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Amélie Gruel1*, Dalia Hareb1, Antoine Grimaldi2, Jean Martinet1, Laurent
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Abstract

Foveation can be defined as the organic action of directing the gaze towards a visual region of inter-
est, to acquire relevant information selectively. With the recent advent of event cameras, we believe
that taking advantage of this visual neuroscience mechanism would greatly improve the efficiency
of event-data processing. Indeed, applying foveation to event data would allow to comprehend the
visual scene while significantly reducing the amount of raw data to handle.

In this respect, we demonstrate the stakes of neuromorphic foveation theoretically and
empirically across several computer vision tasks, namely semantic segmentation and
classification. We show that foveated event data has a significantly better trade-off
between quantity and quality of the information conveyed than high or low resolu-
tion event data. Furthermore, this compromise extends even over fragmented datasets.
Our code is publicly available online at: github.com/amygruel/FoveationStakes DVS/.

Keywords: Foveation, event cameras, spiking neural networks, saliency, neuromorphic, semantic
segmentation, classification.

1 Introduction

The joint use of silicon retinas (Dynamic Vision
Sensors, DVS) and Spiking Neural Networks
(SNNs) is a promising combination for dynamic
visual data processing. Both technologies have

This article is published as part of the Special Issue on ”What
can Computer Vision learn from Visual Neuroscience?”

recently emerged separately about a decade ago
from electronics and neuroscience communities,
sharing many features: biological inspiration, tem-
poral dimension, model sparsity, aim for a higher
energy efficiency, etc.

However, traditional and neuromorphic com-
puter vision models can have difficulties handling
a great amount of data simultaneously while min-
imising their energy consumption, especially at a
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Fig. 1: Overview of the neuromorphic foveation concept as defined in this paper. The results presented
below corresponds to the software neuromorphic foveation (red full arrows), as a validation to a future
hardware neuromorphic foveation (orange dotted arrows). The multi-resolution event sample used as an
example of output of such a process is extracted from the DDD17 dataset [Binas et al., 2017].

high temporal resolution. A recent study shows
that in certain lightning conditions, high resolu-
tion event cameras produce data susceptible to
temporal noise and with an increasingly high per
pixel event rate, thus leading to the decreased
performance of some traditional computer vision
tasks [Gehrig and Scaramuzza, 2022]. Some event
camera manufacturers recently tried to prevent
this issue using event rate controllers, but those
reduce the event rate by randomly dropping
events [Finateu et al., 2020] or tuning camera
parameters [Delbrück et al., 2021] during the
recording, which alter significantly the visual
data therefore is not a viable solution. Another
remedy for such an issue could be found in event
data downscaling (see [Gruel et al., 2022a]) —
however the trade-off between information reten-
tion and data reduction with existing methods is
not yet ideal.

We thus believe that foveation, a visual neu-
roscience mechanism allowing the complex eye to
selectively acquire relevant information, is a more
appropriate approach to optimise the on- and
off-line processing of event data.

To demonstrate the interest of applying
foveation to event data, we define in this work the
concept of neuromorphic foveation (see Fig. 1):
a retro-action loop between an event camera
and a neuromorphic saliency detector, merging
events at multiple resolutions according to the
detected regions of interest. Such a process should
be allowed by a foveated DVS as described
in [Serrano-Gotarredona et al., 2022]; however, as
this sensor is not yet available, we validate
here the neuromorphic foveation concept with

a first software implementation (red pathway in
Fig. 1) before extending this feedback loop system
to hardware (orange dotted pathway) in future
works.

We study the respective evolution of the
amount of event data processed in a computer
vision task and its accuracy when software neuro-
morphic foveation as described above is applied.
In order to simulate the foveation, the event data
will be processed at a higher or lower resolu-
tion, depending on the relevance of the spatial
regions in the image at different coordinates. Our
proposed model goes beyond biology by allowing
multiple RoI of arbitrary size and shape.

To the best of our knowledge, this work and
our results are the first to show that foveation
offers a significantly better compromise between
quantity and quality of the information than the
high or low resolution, especially on fragmented
datasets. Furthermore, we demonstrate that our
saliency detector is specifically efficient on data
reduced using the event count method.

