
Biological Cybernetics (2023) 117:299–329
https://doi.org/10.1007/s00422-023-00966-9

REVIEW

Canonical circuit computations for computer vision

Daniel Schmid1 · Christian Jarvers1 · Heiko Neumann1

Received: 30 November 2022 / Accepted: 18 May 2023 / Published online: 12 June 2023
© The Author(s) 2023

Abstract
Advanced computer vision mechanisms have been inspired by neuroscientific findings. However, with the focus on improving
benchmark achievements, technical solutions have been shaped by application and engineering constraints. This includes
the training of neural networks which led to the development of feature detectors optimally suited to the application domain.
However, the limitations of such approaches motivate the need to identify computational principles, or motifs, in biological
vision that can enable further foundational advances in machine vision. We propose to utilize structural and functional
principles of neural systems that have been largely overlooked. They potentially provide new inspirations for computer vision
mechanisms and models. Recurrent feedforward, lateral, and feedback interactions characterize general principles underlying
processing in mammals. We derive a formal specification of core computational motifs that utilize these principles. These
are combined to define model mechanisms for visual shape and motion processing. We demonstrate how such a framework
can be adopted to run on neuromorphic brain-inspired hardware platforms and can be extended to automatically adapt to
environment statistics. We argue that the identified principles and their formalization inspires sophisticated computational
mechanisms with improved explanatory scope. These and other elaborated, biologically inspired models can be employed to
design computer vision solutions for different tasks and they can be used to advance neural network architectures of learning.

Keywords Recurrent processing · Feedback · Neural network · Binding · Perceptual grouping · Neuromorphic computing

1 Introduction

The field of computer vision has evolved over decades and
was inspired by different concepts and approaches. Simple
image processing algorithms are motivated by signal the-
ory (Rosenfeld and Kak 1976) while a normative modeling
approach showed that vision can be understood as con-
strained optimization or optimal statistical inference (Marr
1982; Barrow and Tenenbaum 1978). For example, the
task of finding a solution from sparse, discrete, and noisy
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visual observations lead to regularization approaches solv-
ing ill-posed inverse problems (Poggio et al. 1985). Such
optimization algorithms share principles of brain-like com-
putation when implemented in a parallel, distributed manner
(Poggio and Girosi 1990). The suggested Bayesian mecha-
nisms for perceptual inference were likewise considered as a
generic guiding principle for the definition of optimal vision
strategies in computational as well as biological systems
(Knill et al. 1996). The most recent major shift in focus fol-
lowed the success of the neural network architectureAlexNet
(Krizhevsky et al. 2012) on the ImageNet challenge. This
started the era of deep learning, in which progress on many
computer vision tasks was made by training deep convolu-
tional neural networks (CNNs). While neural networks are
clearly inspired by biology (hence the name), most recent
breakthroughs are attributed to technical improvements to
network components, architectures, and training procedures
(LeCun et al. 2015).

Despite impressive advances in the field of computa-
tional vision, numerous unresolved problems still remain.
For example, state-of-art trained deep network architectures
may assign a minimally corrupted input image to a com-
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pletely different classwhile a human observerwould not even
notice the image manipulation (Szegedy et al. 2014). These
and other related limitations lead to several recommendations
to training procedures, model benchmarking and interpreta-
tion of results (Geirhos et al. 2020). Another, more structural
deficit is that neural networks are less shape-sensitive than
expected. Instead they often use texture information for their
final output decision which has been referred to as texture-
vs-shape bias (Wichmann et al. 2017; Geirhos et al. 2018;
Jarvers andNeumann2023). Suchobservations have renewed
the motivation to investigate structural and functional princi-
ples in biological vision. These biological vision principles
make vision robust, flexible, and adaptive in animals, such
as primates (Dapello et al. 2020). The goal is to find inspira-
tions that may be used to constrain the layout and function
of computational vision architectures, either by their design
or by their training.

In this review, we focus on the identification of canon-
ical principles of computation in neural circuits. They will
serve as a guide for the integration of processingmechanisms
into computational vision models that replicate data from
neuroscience and psychophysics and that are capable of suc-
cessfully processing real-world input data. We review how
biological vision can inspire computer visionmodeling. This
includes a discussion how results fromdifferent domainsmay
be analyzed and compared. We sketch canonical princi-
ples of computation that provide a rich set of operations
which can be deployed for different functions and tasks.
The model framework builds upon anatomical and physi-
ological findings, in particular the feedforward, lateral, and
feedback information flow in neural networks in the brain.
Then, we outline a template for a model architecture com-
posed of computational nodes. These nodes are connected in
layers and stacked hierarchically to build complex networks
for different computational vision problems.We utilize these
components to investigate several computer vision tasks for
shape and motion processing. Extensions of the core model
components are then shown to be suitable for implementing
efficient real-time vision models on neuromorphic hardware.
Also we demonstrate how adjusting the efficacy of synaptic
weights realizes short-term adaptations to (changing) natural
scene statistics.

2 Biologically inspired computer vision

2.1 Neuroscience and computer vision—a source of
mutual fertilization

The apparent ease and robustness by which biological organ-
isms operate and solve visual tasks motivates taking such
functionality as inspiration for computer vision. In recent
neural network models, complex detectors are trained end-

to-end to generate feature representations at different hierar-
chical levels. Such deep learning architectures are inspired
by the neural architecture of the mammalian visual system.
These systems consist of processing stages with increas-
ingly complex response characteristics and feature selectivity
(Yamins and DiCarlo 2016). The deep learning architecture
AlexNet (Krizhevsky et al. 2012) paved the way for subse-
quent developments to build trainable networks dedicated to
solve computer vision tasks, such as scene recognition, object
target detection, image segmentation, or optical flow com-
putation. For an overview see Kreiman (2021). The generic
hierarchical structure with a stacked sequence of layers or
blocks of core operations transforms ambiguous sensory
input into a coherent representation. These representations
allow robust decision-making about perceptual categories
and control of cognitive or behavioral task output genera-
tion. But do the learned feature detectors tell us anything
about neuroscience mechanisms?

The stages and operations in these networks roughly cor-
respond to the hierarchical layout and operation of cortical
(and sub-cortical) stages of the visual system in primates
(Cox and Dean 2014). Basic operations mainly focus on
local kernel-based convolutions, pooling and sub-sampling,
normalization, to name a few. The convolution operations
at different stages utilize simple linear weighted summation
of activities over small spatial neighborhoods. The resulting
scalar amplitude value is then passed through a nonlinear out-
put function. This is analogous to howneurons integrate input
activities from presynaptic neurons via their dendrites. The
accumulation of superimposed activities that exceed an inter-
nal threshold level eventually generate an output activation.
This realizes a (generalized) Perceptron as a computational
unit (Dayan and Abbott 2001). However, neurons integrate
input activity in ways that are more complex than simple
Perceptrons (Gerstner et al. 2014). For example, pyramidal
cells in cortex integrate information at multiple sites, namely
at their basal and apical dendrites, and combine result-
ing potentials in a nonlinear fashion (Larkum et al. 2018).
Körding and König (2001) and Spratling (2002) discuss
potential computational roles of segregated integration sites.
On a network level, visual processing splits into segregated
pathways, which are mainly devoted to processing iden-
tity (What) and spatial (Where) characteristics of the input,
respectively (Ungerleider and Haxby 1994). Processing in
these pathways is not functionally autonomous but shows
cross-pathway interactions (Grossberg 2000). Also feedback
recurrency between areas along the processing hierarchy of
individual pathways is the rule rather than the exception
(Lamme and Roelfsema 2000; Gilbert and Li 2013). On an
even coarser scale, the analysis of the overall cortical network
graph structure is of interest, in particular its involvement in
the activation dynamics. The dynamical processing of sen-
sory input and cognitive state generation during task-related
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decision-making showed systematic patterns of distributed
activations on the connectome (Sporns 2012). So far, such
principles have not yet entered routinely in the building of
computer vision models.

It is worth noting that objections are being raised question-
ing the need for biological inspiration to develop computer
vision algorithms. Arguments hampering such a dialogue
were drawn from differences in research focus and limita-
tions in technology (Cox and Dean 2014). The first argument
includes claiming that models in the different domains have
different aims. Analyzing cognitive systems and their mod-
els at different levels (e.g., adoptingMarr’s three levels, Marr
1982) one may conclude that the brain does not use the same
general-purpose world descriptions as suggested by compu-
tational theory. In addition to such general skepticism, there
remain technical arguments against such investigations. This
includes the low performance of biologically inspired algo-
rithms executing real-world tasks. Likewise, it is claimed that
artificial systems show greater efficiency of particular task
solutions in comparison to human vision (see the discussion
in Medathati et al. 2016).

2.2 Analyzing vision at a task-level

The opportunity to cross-fertilize between the fields of com-
puter vision and in computational cognitive neuroscience is
self-evident. The core question is, what computer vision can
learn from visual neuroscience, and vice versa?Here, wewill
focus our discussion on whether and how computer vision
models can benefit from ideas derived from insights in neu-
roscience. Two fundamental questions need to be addressed
in such investigations: (i) how to comparemodel frameworks
that were developed in different domain contexts and (ii) how
to define a particular task in which computational mecha-
nisms from biology and machine vision are considered.

Computer vision benchmark datasets have been proposed,
e.g., theMiddlebury datasets (Scharstein and Szeliski 2002),
for the comparison of model frameworks. The use of bench-
marks fosters comparative evaluation of different algorithms.
Similarly, the ImageNet challenge provides a platform to
foster the evolution of deep neural network learning archi-
tectures to solve an image categorization task. Building
convolutional neural networks (CNNs) that can mimic bio-
logical plausibility depends on statistical properties of the
training data. For example, the ImageNet database is biased
toward object categories as they are indexed by theWordNet
hierarchy (Deng et al. 2009). To balance the apparent bias,
Mehrer et al. (2021) curated the ecoset data collection that
more strongly reflects the occurrence of meaningful objects
in human daily life. The evaluation of brain-inspired mod-
els against experimental data collected from neuroscientific
studies can also benefit from benchmarks. This recently led
to the proposal of benchmarks together with scoring metrics,

such as BrainScore 1.0 (Schrimpf et al. 2020). BrainScore’s
main purpose is to build a repository of data from a variety of
experiments to provide benchmarks for building integrative
models of brain-like neural processing mechanisms.

Inspiration fromneuroscience for building advanced com-
puter vision models requires the definition of performance
properties and functional characteristics that need to be
improved and compared against already existing solutions.
A simple approach is to evaluate existing computer vision
models with respect to their biological plausibility. This can
be accomplished by probing them with controlled stimuli
using parameter variations as in perceptual psychophysics or
neurophysiological experiments. Scoring such models might
be challenging since the model design has often been guided
by different goal specifications and task definitions. In Tla-
pale et al. (2010) a first attempt was made to establish a
test and evaluation strategy to conduct comparison studies
for models of motion computation in biological and com-
putational vision. Further, some of these authors suggest
a task-centric framework for relating biological and com-
puter vision in tasks which biological mechanisms face. This
includes task definitions and identification of some core chal-
lenges in computational vision. Analyzing biological vision
mechanisms and understanding their model helps to identify
computer vision algorithmswith their different tasks and pos-
sible solutions. Ultimately, the goal is to identify promising
candidates that may serve as a source for developing biolog-
ical or neuroscience inspired approaches for computational
vision problems (Medathati et al. 2016).

2.3 Canonical principles of brain computation

In addition to identifying common goals of computation on
a task-level, structural principles of the brain architecture
which relate to function are of interest. The focus of this paper
is to summarize advances in neuroscience that characterize
structural and computational principles in the brain that are
relevant for computer vision. The key underlying assump-
tion is that the identified structural properties play a role in
the implementation of the computational functions.We high-
light canonical principles in brain architecture and function
and discuss their relation to architectural principles and com-
putational mechanisms (compare with DiCarlo et al. (2012)
and their search for canonical principles in object recogni-
tion). These, in turn, might provide inspiration for computer
vision algorithms. Following Tsotsos (2014), we suggest to
identify such characteristics and to possibly combine such a
set of key principles and mechanisms. This may then pro-
vide a rich repertoire of operations to build artificial vision
systems. We relate such canonical principles and their char-
acteristics to the task-centric approach motivated above. The
different modeling examples then suggest cases of biological
inspiration and their properties.

