that head is stabilized in

pitch and roll;

– αH: retinal azimuth position of the nest in the head-

centered coordinate system;

– εH: retinal elevation of the nest in head-centered

coordinates;

– δH: angle of flight direction in the head-centered co-

ordinate system.

2.1 Path generation based on constant flight direction

angle relative to nest direction

From recorded learning flights one can observe that the

absolute value of the flight direction angle with respect

to the nest, i.e. the angle between flight direction and

the 2D vector to the nest in the x-y-plane is approx-

imately constant while its sign changes quite rapidly

with each new arc, see Fig. 1 c,d (Zeil 1993a).

If we simplify these findings by assuming a constant

flight direction angle that just flips sign at the beginning

of an arc, the path can be calculated as illustrated in

Fig. 2. The velocity vector is given by

ẋ = v = λR(δ) (−x) , (1)

where λ is a scaling factor and R(δ) a rotation matrix,

describing a rotation by angle δ around the z-axis. As

shown in the appendix the solution of the differential

equation (1) in polar coordinates with r =
√
x2 + y2,

φ = arctan2(y, x) is

r = r0 exp[cot δ (φ− φ0)]

= r0 exp[tan(|δ| − 90◦) |φ− φ0|] ,
(2)

describing a “logarithmic spiral”. Distance r increases

with distance from start angle, |φ−φ0|, for |δ| > 90◦. In

order to have a sequence of alternating clockwise and

counter-clockwise arcs as in real flights, we make angle
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φ a function of time and change the sign of the flight

direction angle δ with each new arc but keep its absolute

value, i.e. we use δ = −δ0 < 0, φ(t)− φ0 > 0, dφ/dt >

0 for counter-clockwise arcs (as seen from above) and

δ = δ0 > 0, φ(t) − φ0 < 0, dφ/dt < 0 for clockwise

arcs. In addition, the angular range is increased by ∆φ

with each arc, i.e for the k-th arc (k = 1, 2, ...) we use

φ0,k < φ < φ0,k+1 = φ0,k + k∆φ for counter-clockwise

arcs and φ0,k > φ > φ0,k+1 = φ0,k − k∆φ for clockwise

arcs, and the parameter r0 is set to the final value of r

in the previous arc.

Paths for ∆φ = 30◦, φ0,1 = 0◦ and different values

of δ0 and are shown in Fig. 3. Note that for δ0 < 90◦

the agent will get closer to the nest with time. Thus,

while the absolute value of the flight direction angle |δ|
can vary during an arc as observed in real wasps, it has,

on average, to be in a quite limited range of about 90

to 100 degrees (see Fig. 1 c,d).

In order to extend the simple model to three dimen-

sions, we make use of the fact that the nest is approx-

imately held at a constant elevation angle εH close to

−45◦ (see Fig. 1 c,f). For the z-coordinate of the agent

we then have

z = r tan |εH| (3)

or simply z = r for εH = −45◦.

2.2 Head-centered model including nest-angle

dependent saccades

The model presented in the previous section does not

consider the orientation of the insect. Intuitively one

might assume the insect’s gaze direction to be aligned

with flight direction, which would mean that insects

would see their nest at angle δ, i.e. in the lateral field of

view. However, wasps keep the nest in the frontal visual

field during learning flights (see Fig. 1 e) so that most

of the time the head is actually oriented more towards

the nest than in flight direction.

From the viewpoint of a wasp (see Fig. 4), an arc

with constant flight direction angle δ could be achieved

by keeping both the nest and the direction of flight

at fixed angles in their visual field, i.e. keep angles

αH (the retinal azimuth angle, where the nest is seen)

and δH (the retinal flight direction angle) fixed (index

’H’ indicates the head-centered reference frame) so that

δ = δH − αH is constant for each arc. Since head orien-

tation described by gaze angle is γ = φ−αH, head ori-

entation would change constantly (with φ) during the

learning flight. However, learning and return flights in

ground-nesting wasps, honeybees and bumblebees have

a saccadic organization: rapid head turns (“head sac-

cades”) alternate with short flight segments where head

orientation is kept virtually constant (Zeil 1993a; Zeil

et al. 2007; Boeddeker et al. 2010; Stürzl et al. 2016).

Note that we measure gaze angle γ with respect to the

− y-direction.

