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Abstract

Deep neural networks have surpassed human performance in key visual
challenges such as object recognition, but require a large amount of
energy, computation, and memory. In contrast, spiking neural networks
(SNNs) have the potential to improve both the efficiency and bio-
logical plausibility of object recognition systems. Here we present a
SNN model that uses spike-latency coding and winner-take-all inhibition
(WTA-I) to efficiently represent visual stimuli using multi-scale paral-
lel processing. Mimicking neuronal response properties in early visual
cortex, images were preprocessed with three different spatial frequency
(SF) channels, before they were fed to a layer of spiking neurons whose
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2 Efficient multi-scale visual object representation

synaptic weights were updated using spike-timing-dependent-plasticity
(STDP). We investigate how the quality of the represented objects
changes under different SF bands and WTA-I schemes. We demonstrate
that a network of 200 spiking neurons tuned to three SFs can efficiently
represent objects with as little as 15 spikes per neuron. Studying how
core object recognition may be implemented using biologically plausi-
ble learning rules in SNNs may not only further our understanding of
the brain, but also lead to novel and efficient artificial vision systems.

Keywords: spiking neural networks, spike-timing-dependent-plasticity,
multi-scale processing, spike-latency code, winner-take-all inhibition

1 Introduction

Deep convolutional neural network (DCNNs) have been extremely successful
in a wide range of computer vision applications, rivaling or exceeding human
benchmark performance in key visual challenges such as object and face recog-
nition (He et al, 2015; Sun et al, 2015) or scene categorization (Stivaktakis et al,
2019). However, state-of-the-art DCNNs require too much energy, computa-
tion, and memory to be deployed on most computing devices and embedded
systems (Goel et al, 2020). In contrast, the brain is masterful at representing
real-world objects with a cascade of reflexive, largely feedforward computa-
tions (DiCarlo et al, 2012) that rapidly unfold over time (Ales et al, 2013;
Cichy et al, 2016) and rely on an extremely sparse, efficient neural code (for a
recent review see Beyeler et al (2019)). For example, in macaques, faces are pro-
cessed in localized patches along the Superior Temporal Sulcus (STS), where
cells detect distinct constellations of face parts (e.g., eyes, noses, mouths), and
whole faces can be recognized from a linear combination of neural responses
within these face patches (Chang and Tsao, 2017; Majaj et al, 2015).

In recent years, spiking neural networks (SNNs) have emerged as a promis-
ing approach to improving the efficiency and biological plausibility of neural
networks such as DCNNs, due to their potential for low power consumption,
fast inference, event-driven processing, and asynchronous operation (Gerst-
ner and Kistler, 2002). To facilitate learning in such networks, new learning
algorithms based on varying degrees of biological plausibility have also been
developed recently. For instance, spike-timing-dependent plasticity (STDP) is
an unsupervised learning rule that is observed in biological systems (Bi and
Poo, 1998; Caporale et al, 2008) and that can be used to extract the most
notable spike patterns (Feldman, 2012; Brzosko et al, 2019) by adjusting the
efficacy of synaptic connections based on the relative timing of presynaptic
and postsynaptic spikes. Studying how object recognition may be implemented
using biologically plausible learning rules in SNNs may not only further our
understanding of the brain, but also lead to the development of energy efficient
systems, implementable on neuromorphic hardware.
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Here we present a SNN model that uses spike-latency coding (Chauhan
et al, 2018, 2021) and winner-take-all inhibition (WTA-I) (Maass, 2000) to
efficiently represent visual stimuli using multi-scale parallel processing. Part of
this work (Sanchez-Garcia and Beyeler, 2022) was previously presented at the
CVPR’22 NeuroVision workshop1. Given an input image, stimuli were prepro-
cessed with parallel spatial frequency (SF) channels mimicking the sensitivity
of neurons in early visual cortex (De Valois et al, 1982a). The resulting com-
bination of the SF channels was then fed to a layer of spiking neurons whose
synaptic weights were updated using STDP (Gütig et al, 2003). We show
that STDP can learn efficient object representations from the MNIST (LeCun,
1998), FASHION-MNIST (Xiao et al, 2017), CIFAR10 (Krizhevsky and Hin-
ton, 2009), and ORL (Samaria and Harter, 1994) datasets. In addition, we
investigate how the quality of the represented objects changes under different
SF bands and WTA-I schemes. Remarkably, our network is able to represent
objects with as little as 200 neurons and 15 spikes per neuron.

The rest of the paper is organized as follows: Section 2 briefly introduces
some of the most recent related works. Section 3 explains the main frame-
work and the model equations. Next, we report the results of a computational
study in which we explored the quality of the represented objects and the
sparsity trade-off for the different networks schemes (see Section 4). Finally, a
brief Discussion summarizes the main results and gives some perspectives in
Section 5.

2 Related Work

Significant efforts have been expended in recent years to demonstrate the effi-
cacy of SNNs with STDP in object recognition applications. Previous studies
have used STDP to extract visual features of low or intermediate complexity
from images and without supervision. Yu et al (2013) proposed a novel SNN
with a supervised learning rule and temporal coding scheme to generate tem-
poral spike patterns, which could be used to classify a subset of handwritten
digits found in the MNIST database. Liu and Yue (2016) combined Gabor filter
banks with rank-order coding and STDP to push the MNIST classification rate
to 82%. Beyeler et al (2013) achieved 92% on MNIST using a Calcium-based
STDP learning rule. Masquelier and Thorpe (2007) used the STDP rule in an
asynchronous feedforward SNN that mimics the ventral visual pathway and
showed the emergence of selectivity to intermediate-complexity visual features
when the network was presented with natural images.

