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Abstract
Model reduction is a central problem in mathematical biology. Reduced order models enable modeling of a biological system
at different levels of complexity and the quantitative analysis of its properties, like sensitivity to parameter variations and
resilience to exogenous perturbations. However, available model reduction methods often fail to capture a diverse range of
nonlinear behaviors observed in biology, such as multistability and limit cycle oscillations. The paper addresses this need
using differential analysis. This approach leads to a nonlinear enhancement of classical balanced truncation for biological
systems whose behavior is not restricted to the stability of a single equilibrium. Numerical results suggest that the proposed
framework may be relevant to the approximation of classical models of biological systems.

Keywords Model reduction · Balanced truncation · Dominance theory · Biological oscillators

1 Introduction

Model reduction is a central problem in mathematical biol-
ogy (Fall et al. 2005; Murray 2007; Alon 2007; Keener and
Sneyd 2008; Del Vecchio and Murray 2015). Besides their
role in numerical simulations, models enable the study of the
principles underlying the behavior of a biological system and
the quantitative analysis of its properties, like sensitivity to
parameter variations and resilience to exogenous perturba-
tions. Models of biological phenomena often originate from
complex networks of chemical reactions (Fall et al. 2005;
Murray 2007; Alon 2007; Keener and Sneyd 2008; Del Vec-
chio and Murray 2015), the temporal dynamics of which is
modeled by possibly large systems of differential equations.
The resulting nonlinear dynamical models pose significant
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challenges for simulation, analysis and design. Model reduc-
tion alleviates these issues by constructing reduced order
models whose behavior captures that of the original sys-
tem (Antoulas 2005). Motivated by the goal of designing
biological devices of increasing size and complexity (Del
Vecchio et al. 2018), model reduction of biological sys-
tems has recently attracted renewed interest in the rapidly
emerging field of systems and synthetic biology (Gómez-
Uribe et al. 2008; Anderson et al. 2011; Thomas et al. 2012;
Kang and Kurtz 2013; Rao et al. 2014; Sootla and Anderson
2014; Radulescu et al. 2015; Del Vecchio and Murray 2015;
Herath et al. 2016; Sootla andAnderson2017;Herath andDel
Vecchio 2018). Given the pressing need for compositional
modeling frameworks in mathematical biology (Del Vec-
chio et al. 2018), the present paper seeks to develop a model
reduction framework compatible with modeling and inter-
connection of open systems whose behavior is not restricted
to the stability of a single equilibrium.

Background Model reduction of biological systems has a
long history (Snowden et al. 2017), with early contributions
dating back as far as the 1920s (Briggs and Haldane 1925).
The classical approach to model reduction of biological sys-
tems relies on timescale separation arguments (Briggs and
Haldane 1925; Segel and Slemrod 1989; Gómez-Uribe et al.
2008; Thomas et al. 2012; Kang and Kurtz 2013; Prescott
and Papachristodoulou 2014; Del Vecchio andMurray 2015;
Herath et al. 2016; Herath and Del Vecchio 2018). In gen-
eral, many biochemical processes are described by reactions
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that evolve on different timescale, which enables the separa-
tion of their dynamics into “slow” and “fast.” This property
is exploited by methods based on timescale separation to
reduce the complexity of a system by approximating the fast
variables with their steady-state values. This approach pre-
serves the biological meaning of the state space variables
and favors modularity between processes with widely sepa-
rated timescales (Grunberg andDelVecchio 2019).However,
timescale separation methods are only applicable when the
underlying biochemical reaction network behaves like a
closed system and may otherwise yield reduced order mod-
els whose behavior is qualitatively different from that of
the original system (Stoleriu et al. 2004, 2005; Flach and
Schnell 2006; Pedersen et al. 2008). A popular alternative
to methods based on timescale separation is lumping (Wei
et al. 1969; Tomlin et al. 1994; Koschorreck et al. 2007; Sun-
nåker et al. 2011; Rao et al. 2014), which aggregates state
space variables into “macroscopic” variables to reduce the
dimensionality of a system. While in some cases this main-
tains biological interpretability and compatibility with open
systems modeling (Rao et al. 2014), lumping often requires
expert knowledge, which makes it unappealing for construc-
tive design and quantitative verification. Another common
approach tomodel reduction of biochemical systems is based
on sensitivity analysis and optimization (Danø et al. 2006;
Zhang and Goutsias 2010; Prescott and Papachristodoulou
2012; Hangos 2013), which build reduced order models by
minimizing an error function (such as the sensitivity of a vari-
able) within a given range of candidate models. Despite its
wide applicability, this approach can be highly demanding
from a computational viewpoint for large-scale models and,
in general, offers no a priori guarantees on the behavior of the
reduced order model. A notable exception is given by meth-
ods based on balanced truncation (Liebermeister et al. 2005;
Hardin and van Schuppen 2006; MeyerBase and Theis 2008;
Sootla and Anderson 2014) and on the use of related Linear
Matrix Inequalities (LMIs) (Anderson et al. 2011). In broad
terms, balanced truncation first computes a change of coordi-
nates in which the degrees of reachability and observability
of each state are the same; the states which are least control-
lable and observable are then truncated to obtain a reduced
order model. A nice feature of balanced truncation is that
it preserves stability and that it offers a priori error bounds
in the L2 norm. However, balanced truncation is primarily a
linear method and, hence, is not directly applicable to captur-
ing important nonlinear behaviors observed in biology, such
as multistability and limit cycle oscillations (Fall et al. 2005;
Murray 2007; Alon 2007; Keener and Sneyd 2008; Del Vec-
chio and Murray 2015). Motivated and inspired by this line
of research, the present paper extends the applicability of
balanced truncation to behaviors that are not restricted to the
stability of a single equilibrium.