123



302 Biological Cybernetics (2023) 117:299–329

The canonical principles that we focus on are summarized
in the following. We subsequently provide examples of dif-
ferent modeling investigations and how such principles lead
to computational solutions for different visual tasks. These
mechanisms provide a basis set of elemental operations with
inputs from different feature domains. Different latent rep-
resentations will be generated for individual tasks and their
solutions. The canonical principles considered are the fol-
lowing:

• Feedforward, lateral, and feedback interaction of
activation. The main sensory-driven information flow
is fed through a sequence of stages of sub-cortical and
cortical areas. One central feature is that the feature selec-
tivity of neurons that process information at different
stages gets progressively more selective. This selectivity
leads to optimal input feature compositions. In addition,
the receptive field sizes increase along the processing
hierarchy. Furthermore, cells selective to specific fea-
tures receive further input in addition to feedforward
driving activity: (i) cells interact laterally over larger
intra-areal spatial distances (through horizontal connec-
tions) and (ii) they receive input from cells in areas higher
up in the processing hierarchy (via feedback). Thus top-
down signals are re-entered at representations of lower
stages (Lamme and Roelfsema 2000). While such inter-
actions are excitatory in principle, additional input is
provided by inhibitory cells. These structural interaction
patterns provide the basis for counter-stream information
flow in support of binding or grouping related sensory
items. Also, recurrences establish specific spatiotempo-
ral encodings, such as temporal oscillations or short-term
bursting (Destexhe and Sejnowski 2003; Sherman 2001).

• Activity normalization and gain control. Activities in
neural representations at various levels of the process-
ing hierarchy can be selectively modulated depending
on contextual evidence. The evidence is accumulated at
higher levels of the neural processing cascade. Excitatory
feedback modulations amplify activities which convey
information that match with the top-down predictions
(Phillips et al. 2015; Brosch and Neumann 2014a). Nor-
malization via divisive inhibition balances such enhance-
ments. Down-modulation of activation takes place in the
local context of a pool of neural responses defined over
a space-feature neighborhood (Carandini and Heeger
2012).

• Cooperative-competitive response integration and
segregation. Populations of neurons are selectively tuned
to individual or multiple feature quantities to build
distributed representations of stimulus feature occur-
rences (Chu et al. 2014). Cooperativemechanisms enable
feature binding. Feature bindingdisambiguates local esti-
mates of feature presence through preattentive grouping.

Competitive mechanisms, on the other hand, realize a
means of selection and decision-making among different
competing alternatives in categorical signal representa-
tions (Cocchi et al. 2013).

• Responseadaptation.Neurons can adjust their responses
according to the input statistics and their previous acti-
vation (Auerbach and Gritton 2022). Such temporal
memory effects lead to short-term adjustment of the over-
all responsiveness. These adjust the system to achieve
optimal and stable perception in a continuously chang-
ing environment.

• Efficient, low-redundancy encoding and processing.
Sparse representation of neural activity encoding from
event-based sensing is inspired by the response char-
acteristics of retinal cells (Masland 2001) and extends
to thalamic and cortical encoding principles. The key
observation is that such encodings provide the basis for
efficient low-energy computation in sensory processing.
This motivates special sensor principles that are based
on address-event representations (AER, Liu and Del-
bruck (2010)) and reduce the redundancies in transmitted
sensory data. Such investigations further extend to neu-
romorphic computing principles which avoid the von
Neumann bottleneck; a bottleneck that is caused by local-
ized processing and data communication of input and
calculated output responses (Merolla et al. 2014; Davies
et al. 2018).

For each of the above-mentioned principles we provide
some example investigations into various tasks of visual
information processing. All are based on a small set of key
neural processing principles. They demonstrate their capabil-
ities to yield high efficiency through brain-like processing.

3 Model framework

3.1 Insights from neuroscience—counterstreams,
re-entry, and resonance

Neural network models can be described at different levels
of detail, ranging from molecules over membrane channels,
synapses, neurons and networks up to large-scale compo-
nents interacting at the neural systems level (Churchland
et al. 1990). Our focus is at the level of a layered archi-
tecture composed of maps of nodes which themselves define
groups of neurons of different types. These are connected
by weighted links over local spatial neighborhoods. Model
architectures consist of a composition of multiple layers
where the nodes are connected by weighted directed links
to specify the bottom-up feedforward, lateral intra-areal, and
top-down feedback signal flow in information processing
(Felleman and Van Essen 1991). Information flow frommul-
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tiple signal streams converge in processing nodes. These
nodes combine contextual information with responses that
are extracted by localized groups of cells. Such context
sensitive integration of information with local feature mea-
surements enables the disambiguation of local responses in
a layered representation, and eventually leads to perceptual
decision-making.

Several theoretical frameworks have been defined based
on anatomical as well as physiological evidence. The frame-
works use a set of principles. They realize the overall function
underlying the neural network dynamics. In Fig. 1we present
an overview that summarizes different contemporary frame-
works which propose specific theoretical accounts of brain
computational function. The model framework we advo-
cate in this work comprises a functionality that incorporates
different motifs shown in Fig. 1, namely adaptive reso-
nance (ART; Grossberg (1980)), cortical re-entry (Edelman
1993), andbiased competition (Desimone andDuncan1995).
Together the key mechanisms allow for integrating informa-
tion streams. These streams are encoded as neural responses
of model cells at a specific location and provide context-
reweighted evidence of specific feature occurrences. The

neural mechanisms of activation integration are specified in
detail below. They include a formal specification of the acti-
vation dynamics of the model units.

3.2 Integrating feedforward and feedback streams
of activity

With the general overview of different theoretical frame-
works of cortical function, we identify a major theme of
signal integration between different cortical as well as sub-
cortical sites by interaction of feedforward and feedback flow
of information (Gilbert and Li 2013). Two main questions
arise at this stage. The first question asks At which level are
the bottom-up feedforward and top-down feedback streams
combined? In general, such bottom-up and top-down streams
converge on common neural substrates. They may be com-
bined at the level of cell populations such that integrated
information is shown by the resulting group characteris-
tics. Alternatively, pointwise connections between individual
cells may lead to feedforward/feedback integration at the
precision of single cells. Physiological experiments provide
strong evidence in favor of the latter. Pyramidal cells in cor-

Fig. 1 Theories of function of neural architectures and their bottom-up
and top-down computation. Over the last decades, different theories
about generic principles governing neural circuits and their com-
putations have been described. Explanations of some of the most
influential theories are depicted (see individual text boxes for a sum-
mary). Common to all these theories is an account for recurrent,

feedforward-feedback information processing. The different theories
emphasize different properties of recurrent network interaction. Thus,
they partially overlap in functionality, share similar principles or are
complementary to each other. Sources for each theoretical framework
are provided in the list of references
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Fig. 2 Convergent information streams of bottom-up and top-down
information integrated at pyramidal cells in the cortex. a A cortical
pyramidal neuron at level k of the visual hierarchy receives bottom-up
driving inputs from lower layers of the hierarchy to its basal com-
partment bk . In addition, the neuron may receive additional inputs
to its apical compartment ak via long-range connections from vari-
ous sources. Each compartment integrates its input independent of the
other and is potentially gated by inhibitory neurons. The details of the
spatial arrangement and mutual interactions between interneurons and
their influence on pyramidal cell compartments are omitted here; for

more details, see for example Kirchberger et al. (2021). The excitatory
inputs to different compartment are nonlinearly combined to generate
an output at the soma. For a detailed investigation of the coupling and
de-coupling of pyramidal cell compartments, see Suzuki and Larkum
(2020). b Interactions between basal inputs b and apical inputs a yield
asymmetric response characteristics. The basal input is sufficient to feed
the cell generating a response. This response is nonlinearly amplified
when apical input is present simultaneously. Such apical input alone,
however, is not sufficient to generate a response. The computational
logic is summarized in the table

tex integrate feedforward and feedback counterstream signal
flows at the level of individual cells and are special in that they
have a compartmentalized structure (Larkum 2013). This
structure integrates feedforward input at the basal dendritic
and peri-somatic region of the cell. In contrast, feedback
signals are integrated at the distal apical dendritic site of the
cell. While pyramidal cells respond to sensory signals only,
they also act as associative devices to link coincident inputs
that simultaneously arrive at the different dendritic sites of
these cells (Takahashi et al. 2016). Subsequent investigations
demonstrate that local inhibitorymechanisms at distinct sites
of individual cells play a major role in integrating coincident
forward and feedback information (Kirchberger et al. 2021).
Figure2a sketches how themain input streams of information
converge at different sites of a pyramidal cell in the cortex. In
Fig. 2 we only indicate the contribution of inhibitory neurons
that are positioned to interact with the excitatory cell com-
partments. A more detailed specification of the interaction
network is beyond the scope of this paper.

The second question details how different signals exert a
specific effect on the result of response integration, namely
What is the nature of feedforward and feedback signal
interaction?Ample evidence suggests that in first order inter-
actions in cortico-cortical and in thalamo-cortico-thalamic
networks, respectively, feedforward signals act as drivers and
feedback signals act as modulators (Guillery and Sherman
2002; Briggs 2020). Drivers by definition can generate acti-
vations at the cells that integrate the incoming presynaptic

input.Modulators act to change the amplitude (or gain) of an
already existing cell activation. The activation will have been
generated by driving input. Consequently, modulating input
by itself cannot generate an output activation of a target cell.
The compartmentalized structure of pyramidal cells imple-
ments such functionality through a net multiplicative effect
for coincident basal and apical cell activation (Larkum et al.
2004; Brosch and Neumann 2014b). Thus, loopy network
connections composed by asymmetric driver-modulator con-
nections implement a variant of no-strong loops which are
less prone to uncontrollable instabilities (Crick and Koch
1998). In Fig. 2b we show the principled response charac-
teristics of a pyramidal cell. We place particular emphasis
on the asymmetric roles of basal (b) and apical (a) input.
For a discussion of possible basal-apical dendritic integra-
tion functions see Spratling (2002).

3.3 Computational nodes and their neural dynamics

We adopt a mesoscopic level of description of the dynam-
ics of neural responses.1 The activity of a node in a network

1 The nervous system contains structures and processes on a range of
different spatial resolutions, from molecules over neurons to networks
and interacting neural systems (Churchland et al. 1990). Similar to other
sciences, such as physics, different levels interact, but can be decoupled
for the sake of functional analysis (Anderson 1972; Fannes et al. 1994;
Buzsaki and Christen 2016). At themicroscopic scale, models describe
neuronal activation on a sub-cellular level, e.g., individual ion chan-
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of interacting units represents the state of a neural system,
whose temporal dynamics is determined by excitatory driv-
ing as well as modulating input and inhibitory activity. A
node comprises a spatially discretized group of interact-
ing neurons on a microscopic level. Groups of neurons are
described as a neural mass on a mesoscopic level (Grossberg
1988; Breakspear 2017). Such nodes are arranged in sheets or
layers of identical units, which are laterally interconnected.
The nodes are defined by their input integration and out-
put response calculation. As already outlined above, model
architectures consist of multi-layer feedforward streams of
information transformation. These are similar to hierarchical
signal processing principles in computer vision architectures.
In biological vision, feedforward processing is augmented (i)
by lateral interaction of feature representations of cells with
relatable feature selectivity at different spatial locations in
distinct layers and (ii) by feedback activations generated at
representations higher up in the processing hierarchy. A node
in such a model architecture may consist of pairs of exci-
tatory and inhibitory (E-I) units. These units represent the
activation dynamics of a cortical column at different levels
of the hierarchy (Wilson and Cowan 1972). Such computa-
tional nodes are laterally connected in a layer. They receive
external driving and modulating input. However, a node can
also range over multiple anatomical layers of subcortical and
cortical stages and their intra-node interactions. These nodes
are again laterally arranged in a computational layer with
grid-like spatial organization (Müller et al. 2020).