The following sections establish a detailed out-
line of the different hardware and mechanisms
involved in this work; a complete description of
the software neuromorphic foveation methodol-
ogy; and the experimental evaluation procedure.
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1.1 Event cameras

Event cameras (or silicon retinas) represent a new
kind of sensors that measure pixel-wise changes
in brightness and output asynchronous events
accordingly [Posch et al., 2014]. This novel tech-
nology is inspired by the spatio-temporal filtering
that happens in the horizontal and bipolar cells of
the biological human retina. The filtered informa-
tion is coded as asynchronous spikes as transmit-
ted in the retinal optic nerve. The spatio-temporal
filtering eliminates data redundancy over time and
space, so that this technology allows for an energy-
efficient recording and storage of data evolving
over time and space. Furthermore, each event
is recorded punctually and asynchronously with
no redundancy; as opposed to traditional frame-
based cameras, where each pixel outputs data in
all frames, in a synchronous manner.

In the last two decades, different technologi-
cal developments of spiking silicon retinas imple-
menting spatial and temporal filtering have been
published. However, they have not reached the
maturity of commercial applications due to sev-
eral limitations as high fixed pattern noise, low
fill factor, and complex circuitry resulting in
low sensor resolution. Recently, dynamic vision
sensors (DVS) have been proposed. Each DVS
pixel computes autonomously the relative tem-
poral difference of the illumination received on
its photosensor. When pixel illumination increases
and its relative change goes over a certain
threshold, the pixel would generate a positive
ON output spike. Similarly, if the illumination
decreases and its relative change goes over a

Fig. 2: (A) Principle of operation of an event-
based camera, from [Lichtsteiner et al., 2008]. (B)
Behavior of a spiking neuron, which receives spike
trains as input and processes this information to
produce a new sequence of activations. (C) Evolu-
tion of the neuron’s membrane potential over time
when activated by input spikes.

certain negative threshold the pixel generates a
negative OFF output spike. DVS circuitry can
be implemented with compact circuitry which
results in low fixed pattern noise and higher
resolution sensors. Furthermore, DVS exhibit
high temporal resolution (below 1 microsec-
ond) and intrascene dynamic range as high as
120dB [Lichtsteiner et al., 2008]. Due to these
features advanced megapixel DVS sensors have
been developed [Li et al., 2019, Suh et al., 2020,
Kubendran et al., 2021, Guo et al., 2017] and the
DVS technology have reached the commercialisa-
tion stage. New high speed vision applications and
systems based on DVS sensors are emerging.

1.2 Spiking neural networks

SNNs [Paugam-Moisy and Bohte, 2012] represent
an asynchronous type of artificial neural network
closer to biology than traditional artificial net-
works, mainly because they seek to mimic the
dynamics of neural membrane and action poten-
tials over time. SNNs receive and process infor-
mation in the form of spike trains, meaning as a
non-monotonous sequence of activations, as rep-
resented in Fig. 2AB. Therefore, they make for
a suitable candidate for the efficient processing
and classification of incoming event patterns mea-
sured by event-based cameras as each event can
be assimilated to an activation spike between
two spiking neurons. This spatio-temporal model
allows capturing and processing the dynamics of
a scene. Moreover, since this model is sparse, it
enables energy efficient implementations.

A SNN is constructed using populations of
neurons linked together with connections, accord-
ing to certain rules and a certain architecture.
By definition, a spiking neuron follows a model
based on parameters describing its internal state
and its reaction to the input current (as pictured
in Fig. 2B). Many models exist; from this set we
chose to use the Leaky Integrate-and-Fire (LIF)
model within the Spiking Neural Network Pooling
method. The dynamics of the LIF neuron’s mem-
brane potential u are described by the equations
1 and 2:

τm
du

dt
= urest − u(t) +RI(t) (1)

where τm is the membrane’s time constant and
I the input current modulated by a resistance R.