The model reduction problem has been extensively stud-
ied also in the systems and control literature (Antoulas 2005).
The problem is well understood for finite-dimensional, lin-
ear, time-invariant systems, for which standard methods are
based onbalanced truncation (Moore 1981;Glover 1984), on
moment matching (Georgiou 1983; Kimura 1986; Antoulas
et al. 1990; Georgiou 1999), and on a combination of both
approaches (Gugercin and Antoulas 2006; Gugercin 2008;
Padoan). Oscillatory behaviors can be approximated, in prin-
ciple, using balanced truncation for linear periodic systems
(Varga 2000) and linear time-varying systems (Sandberg and
Rantzer 2004). However, both approaches lead to reduced
models whose state space dimension may vary over time and
which are thus not amenable to analysis and design. Several
methods exist to approximate the local behavior of non-
linear, time-invariant systems around equilibrium (Antoulas
2005), including proper orthogonal decomposition (Berkooz
et al. 1993), balanced truncation (for stable input-affine sys-
tems) (Scherpen1993), empirical balanced truncation (Hahn
and Edgar 2002), moment matching (Astolfi 2010; Padoan
and Astolfi 2019) discrete empirical interpolation (Chatu-
rantabut and Sorensen 2010), high-order moment matching
(Asif et al. 2020) and H2-optimal model reduction (Ben-
ner et al. 2018). However, these methods do not provide a
priori guarantees on the global behavior of reduced order
models away from equilibrium, which limits their applica-
bility to multistable and oscillatory systems. The problem
of approximating the global behavior of a nonlinear sys-
tem is indeed largely open. Besselink and co-authors have
recently proposed a model reduction framework which pre-
serves (incremental) stability properties for systems that can
be decomposed as the feedback interconnection of a large-
scale stable linear system and a contractive nonlinear system
(Besselink et al. 2009, 2013, 2014). In the recent papers
(Padoan et al. 2021, 2020), we have generalized these results
to multistable and oscillatory systems that can be decom-
posed as the feedback interconnection of a large-scale stable
linear system and a dominant nonlinear system. The present
paper extends our preliminary results to general dominant
systems motivated by the increasing need of approximation
tools for biological systems away from equilibrium.

Contributions This paper proposes a model reduction
framework for biological systems whose behavior is not
restricted to the stability of a single equilibrium. Motivated
and inspired by the series of works (Besselink et al. 2009,
2013, 2014) and our preliminary results (Padoan et al. 2020,
2021), the present paper revisits the model reduction prob-
lem for nonlinear systems in light of differential analysis
and dominance theory (Forni and Sepulchre 2019; Miranda-
Villatoro et al. 2018; Padoan et al. 2019a, b, 2020, 2021). A
nonlinear enhancement of classical balanced truncation for
linear stable systems is developed for p-dominant systems.
Following the paradigm of classical balanced truncation, the
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model reductionproblem is reduced to the simultaneous diag-
onalization of a pair of gramianmatrices, computed using the
linearization of a system and LMIs subject to a fixed iner-
tia constraint. The asymptotic behavior of a reduced order
model is then characterized by ensuring that the property of
p-dominance is preserved.

Although the biological meaning of state space variables
is not necessarily preserved, our approach offers a series of
benefits. First, it favors tractability leveraging on standard
convex optimization tools to build reduced order models.
Second, the quality of a reduced order model can be inter-
preted in quantitative terms using classical control-theoretic
notions and tools, such as eigenvalues, Nyquist diagrams and
Bode diagrams. Third, it provides a compositional model
reduction framework, where the global emergent behavior
of a complex biological system can be approximated using
reduced order models of its elementary components. As a
motivating example, we consider the problem of approximat-
ing the Goldbeter model for the expression of the per gene
inDrosophila (Goldbeter 1995)—a paradigmatic example of
biological oscillations (see Goldbeter 1996; Fall et al. 2005;
Murray 2007; Keener and Sneyd 2008). Numerical results
suggest that the proposed framework may be relevant to the
approximation of a wide range of biological systems.

Paper organization The remainder of this work is orga-
nized as follows. Section 2 first recalls preliminary results on
balanced truncation for stable linear systems and on domi-
nance theory. Classical balanced truncation is then revisited
in light of dominance theory to develop a model reduc-
tion method for the analysis of multistable and oscillatory
systems. Section 3 illustrates the applicability of the pro-
posed model reduction framework bymeans of a worked-out
numerical example. Section 4 discusses main benefits and
possible improvements of the proposed method. Section 5
concludes the paper with a summary of our main results
and an outlook to future research directions. The Appendix
contains more detail on the algorithms behind parameter
selection for dominance analysis and simultaneous diago-
nalization of matrices with a fixed inertia.

Notation R and C denote the set of real numbers and the
set of complex numbers, respectively. R+ denotes the set
of nonnegative real numbers. σ(A) denotes the spectrum of
the matrix A ∈ R

n×n . The inertia of the matrix P ∈ R
n×n is

defined as In(P) = (n−, n0, n+), where n− is the number
of eigenvalues of P in the open left half plane, n0 is the
number of eigenvalues of P on the imaginary axis and n+ is
the number of eigenvalues of P in the open right half plane,
respectively.

2 Methods

2.1 Balanced truncation for linear stable systems

Consider a linear, time-invariant, system described by the
equations

ẋ = Ax + Bu, y = Cx, (1)

in which x ∈ R
n , u ∈ R

m , y ∈ R
l , A ∈ R

n×n , B ∈ R
n×m ,

C ∈ R
l×n , respectively. Assume that system (1) is stable and

minimal, i.e, reachable and observable.

2.1.1 Balancing

Balancing for system (1) consists in finding a coordinates
transformation x̄ = T−1x , with T ∈ R

n×n and det(T ) �= 0,
such that the reachability gramian P ∈ R

n×n and the observ-
ability gramian Q ∈ R

n×n , defined implicitly by the Lya-
punov equations

AP + PAT + BBT = 0, (2)

ATQ + QA + CTC = 0, (3)

are both diagonal and, if possible, equal. Stability of sys-
tem (1) ensures existence and positive definiteness of the
gramians, while minimality ensures that these are full rank
(Antoulas 2005).

