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Abstract

Currently, it is accepted that animal locomotion is controlled by a central pattern generator in the spinal cord. Experiments
and models show that rhythm generating neurons and genetically determined network properties could sustain oscillatory
output activity suitable for locomotion. However, current central pattern generator models do not explain how a spinal cord
circuitry, which has the same basic genetic plan across species, can adapt to control the different biomechanical properties and
locomotion patterns existing in these species. Here we demonstrate that rhythmic and alternating movements in pendulum
models can be learned by a monolayer spinal cord circuitry model using the Bienenstock—Cooper—Munro learning rule, which
has been previously proposed to explain learning in the visual cortex. These results provide an alternative theory to central
pattern generator models, because rhythm generating neurons and genetically defined connectivity are not required in our
model. Though our results are not in contradiction to current models, as existing neural mechanism and structures, not used
in our model, can be expected to facilitate the kind of learning demonstrated here. Therefore, our model could be used to
augment existing models.
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Introduction

Currently a central pattern generator (CPG) in the spinal cord
is the accepted model, that explains locomotor control in
animals (Grillner and El Manira 2020). Early experiments
showed that decerebrated cats can locomote if held on a
propelled treadmill (Brown 1911). Later evidence showed
a reciprocal organization of inhibitory spinal interneurons
(Jankowska etal. 1967; Hultborn et al. 1971; Cohen and
Harris-Warrick 1984), which could facilitate alternation
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between antagonistic muscles and between left and right
limbs. Isolated spinal cords without afferents can gener-
ate locomotion patterns without rhythmic input (Cohen and
Harris-Warrick 1984; Grillner and Wallen 1985; Grillner and
El Manira 2020) and such activity patterns are called fic-
tive locomotion. All of these phenomena were ascribed to
rhythm generating neurons (Ziskind-Conhaim et al. 2008;
Brocard et al. 2013). In addition, there are other neurons that
belong to the locomotor circuits and aspects of the connec-
tivity between them have been described as being dependent
on their gene expression phenotype (Danner et al. 2017). The
combination of these findings has been used to generate mod-
els, which are sufficient to explain coordinated patterns of
motor output thought to underlie locomotor control (Rybak
etal. 2013; Molkov et al. 2015; Shevtsova et al. 2015; Danner
et al. 2017; Ausborn et al. 2017).

This current understanding of the spinal cord has a number
of limitations. Most rhythm generating mechanisms pro-
posed for the spinal cord circuitry rely on rthythm generating
neurons (Grillner and El Manira 2020). In order to evoke
rhythmic activity in the spinal cord in adult animals in
vivo, without sufficient afferent input, drug manipulation
is required (Meehan et al. 2012). However, without drug
manipulation, spinal neurons do not intrinsically generate
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rhythms in adult animals in vivo (Spanne etal. 2014; Kohler
et al. 2020). Furthermore, the normal locomotor behavior of
animals in nature is much more varied and flexible to the cir-
cumstances of the terrain than the current CPG models can
explain. In most CPG models (Rybak et al. 2013; Molkov
etal. 2015; Shevtsovaetal. 2015; Danneretal. 2017; Ausborn
et al. 2017), the connectivity between neurons is assumed to
be fixed, which means that the model would not be compati-
ble with, for example, reorganized biomechanics. However,
after tendon transfer surgery, cats are still capable of develop-
ing normal locomotor behavior (Loeb 1999). One genetically
defined class of spinal interneuron is known to change its
role in locomotor control during development from larvae to
adult (Picton et al. 2022). Moreover, afferent wiring is activity
dependent (Granmo et al. 2008), spinal withdrawal reflexes
depend on experience (Petersson et al. 2003) and the diver-
sity of spinal interneuron input patterns also suggests a major
impact of learning (Kohler et al. 2022). Beyond the flexibil-
ity of the spinal cord circuitry, the observation that “the skate
spinal cord has the same interneuronal building blocks avail-
able to form the locomotor network as seen in mammals”
Grillner (2018) is in fact another strong indication that the
spinal cord circuitry is, to a large extent, dependent on learn-
ing. If the genetic construction of the circuitry is the same
across species that have very different biomechanical con-
figurations, this must mean that the spinal cord circuitry is
highly adaptable to the mechanics of the body it is connected
to.