Overall, the sketch of forward and feedback information
flow integration emphasizes the local combination of sig-
nals at pyramidal cells (Fig. 2a). In case that an apical signal
coincides with basal input the output is amplified nonlin-
early (Phillips et al. 2016). In Fig. 2b we formalize this
algebraically by the response characteristics

r = g ( fB (b) , f A (b, a)) , (1)

with a nonlinear response function g (•, •) fed by two
arguments defined by the functions fB (•) and f A (•, •),
respectively. The apical function considers the reported sig-
naling between basal and apical sites of pyramidal cells at
a more abstract functional level. In Fig. 2, we define a com-
putational unit in a large-scale model composed of neural
masses. For clarity, we have simplified the mechanism of
local signal integration (Fig. 2a). The function of basal inte-

nels. Such models are too complex to investigate functions at the level
of interacting neural subsystems in cortical areas, which are instead
characterized at a macroscopic level of analysis. Analyses at the level
of groups of neurons, receptive fields, and small networks range at a
scale between themicro- andmacroscopic level. This is called themeso-
scopic scale of resolution (Fregnac et al. 2016). We focus here on this
level, which allows us to link neuronal computational principles with
function at a behavioral level (Carandini 2012).

gration fB is chosen as identity, such that fB (b) = b, and
the apical function f A implements a coincidence detection
mechanism, such that f A (b, a) = λb · a. The function g
then combines its two arguments additively. The net effect
yields a nonlinear output response calculation. In the output,
the basal driving feedforward activation gates themodulating
feedback activation, thus

act FB = b · (1 + λa) . (2)

where λ is a scaling constant. This shows that feedforward
driving activity is necessary to generate an output activa-
tion which cannot be accomplished by modulating feedback
activity alone. Coincident activity of forward and backward
activation leads to an amplification of the driving input signal
by the correlation between the two signals. In order to coun-
terbalance such amplifications in neural responses, a mech-
anism is required that allows to inhibit or down-modulate
activities in a representation. Subtractivemechanisms of neu-
ral competition, e.g., for center-surround processing to detect
visual contrasts are well-known (Marr and Hildreth 1980).
In addition, down-modulation is achieved by a mechanism
of activity normalization over a spatial and temporal neigh-
borhood of neurons and their activations (Grossberg 1973;
Heeger 1992; Reynolds and Heeger 2009). Feature selectiv-
ity of the pooling operation defines a target of investigation.
This operation determines the strength of normalization and
how interactions can be implemented in a biophysically plau-
sible architecture (Busse et al. 2009; Heeger and Zemlianova
2020).

We combine three different computational mechanisms
for a node in a layer of topographically arranged local pro-
cessors. These components are: (i) input filtering specific to
the level in the architecture and recurrent lateral integration
of activities generated by neighboring nodes, (ii) the top-
down modulation utilizing the mechanism in eq. 2, and (iii)
a mechanism for down-modulating activities based on pool
normalization (compare with Brosch and Neumann 2014a).
A sketch of the components is shown in Fig. 3.

The dynamics of the resulting E-I node is formally
described by a pair of ordinary differential equations

τ ṙiv = − αriv + (β − riv) · P
(
Fiv, r, zFB

)

− (δ + riv) ·
∑
k

Fkv · �−
ik

− riv · gq (qiv) ,

τq q̇iv = − αqqiv + βq ·
∑
k f

rk f · �
pool
ikv f + (Ic)i

− gq (qiv) ,

(3)
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Fig. 3 Circuit model architecture for a network node. a Three pro-
cessing elements constitute a node that represents the computation of a
cortical column at an abstract level. In the first stage (I) filter responses
of input cells generate the driving input to the node (two ellipses sym-
bolize the subfield components of an exemplary filter). These units are
laterally coupled in a recurrent field of nodes over a spatial neighbor-
hood (each of those nodes receiving other filter input). The resulting
responses define the driving input to the node. This activation is modu-
lated by reentrant signals in the second stage (II). The table at the bottom
characterizes the response modulation of feeding input b by reentrant
signals a. It implements a simplified mechanism of feedforward and
feedback integration as shown in Fig. 2b and eqs. 1, 2. The third stage

(III) performs a normalization of activation by a pool of neurons. b
Model architecture in which the three stages are condensed into an E-
I circuit. Filtered input feeds an E-node which interacts laterally and
is modulated by integrated contextual information. The pool is repre-
sented by the I-node. Input lines denote driving signals with excitatory
and inhibitory influence (transfer functions are omitted). Each cell’s
excitatory activation are enhanced by modulatory FB signals. Spatially
arranged cortical columns are shown as laterally connected E-nodes.
Each E-cell may incorporate self-excitation (resembling E-E connectiv-
ity) and each I-cell self-inhibition (resembling I-I connectivity) shown
as dotted lines (sketches adapted from Brosch and Neumann (2014a))

with

P
(
Fiv, r, zFB

)
=

[
Fiv + κ

∑
k

rkv · �lat
ik

]

·
(
1 + λzFBiv

)
.

(4)

Node activities are defined according to a leaky integrator
that models membrane potential dynamics with the mem-
brane current as the sum of excitatory, inhibitory, and leak
conductances. The excitatory (E) state component r inte-
grates the input (right hand side) that is defined by a leak
current (first term, with exponential decay rate α) and excita-
tory activation (filter response and lateral integration of node
activities, which are amplified by a modulating top-down
signal, second term). Inhibitory terms are generated by sur-
round inhibition of filtering (third term) and activation from
the pool of neurons defined over a spatial and feature neigh-
borhood for divisive inhibition (normalization, fourth term).
The driving forces in the excitatory and inhibitory terms are
constrained by the saturation levels, β and δ, respectively.
Biophysically, these constants relate to reversal potentials of
cells. The inhibitory (I) state componentq integrates the input
(right hand side) that is again defined by a leak current (first
term) and the weighted integration of E-state activations over

a neighborhood in the space-feature domain (second term).
In addition, a tonic input level and a self-inhibitory term are
optional components (third, fourth term). The finally calcu-
lated output activation is determined by the E-state which is
passed through a firing rate function g. Indexes i and v (or k
and f in the weighted activity integration) represent spatial
locations and quantified feature values, respectively. Differ-
ent � kernels denote the weighted connections for activity
integration in the feedforward, lateral, and feedback signal
pathways, respectively. Themodulation of driving input with
laterally integrated activity is encapsulated by the function
P . Here, filtered bottom-up input, intra-layer activity and
top-down signals converge at individual sites as depicted in
Fig. 3a. The factors κ and λ denote scaling constants for
lateral and feedback activities, respectively.

The output calculation of E-I model nodes is more com-
plex than simple filter models used in computer vision or in
convolutional neural networks (CNN). Filtering is here part
of the response calculation. The activity Fiv of the excitatory
unit r is given in eq. 3. The individual filter kernels are speci-
fied in accordance to the function of the processing level in a
hierarchically organized architecture. For example, an early
filtering stage for detecting contrasts or energy in different
frequency channels may resemble isotropic center-surround
difference-of-Gaussian filters, derivatives of Gaussians or
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Fig. 4 Structural principles underlying feature binding mechanisms.
Several principles of feature detection and integration are realizedwhich
are based on different structural principles of connectivity and flow of
information processing. Feature items are integrated along feedforward
signal pathways with convergent information flow (left). Activities that
are generated to build a representation in a specific layer communicate
their feature-specific activations via lateral connections linking relat-

able features (middle). Activities of higher-level representations can
be re-entered into the response calculations at earlier layers through
top-down feedback (right). The cones of convergent bottom-up and
divergent top-down information flow share similar properties as in the
selective tuning model of attention (Tsotsos et al. 1995). Here, we pro-
pose that the influence of the different signal flows is characterized by
the different functions of driving and modulating signal interactions

oriented even and odd symmetric Gabor filters (Szeliski
2010). As pointed out above, standard response functions
in layered CNN architectures utilize Perceptron-like compu-
tational units with a 2-stage output calculation: (1) weighted
summation of convergent input activations2, (2) passing
the net integrated activity through an output firing rate
function. Examples are sigmoidal functions, rectified linear
units or hyperbolic tangent functions, depending on the
desired functionality within the network architecture.

The response calculation for model units here is more
complex and integrates filtering with lateral and feedback
mechanisms.At each stage of a hierarchical processing archi-
tecture, bottom-up peripheral sensory data streams (filter
outputs) are now combined with contextual information.
Such contextual information is provided (i) at the same level
of the perceptual representations through lateral interaction
and (ii) by representations higher up in the hierarchy through
top-down feedback signals. In the modeling framework out-
lined here, the feedback is modulatory and thus amplifies the
resulting activations generated by the filtering and the lat-
eral integration (specified in function P in eq. 4). Figure4
sketches the main structural integration mechanisms which
accomplish binding of perceptual items.

At the same time, a second modulatory mechanism
achieves the normalization of activities over a neighborhood
of a current node. Its activation is defined over the spatial as
well as the feature domain. The feature domain may consist
of different dimensions, e.g., orientation, direction, etc. The

2 Dot product of input activation and weight kernel. An additional bias
term is incorporated which serves as a threshold for the output function.
It defines an extra dimension in the weight kernel.

neighborhood is often weighted by a function that is separa-
ble over the space and feature components. Overall, a pool
of nodes is taken into account. The weighted sum of the acti-
vations of the nodes in the pool rescales the activation of a
target node relative to the overall activity in the pool. Such
normalization, or divisive inhibition, is achieved by the last
term of eq. 3 driven by gq (qiv). The multiplicative scaling
of this output by the E-state variable yields a divisive term in
the equilibrium response.

In the following, we show in several examples how these
computational mechanisms can be utilized to process inputs
from different visual domains. We also indicate how such
mechanisms relate to algorithmic solutions in computer
vision.

4 Contour grouping, boundary detection,
and texture segregation

4.1 Feature integration and disambiguation to
generate base groupings in space and time

The presence of input features is registered by cells with
receptive fields which cover only a small spatial input region.
The resulting cell responses are noisy and inherently ambigu-
ous. By integrating information gathered from a larger
context, this initial evidence can be disambiguated through
incremental grouping of visual elements, forming a coher-
ent shape composition (Roelfsema 2006; Elder 2018). The
resulting base groupings integrate features over a spatial as
well as temporal neighborhood based on their relatability
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Fig. 5 Feature integration and disambiguation for base grouping. a A
scene with 3D objects seen through circular apertures with different
sizes (or scales; top). When the masking patches are removed (bottom)
then contextual information signifies the relatability of visual items and
provides the basis to disambiguate the local feature characteristics. The
circular receptive field shapes are shown to illustrate the position of the
apertures in the top image (the photograph of the object scene is repro-
duced with permission from Peterhans and von der Heydt (1991)). b A
moving shape is shown as overlay of two temporal snapshots (contour

denoted by solid line at first time point and dashed line at second time
point). Top: One part is visible through a single aperture at the bottom
of the image. The ambiguity of a single aperture view leads to the per-
ceived normal flow orthogonal to the horizontal boundary (continuous
to dashed line). Bottom: If a second aperture at the top right reveals local
feature motion which can be combined with the aperture normal flow
at the bottom, then the shape appears to coherently move in a direction
upward and to the right

(Kellman and Shipley 1991; Neumann and Mingolla 2001).
Such correlations are evaluated based on hardwired connec-
tions between basic features. They are computed in parallel
at all spatial locations.

In Fig. 5 we show two examples that demonstrate how
image structure appears through local apertures, which char-
acterize the neurons’ receptive fields. For each case, a second
image is shown with occluding patches removed such that a
more global scene composition becomes visible and ambigu-
ities are resolved. The first example (left) shows a static scene
of two objects partially occluding each other. Because of the
brightness distribution, the silhouette segregating the object
in front is completed by filling-in of the illusory boundaries
(Peterhans and von der Heydt 1991). Similarly, the second
example (right) illustrates a shape moving upwards and to
the right which is seen through a single aperture. This leads
to perceived normal flow orthogonal to the local contrast
(Adelson and Bergen 1985). If the image motion in a second
aperture provides additional information about the shape’s
motion and assuming that the two apertures belong to the
same surface, then the image motion can be disambiguated.

In the following, we illustrate canonical principles sum-
marized in Sect. 2 serve as biological inspiration to solve
computer vision tasks that require feature integration. The
resulting models show computational properties useful in
computational vision:

Competitive and cooperative mechanisms for feature
binding and segregation; and
Recurrent integration, normalization, and gain con-
trol.

In particular, we show how competitive and cooperative
mechanisms implement the perceptual binding of relatable
features as well as their segregation into disjoint entities.
We show how grouping and competition disambiguate local
shape and texture appearances which enables the segregation
of salient structure in the spatial domain. In the next section,
we focus on the spatiotemporal domain and demonstrate how
locally ambiguous imagemotion is disambiguated and linked
to generate coherent representations.
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4.2 Contour grouping and texture boundary
detection

We use the principles of filtering, integration and modula-
tion outlined in Sect. 3 in two example tasks. The first task
is concerned with the context-dependent perceptual binding
of local oriented items. Consider the input of a single ori-
ented contrast item that optimally drives a network node. The
resulting output activation is compared with the input con-
figuration in contextual displays. The item is surrounded by
similar items, with varying orientations, in a spatial arrange-
ment that forms a texture. This leads to a reduction of the
cell response at the center location. In contrast, if the bar
in the center is augmented by co-axially positioned and
like-oriented items, the target cell response increases. This
enhanced response even exceeds the reference level for the
single input. Using a two-layer architecture, we demonstrate
how the computational motifs of filtering, integration, and
modulatory feedback can explain such response properties.