More recent articles designed a deep SNN, comprising several convolutional
and pooling layers trainable with either standard STDP (Kheradpisheh et al,
2018) or reward-based STDP (Mozafari et al, 2019). Studying how object
recognition may be implemented using biologically plausible learning rules in
SNNs may not only further our understanding of the brain, but also lead to
new efficient artificial vision systems.

1https://sites.google.com/uci.edu/neurovision2022

https://sites.google.com/uci.edu/neurovision2022
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Fig. 1: Multi-scale network, illustrated using images from the ORL dataset
(Samaria and Harter, 1994). Images were convolved with ON and OFF center/-
surround kernels to simulate LGN responses. To simulate the multiple channels
in the visual system, we used a pre-processing scheme where LGN maps are
generated based on a particular SF range: Low-scale, Medium-scale and High-
scale (further illustrated in Fig. 2). The three LGN responses were added,
converted to spike latencies, and fed to a spiking neural network (SNN) with
plastic synapses implementing spike-timing-dependent-plasticity (STDP) and
winner-take-all inhibition (WTA-I). The propagated LGN spikes contributed
to an increase in the membrane potential of V1 neurons until one of the V1
membrane potentials reached threshold, resulting in a postsynaptic spike and
inhibition of all other V1 neurons until the next iteration. The synaptic weights
were updated using an unsupervised STDP rule. Objects were reconstructed
by taking a linear combination of spiking activity across the V1 population.

Theories on visual perception claim the existence of multiple channels,
or multiple receptive field (RF) sizes, in the early visual processing and the
importance of the spatial frequency (SF) contents of images during object
recognition (Kauffmann et al, 2014; Ginsburg, 1986; Field, 1987; Tolhurst et al,
1992; Hughes et al, 1996). Because RFs of neuronal populations in the visual
pathway vary in size, the responses of different subsets of neurons would consti-
tute a neural representation at some particular scale, allowing us to represent
visual scenes as a combination of SF channels (Campbell, 1973).

Selectivity for SF is one of the fundamental and most thoroughly stud-
ied properties of visual neurons (Henriksson et al, 2008; Shapley et al, 1985;
De Valois et al, 1982b). The primary visual system processes low-level and
high-level stimulus properties using inputs from the retina via the lateral genic-
ulate nucleus (LGN). In the earliest stages of the visual pathway, the processing
of different stimulus attributes occurs in a parallel fashion. This means that
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Fig. 2: LGN preprocessing. To simulate the computations performed by the
retinal ganglion cells and the LGN, the images were convolved with ON and
OFF center-surround kernels (Chauhan et al, 2018). Specifically, we chose
three sizes based on an earlier study (Chauhan et al, 2018): 0.375◦/0.75◦ for
low SF, 0.25◦/0.5◦ for medium SF and 0.125◦/0.25◦ for high SF (Solomon
et al, 2002). The resulting images processed with these filters correspond to
Low-scale, Medium-scale and High-scale LGN maps, respectively.

images are filtered by parallel, SF-selective channels (Enroth-Cugell and Rob-
son, 1966), which may converge in V1 (Nassi and Callaway, 2009). The visual
information from the LGN passes through V1 and multiple strategies might
be used to transfer parallel input into multiple output streams.

3 Methods

3.1 Network architecture

The network architecture of our model is shown in Fig. 1. Inspired by Chauhan
et al (2018), our network consisted of an input layer corresponding to a simpli-
fied model of the LGN, followed by a layer of spiking neurons whose synaptic
weights were updated using STDP. The LGN layer consisted of simulated
firing-rate neurons with center-surround RFs, implemented using DoG filters
which simulate the computations performed by the retinal ganglion cells and
the LGN (Enroth-Cugell and Robson (1966); Derrington and Lennie (1982);
further illustrated in Fig. 2). Based on Chauhan et al (2018), the RF sizes were
chosen to reflect the size of representative LGN center-surround magnocellu-
lar RFs. It is well known that the SFs of LGN cells differ by about a factor
of 3; meaning that some cells are most sensitive to patterns that contain rela-
tively high SFs, whereas other cells are most sensitive to patterns of low SFs
(Derrington et al, 1979). Specifically, we chose three sizes of center-surround
RFs within the range of SFs for a magnocellular cell: 0.375◦/0.75◦ for low SF,
0.25◦/0.5◦ for medium SF and 0.125◦/0.25◦ for high SF (Solomon et al, 2002).
These values correspond to the widths of the gaussian used for the DoG filter.
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Fig. 3: Example RFs of three representative neurons (columns in each panel)
of the simulated population for low-scale, medium-scale, high-scale and multi-
scale networks (rows). With STDP, neurons progressively learned features
corresponding to prototypical patterns that were both salient and frequent.

The resulting LGN images processed with these filters corresponded to low-
scale, medium-scale and high-scale images (see left-hand side of Fig. 2). The
three LGN responses were added and converted to spike latencies (Chauhan
et al, 2018). The LGN layer was fully connected to a layer of integrate-and-
fire neurons, each unit characterized by a threshold and a membrane potential
(Chauhan et al, 2018). The LGN spikes contributed to an increase in the mem-
brane potential of V1 neurons, until one of the V1 membrane potentials reached
threshold, resulting in a postsynaptic spike. The proposed method is compared
with an alternative network architecture, which can be found in Appendix A.