We propose a new model of biological locomotor con-
trol, to address the limitations of current CPG models. Our
model could explain how the spinal cord acquires the capa-
bility to contribute to locomotion control. This model does
not use neurons that intrinsically generate rhythm nor an
initial network structure that would facilitate rhythm gener-
ation. Instead we use a generic network of neurons, without
any assumptions of a priori formed connectivity, justified by
recent results (Kohler et al. 2022). The network is attached
to a mechanical system, which has a tendency for intrin-
sic rhythmic movement but otherwise is unable to sustain
rhythmic movement on its own because of damping. More-
over, we assume that the synaptic weights of the neurons
can be learned according to the Bienenstock—Cooper—Munro
(BCM) rule (Bienenstock et al. 1982; Intrator and Cooper
1992). This rule has been proposed to explain learning in
the visual cortex and is widely considered as a good model
of synaptic learning rules in the brain. The BCM rule tries
to find synaptic weights so that the firing rate of the neuron
has a bimodal distribution and it implements a homeostatic
mechanism that stabilizes the average firing rate. In particu-
lar, the BCM rule has been applied to learn from passively
received input. In our model, the neurons learn from sen-
sory input from the mechanical system, whose activation is
only controlled by the output of these neurons. Hence, in
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our model the neurons learn from the input they themselves
are responsible for creating, in a closed loop. The use of
learning in a spinal cord model is justified by experimental
results (Loeb 1999; Petersson et al. 2003; Granmo et al. 2008;
Kohler et al. 2022; Picton et al. 2022) and recent modeling
(Enander et al. 2022a,b). Our model was capable of learn-
ing to control two quite different mechanical systems. One
model was two independent pendulums, as a model of two
independent limbs. The other model was a double pendulum,
as a basic model of a leg or an arm. Our results show that
under these conditions and assumptions, a simplified spinal
cord circuitry can adapt to different mechanical systems to
generate rhythmic and alternating movement, in that respect
being equivalent to current CPG models. These results are
in line with recent models of learning in the spinal cord that
successfully explain the formation of connectivity patterns
in the spinal cord (Enander et al. 2022a,b). Even though we
did not use a great number of known features of spinal neu-
rons or known connectivity patterns in the spinal cord, our
results do not contradict other current models. Our results
should be interpreted as additional mechanisms that could
help explaining the circuitry functionality in the spinal cord.

Methods
Neuron and network model

The neuron model was similar to a previous non-spiking
model (Rongala et al. 2018, 2021). Each neuron had an
output activity, which was a time continuous voltage, called
firing rate, and was modeled as follows. Let vf e[0,1],i €

1, ..., n be the firing rates of neurons and external inputs
connected with positive weights w;r > 0 to the neurons and
v: € [0,1],i € 1,...,m the firing rates of neurons con-

J
nected with negative weights w; < 0. The dynamics of the

potential are

rd—tz—V—l—(l—V)Zwi v; —i—(l—i—V)ijvj ,

where T = 5 ms. The term —V modeled a leak, the factors
1 — V and 1 4+ V modeled reversal potentials which limited
the maximum and minimum voltages the neuron could have.
The neurons firing rate v = max(0, V) was computed by
thresholding the voltage at zero.

The network structure was defined by the connection
weights between the neurons and between inputs and neu-
rons. Connections from a neuron to itself were not present in
this model. All weights were subject to learning, as described
in the next section. The weights between two distinct neurons
were initialized with a random sample from 4/(—0.9, 0.9)
(uniform distribution). The connections between an external
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input and a neuron were initialized with a random sample
from/(1.5, 2.9), to somewhat bias the neurons toward exter-
nal input.

Learning

The learning model was adapted from the BCM rule (Bienen-
stock et al. 1982; Intrator and Cooper 1992). For each neuron
with firing rate v, a learning threshold ¢ was maintained.
The learning threshold is the low-pass filtered version of the
squared firing rate, with a time constant 7, = 500 ms,

T¢QS =—¢+ 1)gut .