The second example task extends the previous one. It
requires texture segregation through detection of orienta-
tion discontinuities in fields of local oriented items. Here,
a multi-layer hierarchical network structure again makes
use of successive stages of feedforward filtering which are
augmented by feedback connections. Higher levels modu-
late the responses to detailed texture information at lower
stages. Through selective elimination of weighted connec-
tions between layers, we demonstrate how feedback enables
the network to segregate textured figure outlines from back-
ground texture. The main impact is seen in complex cases
in which patterns show internal feature contrast.

Both examples refer to the canonical principles listed in
Sect. 2 which serve as biological inspiration and character-
ize computational properties for computer vision models:

Feature binding for grouping and selection; and
Perceptual decision-making for discrimination.

These computational functions are supported by the struc-
tural and functional motifs described as building blocks.
The specification of the components in each model architec-
ture follow the general structure outlined in eq. 3. We first
motivate the logic of investigation to highlight the relevance
for task-specific vision. The example results are chosen to
demonstrate that dynamic computations achieve the desired
results. We relate the test cases and their results to computer
vision scenarios and discuss their relevance. For a detailed
reference to implementations of the individual cases,we refer
to the original publications.

4.2.1 Perceptual binding in contour grouping and texture
suppression

This case study investigates how the initial response of a
network node to an input stimulus can be modulated. The
modulation is achieved by embedding the same individ-
ual input item into a larger spatial pattern of similar line
items. InKapadia et al. (1995) an optimally oriented stimulus
was placed inside the receptive field (RF) of an orientation-
selective target cell. The resulting output activity was used
as a reference amplitude. If the input is placed outside the
spatial RF, the cell does not respond at all. If additional line
segments are placed co-axially to the RF and on its preferred
orientation axis, then the target cell increases its response
above the reference level. This neural response signals the
presence of an extended contour arrangement. The response
of the cell is lower than the reference amplitude if the driving
input bar is instead part of a texture pattern composed of
bars with random orientations. Hence, the cell’s behavior is
consistent with the reduced information content of the indi-
vidual bar in the center of the target cell’s RF, which is now
part of the texture pattern. Finally, the oriented bar embedded
in the random texture is now augmented by line items placed
co-axially to form an extended contour within the texture
pattern. The cell response increases again to a level that is
larger than the reference level in response to the single item.
Overall, depending on the number of collinear line items, the
output response can fully compensate the reduction through
the texture pattern. The data is shown in Fig. 6 (left column).

The model is implemented as a two-layer hierarchical
architecture, with the first layer consisting of cells with ori-
entedRFkernels. The second layer consists of grouping cells,
which integrate the responses of first-layer nodes. These pro-
cessing stages roughly correspond to areas V1 and V2 in the
primate visual cortex. Oriented filters in the first layer have
even-symmetric weighting functions to sample the orienta-
tion space. Responses generated by such filters are inhibited
by an activity that is calculated from a pool of cells over
the spatial neighborhood and over the orientation domain.
The inhibition has a divisive effect, generated by a shunt-
ing inhibitionmechanism. The resulting output responses are
integrated at the next layer by orientation selective cells. The
cells integrate their input in proportion to the total coupling
strengthof oriented feature responses.Theweightingover the
space-feature domain is visualized as a figure-eight structure
of a bilaterally extended integration field that extends along
the axis defined by the orientation selectivity of the target cell
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Fig. 6 Context-dependent perceptual binding for contour grouping.
Neural responses in the early visual cortex depend on the context
provided as input to neighboring neurons. a Different stimulus config-
urations are presented (top), while responses of a neuron in a monkey’s
early visual cortex are recorded (bottom). A target cell is excited by an
optimally oriented bar (configuration 1) that is placed in the receptive
field of that cell (RF, square region in the center). The response can be
enhanced by additional flanking items placed colinearly outside the RF
(configurations 2 and 3) indicating the presence of an extended contour
configuration. However, if the central bar item is part of a random tex-
ture composed of bars then the response of the target cell is reduced at
the center (configuration 5). If the central cell is driven by an optimally
oriented bar item, which is again supported by co-aligned flanking bars
that form a fragmented continuous contour, then the suppressive effect
of the random texture is compensated.The response can even exceed that

of the initial oriented input. Configuration 6 to 8 indicate the presence of
a perceptual boundary item amidst a cluttered scene (figure reproduced
with permission from Kapadia et al. 1995). bNeural model simulations
reproducing the main effects of neural contour grouping (left) based
on inputs that replicate the experimental conditions in (a). The neuron
model incorporates computational principles of recurrent interactions
by modulatory feedback and pool normalization over a space-feature
neighborhood (see main text for details). The response of a target cell
that is driven by a single bar item is taken as reference level (anchored
at 0). The suppressive effects of embedding the bar as part of a tex-
ture and the counter-balancing excitation effects of additional colinear
boundary grouping are shown in the bar diagram. Black and gray bars
denote two different model parametrizations (figures with adaptations
are reproduced with permission from Neumann and Sepp (1999))

(compare the taxonomy defined in Neumann and Mingolla
2001). The output responses of cells in this layer are fed back
in a topographic fashion to enhance the cell responses of the
same orientation selectivity in the previous layer. Details of
the mechanisms and their formal definitions can be found in
(Neumann and Sepp 1999).

Simulation results of this model are shown in Fig. 6 with
the specific input stimulus configurations (middle column)
and the resulting relative output responses (right column).
First, we calculated the model responses to an oriented
bar placed centrally in the receptive field of the target unit.
This response serves as reference value to assess the rela-
tive change when the input is manipulated. It is assigned to

0% to isolate the change induced by different contexts (right
column).We tested two stimuli in accordance with the phys-
iological measures. One stimulus is composed of a texture
patch of randomly oriented bar items (texture). The other
stimulus is composed of a texture in which the element in the
center is augmented by collinear items positioned co-axially
to the orientation axis defined by the cell’s RF. Depend-
ing on the strength of modulatory feedback, controlled by
the parameter λ, the relative response of the target unit is
down-modulated by the influence of the texture pattern in
the normalization pool. Through the long-range grouping of
collinear items (bound into an extended contour) the response
in the second layer is increased due to the increased group-
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ing activity. This signal is sent back to amplify the individual
item in the display center. The resulting gain enhancement
leads to a compensation of the down-modulation due to the
texture-generated normalization. The net effect leads to a
further enhancement of the response strength in the center
(Fig. 6, right).

Groupingmechanisms that employGestalt lawsof percep-
tual organization, such as, good continuation, proximity, and
similarity, have been defined in other biologically plausible
models (Grossberg andMingolla 1985;Grossberg et al. 1997;
Li 1998) and have already inspired computer vision algo-
rithms for contour enhancement (Parent and Zucker 1989;
Guy andMedioni 1996; Hung et al. 2020;White et al. 2022).
The architecture outlined here emphasizes that the proposed
canonical principles of computation i.e., feedforward and
feedback processing combined with competition and nor-
malization, can achieve contextual amplification through
grouping, as well as de-amplification or suppression in case
of reduced information content of stimulus components. The
stimulus features and their configuration can be directly inter-
preted in light of the predicted output calculations by the
architectural components. In addition, the modularity of the
model allows composingmore complexmodel variants using
the same building blocks of neural computation. An example
is introduced and discussed in the next subsection.

4.2.2 Texture boundary detection, target contour grouping,
and figural texture extraction

The visual system accomplishes texture segmentation by
detecting boundaries between homogeneous regions that are
composed of texture items. Such boundaries are defined
by local feature contrast such as orientation differences,
rather than the similarity of the target items (Nothdurft 1991,
1993a). This finding is already interesting since region-
oriented segmentationmechanisms in computer vision assume
a distance metric between image elements which determines
homogeneity in a region (Fu and Mui 1980; Gonzalez and
Woods 1993; Szeliski 2010). In various experiments, Noth-
durft showed, however, that feature contrast characterizes
homogeneity for texture as well as for motion and color
based segmentation (Nothdurft 1993b). Discontinuities in
such changes determine contrasts that delineate homoge-
neous regions. Boundary detection is not only a prerequisite
for region segmentation but also for target detection in atten-
tional visual search tasks (Wolfe 2020).

We extended the model framework for contour grouping
in the previous subsection by adding a third block composed
of excitatory and inhibitory nodes. All blocks are stacked
in a hierarchy and neighboring stages interact via feedfor-
ward and feedback connections. Again, feedforward links
are driving while feedback connections are modulatory. The
three network layers roughly correspond to areasV1,V2, and

V4 along the ventral stream in primate visual cortex. While
the first two stages have similar operational principles as the
model sketched above, the additional layer is composed of a
family of oriented contrast filters. These filters possess juxta-
posed excitatory and inhibitory subfields of increased size in
comparison to the V2 long-range grouping filters. The sub-
fields are selective to different input orientations from the
previous processing stages. This makes such nodes selective
to orientation contrasts. Details of the mechanisms and their
formal definitions can be found in Thielscher and Neumann
(2003, 2005).

We demonstrated how different top-down connections
contribute to the results of segregating a target figure from
the background (see Fig. 7a). In the two depicted cases a ver-
tically oriented rectangular patch needs to be distinguished
from a horizontal one. The dotted outline is included for
display purposes only and is not shown in real stimuli. The
homogeneous textures of figure and background are defined
by oriented bar items that are placed on a regular grid with
slightly randomized positions and orientations. The region
interiors and the boundaries between figure and background
have distinct orientation contrasts. In the upper display, the
orientation difference between neighboring bar items in fig-
ure and background regions is 0◦ (BN, background noise).
In order to visually segregate the figure patch from the back-
ground, an orientation contrast (OC) of 30◦ is necessary.
A more challenging case is shown in the bottom display.
The orientation difference in the homogeneous regions is
BN = 20◦. In other words, going horizontally or vertically
through the grid of bar items, their orientation changes by the
amount of the BN. Under these conditions, in order to detect
the rectangular figure patch, the orientation contrast must be
increased. In the case shown, we have OC = 90◦.

Using the proposed model architecture, we investigated
which network connections contribute most to the desired
functionality. To evaluate the strength of contrast selectiv-
ity, we defined a metric that compares activations in model
areaV4, which is selective to texture segregation (Thielscher
et al. 2008). We calculated the ratio between mean responses
to the figural region (including the boundary) and the mean
responses for the background region (Thielscher and Neu-
mann 2007). An example display of model V4 responses
and the region masks for calculating the measure are shown
in Fig. 7b. For stimuli composed of easy to segregate item
arrangements the model architecture successfully segregates
the figural patch from the background (results not shown
here). However, for more demanding cases in which non-
zero OC defines the homogeneous regions, the different
stages of processing and their mutual interactions become
more important. We investigated four versions of the net-
work architecture with the intact version serving as reference
(Fig. 7c, top). We generated lesioned versions by selectively
eliminating inter-areal connections. One version reduces to
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Fig. 7 Texture boundary detection and segregation of figure from
ground. Panels with texture patterns composed of oriented bars con-
tain a rectangular figure that is either oriented horizontally or vertically.
While homogeneity of background and figure is defined by an ori-
entation gradient of the bar items, separation of figure from ground
can be established if texture boundaries can be detected from changes
in orientation contrasts. In a modelling study, a neural network that
utilizes recurrent interactions by modulatory feedback and pool nor-
malization over a space-feature neighborhood has shown to be capable
of such texture boundary detection and segregation (see main text for
details). a Two example displays with different orientation changes
within homogeneous regions (BN, background noise) and between
homogeneous regions (OC, orientation contrast). OC and BN values
determine orientation changes between neighboring bars (in degree).
Dashed red rectangles indicate the outline of the figure shape (shown
for illustration purposes only). b Response of the highest layer of the

three-layer network (referred to cortical area V4) for a stimulus defined
by (OC = 30◦,BN = 0◦) (top) and visualization of the activity com-
ponents used to build a metric for determining the model’s segregation
performance (bottom). c Model performance (bottom) across different
OC values for a given value of BN = 20◦ for the intact network and
different model ablations (top, depicted bymissing arrows between net-
work layers). The intact model (full recurrent), as well as a variant with
missing feedback (FB) from the second to the first layer (w/o V2 →
V1 FB) reach high performance values once the OC value surpasses the
BN value. In contrast, ablations of FB from the third layer to the second
layer (w/o V4→V2 FB) or removing all FB connections (pure feedfor-
ward) merely result in enhanced activity of figure versus surround. This
demonstrates the relevance of higher-level contextual feedback infor-
mation for texture boundary detection and segregation in cases of noisy
cluttered input (figures reproduced with permission from Thielscher
and Neumann (2003, 2005))

a three-stage feedforward model (eliminating all feedback
connections) and two variants have the feedback connections
between two stages eliminated while the other stays intact.
This results in two further versions, namely one with the
V4→V2 connections eliminated and one with the V2→V1
connections eliminated.We parametrically varied the OC for
the texture stimulus with BN = 20◦ and probed each version
with the respective input stimulus. For each of the processing
results we calculated the evaluation measure and displayed
the values in the graph in Fig. 7c, bottom. The intact model
predicts a smooth increase in the ability to segregate the figu-
ral region for increasing OC, which starts to saturate at about
60◦. In the lesioned versions of the model, the elimination of
reentrant signal flow via feedback leads to diminishing the

separability of figural and background region. The version
with the V4→V2 connections left intact only shows minor
deprivation in comparison to the other lesioned architectures.
This suggests that higher level top-down contextual infor-
mation makes a major contribution to the performance for
the segregation task.