A change of coordinates x̄ = T−1x for system (1) acts on
the reachability gramian and the observability gramian as

P̄ = T−1PT−T, Q̄ = T TQT . (4)

Balancing thus amounts to finding a transformation T which
simultaneously diagonalizes the positive definite matrices P
and Q. This is a classical problem in linear algebra with a
well-known solution (Bernstein 2009, p. 422).

The matrix {T ∈ R
n×n} is said to be a (principal-axis)

balancing transformation if

P̄ = Q̄ = � = diag(σ1, . . . , σn), (5)

in which case the corresponding representation in coordi-
nates of system (1) is said to be (principal-axis) balanced
(Antoulas 2005). The diagonal elements of � are referred
to as the Hankel singular values of the system. The Hankel
singular values do not depend on the particular coordinate
system and their magnitude quantifies the influence of each
state on the overall input–output behavior of the system
(Antoulas 2005).
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2.1.2 Model reduction by balanced truncation

Balanced truncation for system (1) consists in eliminating,
by truncation, the state variables corresponding to the least
n− r Hankel singular values, where r ≤ n is the order of the
reduced order model. The resulting reduced order model

ξ̇ = Âξ + B̂û, ŷ = Ĉξ, (6)

with ξ ∈ R
r , û ∈ R

m , ŷ ∈ R
l , is guaranteed to be stable and

to satisfy the L2 error bound1

∥
∥y − ŷ

∥
∥
2 ≤

(

2
∑n

j=r+1 σ j

)

‖u‖2 (7)

for all u ∈ L2.
While classical balanced truncation only applies to linear,

time-invariant, systems, several nonlinear extensions exist
(see, e.g., Scherpen 1993; Hahn and Edgar 2002; Besselink
et al. 2009, 2013, 2014; Benner et al. 2018). All those ref-
erences however consider stable nonlinear systems with a
unique equilibrium attractor, except for (Benner et al. 2018),
which, however, does not provide a priori guarantees on the
global behavior of reduced order models away from equi-
librium. The goal of the present paper is to propose model
reduction methods for nonlinear systems with multiple sta-
ble equilibria or stable limit cycle attractors. The proposed
approach is based on recent results from dominance theory,
which we discuss in the next section.

2.2 Dominance theory

Consider a nonlinear, time-invariant system and its varia-
tional dynamics described by the equations

ẋ = f (x) + Bu, y = Cx, (8)

δ̇x = ∂ f (x)δx + Bδu, δy = Cδx, (9)

in which x ∈ R
n , u ∈ R

m , y ∈ R
l , f : Rn → R

n is a contin-
uously differentiable vector field, B ∈ R

n×m and C ∈ R
l×n

are constantmatrices, δx ∈ R
n , δu ∈ R

m , δy ∈ R
l (identified

with the respective tangent spaces), and ∂ f is the Jacobian
of the vector field f .

Definition 1 [p-dominance] (Forni andSepulchre 2019) The
system (8) is said to be p-dominant with rate λ : Rn → R+
if there exist ε ∈ R+ and a symmetric matrix P ∈ R

n×n ,
with inertia In(P) = (p, 0, n − p), such that the prolonged
system (8)-(9) satisfies

[

δ̇x
δx

]T [

0 P
P 2λ(x)P + ε I

] [

δ̇x
δx

]

≤ 0 (10)

1 L2 is the space of all measurable functions v : R+ → R
q with finite

L2 norm, defined as ‖v‖2 = (∫ ∞
0 |v(τ)|2dτ

)1/2
.

for all (x, δx) ∈ R
n × R

n and for δu = 0. The property is
strict2 if ε > 0.

The property of p-dominance yields the quadratic form

V (δx) = δxTPδx (11)

which allows one to rewrite the inequality (10) as

V̇ (δx) ≤ −2λ(x)V (δx) − ε|δx |2. (12)

The quadratic form V (δx) thus characterizes the contrac-
tion of the cones K+ = { δx ∈ R

n−p : V (δx) ≥ 0 } and
K− = { δx ∈ R

p : V (δx) ≤ 0 } acting as a Lyapunov func-
tion for the variational dynamics of the system in forward and
backward time, respectively. The solutions of the lineariza-
tion of a p-dominant system thus split into n − p transient
modes and p dominant modes, which determine the asymp-
totic behavior of the system. The attractors of a p-dominant
system are therefore severely constrained for small values of
p (Forni and Sepulchre 2019).

Theorem 1 (Attractors of dominant systems) Assumesystem
(8) is p-dominant with rate λ : Rn → R+. Then, for any
constant input u, every bounded solution of (8) converges
asymptotically to

• the unique equilibrium point if p = 0;
• a (possibly non-unique) equilibrium point if p = 1;
• a simple attractor if p = 2, i.e., an equilibrium point, a
set of equilibrium points and their connected arcs or a
limit cycle.

For further detail on dominance theory, the reader is referred
to the paper (Forni and Sepulchre 2019).

2.3 Differential balanced truncation for dominant
nonlinear systems

2.3.1 Differential balancing

Differential balancing for system (8) consists in finding a
change of coordinates x̄ = T−1x , with T ∈ R

n×n such that
det T �= 0, such that the reachability gramian P ∈ R

n×n and
the observability gramian Q ∈ R

n×n , defined implicitly by
the Lyapunov inequalities

∂ f (x)P + P∂ f (x)T + 2λ(x)P + BBT + ε I ≤ 0, (13)

∂ f (x)TQ + Q∂ f (x) + 2λ(x)Q + CTC + ε I ≤ 0, (14)

for x ∈ S ⊂ R
n , are both diagonal and, if possible, equal.