3.2 Neuron model

The membrane potential En(t) of the n-th V1 neuron at time t within the
iteration was represented as:

En(t) =


∑

m∈LGN
wmn ·H(t− tm), t < min

t

{
t | max

n∈V 1
En(t) ≥ θ

}
0, otherwise.

(1)
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where tm was the spike time of the m-th LGN neuron, H was the Heaviside or
unit step function, and θ was the threshold of the V1 neurons (assumed to be a
constant shared by the entire population). The expression min{t | maxEn(t) ≥
θ} denoted the timing of the first spike in the V1 layer. Membrane potentials
were calculated up to this point in time, after which a WTA-I scheme (Maass,
2000) was triggered and all membrane potentials were reset to zero. In this
scheme, the most frequently firing neuron exerted the strongest inhibition on
its competitors and thereby stopped them from firing until the end of the
iteration.

3.3 Spike-latency code

Following Chauhan et al (2018), we converted the LGN activity maps to first-
spike relative latencies using a simple inverse operation: y = 1/x, where x was
the LGN input and y was the assigned spike-time latency. Any monotonically
decreasing function would lead to equivalent results (i.e., where the most active
units fire first, while units with lower activity fire later or not at all) (see
(Masquelier and Thorpe, 2007)). In this way, we ensured that the most active
units fired first, while units with lower activity fired later or not at all.

3.4 Spike-timing-dependent-plasticity

The weights of plastic synapses connecting LGN and V1 were updated using
multiplicative STDP, which is an unsupervised learning rule that modifies
synaptic strength, w, as a function of the relative timing of pre- and postsy-
naptic spikes, ∆t (Gütig et al, 2003). LTP (∆t > 0) and LTD (∆t ≤ 0) were
driven by their respective learning rates α+ and α−, leading to a weight change
(∆w):

∆w =

{
−α− · wµ− ·K(∆t, τ−),∆t ≤ 0

α+ · (1− w)µ
+ ·K(∆t, τ+),∆t > 0,

(2)

where α+ = 5 × 10−3 and α− = 3.75 × 10−3, K(∆t, τ) = e−|∆t|/τ was a
temporal windowing filter, and µ+ = 0.65 and µ− = 0.05 were constants
∈ [0, 1] that defined the nonlinearity of the LTP and LTD process, respectively.
STDP has the effect of concentrating high synaptic weights on afferents that
systematically fire early, thereby decreasing postsynaptic spike latencies for
these connections.

In this implementation, computation speed greatly increased by making the
windowing filter K infinitely wide, which is equivalent to assuming τ± → ∞
or K = 1 (Gütig et al, 2003). A ratio α+/α− = 4/3 was chosen based on
previous experiments that demonstrated network stability (Masquelier and
Thorpe, 2007). Also, Chauhan et al (2018) showed that the results were robust
to variations of this ratio. The threshold of the V1 neurons was fixed through
trial and error at θ = 20. This value was unmodified for all experiments.

Initial weight values were sampled from a random uniform distribution
between 0 and 1. After each iteration, the synaptic weights for the first V1
neuron to fire were updated using STDP (Equation 2), and the membrane
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(a) (b)

(c) (d)

Fig. 4: Multi-scale network. (a) Reconstruction error of test set. (b) Spike
count per neuron: number of spikes fired by an active neuron. (c) Lifetime
sparsity: active stimuli during the lifetime of a neuron. (d) Population sparsity:
neurons active at any point in time. Mean responses and standard deviation
grouped by type of network (Low-scale, Medium-scale, High-scale and Multi-
scale). Error bars have been averaged across neurons for lifetime sparsity and
averaged across images for population sparsity. ∗ ∗ ∗ = p < .001; ∗∗ = p < .01;
∗ = p < .05; ns = p > .05. All t-tests paired samples, two-tailed.

potentials of all the other neurons in the V1 population were reset to zero.
The STDP rule was active only during the training phase.

3.5 Winner-take-all inhibition

We used a hard WTA-I scheme such that, if any V1 neuron fired during a
certain iteration, it simultaneously prevented other neurons from firing until
the next sample (Maass, 2000). This scheme computes a function WTA-In:
Rn → {0, 1}n whose output 〈y1, . . . , yn〉 = WTA-In (x1, ..., xn) satisfied:

yi =

{
1, if xi > xj for all j 6= i

0, otherwise.
(3)

For a given set of n different inputs x1, . . . , xn, a hard WTA-I scheme
would thus yield a single output yi with value 1 (corresponding to the neuron
that received the largest input xi), whereas all other neurons would be silent.
Sanchez-Garcia and Beyeler (2022) showed that a hard WTA-I scheme was
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Table 1: Global results for type of networks. Comparison of mean responses
and standard deviation grouped by type of network and dataset.