Segmenting a visual scene is a task for generating a
meaningful partitioning of the input feature representation
into components. In most computer vision approaches the
segregation of an input into prototypical parts (character-
istic of surfaces or objects) is guided by a coherence or
homogeneity property that region elements share. As already
highlighted above, Nothdurft’s experiments suggest that
such homogeneity properties should include first-order con-
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trast information between feature items as well (Nothdurft
1991). Increased contrasts among feature items, or second-
order changes in feature characteristics, are then indicative
of boundaries between homogeneous stimulus components.
The proposed model, which utilizes the canonical stages
of computation outlined in Sect. 3, has been applied to real-
world input stimuli with compositions of texture regions.
These regions were defined by natural materials or sur-
faces as documented in the textbook of natural textures and
are used as benchmarks in computer vision (Brodatz 1966)
(see http://www.ux.uis.no/~tranden/brodatz.html; download
2023). The results demonstrate that computer vision tasks
can be solved by such neural mechanisms. They could be fur-
ther improvedby adopting task-specific requirements defined
for a given application domain (Bhatt et al. 2007). With
such extensions or adaptations, we expect that biologically
inspired pixel-wise segmentationmechanisms can be derived
and successfully employed in real-world applications.

5 Motion detection and integration

5.1 Neural mechanisms of motion detection and
integration

We utilize the principles outlined in Sect. 3 and focus now
on processes and representations along the dorsal stream in
cortex. These investigations show how the canonical princi-
ples of context-dependent binding and disambiguation can
be applied to processing spatiotemporal inputs. We present
example tasks of motion processing. One problem focuses
on context-dependent binding and disambiguation of local
normal flow estimates. Such measures result from the lim-
ited spatial information available along extended contrasts,
where any shift of luminance structure can only be regis-
tered orthogonal to the contrast orientation. This gives rise
to the aperture problemofmotion (Adelson andBergen 1985;
Watson and Ahumada 1985). This can be solved by integrat-
ing multiple local responses of non-collinear normal flows.
Different computational strategies have been proposed for
such integration of motion estimates, namely vector average,
intersection-of-constraints (IOC), or feature tracking (Adel-
son and Movshon 1982; Bowns 2001).

We use a three-layer neural architecture and apply the
neural computational motifs of spatiotemporal detection,
integration, and modulatory feedback. Together they can
account for local motion prediction and integration. Their
action disambiguates local normal flow estimates and, thus,
solves the aperture problem. The model makes use of dif-
ferent neural coding strategies, namely rate as well as spike
encodings. Velocity (direction, speed) representations at the
stage of motion integration in model area MT recurrently
interact with motion integration in model MSTl and the local

spatiotemporal frequency detection in area V1. This inte-
grates unambiguous feature responses, e.g., at line ends, with
ambiguous motion estimates at outlines. The resolution of
uncertainty is achieved iteratively and it therefore takes time
to disambiguate local estimates starting at localized features.
The motion integration robustly combines translatory and
rotational motion.

In addition, we demonstrate how such models of motion
detection and integration can be implemented on neuro-
morphic hardware. We show how event-based input from
a neuromorphic camera leads to the representation of event
clouds (without discrete frames) to be processed by a bank
of oriented spatiotemporally sensitive filters. Such a scheme
can be executed on a neuromorphic chip to operate in real-
time. Additional stages of normalization and the integration
in a two-layer bidirectionally coupled network (outlined in
the first example) can also be made operational to build neu-
romorphic schemes of motion analysis. Again, both example
cases characterize some canonical principles summarized
in Sect. 2 as biological inspiration and characterization of
computational properties to be incorporated in computer
vision models:

Feature disambiguation, selective integration, and seg-
regation;
Sparseness and coherence; and
High temporal precision.

The computational functions are supported by structural
and functional motifs from visual neuroscience and can be
employed in computer vision tasks.

5.1.1 Feature integration and disambiguation for visual
motion representation

Localmotion seen through an aperture allowsmeasuring nor-
mal flow only, leading to the aperture problem. In Pack and
Born (2001) it is demonstrated that neurons in the motion
sensitive cortical area MT resolve the aperture problem over
time. Short oriented bars drive contrast selective cells. MT
cells that process the central portion of the bars are initially
tuned to the normal flow direction. Within a time window of
60 to 80 ms - depending on the length of the bars - the tuning
adapts to encode the physical motion direction, thus solving
the aperture problem. This also has direct consequences on
the behavior of an active observerwho tracks amoving object
via smooth pursuit eye movements (SPEM). For example,
while fixating the central portion of a backwards tilted bar
moving horizontally, the SPEM is initially repelled in the ver-
tical direction. This deviation is proportional to the vertical
component of the normal flow for the slanted bar. However,
this deflection is compensated such that the SPEM then fol-
lows the physical motion in front of the observer (Born et al.
2002). The time for compensation likewise depends on the
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distance of localized features of the moving shape that have
unambiguous image motion.

We proposed a multi-layer hierarchical model architec-
ture of processing along the dorsal pathway with similar
components as the model for shape processing in the ven-
tral stream. The model is composed of three layers, which
correspond to cortical areas V1, MT, and MSTl. The areas
are represented by layers of mutually coupled excitatory
and inhibitory cells. In the first layer, we utilize oriented
filters with contrast sensitive spatial weighting functions.
Their response characteristics are selective to spatiotempo-
ral shifts to the left or to the right of the axis of orientation.
Filter responses are inhibited by activity of a pool of cells
over a spatial neighborhood, different contrast orientations
and spatiotemporal motion selectivities. Like in the model
architectures described in the previous sections, the inhibi-
tion has a divisive, or shunting, effect. The resulting output
responses are integrated by velocity selective cells in the next
layer, corresponding to area MT. Cells tuned to different
directions integrate input activations from model V1 cells
at locations corresponding to the individual speed selectiv-
ity of model MT cells. Again, cell responses are normalized
by integrated pool activities over a space-velocity neighbor-
hood. Output responses feed forward to a layer of direction
sensitive cells, corresponding to area MSTl. They integrate
MT output over a large spatial neighborhood and different
speed selectivities. Cell responses undergo mutual competi-
tion to normalize their activities. All outputs generated at the
different model layers also generate modulatory feedback to
cells at topographically corresponding positions in the previ-
ous layers. The recipient locations are shifted corresponding
to the linear forward predictions by motion selective cells.
The motion selective cells are able to make these predictions
due to their direction as well as speed selectivity. The mod-
ulatory enhancement again follows the mechanism specified
in eqs. 2 and 4 such that feedback signals are gated by corre-
sponding feedforward activities. Details of the mechanisms
and their formal definitions can be found in Bayerl and Neu-
mann (2004); Bouecke et al. (2011); Löhr et al. (2019).

Simulation results of the model are shown in Fig. 8. The
model predicts that local unambiguous feature motion is
integrated at higher stages over a larger spatial scale. This
provides evidence for the most likely movement direction
which is sent back to enhance the corresponding direction
selective responses at earlier stages. Such feedback signals
help to disambiguate uncertainties in local motion detec-
tion, thus iteratively solving the aperture problem. Such
disambiguation of responses follows a grass-fire spreading
principle. It starts from localized surface/shape features and
propagates inwards along shape outlines. The time needed to
disambiguate the normal flow in the center of the moving bar
(Fig. 8a) is proportional to the distance that the cooperative-
competitive disambiguationwave requires for propagating to

the target location. The different phases of the disambigua-
tion are shown for a vertically oriented bar traveling upward
and to the right. Feature motion is initially signaled at the
line ends with unambiguous motion direction. It then initi-
ates disambiguation until the entire bar is tagged by the same
physical image motion direction, thus resolving the aperture
problem.

Regularized motion integration schemes in computer
vision often employ a data term that minimizes the IOC error
of the velocity estimates (Hildreth 1984; Horn and Schunck
1981; Bruhn et al. 2005). In addition to such cases of trans-
latory image motion, we show here the result of motion
integration for rotational movement in the image plane
(Caplowitz et al. 2007). Figure8b shows results of process-
ing a windmill shape that rotates counterclockwise around a
center point. Motion estimates generated by model MT cells
indicate coherent motion for each of the wings (color wheel
encoding) accomplished by encoding the increasing angular
velocity by speed selective cells. The response character-
istics of cells with different speed tuning are shown with
the read-out and combination of response amplitudes. The
profile (bottom, red curve) shows the reconstructed speed
in the image plane together with the ground truth of physi-
cal angular motion (green line). This demonstrates that the
model architecture is capable to disambiguate local motion
estimates and can successfully handle different affine com-
ponent motions.

The influence of the modulating top-down feedback at
different levels of the model architecture is demonstrated in
Fig. 9a. We selectively lesioned the model similarly as in
the texture boundary detection model discussed in Sect. 4.
The graphs show the consequences of removing single or
multiple feedback connections in comparison when all mod-
ulatory feedback and lateral cell interactions in MT are
intact (red curve). The endpoint error between estimated
and true velocity vectors is used as criterion. Removing the
lateral connections between MT cells (yellow curve) does
not significantly harm the performance. However, a drop in
performance is immediately visible when MSTl→MT feed-
back is removed (blue curve) and an even stronger effect is
seen with the removal of MT→V1 feedback (green curve).
Removal of all feedback connections results in a pure feed-
forward model, which leads to the worst performance (gray
curve).

To illustrate the contributions of modulatory feedback for
motion integration and the consequences of their elimination,
we show two examples generated by using an intact model
architecture and MT→V1 feedback eliminated. One com-
putational experiment investigates how the model tracks a
vertically moving target (envelope of Gabor patch) that cap-
tures an internal spatiotemporal horizontal driftmotion inside
the Gabor carrier (Fig. 9b, left). Both components move with
the same speed in the image plane. The model predicts that
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Fig. 8 Motion binding and perceptual disambiguation for planar
motions. The proposed neural architecture incorporates recurrent inter-
actions by modulatory feedback and pool normalization over a space-
feature neighborhood (see main text for details). The function of the
architecture successfully infers a wide range of planar motion patterns.
a Translatory motion of elongated shapes is processed by neurons hav-
ing only small receptive fields such that only the motion component
normal to the outline can be encoded (aperture problem; top (Adelson
and Bergen 1985; Watson and Ahumada 1985)). Iterative feedforward-
feedback interaction initiates spreading unambiguous feature motion
signals at line ends along shape outlines. This disambiguates local
motion estimates solving the aperture problem to build a representa-
tion of a coherently moving bar (shown is a sequence of four timesteps
for a moving bar from bottom left to top right, Löhr et al. (2019);

bottom). Brighter values encode smaller average angular error of the
motion direction estimate at each pixel. b The gradual binding and
disambiguation also helps to build representation of rotational object
motion. A windmill stimulus with counter-clockwise rotation is repre-
sented by different velocitieswith increasing angular speed as a function
of the radius of the position on the arms of thewindmill (top). Themodel
framework encodes themotion for different directions (colorwheel) and
in different speed sensitive channels (Löhr et al. 2019). Integrating neu-
ral responses from a population of neurons with similar direction but
different speed selectivities (blue) leads to inference of the shapemotion
(red). The reference shows the true tangential velocities with their speed
gradient as ground truth (green; bottom) (figures reprinted from Löhr
et al. (2019) with permission)

MT’s population response integrates the component motions
from the envelope and thedrift of theGaborwaveform (vector
summation). The perceived upward motion trajectory which
is bent by the lateral offset response leads to the so-called
Curveball illusion (Shapiro et al. 2010). The offset in the
representation of spatiotemporal motion is small in model
V1 with stronger response to the envelope motion, while MT
responses are biased towards the perceived motion by the
wave-modulation (solid curves). When MT→V1 feedback
is removed, no strong influences on V1 can be observed. The
small kernels with spatiotemporal input selectivity measure
local changes and only gain weak amplification through MT
feedback. In model MT the error is getting larger when feed-
back is removed (dashed lines). The feedback that biases
velocity sensitive representation is missing and the local
motion inside the carrier leads to stronger influence on the

perceivedmotion (Fig. 9b, right; formore details, see Schmid
et al. 2019).