2 To streamline the exposition, we often tacitly abuse terminology and
omit “strict” throughout the paper.
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Differential balancing is conceptually similar to classi-
cal balancing for linear, time-invariant, stable systems, but a
few important points need to be highlighted. The Lyapunov
inequalities (13) and (14) generalize the classical Lyapunov
equations (2) and (3) and need to be solved uniformly in x in
a given subset S of the state space. There are many ways to
solve families of LMIs of the form (13) and (14). It is com-
mon practice to reduce families of LMIs like (13) and (14) to
a finite family of LMIs through convex relaxation, see, e.g.,
(Boyd et al. 1994) and references therein. Another approach
is to solve the inequalities (13) and (14) on a suitably dense
grid covering the set S, which then allows one to exploit the
continuity properties of the Jacobian matrix ∂ f (x) to ensure
that the inequalities are satisfied everywhere. This approach
is analogous to a classical computational procedure for find-
ing a controllability Gramian and an observability Gramian
for a parameter-dependent system (see, e.g.,Wood et al. 1996
and Son and Stykel 2017 for recent developments). An in-
depth discussion on the computational aspects behind the
solution families of LMIs of the form (13) and (14) is given
in (Forni and Sepulchre 2019), Section VI). However, for the
convenience of the reader, a heuristic procedure to select the
parameters p and λ(x) is given in Appendix A.

In contrast to classical balancing, (13) and (14) do not
necessarily admit a solution. Moreover, if solutions do exist,
the reachability and observability gramians are not necessar-
ily positive definite, but have a fixed inertia. The existence
of solutions for (13) and (14) ensures p-dominance of the
system (8), since both (13) and (14), together with BBT ≥ 0
and CTC ≥ 0, directly imply (10).

In analogy with classical balancing, a change of coordi-
nates x̄ = T−1x for system (8) naturally induces a change
of coordinates δ x̄ = T−1δx on its linearization (9). This, in
turn, acts on the reachability gramian and the observability
gramian as in (4).Differential balancing thus amounts to find-
ing a transformation T which simultaneously diagonalizes
the matrices P and Q. This problem admits a solution when-
ever the spectrum of P and Q satisfies certain assumptions
(see, e.g., Uhlig 1973; Kenney and Hewer 1987; Therapos
1989). The solution of this problem and the corresponding
algorithms are discussed in Appendix A.

Similar to classical balancing, thematrix T ∈ R
n×n is said

to be a (principal-axis) balancing transformation if (5) holds,
in which case the corresponding representation in coordi-
nates of system (8) is said to be (principal-axis) balanced.
The diagonal elements of � are said to be the characteristic
values of the system.

2.3.2 Model reduction by differential balanced truncation

Differential balanced truncation for a p-dominant system (8)
consists in eliminating, by truncation, the state variables cor-
responding to the least n−r characteristic values (in absolute

value), where r ≤ p is the order of the reduced order model.
To illustrate this method, assume that the Lyapunov inequal-
ities (13) and (14) are solved by P ∈ R

n×n and Q ∈ R
n×n ,

with In(P) = In(Q) = (p, 0, n − p). Further, assume that
system (8) is (principal-axis) balanced, so that the gramians
can be partitioned as

P = Q = � =
[

�1 0
0 �2

]

, (15)

with �1 = diag(σ1, . . . , σr ) and �2 = diag(σr+1, . . . , σn)

such that In(�1) = (p, 0, r − p) and In(�2) = (0, 0, n − r),
respectively. Then (15) directly induces the partitions x =
[ xT1 xT2 ]T, with x1 ∈ R

r and x2 ∈ R
n−r , and

f (x) =
[

f1(x1, x2)
f2(x1, x2)

]

, B =
[

B1

B2

]

, C = [

C1 C2
]

. (16)

The reduced order model obtained by differential balanced
truncation is defined by setting x2 = 0 and discarding the
dynamics of x2, yielding

ξ̇ = f1(ξ, 0) + B1û, ŷ = C1ξ, (17)

with ξ ∈ R
r , û ∈ R

m , ŷ ∈ R
l .

The reduced order model (17) is (principal-axis) balanced
and p-dominant with rate λ̂(ξ) = λ(ξ, 0). To see this, con-
sider the partition (16) and the Lyapunov inequalities (13)
and (14) with x = [ ξT 0T ]T, which gives

∂ f1(ξ, 0)�1+�1∂ f1(ξ, 0)T+2λ(ξ, 0)�1 + B1B
T
1 +ε I ≤0,

(18)

∂ f1(ξ, 0)T�1+�1∂ f1(ξ, 0)+2λ(ξ, 0)�1+CT
1C1+ε I ≤0,

(19)

and shows that (17) is (principal-axis) balanced. Moreover,
both (18) and (19) imply

∂ f1(ξ, 0)�1 + �1∂ f1(ξ, 0)T + 2λ(ξ, 0)�1 + ε I ≤ 0. (20)

By Definition 1, the reduced order model (17) is thus
p-dominant with rate λ̂(ξ) = λ(ξ, 0), since In(�1) =
(p, 0, r − p).

3 Results

We illustrate the proposed model reduction framework by
approximating the behavior of a classical biological model
of circadian oscillations: the Goldbeter model (Goldbeter
1995). Experiments have been conducted using standard rou-
tines of MATLAB (R2019b) on a 3.5 GHz Intel Core i7
processor.
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3.1 The Goldbeter model

The Goldbeter model is a classical model in cellular physiol-
ogy which describes circadian oscillations in the expression
of the gene per in Drosophila (Goldbeter 1995) (see also
Keener and Sneyd 2008, p. 440). The model is governed by
the equations

Ṁ = vs K n
I

K n
I +Pn

N
− vmM

km+M , (21a)

Ṗ0 = ksM − V1P0
K1+P0

+ V2P1
K2+P1

, (21b)

Ṗ1 = V1P0
K1+P0

− V2P1
K2+P1

− V3P1
K3+P1

+ V4P2
K4+P2

, (21c)

Ṗ2 = V3P1
K3+P1

− V4P2
K4+P2

− k1P2 + k2PN − vd P2
kd+P2

, (21d)

ṖN = k1P2 − k2PN , (21e)

in which M ∈ R+ is the concentration of per mRNA,
P1 ∈ R+, P2 ∈ R+ and P3 ∈ R+ are the concentrations of
unphosphorylated, monophosphorylated and biphosphory-
lated PER protein, and PN ∈ R+ is the concentration of
PER protein in the nucleus, respectively. With the original
parameters—reported inTable 1 for the reader’s convenience

—the Goldbeter model has bounded solutions, a unique
stable limit cycle and a unique unstable equilibrium point
(Murray 2007).