The time constant 74 was chosen to be substantially larger
than 7.

For a connection with weight w, where a neuron with
firing rate vj, provides input to a neuron with firing rate voy
the change of the weight was

TyW = Vout (0.5Vout — @) Vin ,

where 7, = 10 s. For the BCM rule, an equilibrium is
obtained when the learning threshold and the voltage are
both either one or zero. For the model neurons used here, it
is impossible to reach a voltage of one. Therefore, the factor
0.5 was introduced in the above equation, which moved the
equilibrium to a voltage and a learning threshold of 0.5.

Mechanical models

We used two mechanical system models, two independent
pendulums (Fig 1a) and a double pendulum (Fig 1b). The
models consisted of links connected by rotational joints,
either to another link or an unmovable base. All joints had
friction. Otherwise, the specific choice of models and param-
eters was arbitrary.

Independent pendulums

Let 6;,i € 1,2 be the joint angles of each of the two pen-
dulums. In each joint, a linear spring with spring constant
K = lsl—2 was located. The joint had friction 8 = 0.1%. An
external force F; could be applied to each joint. No gravity
acted on the pendulums. The dynamics of pendulum i was

b = —k6; — pbi + Fi .
Double pendulum
Let 6 and 6, be the joint angles of the two joints in the double

pendulum. Both links had length / = 2 m, mass m = 1 kg
and the center of mass was, relative to the joint, at [, = 1 m.

The moment of inertia of each link was / = 1 kgm? and the
frictionineachjointwas g = 1 é A gravity of g = 9.81 m/s?
acted on the pendulum. The dynamics were given by

6, ..
M6, 62) (é) + C(61. 62,61, 6,) + G(6),62)

_(Fi 6y
B <F2> P <9z)>
The mass matrix was

M. 6y) = (a +2bcos(6y) ¢ + bcos(@z)) ’

¢+ bcos(6r) c
where

a =21 +ml> +2ml*

b=mll
c=1+mi?
Let h = —ml_ I sin(6;), the Coriolis matrix was

- hby h(6) + 6
Con b, iy = (L2 MO )

The gravity vector was
G(61,6r) = <

(ml. +ml)gcos(01) + ml.gcos(61 + 62)
mlcgcos(01) + 02) '

The cartesian coordinates of the endpoint of the double pen-
dulum are

x = cos(f1) + cos(6r)
y = sin(0;) + sin(6;) .

Network and mechanics closed loop

In order for the network to control the mechanical system, the
two systems were connected in a closed loop (Fig 1c). Each
neuron received as an external input the joint angles, veloci-
ties and the negative joint angles and velocities thresholded at
zero and limited to one. The inputs were min(max(0, x), 1)
and min(max (0, —x), 1) forall x € {01, 62, 61, 6»}. This way
all inputs to the neurons are positive and negative angles and
velocities are presented to the neurons on a different input
than positive angles. Additional to the input from the mechan-
ical system, each neuron received a motor command in the
format of a random external input. This input was used to
initiate movement in the system. It was generated for each
neuron separately by random sampling from ¢/ (0, 0.9).
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The torques applied in the joints were computed from the
neurons firing rates

Fi=f(+v—v;—1g)
F, = f(vs+ve —v7 —g) ,

where f is a constant factor, which scaled firing rates of the
neurons so that a torque leading to reasonable movement
in the mechanical system is produced. For the independent
pendulums f = 12 and for the double pendulum f = 6. If
this model is to be adapted to different mechanical systems
than presented here, this factor must be adapted too.

Learning and testing

The network and mechanics were initialized so that the neu-
ron voltages were zero and there was no movement. Weights
were initialized randomly as described above. First, learning
was disabled and it was tested if rhythmic movement could
be generated. This was done by sampling a constant external
random input (motor command) for each neuron indepen-
dently, running the simulation for 100 s and then determining
if rhythmic movement was generated in the second half of the
simulation, as described below. The test set was composed
of one hundred random combinations of motor command
inputs each lasting 100 s. Then learning was enabled and the
simulation was run for 2000 s. Every 1 s a new random motor
command was sampled for each neuron. Finally, learning was
disabled again and it was tested if rhythmic movement could
be generated, using the same set of one hundred test inputs,
the same way as before the learning.