Without any input current, the membrane poten-
tial is at rest and is of value urest. When activated,
it increases according to the input current. More-
over, at each timestep a slow decrease towards
urest is driven by the time constant τm, thus mod-
eling the voltage leakage. The firing time tf is
defined by:

{
u(tf ) = θ
u′(tf ) > 0

⇒ u(tf ) = ureset (2)

Once the membrane potential u crosses the
threshold θ with a positive slope, a spike is pro-
duced and the membrane potential is reset at
ureset. This is coherent with a biological neuron’s
behaviour when an action potential occurs: those
two steps corresponds respectively to the neuron’s
depolarisation (or overshoot) and hyperpolarisa-
tion (or undershoot) [Bear et al., 2007].

1.3 Foveation

Most artificial sensors, such as the CMOS chip
that powers the cameras in the average smart-
phone, have evenly spaced sensors. This is also
the case for all event cameras. This is an opti-
mal choice when considering the trade-off between
the increasing miniaturization of each pixel and
the growing demand for higher image resolutions.
However, the majority of biological visual sensors
have very irregular sensor grids. Some insects, for
example, have a peripheral vision grid used for
navigation, while another is specialized to a very
specific location in the visual space and dedicated
to mating behavior. Most predatory mammals
have a central visual area on the retina with
a high density of photoreceptors and the abil-
ity to move their eyes, and thus the localization
of this area of high acuity around the center of
the gaze. This action is driven by visual atten-
tion mechanisms [Gruel and Martinet, 2021] and
can be learned by means of a saccadic mecha-
nism [Daucé et al., 2020] that has been shown to
optimize the efficiency of information gain at each
saccade [Daucé and Perrinet, 2020]. The wide
variety of anatomical configurations illustrates
that this arrangement is closely related to the
behavioral repertoire of each animal [Land, 2018],
and the introduction of such an irregularity, which
we refer to here as foveation for simplicity, can

provide significant improvements in information
processing in event cameras.

Fig. 3: Biological foveation mechanism, adapted
from [Bear et al., 2007].

A foveated sensor that mimics the retino-
topic layout of a biological retina will generally
use fewer pixels than a conventional sensor, and
will therefore be more energy efficient. Indeed,
this would allow to maintain a high accuracy
about the meaningful information, while signif-
icantly reducing the amount of raw data to be
processed. In the particular case of neuromorphic
architectures such as SpiNNaker or Intel Loihi,
the power consumption is directly proportional
to the number of spikes/events processed, and
reducing this number is an efficient way to reduce
power consumption, a heavy constraint for embed-
ded applications. However, we believe that the
development of a mechanism mimicking foveation
would greatly improve the processing of event-
driven data, beyond the energy efficiency aspect.
Indeed, recent studies have shown that the partic-
ular geometrical layout of the log-polar mapping
observed in the human retina has several advan-
tages [Hao et al., 2021]. In particular, a rotation
or a zoom is transformed into translations into
a log-polar mapping [Traver and Pla, 2003]. Fur-
ther rotation and zoom-invariant processing can
for example be easily implemented in a convo-
lutional neural network. Moreover, foveation can
lead to several improvements in image compres-
sion [Araujo and Dias, 1997] or in the efficiency of
image registration [Sarvaiya et al., 2009]. Yet, it is
still not known whether such foveation could be
beneficial for event-driven imaging.
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1.4 Foveated event-based camera

The introduction of foveation at the sensor level
for event-driven sensors should reduce the energy
and bandwidth consumption from the sensor level
up to the computing system by dynamically allo-
cating more bandwidth and pixel resolution to
the regions of interest and reducing the infor-
mation of peripheral (non interesting) regions.
Recently, an electronically foveated DVS have
been proposed [Serrano-Gotarredona et al., 2022]
where DVS pixels can be dynamically configured
in high-resolution foveal regions or grouped into
low resolution regions with arbitrary sizes. The
sensor can attend in parallel an arbitrary num-
ber of foveal high-resolution regions. Furthermore,
the electronically reconfiguration of foveal regions
makes it faster and lower energy compared with
the configuration of the center of the region of
interest using mechanical control of the sensor
position.

However this sensor has not yet been asso-
ciated with a feedback loop saliency detection
mechanism and validated on a computer vision
task — this work is a first step towards this
direction.