Dataset Network RE LS PS SC

MNIST

Low-scale 1.81e-2±4.53e-3 1483.7±695.0 26.6±11.9 10.8±0.77
Medium-scale 2.07e-2±1.29e-2 3788.0±103.2 70.6±5.14 11.9±0.78

High-scale 1.51e-2±4.84e-3 2386.7±295.9 40.9±3.31 15.1±0.81
Multi-scale 1.16e-2±3.77e-3 4500.1±782.7 95±19.9 10±0.79

FASHION-MNIST

Low-scale 1.49e-2±5.99e-3 2037.5±735.4 42.1±19.8 19.0±1.07
Medium-scale 1.37e-2±6.87e-3 3822.9±493.8 73.5±11.12 19.3±1.39

High-scale 1.90e-2±6.17e-3 3201.8±591.0 50.1±10.39 18.0±1.38
Multi-scale 9.34e-3±5.15e-3 6105.0±907.9 102.5±25.2 13.6±1.76

CIFAR10

Low-scale 3.10e-2±6.66e-3 4179.9±795.7 85.5±3.29 22.8±1.72
Medium-scale 2.13e-2±3.43e-3 3542.4±693.9 75.0±11.18 21.3±1.40

High-scale 3.07e-2±6.61e-3 3692.9±1006.7 83.2±8.32 24.0±1.75
Multi-scale 2.15e-2±8.22e-3 8599.5±830.7 161.5±10.8 19.5±1.06

ORL

Low-scale 4.54e-2±8.40e-3 3282.5±1525.4 84.0±11.97 21.4±1.08
Medium-scale 4.54e-2±8.43e-3 5404.5±704.3 100.8±18.32 24.5±1.48

High-scale 4.30e-2±3.99e-3 3732.7±559.5 78.0±9.24 27.2±1.72
Multi-scale 2.91e-2±6.07e-3 7320±847.0 169.4±11.7 19.5±1.78

essential for enforcing competition among neurons, which led to sparser object
representations and lower reconstruction error compared to softer WTA-I
schemes.

3.6 Stimulus reconstruction

The activity map ξj of the i-th V1 neuron was estimated as follows:

ξj ≈
∑

j∈LGN

wijψj , (4)

where ψj was the RF of the j-th LGN afferent, and wij was the weight of the
synapse connecting the j-th afferent to the i-th V1 neuron.

Stimuli k were then linearly reconstructed from the V1 population activity:

ORk =
∑
j∈V 1

rkjξj , (5)

where rkj was the response of the j-th V1 neuron to the k-th image and ξj was
its activity map. Reconstruction error for an image k was calculated as the
pixel-wise mean square error between the LGN (LGNk) and the V1 activity
maps ORk.

3.7 Sparsity

We computed a sparsity metric for the population activity in the network
schemes according to the definition of sparsity by Vinje and Gallant (2000). On
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Fig. 5: Representative object representation (OR) examples using low-scale,
medium-scale, high-scale and multi-scale networks (columns). The number
below each image indicates the reconstruction error for that particular image.
The black frame highlights the image with the smallest error.

average, we measured how many neurons were activated by any given stimulus
(population sparsity) and for all active neurons, how many stimuli any given
neuron responded to (lifetime sparsity), as can be seen in Equation 6).



Springer Nature 2021 LATEX template

Efficient multi-scale visual object representation 11

(a) (b)

(c) (d)

Fig. 6: WTA-I schemes. (a) Reconstruction error in the test phase as a function
of the number of spikes included in the STDP algorithm (WTA-I) for 200 V1
neurons. (b) Lifetime sparsity: active stimuli during the lifetime of a neuron.
(c) Population sparsity: neurons active at any point in time. (d) Spike count
per neuron: number of spikes fired by an active neuron. Mean responses and
standard deviation grouped by the WTA-I schemes. Error bars have been
averaged across neurons for lifetime sparsity and averaged across images for
population sparsity.

sparsity =

(
1− 1

N

(
∑

n=1 ri)
2∑

n=1 r
2
i

)/(
1− 1

N

)
, (6)

For population sparsity, ri was the response of the i-th neuron to a partic-
ular stimulus, and N was the number of model neurons. For lifetime sparsity,
ri was the response of a neuron to the i-th stimulus, and N was the number
of stimuli. Population sparsity was averaged across stimuli, and lifetime spar-
sity was averaged across neurons (Beyeler et al, 2016). We also calculated the
average number of spikes per stimulus.

3.8 Dataset

To demonstrate the generality of our approach, we assessed the ability of our
SNN network to represent visual stimuli from the MNIST (LeCun, 1998),
FASHION-MNIST (Xiao et al, 2017), CIFAR10 (Krizhevsky and Hinton, 2009)
and ORL (Samaria and Harter, 1994) datasets. MNIST is a dataset of hand-
written digits and consists of 60,000 training patterns and 10,000 test patterns.



Springer Nature 2021 LATEX template

12 Efficient multi-scale visual object representation

Table 2: Global results for WTA-I schemes. Comparison of mean responses
and standard deviation grouped by type of WTA-I schemes and dataset.

Dataset WTA-I RE LS PS SC

MNIST

WTA-I-1 1.16e-2±3.77e-3 4500.1±782.7 95.0±19.9 10.0±0.8
WTA-I-10 1.15e-2±4.33e-3 4319.9±773.7 95.7±22.4 9.8±0.8
WTA-I-50 2.67e-2±1.18e-2 4695.9±536.7 87.5±25.4 20.1±1.3
WTA-I-100 3.41e-2±7.48e-3 7919.3±558.42 109.2±28.3 49.9±5.5
WTA-I-200 3.93e-2±9.61e-3 7094.6±458.8 128.9±28.1 70.1±5.4