In order to determine if there was rhythmic movement in
a test, the joint angle time sequences were plotted. The plots
were inspected if rhythmic movement was visible and if the
amplitude did not decay in the second half of the test.

Additionally, to visualize the result of all tests, the auto-
correlation of each joint angle sequence of the second half
of each test was computed. The period length of the oscilla-
tion was taken as the position in time of the second largest
local maxima of the autocorrelation. If only one local max-
ima was available, the period length was estimated as zero,
which indicated that there was no rhythmic movement. The
amplitude of the oscillation for each joint angle in each test
was computed as the difference between the largest and the
smallest value of the joint angle.
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Numerical methods

Each neuron, the learning and the mechanical system were
simulated with an integration step size of 1 ms. The neu-
ron dynamics were integrated with the inverse Euler method.
The learning was integrated with the forward Euler method.
The mechanical system was integrated with the Runge—
Kutta-4—-5 method. The entire simulation was implemented
in C++ using the Eigen (Guennebaud and Jacob 2010) and
boost::odeint libraries.

Results

We used two different pendulum systems to test if rhythmic
movements could be learned using the BCM rule in neurons
modeled without any intrinsic active conductances or rhythm
generation (Fig. 1). The pendulums were designed to hang
from an attachment point, similar to a leg (Fig. 1a,b). In one
case, we used two independent pendulums, similar to left and
right legs, which were spring-loaded with the equilibrium in
the vertical orientation. The double pendulum had no springs
but gravity acted on the masses of the two segments. Both
pendulums had friction in the joints so that active actuation
was required to generate and sustain movement. The joints
had sensors that reported the joint angle and joint velocity.
These sensors were provided with activation thresholds and
then the sensor information was provided as input to a neural
network (Fig. 1¢). In order to signal the joint angles and veloc-
ities in both directions, the sensor information from each joint
was duplicated and half of the sensor information set was
inverted before the thresholding (Fig. 1c). Hence, each sen-
sor signal was excitatory. Furthermore, each neuron received
input from each of the eight sensors. The eight neurons were
located in a one-layer, fully connected network, where each
neuron was connected to every other neuron except for itself.
The weights of all synapses were modifiable through learn-
ing. The neurons had outputs to drive movements at the
joints (joint torque input), where each joint was controlled
by four neurons, of which half controlled a negative torque
proportional to its firing rate (in this case the thresholded
voltage output of the neuron), and half controlled a posi-
tive torque. Each neuron in addition received a unique motor
command input, which was a random but constant excita-
tory input level, through a synapse whose weight was also
modifiable through learning. Motor command inputs were
required to elicit movement and thereby sensory feedback
information. One simulation was composed of an initial test
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Fig.1 Illustration of the models. a Independent pendulums. b Double
pendulum. ¢ Structure of the neural network. Inputs and outputs, to and
from the mechanical system (black arrows), connections between the
neurons (magenta arrows) and connection from random motor com-
mand inputs to the neurons (blue arrows). Each neuron received an
independent level of external input in one synapse only, whereas all
inputs (sensory and internal) reached all neurons. d Motor commands
used for network training and for testing for the presence of rhythmic

set with 100 randomized motor command input combina-
tions, followed by a learning phase of 2000 different motor
commands (Fig. 1d) and finally another test set with the same
motor command inputs as in the first test.

Generation of rhythmic movement

The BCM rule allowed our model to learn to produce rhyth-
mic and alternating movement in both mechanical systems
(Fig.2a—c).