2 Neuromorphic foveation
methodology

2.1 Saliency detection

The detection of RoI to foveate on is a little-
explored issue regarding event-data. In this work,
we propose to use part of the SNN presented
in [Gruel et al., 2022b]: this saliency detector inte-
grates the events produced by each pixel at a low
resolution and outputs a set of coordinates for one
or multiple RoI. In this case, our RoI would be a
region where the amount of events received over

Fig. 4: Spiking neural network model used
to detect saliency by event density, adapted
from [Gruel et al., 2022b]

a certain amount of time is more important than
elsewhere over the whole scene. The visual atten-
tion mechanism implemented here is thus bottom
up and covert (see [Gruel and Martinet, 2021]).

This whole mechanism relies solely on intrin-
sic SNN dynamics and dynamic adaptation
rules applied to synaptic weights and population
thresholds. This is a crucial feature as it leads to
minimising the latency since it does not require
the conversion of spiking events into a frame. The
saliency detection is not specialised for any spe-
cific context or any specific shape, which allows for
a good generalization ability of the network. The
proposed architecture, shown in Fig. 4, is designed
to be lightweight enough to enable running in
real-time.

We use the ”Leaky Integrate-And-Fire” SNN
model because of its simplicity: the membrane
potential is at rest when there is no input; other-
wise, it increases according to the incoming spikes,
and it slowly decays towards the resting value
when the input stops (leak). If the membrane
potential overcomes a threshold, an output spike
is produced and the membrane potential is reset.

Input layer

The input layer translates sensor relative changes
in the illumination (or events) into spikes. The
spikes produced by the input layer are sent to the
saliency detector via an excitatory downscaling
connection. This corresponds to a convolutional
layer with a kernel size S × S, a stride S, with-
out padding. The input neurons are separated
into non-overlapping square regions of size S × S.
Each neuron in the input layer’s subregions is con-
nected to one corresponding neuron in the saliency
detector layer.

Saliency detector

The saliency detection aggregates the active
regions into distinct segments using a soft Winner-
Takes-All (WTA) by laterally inhibiting the neu-
rons in the same layer: each neuron activation
leads to the inhibition of the others, without
autapses (self-connections). Since a strong WTA
leads to the activation of only one neuron in the
layer and multiple RoI are to be detected by
the network, the soft WTA weight has been set
experimentally to 0.02.



In the case of the saliency detector, a specific
exponential WTA is implemented according to the
radial basis function Eq. 3 in order to allow RoI
of arbitrary sizes:

WWTA = max(
ed

w × h
,wmax) (3)

where d corresponds to the Euclidean distance in
number of neurons between the active and target
neuron subject to inhibition, and w and h to the
width and height of the layer. The weight WWTA

has an upper bound of wmax = 50.
Finally, the adaptive detection of saliency in

this layer is enabled by a dynamic weight adapta-
tion rule between the input layer and the saliency
detector, inspired by Hebb’s rule: ”cells that fire
together wire together” [Hebb, 1949]. This rule
is implemented by increasing or decreasing the
weights of synapses that have recently fired, as
described in Eq. 4.

ω(t+ 1) =

{
ω(t) + ∆ω if ftsynapse ≥ t
ωinit if ftsynapse < t− td

(4)
where ω(t) is the weight at the simulation step

t of the synapse to which is applied the dynamic
weight adaptation rule, ∆ω the positive weight
variation at each simulation step, ωinit the initial
weight of the synapse, ftsynapse the firing time of
the last spike transmitted by the synapse and td
the delay before the synaptic weight decays back
to ωinit.

2.2 Reconstitution of foveated data

In this work, we consider the foveation process
akin to the combination of a sample’s events in
high resolution and low resolution using a mask, as
presented by the Fig. 5. This binary combination
is a software simplification of the neuromorphic
foveation concept as described above, and dis-
criminates the fovea (events in high resolution —
purple region in Fig. 5 ) from the retinal periphery
(low resolution; i.e. spatially downscaled – yellow
region in Fig. 5 ). The RoI (in red in Fig. 5)
detected by the saliency detector mentioned ear-
lier is thus assimilated to the fovea.