FASHION-MNIST

WTA-I-1 9.34e-3±5.15e-3 6105.0±907.9 102.5±25.2 13.6±1.7
WTA-I-10 9.72e-3±5.31e-3 5968.1±822.1 104.6±23.7 13.2±1.7
WTA-I-50 2.56e-2±3.82e-3 6337.5±693.2 78.1±22.9 19.0±1.3
WTA-I-100 3.14e-2±5.82e-3 8020.3±455.9 101.2±25.3 56.9±4.6
WTA-I-200 3.73e-2±1.10e-2 7530.2±321.6 131.8±11.1 82.1±8.8

CIFAR10

WTA-I-1 2.15e-2±8.22e-3 8599.5±830.7 161.5±10.8 19.5±1.1
WTA-I-10 2.20e-2±8.13e-3 8401.2±928.3 162.2±10.3 19.3±1.1
WTA-I-50 4.09e-2±7.14e-3 6884.8±642.5 129.3±19.7 30.12±1.4
WTA-I-100 4.51e-2±8.14e-3 8500.2±625.1 136.2±22.1 68.9±4.5
WTA-I-200 5.38e-2±1.24e-2 8269.7±408.53 130.0±5.37 84.5±10.1

ORL

WTA-I-1 2.91e-2±6.07e-3 7320.0±847.0 169.4±11.7 19.5±1.8
WTA-I-10 3.06e-2±6.19e-3 7461.8±745.6 169.5±12.1 19.2±1.8
WTA-I-50 3.48e-2±6.48e-3 6254.8±716.5 124.7±27.3 31.7±1.8
WTA-I-100 3.90e-2±6.10e-3 8643.1±517.1 134.3±29.9 72.2±4.2
WTA-I-200 4.16e-2±4.90e-3 8107.6±405.9 134.9±3.13 90.1±11.6

FASHION-MNIST is a dataset of Zalando article images consisting of a train-
ing set of 60,000 examples and a test set of 10,000 examples. Each example of
both, MNIST and FASHION-MNIST, is a 28× 28 grayscale image, associated
with a label from 10 classes. The CIFAR10 database consists of 60,000 32×32
colour images in 10 classes, with 6,000 images per class. There are 50,000 train-
ing images and 10,000 test images. The ORL database of faces contains 400
images from 40 distinct subjects. The size of each image is 92 × 112 pixels,
with 256 grey levels per pixel.

We enlarged images from the CIFAR10 and ORL database using data
augmentation with different orientations of the original images to match the
data size with MNIST and FASHION-MNIST datasets.

3.9 Statistical analysis

Data were analyzed using two-way ANOVA and post hoc-test with Tukey’s
method to evaluate simultaneously the effect of the two grouping vari-
ables (Dataset and Networks/WTA-I schemes/V1 neurons) on the following
response variables: reconstruction error, spike count/neuron, lifetime sparsity,
population sparsity, and recognition time with ∗ ∗ ∗ = p < .001; ∗∗ = p < .01;
∗ = p < .05 and ns = p ≥ .05.
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LGN
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Fig. 7: Object representation using different WTA-I schemes, where between
1 (harder WTA-I 1) and 200 (softer WTA-I 200) neurons were active for each
training sample. The number below each image indicates the reconstruction
error for that particular image. Target and prediction images were normalized
in [0, 1]. The black frame highlights the image with the smallest error in each
row.

4 Results

4.1 Object representation using multi-scale network

The performance using a single-scale (i.e., low-scale, medium-scale, or high-
scale networks) and multi-scale network is summarized in Fig. 4. The results
show the reconstruction error, lifetime sparsity, population sparsity and spike
count per neuron (mean ± standard deviation) achieved on the test sets for all
databases. The reconstruction error for the four networks (low-scale, medium-
scale, high-scale and multi-scale) is shown in Fig. 4a. We found similarity
between the reconstruction errors of the three single networks (low, medium
and high-scale) for all datasets, with some slight discrepancy in the more com-
plex CIFAR10 and ORL datasets. Interestingly, the use of multi-scale manages
to further reduce the reconstruction error, being the same trend for all datasets.
We also performed a test to determine if the mean difference between net-
works are statically significant using two-tailed test with a significant level
α = 0.05. The analysis of the average reconstruction error reveals a signifi-
cant difference between networks (Low/Multi-scale, Medium/Multi-scale and
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(a) (b)

(c) (d)

Fig. 8: V1 neurons. (a) Reconstruction error of test set using different number
of V1 neurons: 100, 200, 400 and 600. (b) Lifetime sparsity: active stimuli
during the lifetime of a neuron. (c) Population sparsity: neurons active at any
point in time. (d) Spike count per neuron: number of spikes fired by an active
neuron. Mean responses and standard deviation grouped by type of network
architecture (Low-scale, Medium-scale, High-scale and Multi-scale). Error bars
have been averaged across neurons for lifetime sparsity and averaged across
images for population sparsity.

High/Multi-scale). Examples of object representations for all datasets can be
found in Fig. 5.

Fig. 4b shows the number of spikes per neuron needed for object represen-
tation. The number of spikes needed to represent an object decreased with the
Multi-scale scheme compared to low, medium and high-scale networks. On the
other hand, we found that the CIFAR10 and ORL dataset, which we consid-
ered two of the most complex of the four datasets, needed the highest number
of spikes per neuron for all networks.