After the learning for the independent pendulums sys-
tem, almost all tests showed rhythmic movement with an
amplitude larger than in any test with rhythmic movement
before the learning (Fig. 2d). Only few tests before the learn-
ing showed rhythmic movement at all. The distributions of
the periods and amplitudes were narrow both before and

movement. Each test motor command lasted for 100s and was com-
posed of random but constant levels of input activity in each external
input. Before and after the learning, the same set of 100 tests were
applied. After each test, the activity of the system, the neuron firing
rates and the movements of the pendulums were reset to zero. During
the learning, the random input was resampled every second and a much
higher number of input combinations were applied

after the learning, indicating that the structure of the external
input (motor command) did not greatly impact the movement
pattern in either case (Fig. 2d). In all tests, the rhythmic move-
ments between the two pendulums were alternating, despite
no mechanical coupling between the two independent pen-
dulums.

For the double pendulum in all tests before the learning,
the system showed rhythmic movement throughout the entire
test phase, but the amplitude of the movement decayed with
each oscillation cycle (Fig. 2b, e). The movement of the dou-
ble pendulum resembled an arm repeatedly picking up and
lifting an object (Fig.2c). The trajectory, drawn out by the
endpoint of the double pendulum, is shown in Fig.3c. After
the learning, all tests showed rhythmic movement with non-
decaying amplitude. Across all tests after the learning, the
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Fig. 2 Movement patterns before and after the learning a, b Exam-
ples of joint angle sequences for each mechanical system from one
test before and after the learning. ¢ Movement sequence of the double
pendulum during one test after the learning. d, e Estimated oscillation
period length and amplitude of each joint for each mechanical system

movements had similar periods and amplitudes for each joint
(Fig.2d), indicating rthythmic movement.

These two experiments illustrate that the network was able
to adapt to both mechanical systems and to produce rhythmic
movement in both of them.
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and each test, before the learning (green points) and after the learning
(red points). The points are offset in both axis by a random sample from
U(—0.5,0.5) for the period and /(—0.005, 0.005) for the amplitude
plots in order to improve readability

Distribution of the neuron voltages

The learning changed the distribution of the output activ-
ity levels or voltages for each neuron. In the case of the
independent pendulums, voltages were distributed sparsely
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Fig.3 Distribution of the neuron voltages. a, b distributions of the neu-
ron voltages across each neuron (one neuron per row). The voltages are
accumulated over the test phases and are shown separately for the phase
before the learning (green) and after the learning (red). Vertical thick
lines indicate the mean of the distributions. Note that one distribution

before the learning, because the mechanical system remained
mostly at a constant position during the tests. After the learn-
ing, voltages were not sparsely distributed anymore (Fig. 3a).
The grand mean of the distribution means before the learning
was 0.54 with a standard deviation of 0.09. After the learning,
the grand mean was 0.45 with a standard deviation of 0.01,
which indicates that the neurons during learning converged
toward the target activity defined by the BCM rule. In the
case of the double pendulum system, the distributions of the
output activity of the neurons showed no sparsity before the
learning because the pendulum showed rhythmic movement,
but with decaying amplitude. However, the distributions had
ahigh spread with a grand mean of 0.74 and a standard devia-
tion of 0.07. After learning, the spread substantially narrowed
down to yield a grand mean of 0.47 with a standard deviation
of 0.01 (Fig.3b).

In addition, after learning the voltage distributions of three
of the eight neurons for the independent pendulums system
were clearly bimodal, in line with the expected result of the
BCM learning rule. For the double pendulum system, learn-
ing instead resulted in four of the neurons having bimodal
distributions (Fig. 3a, b blue arrowheads for bimodal distri-
butions).

Figure 3c shows the activity of each neuron during one
oscillation cycle of the double pendulum. Each neuron tended
to be selectively active for a specific phase of the movement,
but the degree of selectivity varied between the neurons.
Especially the rightmost four neurons, which corresponded
to the neurons controlling the second joint, were highly
selectively active for one specific movement direction of the
pendulums endpoint.