Let (xmin, ymin) and (xmax, ymax) be the coor-
dinates of the delimiting points of the area of

foveation detected by the saliency detector (as
seen on Fig. 5),

Fovea = {(x, y)|

x ∈ [xmin, xmax], y ∈ [(ymin, ymax]}

Periphery = {(x, y)|

x /∈ [xmin, xmax], y /∈ [(ymin, ymax]}
(5)

where Fovea and Periphery correspond to the
coordinates of the set of salient and non-salient
events respectively, in different resolutions.

2.3 Event data reduction

As explained above, the software implementa-
tion of neuromorphic foveation used in this work
is akin to a binary foveation process merging
event data of two different resolutions together.
As it is more difficult to produce higher resolu-
tion data of an original dataset, we chose to use
the spatial event downscaling methods described
in [Gruel et al., 2022a]. In order to remain con-
sistent with a future conversion of this software
foveation model into hardware, where the saliency
is detected on aggregated pixels before refining
the resolution at the relevant areas in order to
minimize the bandwidth, we follow the process
described in Fig. 5. The original dataset, corre-
sponding thereafter to the denomination ”high
resolution”, is spatially reduced before being given
as input to the saliency detector. A subsequent
”multi resolution merging” process then combine
both datasets into foveated event data according
to the detected RoI.

Event data reduction is not trivial, as
explained in [Gruel et al., 2022a]. Many differ-
ent approaches can be used to produce the
spatial downscaling depicted in Fig. 5. We
decided to compare each method described
in [Gruel et al., 2022a] in our experimental vali-
dation. It is to be noted that in order to process
high and low resolution events using the same
frame of reference, an expansion was applied to
the spatially reduced data so that a reduced pixel
physically corresponds to the size of factor ×
factor original pixels.

The following section provides a short descrip-
tion of each spatial reduction method used in this
work, as well as the corresponding strengths and
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Fig. 5: Binary foveation of events using the corresponding high and low resolution (spatially downscaled
by factor) and based on a known region of interest.

weaknesses. These methods reduce the data by
downscaling the x, y coordinates of pixels, bring-
ing an original width × height sensor size to a
target (width/ratio)× (height/ratio) size, where
ratio is the downscaling ratio.

Event funnelling

The event funnelling method simply consists in
dividing all the spatial coordinates of the events
by the dividing factor (and removing any dupli-
cate) to obtain the spatially reduced events. From
a computational point of view, this downscaling
method consists simply in updating the mem-
ory address of the event’s x, y coordinates. Since
this relies on one elementary operation repeated
n times, with n the number of events processed,
it has a complexity O(n). This process can easily
be implemented with a low resource usage given
its simplicity. Other advantages lie in speed and
absence of significant resource usage. However, a
main drawback is the increased spatial density in
the event data, as nearly every event is kept, which
may have an impact on the target task.

Event count

The event count method consists in estimating
the normalised value reached by the log-luminance
related to the (larger) pixels in each the target
size. This normalised event count is updated every
time a new event is triggered. Since its complexity
relies on its number n of events, it is therefore also

O(n). By definition, this method waits for the next
event to be produced before it is able to trigger
the next output event. As previously, its benefits
include low computational resource consumption
and speed.

Linear and cubic log-luminance

reconstruction

The log-luminance reconstruction method aims to
recreate the log-luminance curves seen by the pix-
els in the target sensor size, then extrapolating
the events produced by the average of these curves
(see [Gruel et al., 2022a] for more details). The
curves can be estimated with a linear or cubic
interpolation.

In contrast to both previous spatial reduction
methods, this log-luminance reconstruction needs
the information of when in the future will be the
next event, which if obviously unknown in the
current timestamp. Therefore it requires an adap-
tation for real time operation. Furthermore, even
thought the real time processing needs to adjust
the algorithm, the log-luminance reconstruction
has the best optical coherence out of the existing
event downscaling methods.



3 Experimental validation

To validate our proposed model, we apply two
traditional computer vision tasks, semantic seg-
mentation and classification, to foveated and spa-
tially reduced datasets. All datasets are spatially
downscaled by a dividing factor 4.

This section describes the datasets and the dif-
ferent models used to perform such tasks, as well
as the comparative results.