MT feedback activity generates a perceptual hysteresis
effect for prolonged input motion statistics (Fig. 9c). An
input sequence is presented that consists of 60 frames each
with 60 randomly positioned dots. All dots initially move to
the right (random-dot kinematogram, RDK). Each dot has
a constant velocity. Over time, in each frame the move-
ment direction of one randomly selected dot changes its
movement to the opposite direction. Consequently, after 30
frames 50% dots move to the right and 50% move to the
left, while 100% of the dots move to the left at the end
of the video. The top-down feedback modulation here fur-
ther enhances the feature motion that is initially detected
by spatiotemporal selective cells. Since MT cells integrate
over a larger neighborhood, the feedback generates an iner-
tia locking the top-down motion prediction over a longer
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Fig. 9 The role of feedback in motion detection and integration. Feed-
back is shown to play a vital role in neural motion detection and
integration. We selectively lesioned feedback connections in a 3-layer
model architecture (V1-MT-MSTl) that has been used to process input
shown in Fig. 8. The elimination of signal pathways severely degrades
performance. a We consider the complete model as reference with all
feedforward (FF), lateral, and feedback (FB) connections intact. The
graph shows the effects of removing FB connections, namely removing
FB to the second layer (No FB into MT), removing FB from the second
to the first layer (No FB into V1), or removing both FB connections (No
FB to V1 & MT). The different graphs show how these manipulations
severely impair the network performance through significant increases
of the direction error (Löhr et al. 2019) (figure reproduced with per-
mission). b In displays of the Curveball illusion component motion
of a grating producing a horizontally traveling wave is overlayed by a
Gaussian envelope that moves vertically. Together this leads to a per-
ceived diagonally moving object with the orientation depending on the
relative velocities of both components (left). The neural model above
predicts similar perceived motion trajectories where the representation
at the higher stage (MT) showed a displaced estimated motion trajec-

tory akin to the perceptual phenomenon, while the lower stage (V1)
more closely followed the true envelope motion of the Curveball object
(solid lines, right). If FB from MT to V1 was removed (dashed lines),
the deviation of motion prediction became large in MT while the effect
inV1wasminute (Schmid et al. 2019). c In a random-dot kinematogram
(RDK) increasingly more dots of the overall display population change
their motion from an initial direction assigned to all dots (i.e., left or
right) until all dots move in the opposite direction. Observers watch-
ing such motion sequences tend to perceive the same motion direction
until an overwhelming number of elements signals the opposite (inlet
arrows ”a”, ”b”). Such a hysteresis effect is demonstrated in a two-layer
motion model composed of areas V1 and MT (MSTl has been omitted
here). The decision is made on the stronger integrated response for the
two opposite motion directions integrated over the display panel. The
model tracks the motion with a certain momentum before updating the
belief state rapidly to accommodate for detecting the opposite motion
direction (top). If MT→V1 FB is lesioned the hysteresis effect is extin-
guished. Only the relative percentage of motion contribution to either
direction is signaled, like in a linear filter (bottom) (panels reprinted
with permission from Bayerl and Neumann (2004))

temporal period. Initial ambiguity in estimated motion from
confounding measures is disambiguated to indicate coherent
motion. Integratedmotion responses predict the samemotion
direction even though a linearly increasing number of dots
move in the opposite direction. When 60% to 75% of dots
have changed their direction the decision becomes unreli-
able and quickly switches to the opposite direction (Fig. 9c,

top; rightward motion sequence ‘a’). The same inertia occurs
for opposite motion directions (sequence ’b’), which deter-
mines the hysteresis effect. When the modulatory feedback
is eliminated, no hysteresis occurs. Now the cell responses
indicating rightward (or leftward) motion linearly vary with
the relative number of dots in theRDK (for details, seeBayerl
and Neumann 2004).
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5.1.2 Processing multiple motions

The local cooperative-competition mechanisms described
above support building representations of shapes moving in
the image plane. So far, we discussed how coherent motion
interpretations of such objects could be inferred. What about
multiple object motions in the scene? We briefly summarize
some of our investigations that extend the introduced model
framework to handle more complex motions that are gener-
ated by multiple shapes or patterns and their occlusions.

Multiple objects moving independently in a scene viewed
from a specific observer perspective may partially occlude
each other with one surface region in front of another more
distant surface. Localized features that belong to one surface
generate evidence of unambiguous motion, while those gen-
erated by multiple surfaces - due to their mutual occlusion -
could generate contradicting evidence of feature motion. A
classification of terminators has been proposed byNakayama
et al. (1989): an intrinsic termination feature belongs to an
object or surface, while an extrinsic feature belongs to an
occluder. The visual system seemingly re-weights the influ-
ence of such features to integrate those that belong to a
coherent shape and to segregate the occluding segments apart
(Braddick 1993). How terminator classification leads to dif-
ferent scenic movement interpretation is demonstrated in the
Chopstick illusion (Anstis 1990). Here, two bars forming an
X-pattern invisibly occlude each other in their center portion.
The two tilted bars move horizontally in opposite directions
such that their line ends form intrinsic terminator features.
The two segregated bars are perceived to move in opposite
directions. Now, two surface regions are placed so that their
outline boundaries abut the line ends of the crossing bar at
their top and bottom, respectively. These end points are now
extrinsic to the bars since they are perceptually owned by the
occluding surface patches. As a consequence, the features
at the crossing of the bars now dominate the motion feature
integration that leads to perceived vertical rigid shapemotion
(for an illustration, see Neumann et al. 2007). In the Barber-
pole display, diagonally oriented moving bars seen through
an invisible aperture are perceived to move in a direction
that is induced by the line ends interpreted as intrinsic to the
bars (Wallach 1935). If monocular occlusion cues are added
abutting the line ends along parts of the aperture outlines then
they are interpreted extrinsic to the moving bars. As a conse-
quence, the pattern motion is biased by those line ends still
being interpreted as intrinsic (Liden and Mingolla 1998). In
the visual system, such cue-based interpretation is already
accomplished at early stages along the cortical dorsal path-
way (Pack et al. 2004).

In Beck and Neumann (2010, 2011) the computational
model architecture sketched above is extended to integrate
motion and shape representations, capitalizing on the com-
plementary mechanisms of segregated motion and shape

processing in the dorsal and ventral pathways, respectively
(Grossberg 2000). The extended model enhances the inte-
grative function of feature combinations by re-weighting the
contribution of shape features dynamically, together with the
contour arrangements along themoving shape elements. This
leads to context-dependent enhancement or suppression of
local features depending on their perceptual interpretation
as being intrinsic or extrinsic to the shape and their motion
estimation.

Another sort of motion patterns impose a challenge to
processing. Consider, for example, object and background
motions of a scene that we watch through the window of
a train, while at the same time, the movement of people
inside the train is reflected in the window. The overlay of
the reflection leads to transparent motion. Fine structures,
e.g., tree branches, leafs or garden fences, partially occlude
the background scene.When the finely structured foreground
and the background move independently over a large enough
spatial region, the patterns are segregated into a percept of
semi-transparent motion. The movement directions of such
overlay patterns must exceed a minimal perceptual angle in
order to be segregated into independent transparent motions
(Braddick et al. 2002; Treue et al. 2000). Spatiotemporal
grouping mechanisms support the perception of transparent
motion (Stoner et al. 1990; Braddick and Qian 2001).

We extended the core hierarchical architecture by incor-
porating a stage with cells selective to large motion patterns
and their composition (Raudies and Neumann 2010; Raud-
ies et al. 2011). Model MT cells uniformly integrate motion
signals which are then fed forward to model MSTd cells.
They selectively integrate local motions which are compati-
ble with large field motion patterns. Model areas are coupled
bidirectionally via feedforward and feedback connections to
propagate the spatially integratedmotion signals. Thegeneric
principle of cooperative-competitive processing is realized
by the different integration mechanisms in model areas MT
andMSTd and their mutual interactions. The model not only
replicates physiological as well as psychophysical data, but
also makes predictions about the size of coherent motion
display patterns required to discriminate transparent from
opaque pattern motion (Raudies et al. 2011). The biologi-
cally inspiredmodel architecturewas then used in a computer
vision application to analyze crowd motion in surveillance
videos. The task was to detect potentially hazardous sit-
uations in the crowd. It was demonstrated that in motion
patterns ’dangerous zones’ were tagged when motion trans-
parency and negative speed gradients (decelerated motion)
occur simultaneously (Raudies and Neumann 2012).

5.2 Neuromorphic motion detection

The motion processing architecture outlined above involves
recurrent computations that are carried out in parallel across
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the visual fieldwith dynamics that are tuned to capture awide
range of motion speeds, directions, and scales. This combi-
nation of parallel processing and precise timing makes it a
prime candidate for implementation in neuromorphic hard-
ware and processing of event-based input.

A family of image sensors have been developed that gener-
ate address-event representations (AER) instead of recording
full-frame images (Lichtsteiner et al. 2008; Posch et al.
2014). This more closely resembles the function of the
photoreceptors and successive neural responses in the mam-
malian retina (Delbruck and Liu 2004). It further supports
the canonical principles outlined above, namely sparse-
ness of representations, high temporal precision, and the
coherence of event-based representation of spatiotemporal
structure. For example, in dynamic vision sensors (DVS)
each pixel asynchronously generates a response if the inten-
sity sensed at a pixel position changes significantly3. In
order to distinguish increases and decreases of intensity,
ON and OFF event types are represented separately. Indi-
vidual responses are then signaled as small data packets
ev (p, t) = ((x, y), type, time-code), which uniquely anchor
events in space-time. A camera that observes a scene gen-
erates clouds of events with events at individual (x, y, t)
locations. This stands in contrast to image frames with dense
arrays of pixel values charged over a fixed temporal window
(Liu and Delbruck 2010).

Such asynchronously responding cameras yield high tem-
poral response characteristics, which is of utmost interest
for real-time vision applications, they can quickly adapt to
changing illumination conditions, and they consume only a
fraction of power. This has already inspired a community
of computer vision researchers to investigate the adapta-
tion of vision algorithms operating on event data. Examples
of event-based computer and robot vision are optical flow
computation (Benosman et al. 2012, 2014; Orchard and
Etienne-Cummings 2014), flow-based navigation (Kashyap
et al. 2021), depth from stereo correspondence (Rogister
et al. 2011), low-level image feature detection (Clady et al.
2015), and robotic control in a sensory-motor loop (Kauf-
mann et al. 2019) (see Gallego et al. 2022, for an overview on
event-based vision). The development of neuromorphic sen-
sor technology was paralleled by concurrent development
of brain-like computing hardware. The hardware frame-
works can be distinguished according to the coding of neural
responses and their representations, namely analog, digital,
and hybrid concepts. At the moment, analog components
lack the stability to enable robust programmability and com-
putation. Neuromorphic computing platforms that operate
digitally provide the basis for implementing neural sensory
algorithms at a larger scale. Examples of such platforms

3 Pixels may interact with other pixels in a local spatial surround,
depending on the device parameter settings.

are IBM’s TrueNorth chip (Merolla et al. 2014), SpiNNaker
(Furber et al. 2013, 2014), and Intel’s Loihi (Davies et al.
2018, 2021).