For both mechanical systems, the learning rule found
bimodal voltage distributions for a subset of the neurons and
shifted the mean firing rates of all neurons close to 0.5, which
was to be expected from the BCM rule.

had a mean above 0.8 before the learning. ¢ The activity, or voltage, of
each of the eight neurons is color coded and plotted against the position
of the endpoint of the double pendulum during one oscillation cycle.
Each neuron is plotted with an offset along the x axis

Discussion

We have demonstrated that a randomly connected network
can learn to generate patterns of rhythmic and alternating
movement in different mechanical systems. The model of the
neurons and the synaptic learning has been proposed previ-
ously (Rongala et al. 2018, 2021; Bienenstock et al. 1982;
Intrator and Cooper 1992). We used them without modi-
fication, except for a shift of the equilibrium point of the
learning model to adapt it to the neuron model (see below).
The model was made very simple, to only demonstrate the
basic principles. The pendulums served as crude approxima-
tions of animal legs. The monolayer of neurons was designed
to resemble a simplified spinal cord circuitry in terms of its
sensorimotor connectivity, without any separate classes of
interneurons with respect to predefined sensory inputs.

Our model could potentially explain how the biologi-
cal spinal cord learns to control locomotion. Note that our
system, for example, automatically learned ’left-right alter-
nation’ between two mechanically independent pendulums
(Fig.2c). To map our model to an envisaged ontogenetic
development of the spinal cord circuitry in an animal, ini-
tially neurons would need to form connections with each
other at random and they would need to receive random
connections from the sensory afferents. Also the connectiv-
ity from the spinal interneurons to the motoneurons, each
innervating a specific muscle, would be random. The activ-
ity of the spinal neurons would stimulate force generation by
the muscles, which through the biomechanical configuration
of the body would trigger subsets of preferred movements.
In a system that is inclined to rhythmic movement, like the
systems used here, this would lead to some rhythmic move-
ment and the sensory input to the spinal neurons, that results
from that movement, would also be rhythmic. From this,
the neurons can learn, so that they have stable firing rates
and can provide input to other neurons or to the muscles.
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This would lead to the muscles having rhythmic activa-
tion, which would result in thythmic movements as shown
here. Inhibitory connections could allow neurons to reduce
the activity of other neurons, allowing alternating activity
between neurons, so that movement patterns where antago-
nistic muscles are active alternatingly could form. Moreover,
inhibitory and excitatory connections between neurons could
allow the distribution of neuron activity to change during a
movement, where the distribution of muscle activity evolves
during the movement. Both alternating activity and shifts
in neuron activity could be facilitated by a learning rule that
finds synaptic weights so that each neuron is selectively active
for different phases of a movement. In reality, the brain would
have to select motor command inputs to the spinal cord that
result in more varied movements that would be suitable to
fulfill the goals of the brain. Such motor command inputs, in
turn, could influence the movement patterns from which the
spinal cord circuitry structure could learn.

We do not rule out, that there is dependence between
genetics and spinal cord function. For instance, our choice of
fixed parameters, under which our models showed the pre-
sented behavior, could be interpreted as genetically defined
parameters that the spinal cord has evolved to. We also do not
rule out that genetically defined connectivity has an important
role in the spinal cord. It could facilitate learning by providing
a rough connectivity pattern, suitable for the biomechani-
cal configuration of the specific animal species, that is then
refined by learning, to adapt to the uniqueness and the unique
environment of a particular animal. Also the learning itself
cannot be independent of genetics as the molecules that are
involved in learning, must be encoded by genes. Locomotor-
related rhythms, that appear at embryonic stage, before the
skeletal muscles or sensory systems mature (Wan etal. 2019),
could also facilitate learning. For instance, they could take
on a similar role, as what here was modeled as the random
external input.

Our model could also help to find and control oscil-
latory modes of general multi-body mechanical systems.
Intuitively, modes are intrinsic movements of mechanical
systems, which are determined by the ability of a system to
store and release energy (Albu-Schiffer and Della Santina
2020). For the double pendulum system, our model con-
trolled a movement similar to a so-called energy invariant
mode, where the pattern of movement is the same regard-
less of how fast the movement is (Albu-Schiffer et al. 2021).
The double pendulum supports a greater variety of modes
and developing controllers for them would enable robots to
achieve energy efficient movement (Albu-Schiffer and Della
Santina 2020). Future work could be to find neural networks
and learning rules able to learn to control these modes.