3.2 Dominance analysis

To illustrate our model reduction framework, we consider
system (21) with an added exogenous input u to (21a) and
with PN as the output variable y, namely

Table 1 Parameter values of the Goldbeter model (Goldbeter 1995)

vs = 0.76 (μMh−1) ks = 0.38 (h−1)

vm = 0.65 (μMh−1) k1 = 1.9 (h−1)

vd = 0.95 (μMh−1) k2 = 1.3 (h−1)

V1 = 3.2 (μMh−1) Kd = 0.2 (μM)

V2 = 1.58 (μMh−1) KI = 1 (μM)

V3 = 5 (μMh−1) Km = 0.5 (μM)

V4 = 2.5 (μMh−1) K1,2,3,4 = 2 (μM)

Ṁ = vs K n
I

K n
I +Pn

N
− vmM

km+M + u, (22a)

Ṗ0 = ksM − V1P0
K1+P0

+ V2P1
K2+P1

, (22b)

Ṗ1 = V1P0
K1+P0

− V2P1
K2+P1

− V3P1
K3+P1

+ V4P2
K4+P2

, (22c)

Ṗ2 = V3P1
K3+P1

− V4P2
K4+P2

− k1P2 + k2PN − vd P2
kd+P2

, (22d)

ṖN = k1P2 − k2PN , (22e)

y = PN , (22f)

which can be described as a systemof the form (8) by defining
x = [ M P0 P1 P2 PN ]T ∈ R

5 and

f (x)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vs K n
I

K n
I +xn5

− vmx1
km+x1

ksx1 − V1x2
K1+x2

+ V2x3
K2+x3

V1x2
K1+x2

− V2x3
K2+x3

− V3x3
K3+x3

+ V4x4
K4+x4

V3x3
K3+x3

− V4x4
K4+x4

− k1x4 + k2x5 − vd x4
kd+x4

k1x4 − k2x5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (23a)

B = [

1 0 0 0 0
]T

, (23b)

C = [

0 0 0 0 1
]

. (23c)

∂ f (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− vmkm
(km+x1)2

0 0 0 − nvs K n
I x

n−1
5

(Kn
I +xn5 )2

ks − Vi1K1
(K1+x2)2

V2K2
(K2+x3)2

0 0

0 V1K1
(K1+x2)2

− V2K2
(K2+x3)2

− V3K3
(K3+x3)2

V4K4
(K4+x4)2

0

0 0 V3K3
(K3+x3)2

−k1 − V4K4
(K4+x4)2

− vdkd
(kd+x4)2

k2
0 0 0 k1 −k2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (24)

System (22) has been simulated over the time interval [ti , t f ],
with ti = 0 [h ] and t f = 100 [h ], selecting a zero initial con-
dition and u = 0. The solution has been sampled over a fine
grid of points in a neighborhood of the limit cycle S, taking
N = 75 distinct samples x(tk) of the solution at steady state
at equally spaced time instants tk ∈ [t1, tN ], with t1 = 87 [h ]
and tN = 100 [h ].

The dominance properties of system (22) have been ana-
lyzed selecting the parameters p and λ(x) by means of the
heuristic procedure given in Appendix A, which, taking the
limit cycle S as the region of interest, yields p = 2 and
λ(x) = k1x4 − k2x5 − 0.4. Figure 1 shows the eigenvalues
of the Jacobian of system (22)—given in (24)—at distinct
samples {x(tk)}Nk=1 of the solution at steady state. Note that
∂ f (x)has 2 eigenvalueswith real part larger than−λ(x) (red)
and 3 eigenvalues with real part less than −λ(x) (black) for
λ(x) = k1x4 − k2x5 − 0.4, which suggests the existence of
a dominant splitting.
By evaluating the Jacobian of the system ∂ f (x) at dis-
tinct samples {x(tk)}Nk=1 of the solution at steady state,
the LMI (10) has been solved for ε = 0.001 and λ(x) =
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Fig. 1 Eigenvalues of the Jacobian of the system (22) at distinct sam-
ples {x(tk)}Nk=1 of the solution at steady state. Note that ∂ f (x) has 2
eigenvalues with real part larger than −λ(x) (red) and 3 eigenvalues
with real part less than −λ(x) (black) for λ(x) = k1x4 − k2x5 − 0.4

k1x4 − k2x5 − 0.4, yielding

P =

⎡

⎢
⎢
⎢
⎢
⎣

−1.028 −1.795 0.894 0.730 0.128
−1.795 2.269 −3.279 −1.944 0.535
0.894 −3.279 7.863 −4.262 −0.663
0.730 −1.944 −4.262 10.561 −4.572
0.128 0.535 −0.663 −4.572 1.992

⎤

⎥
⎥
⎥
⎥
⎦

, (25)

whose the inertia is In(P) = (2, 0, 3). The same analysis
has been repeated for different sampling times obtaining
similar results. In agreement with Theorem 1, this sug-
gests that the Goldbeter model (22) is 2-dominant with rate
λ(x) = k1x4 − k2x5 − 0.4 in a neighborhood of the limit
cycle S.