Neuromorphic vision is a success story for biological
inspiration in computer vision in its own right. It has enjoyed
increasing popularity in recent years and summarizing all
current developments is beyond the scope of this review.
However, neuromorphic computing is relevant for our pur-
poses because its sparse, parallel computation and high
temporal precision are well suited to implement the canoni-
cal computations outlined above. Therefore,we briefly report
the adaptation of the first stages of the biologically inspired
hierarchical neural architecture which processes event-data
acquired by a DVS camera for motion detection and inte-
gration described above. We designed a spatiotemporal filter
mechanism for estimating the likelihood of local spatiotem-
poral movements from ON- and OFF-events (Brosch et al.
2015a). The normalization in the competitive stage of divi-
sive inhibition implements a statistical whitening that leads
to a broadening of initial direction selectivity for cases of
ambiguous motion. A simple read-out mechanism demon-
strated the capability of the model as a prerequisite for
representing multiple motions, just as required for trans-
parency. The motion detection model has been realized on
the brain-like neuromorphic chip TrueNorth that initially
filters event-based camera input in real-time (Brosch and
Neumann 2015). The more complex neuronal interactions
of feedforward and feedback streams have also been real-
ized on TrueNorth (Löhr et al. 2020). A recurrent model
mechanism with two hierarchically organized stages of
event-based motion detection (model V1) and subsequent
large-scale motion integration (model MT) has been realized
in (Tschechne et al. 2014; Brosch et al. 2015b). Figure10
shows some results of processing rotational input motions.
The initial responses of model V1 cells are noisy and show
spurious responses with significant direction noise, includ-
ing directions opposite to the true image motion. Such initial
responses are integrated by model MT cells with larger ker-
nels operating on a coarser scale. Top-down feedback to the
initial filter responses eliminates the spurious responses and
enhances the coherent motion responses. Since the recurrent
feedback modulates the feeding input activations the spa-
tiotemporal representation in V1 remains sparse.

6 Mechanisms of neural adaptation

6.1 Bottom-up and top-downmechanisms in
adaptation

In order to detect and encode features under highly vari-
able and uncertain sensing conditions, various mechanisms
are required to adapt the gain and response characteristics
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Fig. 10 Event-based motion detection and integration. The core mech-
anisms of the neural model architecture for motion detection (i) allow
the processing of camera sensor input that generates address-event rep-
resentations and (ii) is a candidate for implementing the model on an
energy-efficient neuromorphic hardware platformBrosch et al. (2015a).
A simplified two-layer (V1, MT) model implementation again has been
probed with different types of image motion. For rotational motion (as
in the windmill stimulus in Fig. 8) neurons sparsely represent motion
at pixels having a spatiotemporal intensity gradient. For rotatory planar

motion, as for the presented windmill stimulus, neurons only code for
and integratemotion information sparsely at pixelswith such space-time
gradient in the input. Initial motion estimates in V1 (left) are propagated
and integrated on a coarser spatial scale in MT to generate coherent
motion estimates (center). These responses are then propagated back
to V1 via feedback. In V1 they reduce spurious responses and gener-
ate sparsified but coherent representation of spatiotemporal movements
along the windmill arms while the background remains silent (panels
reproduced with permission from Brosch et al. (2015a))

of the neural system. Such adaptations mainly compensate
the neural selectivity for repeatedly presented inputs becom-
ing less responsive. This enables the system to efficiently
encode target stimuli and to keep a sensitivity margin to
detect and encode novelties in the input. The features of
background stimuli and their statistical properties might sig-
nificantly overlap with those of the target of interest. Thus,
additional mechanisms must exist that help to select spe-
cific features in a sea of inputs. Attention guides cognitive
resources to filter information that is relevant to the cur-
rent behavioral task while suppressing the remaining stimuli
(James 1890). The function of the recurrent feedback net-
work mechanisms in Sects. 4 and 5 increase the gain of
layer-dependent filter outputs. They resemble a hierarchical
principle of attentive selection. In particular, the combined
enhancement (by gain modulation) and suppression (by nor-
malization) realize a type of biased competition to deploy
attentive resources to locations and/or features (Desimone
1998). Attention can be guided to a defined stimulus in a
top-down observer-driven fashion. The history of the previ-
ously selected items subsequently influence the saliency of
the items that have not been selected before. They promote
effective guidance of attention steering and the selection of
target items in everyday scenes and task demands (Vo and
Wolfe 2015; Wolfe 2019). Such search tasks rely mainly on
episodic memory that guides attention. The neural system
utilizes mechanisms to dynamically store and retrieve mem-

ory information. It combines themwith current input stimuli.
Such memory mechanisms span a broad range of temporal
scales, ranging from milliseconds to seconds (Tetzlaff et al.
2012). A specific memory trace has been demonstrated in
the feedback motion response discussed in Sect. 5. In this
example, the history of inferred motion direction re-weights
the strength of responses to motion integration. Such trace
generates a hysteresis effect for motion directions that are
dynamically supported by the recent stimulus history. The
hysteresis effect imposes a kind of memory mechanism. It
retrieves the dynamic activation and combines it with current
input evidence to yield the most likely interpretation of the
stimulus.

Both examplemechanisms of neural adaptation and selec-
tive attention again characterize some canonical principles
collected in Sect. 2 as biological inspiration and character-
ization of computational properties to be incorporated in
computer vision models:

Coding properties and representation; and
Response adaptation in changing environment condi-
tions.

These computational properties are supported by inte-
grating functional mechanisms that extend the model circuit
components for recurrent feedforward and feedback interac-
tion between two layers of motion processing (Sect. 5).
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6.2 Adaptating feedback loops to natural scene
statistics

A key challenge for computer vision algorithms is to remain
robust if the statistics of the environment change.Most meth-
ods aim to compensate the shift in input statistics, i.e., to shift
the inputs back to the original distribution (Schneider et al.
2020). The biologically inspired view suggests a different
possibility: neurons continually adapt their selectivity to the
current input and their recent response level. In a simple feed-
forward system, this could lead to unstable learning in which
the system loses sensitivity for anything but the most recent
experience. However, canonical principles such as the incor-
poration of feedback and activity normalization can balance
stability and plasticity (Grossberg 1980). We exemplify this
in the case of motion processing.

Prolonged visual exposure to motion of a particular direc-
tion leads to an illusory drift of perceived motion in the
opposite direction when the gaze is directed to a still image
(motion after effect, MAE). For example, in the waterfall
illusion the adapting stimulus is defined by water flowing
in one direction (Anstis et al. 1998). The MAE is certainly
a cortical phenomenon caused by the selective adaptation
of spatiotemporal direction selective cells. In this example,
those cells responding to the water reduce their sensitivity
by adapting their gain to the continuous flow direction. The
adapted cells pay the price of getting a competitive disadvan-
tage during subsequent selection ofmotion directions when a
new stimulus is presented:Motion sensitive cells tuned to the
opposite direction now briefly become dominant and signal
the illusory flow (Born and Bradley 2005).

We have investigated the functional effects of adaptation
at the synaptic level in the neural model of V1 and MT
motion processing discussed in Sect. 5. We studied adapta-
tion effects depending on natural scene statistics after skew
transformations, which emulate, e.g., the viewing defor-
mations for subjects wearing spectacles. In psychophysical
experiments subjects watched short video sequences of nat-
ural scenes. These were presented original (un-skewed) or
skew-transformed in either upward or downward direction
(up-/down-skewed). The skewing transforms significantly
change the resulting direction likelihood of motion energies
calculated for 12’000 natural image sequences. In three dif-
ferent experimental settings subjects adapted to scenemotion
statistics for different temporal durations and different rep-
etitions (see the protocol in Habtegiorgis et al. 2019). After
such skew exposure (ranging over milliseconds to minutes),
subjects had to decide in an alternative forced choice task
whether the perceived motion was upward or downward.
The research questions of these experiments were: (1) How
much the observerswere biased by the up- anddown-skewing
stimulus deformations depending on the adaptation proce-
dure acting over different time-scales; and (2) How a model

of cortical motion processing can account for the average
subject responses. In order to answer the first question, the
overall observers’ responses in the experimental investiga-
tions were fitted by psychometric functions using Gaussian
regression. Furthermore, the confidence intervals were esti-
mated at the point of subjective equality (PSE). The overall
results demonstrate subjects’ time-scale dependent adapta-
tion. The effects of induced bias shifts the PSE in judging
the perceived motion direction of the pattern.

In order to answer the second question, the neural model
was adapted to the motion statistics of the skewed natural
image sequences. The effects of this adaptation were then
probed with random-dot kinematograms (RDKs). Figure11a
shows the neural model architecture with its core processing
stages corresponding to areas V1 and MT, respectively, both
represented as layers of model cells (Sect. 5). These layers of
motion sensitive cells are coupled along bottom-up and top-
down signal pathways. Input to the first stage is generated by
processing the video input using elaborated correlation-based
filters to detect local motion (van Santen and Sperling 1985;
Bayerl and Neumann 2004). Output responses of model
MT cells generate top-down feedback that is re-entered at
the stage of model V1 using the modulatory amplification
specified in eq. 4. MT output also drives a final stage of
softmax calculation for steady-state decision-making judg-
ing the pattern motion direction (Bishop 2006). This selects
the maximum of pooled output activations indicating a pref-
erence to the upward or downward direction, respectively.
Previous investigations have identified that short-term synap-
tic depression occurs in different brain areas (Abbott et al.
1997; van Rossum et al. 2008). Here, our model of feedfor-
ward and feedback cortical motion processing extends the
architecture proposed by Bayerl and Neumann (2004). The
model provides the basis for assessing the relative contribu-
tions of the reciprocally connected streams for the process of
adaptation. Different adaptation mechanisms were observed
at the cortical circuit level, simultaneously acting at fast and
slow time scales (Mesik et al. 2013).

Themodelmakes the prediction that the different observed
adaptation time-scales are due to adaptive synaptic efficacy in
the feedforward and the feedback streams. In order to assess
this prediction, different model variants have been specified,
which employ adaptive synapses with slow or fast adapting
time-scales. One model architecture extinguishes the feed-
back connections to test a feedforward model with fast and
slow synaptic adaptation (model 1 and 2). The full recur-
rent model architecture employs adapting synapses either in
the forward path (fast time-scale, model 3) or in the back-
ward path (slow time-scale, model 4). Finally, both pathways
use adapting synaptic connections with fast feedforward and
slow feedback adaptation (model 5). The temporal dynamics
of the synaptic efficacy, or weight scaling function, is defined
by
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Fig. 11 Motion adaptation as a function of input scene statistics. a
Model architecture with two layers of motion-sensitive cells (V1 and
MT) and a final decision layer. Themotion-sensitivemodel areas imple-
ment the canonical computations of feedforward filtering, feedback
modulation, and pool normalization. The focus of the investigation was
on the principle of response adaptation, utilizing dynamic synapses
along the feedforward and feedback pathway, respectively (red circles).
The strength of connection weights adapted to the input statistics by
synaptic vesicle depletion that reduces their transmission efficacy over
time. The temporal dynamics of this depletion are shown in the small
graphs at the top and bottom. bThe effect of adaptation to down-skewed

(DSK) and up-skewed (USK) image sequences were assessed by prob-
ing the response to randomdot kinematograms (RDKs). Psychophysical
response curves show the ratio of upward responses of human par-
ticipants and different model variants for different average motion
directions θ . Models in which only feedforward synapses were adap-
tive (models 1 and 2) or in which feedforward and feedback synapses
had the same time scale of adaptation (models 3 and 4) did not capture
experimental data well. A model that combined fast feedforward and
slow feedback adaptation matched experimental results best (model 5;
figures are adapted from Habtegiorgis et al. (2019), with permission)

τẇ = α · (1 − w) − βw · s(t), (5)

where w denotes the scalar weight that is subject to dynamic
adaptation (at a rate τ ) and s(t) is the temporal input sig-
nal generated by presynaptic nodes. The constant α scales
the amount of transmitter production and its inhibition. The

constant β scales the depletion rate regulating the habitu-
ation as a function of the signal strength (Carpenter and
Grossberg 1981). Both parameters control the steepness of
the weight adaptation and the activity-dependent level of
reduced efficacy given by the steady-state effectiveness
weq = α/ (α + β · s(t)).
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The different models generate predictions for the psycho-
metric PSE using parameter settings (α, β) in the weight
scaling function in eq. 5. Onlymodel 5 with adaptive weights
along both feedforward and feedback pathways responded
within the psychophysical range of human performance. The
different icons in Fig. 11a symbolize the different signatures
of synaptic adaptation. Importantly, fast adaptation along the
feedforward and slow adaptation along the feedback path
was crucial to decide about the motion directions for all tem-
poral adaptations by human subjects. Figure11b shows the
predictions of the different model variants and the results of
human psychophysics for the three experimental adaptation
conditions for up- and down-skewing (black). Only model 5
(purple) correctly predicts behavioral adaptation data for all
experimental conditions (for details, see Habtegiorgis et al.
2019).