Compared to CPG models of locomotion, our model did
not use rhythm generating neurons and the initial connec-
tivity of the network was random. Our model assumes that
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learning exists in the spinal cord, similar to what has been
proposed for the brain. This is a strong assumption, but it is
justified by experimental observations (Loeb 1999; Peters-
son et al. 2003; Granmo et al. 2008; Kohler et al. 2022;
Picton et al. 2022). Recent spinal cord models, that also
include learning, had success in explaining how prominent
connectivity patterns among spinal neurons and afferents
could form (Enander et al. 2022a,b). While previous models
of locomotion without rhythm generating neurons have been
proposed, they either had manually adjusted synaptic weights
(Geyer and Herr 2010) or an immutable network structure
facilitating locomotion (Stratmann et al. 2016). Overall, our
results demonstrate in principle how neural network behav-
ior, which could explain phenomena compatible with the
observations underlying the notion of central pattern gen-
erators, can arise through learning without any genetically
programmed network connectivity or rhythm generating neu-
rons. Through the focus on cyclic movements, our paper
differs from previous models of spinal-like learning using
spontaneous twitches to obtain a network connectivity that
could be underlying reflexes (Blumberg et al. 2013; Marques
et al. 2014).

However, our model has a few limitations. During the
learning phase, a more organized external input than the
independent random signals that we used could lead to a
greater variety of random movement from which the net-
work structure could be learned. In a developing animal, such
semi-organized but still predominantly random movements
could be generated by the spontaneous internal activity of
the brain (Khazipov and Luhmann 2006; Inécio et al. 2016),
spontaneous activity of spinal neurons and by random muscle
twitching.

If the model is able to learn rhythmic movement or not is
critically dependent on the so-called force factor. This fac-
tor is the gain, that converts the firing rates of the neurons
into a force in the mechanical systems. Different mechanical
systems, depending on their masses, frictions and springs,
require different forces to move. If the factor is too small,
only little movement is generated and it is impossible to learn
rhythmic movement. If the factor is too large, only erratic
movement is generated, also making it impossible to learn.
For the double pendulum, it could be of advantage to use dif-
ferent force factors for each joint, because the total masses
that move around each joint are different. In biology, muscles
and spinal cord must develop during the same time. It could
be that muscles must adapt to the inputs from the spinal cord.

The models of the mechanical systems were chosen to
be similar to the ones used in control theory and robotics
for the sake of simplicity. Models of actual biomechanical
systems such as cat legs or entire lamprey bodies would be
an important test that was not considered here.

The BCM rule has been proposed to explain how neurons
in the brain could learn to be selective for features in passively



Biological Cybernetics (2023) 117:275-284

283

received visual sensory inputs. Here the BCM rule works in a
model where input is actively influenced by the model itself.
The key features of the rule, that make this possible, are
homeostatic stabilization of the firing rates of the neurons
and optimization for a bimodal firing rate distribution. A
stable firing rate in our case helped to provide an, on average,
limited force input to the mechanical systems. Bimodal firing
rate distributions can help make neurons selective for certain
phases of a movement and provide activity during this phase.

Moreover, we combined the BCM rule with a nonlin-
ear neuron model, where the maximum firing rate is always
smaller than one. If we had used the BCM rule as given in
the references (Bienenstock et al. 1982; Intrator and Cooper
1992; Law and Cooper 1994), we would have weights that
converge to infinity, because this formulation has an equilib-
rium point when the firing rate is one. In one study (Law and
Cooper 1994), weight growth was counteracted by a learning
rate depending on the learning threshold. Instead we shifted
the equilibrium point to a firing rate that can be attained by
the model neurons.

Clearly limitations in this model and in existing CPG
models must be addressed to find an accurate model of the
contribution of the spinal cord to rhythmic movement gener-
ation. In biology, it is likely that the mechanisms provided in
previous CPG models, in combination with developmental,
adaptive, and learning processes such as the ones described
here, are contributing to an integrated whole.
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