3.1 Event-based datasets

DAVIS Driving Dataset 2017

The DAVIS Driving Dataset 2017
(DDD17) [Binas et al., 2017] contains 40 differ-
ent driving sequences of event data captured
by an event camera. However, since the origi-
nal dataset provides only both grayscale images
and event data without semantic segmentation
labels, we used the segmentation labels provided
in [Alonso and Murillo, 2019] that uses 20 differ-
ent sequence intervals taken from 6 of the original
DDD17 sequences. Furthermore, as only multi-
channel representation of the events (normalised
sum, mean and standard deviation for each
polarity) are made available, we extracted the
original events from DDD17 with the traditional
< x, y, p, t > structure using DDD20 tools1 and
selected the ones corresponding to the frames that
have a ground truth. The resulting dataset is split
into a training dataset consisting of 15,950 frames
and a testing one consisting of 3,890 frames.

DVS 128 Gesture

The DVS128 Gesture dataset [Amir et al., 2017]
has now become a standard benchmark in event
data classification. It features 29 subjects recorded
(with a 128 × 128 pixels DVS128 camera) per-
forming 11 different hand gestures under 3 kinds
of illumination conditions. A total of about 133
samples are available for each gesture, each com-
posed roughly of 400K events, for a duration of
6 seconds approximately. The dataset is split in
two sub-datasets to facilitate training: the train
set contains 80% of the recorded samples and the
test set contains the remaining 20%, with an even
distribution of the 11 gestures in both parts.

1https://github.com/SensorsINI/ddd20-utils

As presented in the Fig. 6a, the event data’s
properties were compared for sample in high reso-
lution (original dataset), low resolution (spatially
downscaled with factor 4) and foveated (binary
combination of the previous two).

3.2 Semantic segmentation

To validate the neuromorphic foveation, we apply
it first to the computer vision task, semantic seg-
mentation. It is a visual classification problem
which consists of assigning a label, correspond-
ing to a given class, for each pixel in the image.
It is a key task in scene understanding that has
been extensively studied using artificial neural
networks, more specifically, Convolutional Neu-
ral Network (CNN) model with either frames or
events as input. This task is often solved using
an encoder-decoder CNN architecture, where the
encoder downsamples the input image and the
decoder upsamples the result returned by the
encoder until the original size of the image is
reached.

3.2.1 Ev-segNet

The semantic segmentation was per-
formed using the model Ev-SegNet built
by [Alonso and Murillo, 2019] as it outperforms
all existing studies in this kind of task using event
cameras. This model is inspired from current
state-of-the-art semantic segmentation CNNs,
slightly adapted to use the event data encoding.
As shown in Fig. 9, it consists of an encoder-
decoder architecture: an encoder represented
by Xception model in which all the training is
concentrated, and a light decoder connected to
the encoder via skip connections to help deep
neural architecture to avoid the vanishing gra-
dient problem and also to make the fine-grained
details learned in the encoder part used in the
decoder to construct the initial image. Moreover,
[Alonso and Murillo, 2019] use an auxiliary loss
which increases convergence speed.

The model takes as input 6 channels repre-
senting the count, mean and standard deviation of
the normalised timestamps of events happening at
each pixel, within an interval of 50ms for the pos-
itive and negative polarities. It is applied to the
DDD17 dataset described previously. Finally, the
training is performed via backpropagation in order
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(a) Accumulated events in the sample.

Nevents = 882 Nevents = 5129

(b) Segments and performance values identified by Ev-SegNet in the sample.

Accuracy = 0.8606% Accuracy = 0.7892% Accuracy = 0.8475%

MIoU = 0.5 MIoU = 0.3508 MIoU = 0.4648

Fig. 6: Visual representation of the events and the different segments identified by Ev-
SegNet [Alonso and Murillo, 2019] in the sample rec1487417411 export 1467 from the DDD17
dataset [Binas et al., 2017], after various processes. The subplot on the left corresponds to the original
data and in the middle to the same event data spatially reduced by 4 using the event count method. The
right subplot corresponds to the sample foveated according to the RoI detected with event count method.
Top Each frame corresponds to the accumulation of the events over 50ms, the sample’s time-window.
Green and blue pixels correspond respectively to positive and negative events.