Fig. 4c shows the number of distinct stimuli the neuron responds to during
the lifetime of a neuron. The Multi-scale network showed a higher number
of active stimuli for all datasets compared to the single networks. Moreover,
we found significant differences between the networks, being more significant
for Medium/Multi-scale and High/Multi-scale. The same trend was found for
the population sparsity, where the Multi-scale presented more active neurons
than the low, medium and high-scale networks and significant differences were
found between them (see Fig. 4d).
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Fig. 9: Object representation with Multi-scale network varying the number
of V1 neurons: 100, 200, 400 and 600 neurons. The number below each image
indicates the reconstruction error for that particular image. The black frame
highlights the image with the smallest error.

4.2 Object representation using multi-scale network with
varying number of V1 neurons

Fig. 8 (a) shows the reconstruction error after training for the test set using
different numbers of V1 neurons. We found that the reconstruction error went
through a minimum (at roughly 200 V1 neurons) for all databases, which
is consistent with the bias-variance dilemma (Beyeler et al, 2019). It seems
that using a larger number of neurons with our multi-scale network leads to
overfitting and a less sharp reconstruction, as can be seen in Fig. 9.

In addition, the number of neurons needed to represent an object increased
with the number of V1 neurons, nearly tripling the spikes from 200 to 400
neurons and quintupling from 200 to 600 (Fig. 8c). Increasing the V1 pop-
ulation beyond 200 neurons did therefore not lead to any visible benefits in
reconstruction error (Fig. 9). We therefore limited our V1 population to 200
neurons for all subsequent simulations and analyses.
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Table 3: Global results for V1 neurons. Comparison of mean responses and
standard deviation grouped by type of V1 neurons and dataset.

Dataset V1 neurons RE LS PS SC

MNIST

100 2.62e-2±8.61e-3 3667.8±718.3 35.2±9.3 10.3±0.8
200 1.16e-2±3.77e-3 4500.1±782.7 95±19.9 10±0.79
400 2.94e-2±7.72e-3 5719.3±1568.7 206.2±9.3 59.7±13.1
600 3.47e-2±8.29e-3 6379.4±388.3 445.4±38.7 101.8±13.4

FASHION-MNIST

100 2.56e-2±4.38e-3 3893.7±694.5 43.1±10.2 9.9±1.5
200 9.34e-3±5.15e-3 6105.0±907.9 102.5±25.2 13.6±1.76
400 2.78e-2±4.48e-3 6251.3±979.1 216.7±31.8 53.4±11.9
600 3.09e-2±5.45e-3 6585.8±279.6 486.5±37.1 87.8±13.3

CIFAR10

100 3.15e-2±9.37e-3 4374.1±1173.1 61.2±18.3 11.1±1.4
200 2.15e-2±8.22e-3 8599.5±830.7 161.5±10.8 19.5±1.06
400 3.71e-2±7.60e-3 6498.8±1005.8 354.0±29.2 70.3±12.3
600 4.37e-2±1.01e-2 8404.8±876.3 498.3±41.8 126.1±12.1

ORL

100 3.73e-2±7.09e-3 4092.1±1058.3 58.7±14.9 12.4±1.7
200 2.91e-2±6.07e-3 7320±847.0 169.4±11.7 19.5±1.78
400 3.90e-2±7.90e-3 7769.2±1151.9 370.5±9.0 75.5±8.8
600 4.17e-2±7.70e-3 8288.6±828.0 513.7±45.3 120.4±12.5

4.3 Object representation using soft WTA-I schemes

We also tested object representation using various soft WTA-I schemes, where
we varied the number of V1 neurons allowed to be active for each training image
(see Fig. 6). Fig. 6a shows the reconstruction error on the test set across the
range of possible WTA-I schemes, ranging from hard (where only one neuron
was active per image) to soft (where all 200 neurons were active).

We found that the softer the WTA-I scheme, the higher the reconstruction
error. The reason for this became evident when we visualized the resulting
object representations (Fig. 7). WTA-I schemes where at most 10 neurons
were allowed to be active were instrumental in maintaining competition among
neurons. In the absence of a strong WTA-I scheme, multiple neurons ended up
learning similar visual features, which resulted in poor object reconstruction
(right half of Fig. 7). Also, due to this overlap between neurons, the final
feature set was quite limited.

We also found that both the active stimuli during the lifetime of a neuron
and the active neurons increased with the number of V1 neurons allowed to
be active during training (see Fig. 6c, d). Furthermore, the number of spikes
needed to represent an object showed the same trend (Fig. 6b).

5 Discussion

In this work, we have proposed an SNN model that uses spike-latency coding
and WTA-I to efficiently represent visual stimuli using multi-scale parallel
processing. In particular, this paper developed an extension of earlier work
(Chauhan et al, 2018, 2021; Sanchez-Garcia and Beyeler, 2022) to investigate
how the quality of the represented objects changes under different schemes of
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the primary visual system processing with subsets of neurons tuned to different
SF scales.

We found that the multi-scale network outperformed all three single-scale
networks across all datasets (Fig. 4), sacrificing sparsity for a lower recon-
struction error. However, it is interesting to note that the multi-scale network
used the smallest average number of spikes per neuron (Fig. 4b) across all
datasets, indicating that it favored a code where many neurons were weakly
activated. In all cases, the learned receptive fields (Fig. 3) were in agreement
with nonnegative sparse coding (NSC), which is an efficient population cod-
ing scheme based on dimensionality reduction and sparsity constraints that
promotes sparse and parts-based population codes (Beyeler et al, 2019).