The authors incorporated adaptive synapses in the corti-
cal model architecture of feedforward and feedback motion
detection and integration. This specifies a powerful extension
that enables the visual representations adapt to the tempo-
ral statistics of the input. For computational vision systems,
such function defines a candidate mechanism habituating to
unforeseen distortions of an imaging sensor. The multiple
rates of adaptation in the feedforward and the feedback path,
respectively, systematically change the properties of sensing
natural environments. The exposure to skewed natural stim-
uli induces an adaptation in motion perception by changing
the weight coefficients in the spatiotemporal kernels.

7 Summary and conclusion

7.1 Content presentation andmajor contributions

In this paper, we have reviewed canonical principles of
computation found in biological vision systems that can
be utilized to potentially advance computer vision algo-
rithms. These principles of computation were distilled
from physiological, anatomical, and behavioral findings. The
resulting survey of computational approaches is not exhaus-
tive. Rather, its aim is to distill a conceptual narrative from
studies in neuroscience and perception. We do not claim that
the principles considered in thiswork forma complete taxon-
omy of structural and functional evidence. At the beginning
of such a proposal stands the question what computer vision
can learn from neuroscience and how the different domains
can be compared. Based on our own previous work, we advo-
cate a task perspective on the development and comparison
of biologically inspired vision mechanisms.

The primary focus is the integrated processing along feed-
forward, lateral and feedback streams. Growing evidence
supports the view that the recurrent interaction of signal
flows determines the flexibility and adaptability of process-

ing at different sub-cortical and cortical stages. Different
theoretical frameworks have been developed over the last
four decades that predict different computational roles for
the feedback recurrence in biological information process-
ing (Fig. 1). Some of the suggested computational principles
are similar while others predict a different theoretical goal of
computation. However, the theoretical frameworks all share
the same generic principle, namely that feedback is essential
to implement the hypothesized core computational function.
We introduce this summary overview of leading theoretical
frameworks and subsequently relate our model mechanisms
to elements of the theoretical frameworks. The core element
of the modeling and first contribution of the paper is the
definition of a computational framework that describes at a
mesoscopic level how forward/backward information flow is
characterized and how the processing streams are fused at
the level of computational nodes.

We emphasized the theme of recurrent feedforward and
feedback interaction of information streams. This theme
is combined with other computational principles, such
as normalization, integration and segregation of responses,
and competitive-cooperative mechanisms. We describe an
emerging computational motif that is composed of a few
core mechanisms to transform an input to an output activity.
Crucially, bottom-up signals drive the activity, while top-
down signals modulate the activations - in accordance with
experimental evidence. The model structure is modular in
the sense that it defines a template that can be parameter-
ized. It has then been instantiated at different stages in the
processing hierarchy and in the different pathways of form
and motion processing. Based on the task perspective we
identify and characterize biological computational princi-
ples. We define a potential candidate mechanism that is able
to solve the considered task and its constraints. We specify
only a few characteristic neural computational principles and
demonstrate how these operate in a particular task domain.
In particular, we specify the basic neural mechanisms for
processing shape and form, specifically to demonstrate the
binding of local feature characteristics. This leads to the for-
mation of object boundaries and to the segregation of textured
regions in cluttered scenes. The same set of mechanisms
is subsequently used to investigate the local detection and
integration of motion in images. These mechanisms sup-
port the disambiguation of local evidences to form coherent
representations of object motion. The neural mechanisms
robustly handle different types of motion, namely transla-
tory and rotational motion. Together with complementary
form information, they can generate early decisions to seg-
regate motion information and assign it to distinct mutually
occluding objects in the scene. Cases of illusory motion per-
ception that are predicted by the model are investigated to
reveal the detailed computations and properties underlying
motion integration.
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The computational template can be easily extended to
process different representations and to incorporate further
functionality. We present examples of adapting the model
to process sensor data in an address-event format utilizing
neuromorphic computing principles, resulting in efficient,
low-redundancy computation with brain-like principles. In
addition, we extended the basic model architecture of motion
processing to incorporate temporal adaptation mechanisms.
These mechanisms adjust the sensitivity of the computa-
tional elements when the environmental conditions change.
Together, these examples with the specified mechanisms and
their example computational demonstrations are further con-
tributions of this paper.

7.2 Task-driven biologically inspired computer
vision

Wemotivated the investigation of biologically inspired com-
puter vision mechanisms and their properties. We set the
focus on mechanisms of mid-level vision that operate in
the ventral and the dorsal cortical pathway in primates. We
emphasized several computational principles, such as recur-
rent processing, normalization, and gain control, which can
be used to explain computational mechanisms of feature
binding for grouping and selection based on cooperative-
competitive response integration. Assembling them to utilize
the complementary characteristics of form and motion, we
can realize perceptual decision-making in discrimination
tasks and employ coding principles and representation to
achieve sparseness, coherence, and high temporal precision.
Augmenting the kernel functions with temporal adaptation
characteristics incorporates short-term response adaptation
to changing environmental properties.

A key behavioral task of vision systems, biological or
technical, is object recognition. In DiCarlo et al. (2012) an
attempt similar in spirit to this work was made to iden-
tify canonical processing principles at different levels of
abstraction in core object recognition.4 Until recently, the
contemporary view was that core recognition can be accom-
plished by deployment of a serial chain of stacked feature
detectors to untangle the object-related identity manifolds
(DiCarlo et al. 2012). This principle has been realized in
leading biologically inspired models of object recognition,
such as Fukushima (1980, 2013); Riesenhuber and Poggio
(1999, 2000, 2002); Mutch and Lowe (2008) for instant
snapshot recognition and computer vision recognition tasks
(Serre et al. 2007). Also hierarchical self-organizing mod-
els for spatiotemporal trace-based recognition (Rolls and
Milward 2000; Robinson and Rolls 2015) are based on a

4 The rapid discrimination of a single target object from other objects
in cluttered scenes and without any cuing information has been coined
core object recognition (DiCarlo and Cox 2007).

serial hierarchical feedforward processing chain. Likewise,
deep convolutional neural network (DCNN) architectures
adopt the same processing structure where each processing
node follows the computational logic of a Perceptron with
weighted input summation and nonlinear output response,
or firing rate, function (Krizhevsky et al. 2012). Some
canonical principles similar to those discussed in this arti-
cle have been employed in such hierarchical recognition
schemes, e.g., input filtering, selection, and static divisive
normalization via a pool of cells. Only recently, however,
recurrent mechanisms along downstream ventral processing
have been identified to be crucial to executing object recogni-
tion (O’Reilly et al. 2013). Empirical evidence for substantial
contributions of recurrent network processing was gathered
through the observation of significant shifts in object solu-
tion times for input images, which were more challenging
to analyze and where feedforward DCNN models showed
significant performance drops (Kar et al. 2019).Model archi-
tectures have been proposed that incorporate recurrent blocks
of processing and are temporally unrolled for the training of
parameters for feature detection and integration (Kubilius
et al. 2018, 2019). More advanced recurrent schemes have
been proposed that incorporate gated units in Nayebi et al.
(2018). We suggest that the mechanisms proposed in this
review also support advanced object recognition schemes.
It has already been demonstrated that a modulatory feed-
back mechanism can stabilize object category selection in an
incremental view-based scheme (Zehender et al. 2003).

This paper discussed modeling examples that were inves-
tigated in previous work by our group. As mentioned
above, we did not fully elaborate the description relating
the selected modeling results to other state-of-the-art neural
modeling investigations. The work cited regarding compa-
rable or competing model investigations is selective and
certainly incomplete. The research cited served as motiva-
tion for the developments shown here, some of which are
using similar principles. None of the other models employ
the full set of basic mechanisms which, according to our
proposal, form a set of canonical principles. The combina-
tion of these mechanisms forms a template, which can be
adapted to many computer vision tasks. The mechanisms,
which define the basic computational motif, were originally
utilized to explain or predict data observed in neuroscience or
behavioral experiments. However, the models demonstrate
their applicability also in processing data from real-world
scenarios. The identified canonical principles of neural com-
putation serve as candidate mechanisms for computational
vision algorithms and can directly be adapted to recent neu-
romorphic architectures of brain-like computation.
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7.3 Topics not addressed here—possible avenues of
further investigation

The focus of our paper was on the specification of neu-
ral processes of mid-level vision and their spatio-temporal
dynamics. This focus wasmotivated through a task-level per-
spective of vision and the assumption of a structure-function
relation to understand key neural computational principles.
The principles of canonical circuit computation have iden-
tified recurrent feedforward and feedback interaction as a
main principle of information processing that is employed
in the brain. Their closed loop interaction allows biasing
the forward sweep of sensory-driven input by contextual
information and by decisions made at higher stages in the
processing hierarchy. Such interactive processing combines
sensory with contextual information and with local mech-
anisms of competitive processing. These support activity
normalization over a specified region in space-feature rep-
resentations. Together with the canonical feedforward and
feedback processes, the mechanisms achieve local decision-
making and the assignment of perceptual value to neural
activations at a specific stage in the neural hierarchy.

Necessarily, our focus in the discussion leaves out other
topics. The following items list major functions in neural
architecture that were not considered here, namely

• learning,
• incremental grouping, and
• attention and active perception.

The network functions discussed in this work did not con-
sider any learningmechanisms in order to build the necessary
filters or feature detectors to form neural representations or
adapting them to the input statistics. Major lines of previ-
ous investigations capitalize on how neural principles may
establish internal neural representations. One such theme
investigates how representations self-organize through local
correlated activation of coupled neurons and their kernels
of local connection weights (Grossberg 1998, 2021). Such
local correlative learning is additionally steered by control
signals elicited by global modulators so that unsupervised
mechanisms are gated by outcomes on the behavioral level
of outputs (Kusmierz et al. 2017; Gerstner et al. 2018). The
more recent investigation of deep learning architectures has
fostered themutual fertilization ofmachine learning/artificial
intelligence research and neuroscience to build models of
hierarchical feature learning and define inductive biases that
help identifying generic architectural principles (Richards
et al. 2019).

The mechanisms of perceptual grouping considered here
process the local feature maps in parallel and automatically.
They aim at binding relatable visual items to build coherent
representations of boundaries and relatable items as inputs for

higher-level processing. Such processing is realized by base
grouping operations, which operate by evaluating hard-wired
associations in primary feature dimensions. However, eval-
uating more specific feature elements in the visual input is
based on incremental grouping operations which act serially
(Ullman 1984; Roelfsema 2005). The seamless integration of
base and incremental grouping operations builds the percep-
tual capabilities of flexible reasoning and higher-level control
of cognitive tasks.

The serial processing of features and their binding incre-
mentally builds neural representations for task-driven recog-
nition and decision-making. It requires additional mecha-
nisms to schedule and execute processes sequentially (Tsot-
sos and Kruijne 2014). The selective information capture
requires the control via the cognitive mechanisms of atten-
tion. Attentive selection enables an observer to actively pick
relevant information from the wealth of input streams while
at the same time discarding or filtering other information
(Tsotsos et al. 1995). Processes underlying attention mecha-
nisms can be deployed to actively select features at specific
locations, to select specific stimulus characteristics, or to tag
a perceptual object of arbitrary size. Such function shows that
mechanisms of parallel as well as serial grouping and selec-
tive attention are closely intertwined (Roelfsema 2006). The
functional integration of grouping and attention mechanisms
defines the basis for advanced models of active perception
(Bajcsy et al. 2018).

All such processes and mechanisms discussed in the para-
graphs above, define possible routes to further investigate the
presented canonical circuit mechanisms of brain computa-
tions and their employment in approaches to computer vision.
Tasks related to these functionalities define challenges for
investigations to utilize the discussed network functions and
how they might be integrated in new more elaborated prin-
ciples of computation and learning. We suggest that these
are candidates to provide an enriched repertoire of brain-
inspired mechanisms, that define computational motifs to
develop future systems level computer vision mechanisms.
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