3.3 Differential balanced truncation

We now turn to the question of building a reduced order
model of system (22). First, the reachability and observabil-
ity gramians have been computed by sampling the Jacobian
of the system as above and solving for ε = 0.001 and
λ(x) = k1x4 − k2x5 − 0.4 the LMIs (13) and (14), which
yields the solutions

P=

⎡

⎢
⎢
⎢
⎢
⎣

−30.284 −42.356 −12.762 8.616 27.678
−42.356 10.001 −7.797 −22.240 −38.751
−12.762 −7.797 8.157 −9.426 −24.427

8.616 −22.240 −9.426 1.1810 −6.579
27.678 −38.751 −24.427 −6.579 10.946

⎤

⎥
⎥
⎥
⎥
⎦

(26)

and

Q=

⎡

⎢
⎢
⎢
⎢
⎣

−7.463 −18.749 −2.445 7.607 13.193
−18.749 10.261 −11.346 −15.919 −16.251
−2.445 −11.346 −2.357 −6.946 −9.414
7.607 −15.919 −6.946 −0.179 −3.875
13.193 −16.251 −9.414 −3.875 −0.263

⎤

⎥
⎥
⎥
⎥
⎦

, (27)

whose inertia is In(P) = In(Q) = (2, 0, 3).

The spectrum of the matrix PQ is real and positive:
σ(PQ) = { 2847.3, 1590.1, 984.4, 161.3, 21.6 }. The sys-
tem (22) thus admits a (principal-axis) balancing transfor-
mation by virtue of Theorem 2 (given in Appendix A).
A (principal-axis) balancing transformation T ∈ R

5×5 has
been computedusingAlgorithm1 (alsogiven inAppendixA),
which yields

T =

⎡

⎢
⎢
⎢
⎢
⎣

0.562 0.924 0.042 0.160 −0.406
0.948 0.090 −0.097 0.493 0.897
0.399 −0.128 0.459 −0.899 0.267
0.280 −0.347 −0.968 −0.179 −0.249
0.351 −0.682 0.536 0.690 −0.658

⎤

⎥
⎥
⎥
⎥
⎦

. (28)

The change of coordinates x̄ = T−1x simultaneously diag-
onalizes the gramians according to (4), yielding

P̄= Q̄=

⎡

⎢
⎢
⎢
⎢
⎣

−39.877 0 0 0 0
0 −31.376 0 0 0
0 0 4.651 0 0
0 0 0 12.699 0
0 0 0 0 53.360

⎤

⎥
⎥
⎥
⎥
⎦

. (29)

For ε = 0.001 and λ(x) = k1x4 − k2x5 − 0.4, the charac-
teristic values of the system are thus σ1 = −39.877, σ2 =
−31.376, σ3 = 4.651, σ4 = 12.699, σ5 = 53.360. Note
that σ3 and σ4 are much smaller in absolute value relative to
σ1, σ2 and σ5, which suggests that the corresponding state
variables x̄3 and x̄4 have a negligible effect on the overall
(differential) input–output behavior and, hence, may be elim-
inated. This intuition is confirmed by Fig. 2, which shows the
time history of the solutions of system (22), with u = 0, in
the new coordinates x̄ (top) as well as those of the reduced
order models of order r = 4 (middle) and r = 3 (bottom)
obtained using differential balanced truncation, respectively.
Note that differential balanced truncation indeed eliminates
the state variables which, in the new coordinates, have the
least variation relative to the other state variables.
Figure 3 (top) shows the time history of the output of sys-
tem (22), with u = 0, in the new coordinates (solid) and
of the reduced order models of order r = 3 (dotted) and
r = 4 (dashed) obtained using differential balanced trunca-
tion, as well as those of the corresponding errors in absolute
value (bottom), respectively. Note that while the output of the
reduced order model of order r = 3 is out of phase with the
oscillation of the original system, the output of the reduced
order model of order r = 4 tracks well the output of the orig-
inal system.
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Fig. 2 Top: Time history of the solutions of system (22), with u = 0,
in the new coordinates (top) and those of the reduced order models of
order r = 4 (middle) and r = 3 (bottom) obtained using differential
balanced truncation, respectively
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Fig. 3 Top: Time history of the output of system (22), with u = 0,
(solid) and those of the reduced order models of order r = 4 (dot-
ted) and r = 3 (dashed) obtained using differential balanced truncation,
respectively. Bottom: Time history of the corresponding output errors
in absolute value (logarithmic scale)
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Fig. 4 Fig. 4 shows the eigenvalues of the Jacobian of the system (22),
with u = 0, at distinct samples x(tk) of the solution at steady state (top)
and those of the corresponding reduced order models of order r = 4
(middle) and r = 3 (bottom) obtained by differential balanced trun-
cation. The figure suggests that each reduced order model preserves
2-dominance with rate λ(x). It is interesting to note that differential
balanced truncation eliminates the modes associated with the most neg-
ative eigenvalues of the linearized dynamics. This is consistent with the
intuition that a “good” reduced order model should capture the domi-
nant dynamics and, hence, eliminate the fastest transient modes of the
(differential) input–output behavior of the system. Eigenvalues of the
Jacobian of the system (22), with u = 0, at distinct samples x(tk) of the
solution at steady state (top) and those of the corresponding reduced
order models of order r = 4 (middle) and r = 3 (bottom) obtained by
differential balanced truncation, respectively

4 Discussion

The proposed model reduction framework offers a series of
benefits. First, the constructionof reducedordermodels relies
on standard convex optimization and linear algebra tools,
namely the solution of LMIs and the simultaneous diagonal-
ization of a pair of matrices. This renders model reduction
easy to implement and favors tractability. Second, the quality
of a reduced order model can be interpreted in quantitative
terms using classical control-theoretic notions and tools, such
as eigenvalues, Nyquist diagrams and Bode diagrams. Third,
our approach is compositional and compatible with open sys-
tems modeling. Combining our model reduction framework
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with the small-gain theorem for p-dominance (Forni and
Sepulchre 2019), the global emergent behavior of a com-
plex biological system can be approximated using reduced
order models of its elementary components.