We also studied how the number of V1 neurons in the network affected
reconstruction error and sparsity of the learned population code. In agreement
with previous work on NSC (Beyeler et al, 2016, 2019), we found that the
reconstruction error (on the test set) goes through a minimum as a function of
network size (Fig. 8a). This minimum is though to indicate the optimal model
complexity according to the bias-variance dilemma; that is, the point at which
the model’s generalization error is minimized. Curiously, this “sweet spot” was
found to be at roughly 200 V1 neurons for all tested datasets (Fig. 9). On the
other hand, sparsity increased monotonically with network size (Fig. 8b–d),
which is more in line with the traditional sparse coding literature (Olshausen
and Field, 1997).

We also implemented various soft WTA-I schemes to investigate how the
quality of represented objects changed (Fig. 6). The WTA-I soft schemes con-
sisted of 10, 50, 100, and 200 (i.e., all) neurons firing during a given iteration,
while all other neurons were silent. We found that the softer the WTA-I scheme,
the larger the reconstruction error (Fig. 6a) and the number of spikes needed to
represent an object (Fig. 6b). The reason for this became clear when we visu-
alized the resulting object representations (Fig. 7). In the absence of a strong
WTA-I scheme, multiple neurons ended up learning similar visual features,
thus resulting in poor object reconstructions (Fig. 7).

Although our network was able to efficiently represent images from various
datasets, an important issue that we did not address in this paper is a compar-
ison with other SNNs with other forms of STDP (e.g., with an additive instead
of a multiplicative rule) and/or to SNNs trained with other learning scheme
(e.g., SNNs trained with the surrogate gradient). In addition, a future exten-
sion of the model might focus on deeper architectures with parallel processing
with multiple scales and more challenging visual stimuli.

6 Conclusion

In conclusion, we have shown that a network of spiking neurons tuned to dif-
ferent SFs can represent objects with as little as 15 spikes per neuron using
spike-latency coding and WTA-I. WTA-I schemes were essential for enforcing
competition among neurons, which led to sparser object representations and
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lower reconstruction errors. Studying how object recognition may be imple-
mented using biologically plausible learning rules in SNNs may not only further
our understanding of the brain, but also lead to new efficient artificial vision
systems.
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Appendix A Comparison between Multi-scale
and Lateral-scale network
architectures

We propose another network architecture called ‘Lateral-scale’ that also uses
parallel processing of multiple scales (see Fig. A1). In this case, the LGN pre-
processing is the same as in the Multi-scale network architecture, but now the
three LGN responses were converted to spike latencies and fed to a SNN each,
resulting in three lateral SNN with plastic synapses implementing STDP and
WTA-I. The reconstructed images resulted of the three lateral sub-networks
were added at the end of the training for the object representation.

As shown in Fig. A2a, the Lateral-scale network results in a lower but very
similar reconstruction error than the proposed Multi-scale network. This may
be because the Lateral-scale scheme recognizes a few more details correspond-
ing to fine details in the image (see Fig. A3). Lateral-scale was not significantly
better than Multi-scale if we refer to the representation of objects (see Fig. A3
but used significantly more spikes (Fig. A3b). The number of spikes required
for reconstruction increases by approximately double spikes/neuron in some
datasets. One drawback in Lateral-scale network is that we are training three
lateral sub-networks, that means three times more trainable weights.

Fig. A1: Lateral-scale network. Images from the ORL dataset (Samaria and
Harter, 1994) were convolved with ON and OFF center-surround kernels to
simulate responses in the LGN. We used three LGN sub-networks processed
based on a particular SF: Low-scale, Medium-scale and High-scale (see Fig. 2).
The three LGN responses were converted to spike latencies and fed to a SNN
each, resulting in three lateral SNN with plastic synapses implementing STDP
and WTA-I. The reconstructed images resulted of the three lateral networks
were added at the end for the object reconstruction.
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(a) (b)

(c) (d)

Fig. A2: (a) Reconstruction error of test set using Multi-scale and Lateral-
scale networks. (b) Number of spikes per neuron needed for the object
representation using Multi-scale and Lateral-scale networks. (c) Lifetime spar-
sity: active stimuli during the lifetime of a neuron. (d) Population sparsity:
neurons active at any point in time. ∗∗∗ = p < .001; ∗∗ = p < .01; ∗ = p < .05;
ns = p > .05. All t-tests paired samples, two-tailed.

Table A1: Global results for Multi and Lateral-scale. Comparison of mean
responses and standard deviation grouped by type of Multi and Lateral-scale
and dataset.

Dataset Network RE LS PS SC

MNIST
Multi-scale 1.16e-2±3.77e-3 4500.1±782.7 95.0±19.9 10.0±0.79

Lateral-scale 8.27e-3±4.04e-3 5867.9±444.1 115.6±4.9 12.5±1.4

FASHION-MNIST
Multi-scale 9.34e-3±5.15e-3 6105.0±907.9 102.5±25.2 13.6±1.76

Lateral-scale 6.93e-3±3.53e-3 7160.4±745.1 161.2±11.5 14.4±1.2

CIFAR10
Multi-scale 2.15e-2±8.22e-3 8599.5±830.7 161.5±10.8 19.5±1.06

Lateral-scale 1.87e-2±4.23e-3 8258.7±1130.5 182.4±19.2 21.9±1.2

ORL
Multi-scale 2.91e-2±6.07e-3 7320±847.0 169.4±11.7 19.5±1.78

Lateral-scale 2.28e-2±4.84e-3 7233.0±1241.5 168.3±17.4 25.1±1.5
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Fig. A3: Object representation for Multi-scale and Lateral-scale network
architectures using 200 V1 neurons. Two examples of object representation
(image A and image B) for Multi-scale and Lateral-scale architectures and for
the four databases. The Lateral-scale scheme recognizes some finer details in
the image compared to Multi-scale, where the image details are coarser. The
number below each image indicates the reconstruction error for that particular
image. The black frame highlights the image with the smallest error.