As a first extension of the initial model we assume

that between saccades, i.e. during the intersaccadic in-

terval, gaze angle γ is constant, leading to a polygonal

approximation of the logarithmic spiral. Head orien-

tation is changed due to saccades of amplitude |∆γsac|
that are triggered whenever nest angle αH exceeds thresh-

old value αthresh. After the saccade the nest angle is

therefore αH = αthresh −∆γsac and the absolute value

of the gaze angle has increased by |∆γsac|. Note that

for counter-clockwise arcs the simulated wasp will turn

counter-clockwise during saccades, i.e. ∆γsac > 0, as

soon as αH > αthresh = |αthresh| > 0 but will perform

clockwise saccades ∆γsac < 0, whenever αH < αthresh =

−|αthresh| < 0 for clockwise arcs.

The initial nest angle is α(t = 0) = 0◦, correspond-

ing to gaze angle γ(t = 0) = 0◦ (φ(t = 0) = 0◦). An

arc is terminated and a new arc is initiated as soon as

the total change of gaze angle during one arc, |∆γtot|,
reaches a threshold |γthresh| that increases by |∆γthresh|
with each arc. In our model, this is checked whenever

the nest angle αH reaches αthresh, triggering a head

saccade. If, after the saccade, the threshold is reached

(|∆γtot| > |γthresh|), a new arc in the opposite direction

is started immediately. Similar to the model in the pre-

vious section, the change in flight direction is realized by

flipping the sign of the flight direction angle. However,

we now change, instead of the nest-centered angle δ, the

head-centered flight direction angle δH, i.e. δH = ∓δ0,H,

where the ’-’ sign is for counter-clockwise arcs, ’+’ for

clockwise arcs, and δ0,H > 0 is the amplitude of the

flight direction angle in the head-centered coordinate

system. During the first intersaccadic interval at the

beginning of each arc, the nest angle αH changes sign,

i.e. the nest moves from one side to the other in the

wasp’s visual field.

An example showing the time-course of the relevant

angles and the resulting path is presented in Fig. 5.

With each arc |γthresh| was increased by |∆γthresh| =

30◦. Note that for a short period before and after change

of flight direction the path follows the same straight line

but in opposite direction for the chosen parameter val-

ues (δ0,H = 80◦, ∆γsac = ±20◦) because |δH− (∆γsac +

δ′H)| = 2δ0,H + |∆γsac| = 180◦, where δH and δ′H = −δH
are the flight angles (in head coordinates) before and

after change of direction.

Average nest-centered flight angle is 〈|δ|〉 = 〈|αH|〉+
|δH| ≈ |αthresh|+(|αthresh|−|∆γsac|)

2 + δ0,H. For the chosen

parameter values this gives 〈|δ|〉 = 25◦+5◦

2 + 80◦ = 95◦.

Thus, Fig. 5 b corresponds to the path of the continuous
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Fig. 3 Paths for different δ0 values and r0 = 1. From top left to bottom right: δ0 = 85◦, 90◦, 92.5◦, 95◦, 97.5◦, 100◦. For each
arc the angular range of φ is increased by ∆φ = 30◦. Counter-clockwise arcs (with δ = −δ0) are shown in red, clockwise arcs
(δ = δ0) in blue. Dashed curves show paths if flight direction would not change but continued in the same direction. Note that
the agent moves towards nest for δ0 = 85◦ < 90◦.

model for δ0 = 95◦, shown in the lower left plot in

Fig. 3.

H

x

v

γ

Nest

x

y

φ

δ

δ

H
α

Fig. 4 Wasp and nest centered coordinates and angles. The
gaze angle γ, measured with respect to the negative y-axis,
describes the head orientation in nest-centered reference sys-
tem. Angle αH is the azimuth angle, where the nest is seen in
the reference frame of the wasp. As illustrated, the relation
between bearing angle φ, nest azimuth angle αH and gaze an-
gle γ is φ = γ +αH. The wasp-centered flight direction angle
δH is related to δ, the flight direction angle relative to nest,
according to −δ = −δH + αH. Note that δ, δH < 0 as drawn
(counter-clockwise arc).

2.3 Visual servoing model based on retinal nest

position

We now extend the simple head-centered model of the

previous section to a visual servoing model and show

its functionality in closed-loop simulation with visual

input consisting of rendered panoramic images using 3D

reconstructions of wasp nesting sites (see Stürzl et al.