On the other hand, the proposed model reduction frame-
work can be improved in several ways. A first limitation of
our approach is that it relies on a changeof coordinateswhich,
in general, does not preserve the biological meaning of state
space variables. This is a well-known drawback of model
reduction methods based on balanced truncation (Snowden
et al. 2017), which can be circumvented by imposing a given
sparsity patternwhile computing the reachability and observ-
ability gramians as discussed, e.g., in Sootla and Anderson
(2017). A similar approach can be taken within our frame-
work to maintain the biological interpretation of state space
variables by requiring that the Lyapunov inequalities (13)
and (14) have a given sparsity pattern.

A second limitation is that the LMIs (13) and (14) are only
verified in a neighborhood of the limit cycle, resulting in a
local result.While our analysis is not infinitesimal and can be
in principle adapted to any desired region of the state space,
it would be of interest to compare the proposed results to the
model reduction of a periodic linear system obtained by lin-
earizing the nonlinear dynamics along the limit cycle. Model
reduction for periodic linear systemshas been addressed, e.g.,
in Varga (2000); Sandberg and Rantzer (2004).

A third limitation of our approach is that it only applies
to systems of moderate size. Indeed, the dimension of a sys-
tem directly influences the number of variables and LMIs
required to solve (13) and (14), which is limited to a few
thousands in currently available solvers. Nonetheless, the
compositional nature of our framework enables one to parti-
tion a large-scale system into smaller subsystems, compute
reduced order models for each individual subsystem and
finally obtain by interconnection an overall reduced order
model, the behavior of which can be characterized a pos-
teriori using the small gain for p-dominance (Forni and
Sepulchre 2019).

A further limitation concerns the computational cost of the
simulation of the reduced order model (17). Given a balanc-
ing transformation T ∈ R

n×n , the simulation of the reduced
order model (17) requires the evaluation of f1(ξ, 0) =
S̄1 f (S1ξ), where S1 are the first r columns of T and S̄1 are
the first r rows of T−1, respectively. This means that, in gen-
eral, the computational cost of evaluating f1(ξ, 0) depends
on the order n of the original system. As a result, the reduced
order model may offer a limited performance speed-up com-
pared to the original model. This computational issue has
been previously addressed in the literature (see, e.g., Chat-
urantabut and Sorensen 2010). Nonlinear functions can be
projected onto a subspace that approximates the space gen-
erated by the nonlinear terms and that is spanned by a basis
of lower dimension (see Chaturantabut and Sorensen 2010,

Section 2.2 for further detail). The same strategy can be used
to reduce the computational cost of the simulation of the
reduced order model (17), since our framework also relies
on constant projections.

Finally, our framework does not provide an a priori error
bound. Similar to the case of linear time-invariant stable sys-
tems, it is reasonable to expect that the approximation error
is bounded by a function of the neglected characteristic val-
ues. A thorough analysis of this issue is beyond the scope of
this preliminary study and is the subject of ongoing research.
Nonetheless, we observe that in the context of our example
the differential input–output behavior of the original system
is well approximated. This can be appreciated by consider-
ing the Nyquist diagrams of the family of transfer functions
defined by the linearization of the original system

G(s, x(tk)) = C(s − ∂ f (x(tk)))
−1B, (30)

as well as those of the family of transfer functions defined
by the linearization of each reduced order model

Ĝ(s, ξ(tk)) = Ĉ(s − ∂ f1(ξ(tk), 0))
−1 B̂, (31)

which are formed by tracing s ∈ C around the Nyquist “D
contour” consisting of the imaginary axis combined with an
arc at infinity connecting the endpoints of the imaginary axis
(see Åström and Murray 2020 for further detail). Nyquist
diagrams are widely employed in control theory (Åström
and Murray 2020) and provide considerable insight into
the input–output behavior of a dominant system (Miranda-
Villatoro et al. 2018; Padoan et al. 2019a, b). Figure 5 shows
the Nyquist diagrams of the family of transfer functions (30)
and (31) defined by the original system (top) and by the
reduced ordermodels of order r = 4 (middle) and r = 3 (bot-
tom), respectively. Not only the Nyquist diagrams of each
member of the family of transfer functions (30) and (31)
have a similar shape, but the distance between one another
is negligible. The quality of the approximation is reflected in
Fig. 6, which shows the Bode diagrams the magnitude of the
family of error transfer functions defined as

E(s, ξ(tk)) = G(s, x(tk)) − Ĝ(s, ξ(tk)). (32)

Note that the approximation the error is bounded as

|E(s, ξ(tk))| < 0.15, (33)

for the reduced order model of order r = 4 and as

|E(s, ξ(tk))| < 0.2, (34)

for the reduced order model of order r = 3, which indicates
that the differential input–output behavior of the original
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Fig. 5 Nyquist diagram of the family of transfer functions (30) and (31)
associated with the linearizations of the original system (top) and the
reduced order models of order r = 4 (middle) and r = 3 (bottom)

system is well approximated by that of both reduced order
models.

5 Conclusion

The paper has outlined a model reduction framework for
biological systems whose behavior is not restricted to the
stability of a single equilibrium. Classical balanced trunca-
tion for linear stable systems has been extended to dominant
nonlinear systems using differential analysis. The asymptotic
behavior of reduced order models has been characterized by
ensuring that the property of p-dominance is preserved. This
approach is tractable and offers quantitative tools to predict
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Fig. 6 Bode diagram of the family of error transfer functions (32) asso-
ciated with the reduced order models of order r = 4 (top) and r = 3
(bottom)

the behavior of a reduced order model a priori. Preliminary
numerical results suggest that the proposed model reduction
framework may be relevant to the approximation of a wide
range of biological systems.
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A Algorithms

This section provides a heuristic procedure for the selection
of the parameters p and λ(x) in dominance analysis as well
as necessary and sufficient conditions for the existence of a
(principal-axis) balancing transformation and an algorithm
to find such a transformation.
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A.1 Selecting p and �(x) for dominance analysis

A necessary condition for p-dominance of the system (8) is
that the spectrum of the family of matrices ∂ f (x) + λ(x)I
admits a uniform splitting into p eigenvalues with positive
real part and n− p eigenvalues with negative real part (Forni
and Sepulchre 2019, Section VI). The analysis of the spec-
trum of the Jacobian matrix ∂ f (x) can therefore inform the
selection of the parameters p and λ(x). In particular, the fol-
lowing heuristic procedure can been used to estimate p and
λ(x) based on the evaluation of the Jacobian matrix ∂ f (x)
over a sufficiently fine grid of points {xk}Nk=1, with xk ∈ S
and a subset S ⊂ R

n of interest.