Springer Nature 2021 LATEX template

22 Efficient multi-scale visual object representation

References

Ales JM, Appelbaum LG, Cottereau BR, et al (2013) The time course of shape
discrimination in the human brain. NeuroImage 67:77–88

Beyeler M, Dutt ND, Krichmar JL (2013) Categorization and decision-making
in a neurobiologically plausible spiking network using a STDP-like learning
rule. Neural Networks 48:109–24

Beyeler M, Dutt N, Krichmar JL (2016) 3D visual response properties of MSTd
emerge from an efficient, sparse population code. Journal of Neuroscience
36(32):8399–8415

Beyeler M, Rounds E, Carlson K, et al (2019) Neural correlates of sparse
coding and dimensionality reduction. PLoS Computational Biology 15(6)

Bi Gq, Poo Mm (1998) Synaptic modifications in cultured hippocampal neu-
rons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. Journal of neuroscience 18(24):10,464–10,472

Brzosko Z, Mierau SB, Paulsen O (2019) Neuromodulation of spike-timing-
dependent plasticity: past, present, and future. Neuron 103(4):563–581

Campbell FW (1973) The transmission of spatial information through the
visual system. In: From Theoretical Physics to Biology. Karger Publishers,
p 374–384

Caporale N, Dan Y, et al (2008) Spike timing-dependent plasticity: a hebbian
learning rule. Annual review of neuroscience 31(1):25–46

Chang L, Tsao DY (2017) The code for facial identity in the primate brain.
Cell 169(6):1013–1028

Chauhan T, Masquelier T, Montlibert A, et al (2018) Emergence of binocu-
lar disparity selectivity through Hebbian learning. Journal of Neuroscience
38(44):9563–9578

Chauhan T, Masquelier T, Cottereau BR (2021) Sub-optimality of the early
visual system explained through biologically plausible plasticity. Frontiers
in Neuroscience 15

Cichy RM, Pantazis D, Oliva A (2016) Similarity-based fusion of meg and
fmri reveals spatio-temporal dynamics in human cortex during visual object
recognition. Cerebral Cortex 26(8):3563–3579

De Valois RL, Albrecht DG, Thorell LG (1982a) Spatial frequency selectivity
of cells in macaque visual cortex. Vision research 22(5):545–559



Springer Nature 2021 LATEX template

Efficient multi-scale visual object representation 23

De Valois RL, Albrecht DG, Thorell LG (1982b) Spatial frequency selectivity
of cells in macaque visual cortex. Vision Research 22(5):545–559

Derrington A, Lennie P (1982) The influence of temporal frequency and adap-
tation level on receptive field organization of retinal ganglion cells in cat.
The Journal of Physiology 333(1):343–366

Derrington A, Lennie P, Wright M (1979) The mechanism of peripher-
ally evoked responses in retinal ganglion cells. The Journal of Physiology
289(1):299–310

DiCarlo J, Zoccolan D, Rust N (2012) How does the brain solve visual object
recognition? Neuron 73(3):415–434

Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion
cells of the cat. The Journal of physiology 187(3):517–552

Feldman DE (2012) The spike-timing dependence of plasticity. Neuron
75(4):556–571

Field DJ (1987) Relations between the statistics of natural images and the
response properties of cortical cells. Josa a 4(12):2379–2394

Gerstner W, Kistler WM (2002) Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press

Ginsburg AP (1986) Spatial filtering and visual form perception. Handbook
of Perception and Human Performance, Vol 2 Cognitive Processes and
Performance

Goel A, Tung C, Lu YH, et al (2020) A survey of methods for low-power deep
learning and computer vision. In: 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT), IEEE, pp 1–6

Gütig R, Aharonov R, Rotter S, et al (2003) Learning input correlations
through nonlinear temporally asymmetric hebbian plasticity. Journal of
Neuroscience 23(9):3697–3714

Gütig R, Aharonov R, Rotter S, et al (2003) Learning Input Cor-
relations through Nonlinear Temporally Asymmetric Hebbian Plastic-
ity. Journal of Neuroscience 23(9):3697–3714. https://doi.org/10.1523/
JNEUROSCI.23-09-03697.2003, URL https://www.jneurosci.org/content/
23/9/3697, publisher: Society for Neuroscience Section: ARTICLE

He K, Zhang X, Ren S, et al (2015) Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of the
IEEE international conference on computer vision, pp 1026–1034

https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://www.jneurosci.org/content/23/9/3697
https://www.jneurosci.org/content/23/9/3697


Springer Nature 2021 LATEX template

24 Efficient multi-scale visual object representation

Henriksson L, Nurminen L, Hyvärinen A, et al (2008) Spatial frequency tuning
in human retinotopic visual areas. Journal of Vision 8(10):5–5

Hughes HC, Nozawa G, Kitterle F (1996) Global precedence, spatial fre-
quency channels, and the statistics of natural images. Journal of cognitive
neuroscience 8(3):197–230
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