2015). In addition to the constant flight angle and the

two threshold-based rules already described, namely

1) keep head centered flight direction δH fixed during

one arc, change sign with the beginning of each arc,

2) start new arc in the opposite direction if total change

of gaze angle |∆γtot| along an arc exceeds |γthresh|,
increase |γthresh| by |∆γthresh| with each arc,

3) keep nest azimuth angle within the frontal visual

field by initiating rapid turns of the head with am-

plitude ∆γsac, whenever nest azimuth angle αH(t)

reaches αthresh,

we propose two simple continuous control rules. They

are, motivated by observations and experiments (Zeil
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Fig. 5 Head-centered model with nest angle dependent saccades generating n = 9 arcs. Parameter values are |αthresh| = 25◦

(nest angle threshold), |∆γsac| = 20◦ (saccade amplitude), δ0,H = 80◦ (flight angle amplitude) and |γthresh,k| = k∆γ,
where ∆γ = 30◦, k = 1, 2, .., n. Initial distance from nest is r0 = 10 mm (dashed blue line). a) Time course of angles: Head
orientation/gaze γ (green), nest azimuth in head-centered reference system αH (red), flight angle in head coordinates δH (blue).
b) Top-down view of path (blue): Head orientation is indicated by small red arrows at the central position of each intersaccadic
interval. The final saccade at the end of each arc is illustrated by black and green arrows. The new gaze direction (green arrow)
is kept until the nest azimuth angle reaches threshold on the other side, making the first intersaccadic interval longer than the
following intervals.

1993a,b; Zeil et al. 1996; Zeil 1997; Zeil et al. 2007;

Stürzl et al. 2016), based on the angular velocity and

retinal position of the nest:

4) change horizontal speed so that (horizontal) retinal

velocity of nest is nearly constant (α̇H(t) ≈ α̇∗H) be-

tween saccades:

d

dt
vxy(t) = KP,v (α̇∗H − α̇H(t)) , (4)

5) change height z(t) in order to keep nest elevation

angle nearly constant (εH(t) ≈ ε∗H):

d

dt
z(t) = −KP,z (ε∗H − εH(t)) . (5)

Since horizontal speed as well as height increases with

growing distance to the nest during a learning flight (Zeil

et al. 1996), the coefficients (or gains) of the simple

proportional controllers, KP,v and KP,z should also in-

crease with time. In our model they are increased with

each new arc, but kept constant during an arc, i.e. they

are proportional to the arc number k = 1, 2, ...: KP,v =

kK0
P,v, KP,z = kK0

P,z. Alternatively, they could be

increased proportionally with time. Also feed-forward

terms, i.e. horizontal acceleration in (4) and vertical

speed in (5) could be added.

Note that the control rules do not contain any mea-

surements of position, distance to ground or flight speed.

The resulting path is scaled by the initial distance to

the nest (after leaving the nest and turning towards the

nest), described by parameter r0.

For the simulation results presented here, we use

K0
P,v = K0

P,z = 10−3 m
◦s . As set points we choose ε∗H =

−45◦, α̇∗H = 200◦/s. Initial values are r0 = 0.01 m, z0 =

r0 tan |ε∗H| = r0, vxy,0 = r0 α̇
∗
H ≈ 0.035m

s and γ0 = 0.

Parameters are set to |∆γsac| = 20◦, |αthresh| = 27.5◦

and δ0,H = 80◦. Compared to the previous section we

increased |αthresh| slightly so that the average nest cen-

tered flight angle is now 〈|δ|〉 ≈ |αthresh|+(|αthresh|−|∆γsac|)
2

+ δ0,H = 97.5◦, which would lead to somewhat larger

distances between arcs (see Fig. 3). However, this is ap-

proximately compensated for by additional loops due

to the “continuous change of flight angle at the end of

arcs” described below.

Continuous change of flight angle at the end of arcs. In

the learning flights of real wasps, flight direction does

not change instantly but continuously at the end of

an arc / beginning of a new arc. We use the heuris-

tic function δH(t̃) = δ0,H(1 − 2f(t̃)) with f(t̃) = 6t̃5 −
15t̃4 + 10t̃3 ∈ [0, 1], t̃ ∈ [0, 1], for describing the (contin-

uous) transition of the flight angle from δ0,H to −δ0,H
(and similarly from −δ0,H to δ0,H). We assume its du-

ration to be proportional to horizontal flight speed, i.e.