1. For each k = 1, . . . , N , compute the eigenvalues λk,1,

. . . , λk,n of the matrix ∂ f (xk).
2. Select an integer p such that

Rλk,1 ≥ · · · ≥ Rλk,p > Rλk,p+1 ≥ · · · ≥ Rλk,n .

3. For each k = 1, . . . , N , define

λ̄k = −min
(
Rλk,p+λk,p+1

2 , 0
)

.

4. Estimate λ(x) by fitting {λ̄k}Nk=1 to the samples {xk}Nk=1.

The heuristic procedure outlined above comprises four basic
steps. The first step consists in computing the spectrum of
the Jacobian matrix ∂ f (xk) at each point xk . The second step
consists in estimating the parameter p based on the existence
of a splitting into p “dominant” eigenvalues λk,1, . . . , λk,p
and n− p “transient” eigenvalues λk,p+1, . . . , λk,n . Note that
if such splitting does not exist, the system is not p-dominant
for any p by the necessary condition mentioned above. The
third step defines λ̄k as the negative part of the midpoint
betweenRλk,p (the real part of the smallest dominant eigen-
value) and R λk,p+1 (the real part of the largest transient
eigenvalue). Finally, an estimate of the function λ(x) is com-
puted by fitting {λ̄k}Nk=1 to the samples {xk}Nk=1.

A.2 Balancing gramians with inertia

Recall that the goal of differential balancing for system (8)
boils down to finding a transformation T ∈ R

n×n which
simultaneously diagonalizes the reachability gramian P ∈
R
n×n and the observability gramian Q ∈ R

n×n , defined
implicitly by the Lyapunov inequalities (13) and (14). The
following result provides necessary and sufficient conditions
for the existence of a (principal-axis) balancing transforma-
tion T . The proofs are omitted as the claim follows directly
from (Uhlig 1973),Corollary 1.4 see also (Kenney andHewer
(1987), Theorems 1 and 2) and (Therapos 1989).

Theorem 2 Suppose (13) and (14) admit solutions P ∈ R
n×n

and Q ∈ R
n×n, with In(P) = In(Q) = (p, 0, n − p). Then

there exists a (principal-axis) balancing transformation if
and only if the product PQ is similar to a (positive) real
diagonal matrix.

Remark 1 Weemphasize that not all p-dominant systems can
be (principal-axis) balanced for a given rate λ, as illustrated
by the following example from (Kenney and Hewer 1987).
Consider system (1), with

A =
[−1 1

0 2

]

, B =
[

1 0
0 1

]

, C =
[

1 0
0 1

]

. (35)

The reachability gramian and the observability gramian of
the system with rate λ ≡ 0 are

P =
[

3/4 1/4
1/4 −1/4

]

, Q =
[

1/2 −1/2
−1/2 0

]

. (36)

The system is thus 1-dominant with rate λ ≡ 0, since
In(P) = In(Q) = (1, 0, 1). However, the gramians P and
Q cannot be balanced, since σ(PQ) = {1/16 ± i

√
15/16}

and, hence, the condition given in Theorem 2 is violated.
Nonetheless, the reachability gramian and the observability
gramian of the system with rate λ ≡ 1.8 are

P =
[−0.0720 −0.6944

−0.6944 −1.6667

]

, Q =
[

0.1852 0.0772
0.0772 −1.9239

]

,(37)

which shows that the system is 1-dominant with rate λ ≡
1.8, since In(P) = In(Q) = (1, 0, 1). In agreement with
Theorem 2, the gramians P and Q can be (principal-axis)
balanced, since σ(PQ) = {0.0431, 3.0428}. �

We now provide a procedure to compute a (principal-
axis) balancing transformation T ∈ R

n×n , described in
pseudo-code in Algorithm 1. The procedure comprises four
basic steps. The first step (line 1) computes the eigenvalue
decomposition S−1PQS = �2 of the product PQ. The
second step (line 2) defines the matrices X = STQS and
Y = S−1PS−T, which can be simultaneously diagonalized
since XY = Y X . The third step (line 3) computes a (unitary)
coordinate transformation U which simultaneously diago-
nalizes X and Y , yielding X = U
oU T and Y = U
rU T.
Finally, a (principal-axis) balancing transformation is com-
puted as T = SU (
r


−1
o )1/4 (line 4).

The following result can be proved by direct computation.

Theorem 3 Suppose (13) and (14) admit solutions P ∈ R
n×n

and Q ∈ R
n×n, with In(P) = In(Q) = (p, 0, n − p), such

that the product PQ is similar to a (positive) real diagonal
matrix. Then the output of Algorithm 1 is a (principal-axis)
balancing transformation.
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Algorithm 1
Input: The gramians P ∈ R

n×n and Q ∈ R
n×n .

Output:A(principal-axis) balancing transformationT ∈ R
n×n .

Assume:The solutions P ∈ R
n×n and Q ∈ R

n×n of (13) and (14) are
full rank and such that the product PQ is similar to a (positive) real
diagonal matrix.
1: Compute a coordinates transformation {S ∈ R

n×n} such that
S−1PQS = �2, with � ∈ R

n×n a (positive) real diagonal matrix.
2: Define X = STQS and Y = S−1PS−T .
3: Compute a (unitary) coordinates transformation U ∈ R

n×n such
that X = U
oU T and Y = U
rU T .

4: return T = SU (
r

−1
o )1/4.
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