Ttrans = ctrans vxy, and therefore t̃ = (t − t0)/Ttrans,

t̃ ∈ [t0, t0 + Ttrans], where t0 is the start of the flight

direction change, while flight speed v (as well as head

orientation) is kept constant. For the examples shown

in the following we set ctrans = 0.5 s2

m .

During change of flight direction, the wasp will move

somewhat closer to the nest in the x-y plane, which will
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cause a slight drop in z since control rule (5) tries to

keep elevation constant.

Visual nest tracking

We also implemented visual tracking of the nest po-

sition (with continuously updated template), similar

to (Samet et al. 2014), that allows us to generate artifi-

cial learning flights in closed-loop in 3D models of real

wasp environments. The tracked nest position provides

the parameters, essential for the visual servoing, αH(t),

ε(t) and α̇H ≈ αH(t)−αH(t−∆t)
∆t , where ∆t is the time be-

tween two consecutive frames (the time discretization

in the simulation).

As shown in Fig. 6, a rectangular area is used as a

template. Initially, when tracking starts, the template

consists of a blurred dark circle resembling the entrance

of the nest. Subsequently, the template is updated reg-

ularly with the best matching image region, that is

the image region centered around pixel position x∗, y∗

which has the highest similarity to the current tem-

plate. Full-spherical images are rendered in equirectan-

gular projection with resolution of 2◦ per pixel from 3D

models that are reconstructions of natural wasp nesting

sites (Stürzl et al. 2015). We use the sum of absolute

pixel value differences (SAD) as image similarity met-

ric. The minimum of the SAD values over the search

region defines the estimate of the retinal nest position,

i.e.

(x∗t , y
∗
t ) = arg min

(x,y)∈Ut−1

SAD(x, y) , (6)

where Ut−1 = U(x∗t−1, y
∗
t−1) is the search region cen-

tered at the best matching position in the previous time

step. In our implementation, the template is updated

every 100 ms. In case a saccade has been initiated after

the previous tracking step, the search region is shifted

accordingly, i.e. by |∆γsac|/resolution = 20◦/ 2◦/px =

10 px to the left or to the right depending on the sac-

cade being clockwise or counter-clockwise.

Continuous update of the template allows to track

the nest region over the whole learning flight, but will

also cause drifts, because the deviation of the estimated

from the true nest position usually increases with time.

Fortunately, high accuracy is only needed close to the

nest because the homing method currently proposed

for ground nesting wasps is based on the assumption

that insects store views during their learning flights

that are tagged with the information ’nest left’ or ’nest

right’, which then provides navigational instructions

’move left’ or ’move right’ during the return to the

nest (Stürzl et al. 2016). The exact nest angle is there-

fore not important.

Fig. 6 Template tracking of the nest region in rendered
panoramic images. The best match within the search region
(blue rectangle) is used as the estimated retinal nest posi-
tion. The true nest position is highlighted by a green dot.
The red rectangle depicts the image region that matches the
current template best. Images are rendered at a rate of 60 Hz.
Every 100 msec (of simulation time), i.e. every 6th rendered
image, the best matching image region replaces the template
(“template update”).

Results for different nest sites, with images rendered

from 3D models, are shown in Fig. 7. The 3D-models

of environment 1, located at the Mount Majura Nature

Reserve, Canberra, Australia, with detailed reconstruc-

tion of a single nest location, and of environment 2, lo-

cated at the Australian National University, with two

nest locations were generated from scans and camera

images (see (Stürzl et al. 2016) for details). As can be

seen in Fig. 7, nest tracking may lead to deviations of

the estimated from the true retinal nest position, which

can result in variations in the learning flight paths.

Instead of this simple approach a more sophisticated

tracking method could be used that may improve this

situation. However, how nest tracking is realized in real

wasps is unclear and thus any improvements would, at

least currently, not be supported by biological evidence.

Also the visual resolution of real insects could be taken

into account. Preliminary tests of nest tracking using

”bee-eye views”, rendered according to the model de-

scribed in (Stürzl et al. 2010), showed comparable per-

formance (Samet et al. 2014).

3 Close-range visual homing based on views

memorized during a generated learning flight

In order to test whether the views recorded during learn-

ing flights generated by our model are sufficient for

the return to the nest we applied the model for vi-

sual homing described in (Stürzl et al. 2016). It basi-

cally assumes that wasps store views during their learn-

ing flights tagged with the information ’nest left’ or

’nest right’. During return they then move according

to nest direction of the stored view that is most simi-

lar to the current view. For the simulated return flights
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Fig. 7 Results for three different environments/nesting sites. In the left column, the following parameters are plotted over
simulation steps: head angle γ (green), head centered flight angle δH (blue), the estimated (from tracking) / true nest azimuth
αH (red / light blue) and elevation angle ε (black / gray), height z in mm (magenta) and (horizontal) flight speed vxy in
cm/s (orange). The middle column shows top views of the generated learning flights with head orientations depicted by red
arrows every 10th simulation step. The right column contains side views of learning flights from different viewing directions.
a)-c) Time course of angles and path in case of perfect tracking, i.e. estimated nest azimuth and elevation angle have true
values. d)-l) Results from template-based nest tracking using images rendered from 3D models of nesting sites. Differences of
the resulting paths are due to “tracking errors”, i.e. deviations of the true from the estimated nest direction (azimuth and
elevation) and are dependent on the environment (depth structure and texture). Parameter values: r0 = 10 mm, |∆γsac| = 20◦,
δ0,H = 80◦, |αthresh| = 27.5◦, |∆γthresh| = 30◦.
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Fig. 8 Simulated return flights (brown curves with arrows indicating head orientations, black ’×’ highlight start positions)
guided by views of the artificial learning flight in environment 1, see Fig. 7 d-f. Every third image rendered during the learning
flight was stored as a view for guiding the return (185 views in total). Left column: Starting at (150, -50, 90) mm. Right column:
Start position (-50, -100, 100) mm. Top row: top-down views onto x-y plane, middle row: side view on x-z plane, bottom row:
side view on y-z plane. Blue or red lines connecting return flight positions to positions of the learning flight indicate the
position of the learning flight view used for guiding the simulated wasp to the left or to the right depending on whether the
nest was on the left or the right side during learning. Dotted black circle illustrate the “nest range” inside which it is assumed
that nest the entrance can be detected and homing stops once the entrance has moved from one side to the other in the visual
field.
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shown in Fig. 8, the model was implemented as de-

scribed in the supplementary material of (Stürzl et al.

2016) with the difference that a return flight terminates

if the simulated wasp is inside the “nest range”, defined

by
√
x2 + y2 < 15 mm, and the retinal position of the

nest entrance has moved from one side of the visual field

to the other, i.e. nest azimuth angle has changed sign.

Inside the nest range we assume that the nest entrance

can be detected. As shown based on two examples in

Fig. 8, views with nest position tags, memorized during

a learning flight generated by our model, can guide the

simulated wasp towards the nest. Note that these tags

depend on the tracking results, i.e. whenever the nest

was estimated to be on the left side the corresponding

views will guide the simulated wasp to the left during

homing, even if the true retinal nest position was on

the other side. While such errors would make finding

the nest very difficult if nest tags are wrong for views

very close to the nest, they are much less problematic

for views further away, as they would lead to deviations

from the optimal path that can be corrected by views

closer to the nest.

4 Discussion

We presented a model for visually controlled learning

flights that produces paths similar to those of ground-

nesting wasps. We also showed that views stored while

moving along the generated path can be used for hom-

ing.

We do not claim that these are the exact control

rules used by learning insects. Our aim was to show that

a small set of biologically plausible rules can result in

paths similar to the learning flights observed in ground-

nesting wasps. Our results indicate that similar control

rules could be implemented on a small flying system

or MAV (micro aerial vehicle) with limited computing

power.

In the following we discuss a number of limitations

and possible extensions of the model.

Estimating flight direction angle. In our model we have

simply assumed that the head-centered flight direction

angle δH is known and can be kept constant with high

accuracy. In flying insects, optic flow (see e.g. Koen-

derink and van Doorn 1987) is likely to be the main

source of information for estimating and controlling δH.

Insect-inspired models for estimating flight direction

from optic flow exist (Franz et al. 2004; Strübbe et al.

2015) and could be integrated into the simulation.

Complementing tracking with visual odometry. The cen-

tral input to our visual servoing model is the retinal

nest position estimated by tracking. In addition, visual

odometry (Srinivasan et al. 2000), or path integration,

based on optic flow and other sensors, e.g. a celestial

compass, could be used to estimate the direction and

the distance of the nest.

Estimating total change of gaze angle. According to

the model, arcs get larger with duration of the learn-

ing flight because distance to nest increases with time

and angular range increases with number of arcs due

to rule (2), which is based on the total change of gaze

angle along an arc, ∆γtot. The value of ∆γtot could

be estimated in a number of ways: using some kind

of compass, the dissimilarity of the current view to

views on previous arcs (Stürzl et al. 2016), the dura-

tion of an arc (that should be longer than previous

one), or by counting saccades. As our model assumes

that all head rotations are due to saccades of fixed am-

plitude, the change in head orientation during one arc

is |∆γtot| = nsac|∆αsac|, where nsac is the number of

saccades that usually increases with every arc. Devia-

tions from this rule that sometimes can be observed in

real flights, i.e. non-increasing range of head orienta-

tions for one arc compared to the previous arc, could

then be explained by some kind of “counting error”.

Of course, other reasons are possible, e.g. certain ori-

entations might not be important as the nest will not

be approached from some directions due to the spe-

cific structure of the scene or prevailing wind direction.

In addition, the amplitudes of saccades in real learn-

ing flights varies slightly, with a median of 22◦ and in-

terquartile range of 11◦ (Stürzl et al. 2016).

Alternative control of saccades. In our model we as-
sume that nest azimuth position is constantly moni-

tored and head saccades of constant amplitude are ini-

tiated whenever a position error threshold is reached.

The saccade amplitude variation of real learning flights

could be easily incorporated by generating random am-

plitudes according to a defined distribution.

A slight modification of this scheme, motivated by

Zeil (1997), who found that a rotating drum (eliciting

optomotor responses) did not change frequency of sac-

cades1, is that nest position could be checked regularly

(interval ∆T ) and a saccade triggered with amplitude

proportional to the deviation of the estimated nest po-

sition αH from set point α∗H, i.e.

∆γsac(t = k∆T ) ∝ αH(t)− α∗H , (7)

1 Note that Zeil (1997) actually reports rapid changes in
body orientation (body saccades). Body saccades accom-
pany head saccades which has been observed not only in
wasps (Stürzl et al. 2016), but also in bumble bees (Riabinina
et al. 2014; Boeddeker et al. 2015) and honeybees (Boeddeker
et al. 2010).
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if |αH(t)− α∗H| exceeds some minimum value.

Alternative control of flight speed. Instead of the angu-

lar velocity of the retinal nest position α̇H, the ventral

optical flow OFv, as suggested in Zeil (1997) and Linan-

der et al. (2018), or a combination of both, could serve

as “process variable” for controlling horizontal speed

during learning flights as well. Assuming even ground,

a constant elevation angle εH ≈ ε∗H combined with con-

stant horizontal angular velocity α̇H ≈ α̇∗H of the reti-

nal nest position will result in constant ventral optical

flow amplitude OFv =
vxy

z ≈
r α̇∗

H

r tan |εH| =
α̇∗

H

tan |εH| . For

tan |εH| ≈ tan 45◦ = 1 we find OFv ≈ α̇∗H.

While the average time course of increasing flight

speed can be modeled quite well by control laws similar

to rule (4), high frequency deviations can be observed

in real flights, possibly because both acceleration and

deceleration are high at the onset and the end of an

intersaccadic interval, respectively.

Including flight dynamics. So far we did not consider

the specific movement dynamics of flying insects. In

particular one has to take into account that the ”flight

motor” of wasps is attached to the body while visual

feedback is obtained in the retinal or head-centered ref-

erence system. For instance, the rapid head saccades

will not lead to immediate changes in direction in the

flight path. Due to momentum, flight angle relative to

gaze will increase shortly after a saccade before ap-

proaching its set point.

Variability of learning flights. As in our model all pa-

rameters and initial values are kept constant, the only
variation in the generated paths is due to different track-

ing results for different environment models.

In contrast, real flights show quite some variability,

within and between species and individuals, which can

not be explained by tracking errors only. For instance,

flight direction is probably estimated from optical flow,

which depends not only on the 3D structure but also on

other visual properties of the scene, such as contrast, di-

rection of illumination and shadows, and therefore will

contribute to the variability of flights. In addition there

are differences in experience, flight style (e.g. hovering

abilities), aerodynamics (comparing, for instance, bum-

ble bees with wasps, e.g. Philippides et al. 2013 with

Collett 1995, Zeil 1993a), and in wind conditions.

Some deviations from the paths generated by our

control model might also be due to learning flights serv-

ing additional tasks/purposes or having constraints not

considered so far. For example, deviations from rules

(4) or (5) due to short phases of strong acceleration ob-

served in real flights, might actually be “on purpose”.

Assuming that wasps, similar to fruit flies (Kamikouchi

et al. 2009), can sense acceleration, this would enable

them in combination with optic flow to estimate flight

speed or height above ground (Srinivasan 1993).

During their learning flights homing insects acquire

information on the location of a goal relative to the

landmark panorama and the flights are crucial for the

insects being able to pinpoint the nest on subsequent

returns (Tinbergen 1932; Tinbergen and Kruyt 1938;

Zeil 1993a,b). This is despite the fact that learning

flight paths can be quite variable within and between

species (e.g. Collett and Lehrer 1993; Zeil 1993a; Philip-

pides et al. 2013). This was also corroborated by simula-

tions with our visual homing model where views along

the learning flights of different wasps resulted in suc-

cessful guidance back to the nest (Stürzl et al. 2016).

Duration of close-range learning flights and subsequent

learning for far-range homing. The oscillatory “arc to

the left, arc to the right” pattern of learning flights

usually stops after about 10 arcs or less and within

about 10 seconds. As each arc takes longer than the

previous one despite the increase of horizontal velocity,

the oscillatory flight pattern is not effective for larger

distances from the nest. As learning insects fly along

arcs of increasing radius, their pivoting velocity tends to

stay constant because their flight speed increases with

distance from the goal and height above ground (Zeil

1993a; Zeil et al. 1996). There must be a limit to how

fast the insects can fly and this maximum speed may

cause the initial sections of learning flights, where the

insects fly sideways around the goal to end. After this

close-range learning flight, a “spiraling” flight towards

the sky has been described in honeybees. During this

phase that Jander (1997) called “peripheral exploration

flight” insects fly, their body aligned with flight direc-

tion, in circles of increasing diameters upwards.

Most likely, learning flights with their characteristic

structure are mainly for pin-pointing a goal location,

i.e. for guiding the close-range homing as described in

section 3. The spiral-like flight paths that have been

described following the learning flights of honeybees

(Jander 1997) could provide cues from positions much

higher up in the air, where the catchment volume of

views is also much larger than closer to ground (Zeil

et al. 2003; Stürzl and Zeil 2007; Murray and Zeil 2017).

Therefore, the approach from further away could pos-

sibly be guided by increasing image similarity to one of

the views along the spiral. Once at or close to the spi-

ral, wasps could “dive” towards the ground and start

the close-range visual homing, see Fig. 9. This hypoth-

esis would have to be corroborated by further research,

of course, recording flights over larger areas than has
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Fig. 9 Sketch of a combined close- and far-range learning
and return model. Learning flight: close-range (red), far-range
(blue). Return flight: far-range (green), near range (black).
Arrows indicate flight direction which can be different from
head orientation.

been done so far with cameras – possibly using radar

tracking methods (ideally in 3D) or arrays of synchro-

nized cameras.
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5 Appendix

Derivation of Eq. (2)

Substituting x = (x, y)>, x = r cosφ, y = r sinφ in

Eq. (1) gives with ẋ = ṙ cosφ−r sinφ φ̇ and ẏ = ṙ sinφ+

r cosφ φ̇,(
ṙ cosφ− r sinφ φ̇

ṙ sinφ+ r cosφ φ̇

)
= −λ

(
r cos(φ+ δ)

r sin(φ+ δ)

)
,

⇐⇒ R(φ)

(
ṙ

r φ̇

)
= −λ rR(φ)

(
cos δ

sin δ

)
,

⇐⇒
(
ṙ

r φ̇

)
= λ r

(
− cos δ

− sin δ

)
,

where R(φ) =

(
cosφ − sinφ

sinφ cosφ

)
. Dividing first by sec-

ond row (assuming r, φ̇, λ, sin δ 6= 0) and then integrat-

ing both sides (assuming δ constant) results in

dr/r = cot δ dφ ,

⇐⇒
∫ r

r0

1

r
dr

(r>0)
= ln(r/r0) = cot δ

∫ φ

φ0

dφ

= cot δ (φ− φ0) .

Solving for r finally gives

r = r0 exp[cot δ (φ− φ0)] .
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