Nevents = 308267 Nevents = 13786 Nevents = 190238

Fig. 7: Visual representation of the events in the sample user25 led, corresponding to the gesture ”left
hand clockwise” (class 6) from the DVS128 Gesture dataset [Amir et al., 2017], after various process.
The subplot on the left corresponds to the original data and in the middle to the same event data
spatially reduced by 4 using the event count method. The right subplot corresponds to the sample foveated
according to the RoI detected with event count method. Each frame corresponds to the accumulation of
the events occurring during the sample’s first 10 ms. Green and blue pixels correspond respectively to
positive and negative events.



to minimise the soft-max cross-entropy loss mea-
sured by summing the error between the estimated
pixels’ classes and the true ones.

The semantic segmentation performance is
measured thanks to standard metrics of semantic
segmentation: the Accuracy (Eq. 6) and the Mean
Intersection over Union (MIoU) (Eq. 7).

Accuracy(y, ŷ) =
1

N

N∑

i=1

δ(yi, ŷi)

=
TP + TN

TP + TN + FP + FN
(6)

MIoU(y, ŷ) =
1

C

C∑

j=1

∑N

i=1 δ(yi,c, 1)δ(yi,c, ŷi,c)∑N

i=1 max(1, δ(yi,c, 1)δ(ŷi,c, 1))

=
TP

TP + TN + FP + FN
(7)

where y and ŷ are the desired output and
the system output respectively. C is the num-
ber of classes. N is the number of pixels and δ
denotes the Kronecker delta function. TP , TN ,
FP , and FN respectively stand for: true positive,
true negative, false positive, and false negative.

Fig. 9: CNN architecture of Ev-SegNet, from
[Alonso and Murillo, 2019].

Fig. 8: Semantic segmentation performance according to the number of events in the dataset after
processing for the event data in high resolution (in blue), low resolution (in green) and after foveation
(in red). The subplot on the left depicts the mean values and the corresponding confidence ellipsis; it
shows that foveated data managed to keep in average the same performance as the original dataset,
while decreasing by two third the mean number of events to reach the low resolution’s value. The mean
values are plotted as an overlay in the subsequent subplots, to assess the quality of the foveation and the
reduction compared to the others. This highlights the clear advantage of using the methods linear and
event count compared to funnelling.
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Fig. 10: Semantic segmentation performance evolution according to the percentage of total events in the
dataset after processing for the event data in high resolution (in blue), low resolution (in green) and after
foveation (in red). The subplot on the left depicts the mean values, and shows while all three types of
data show the same behaviour, the foveated data outperforms in average the high resolution data from
a 60% decrease and downwards. According to the subsequent subplots, the funnelling method is the one
maintaining a highest accuracy the longest, either in the foveated or reduced dataset.

3.2.2 Segmentation results

Fig. 8 and 10 present a comparison between
the different versions of the DDD17 dataset
[Binas et al., 2017], i.e. in high (blue marks) and
low (green marks) resolutions and after foveation
(red marks), according to the semantic segmen-
tation model Ev-SegNet ’s performance. Fig. 8
depicts the trade-off between the accuracy, the
MIoU and the mean number per sample for each
reduction method — the first subplot correspond-
ing to the mean and confidence ellipse for all meth-
ods combined. Fig. 10 shows the evolution of the
segmentation performance for an increasingly sub-
sampled input dataset, for each pre-process. Each
dataset is reduced structurally by sub-sampling
events in a stochastic way: events are filtered with
a probability p, corresponding to the values in
abscissa of Fig. 10.

In those first two graphs, the foveation is
obtained by detecting the saliency on the data
downscaled using the specified method, then
merging it with the dataset reduced using the

same method. This allows us to stay as close
as possible to the hardware foveation design, by
simulating the feedback loop by using twice the
same reduced data.

Fig. 11 for its part studies the qualitative
aspect of the saliency detection by presenting
the semantic segmentation according to the mean
number of events per sample. Each foveation
method, i.e. each method on which the saliency
was detected, is indicated in different colours. The
average values for all datasets foveated using one
method are presented in opaque, while each spe-
cific dataset’s performance and number of events
are overlayed.

As we want to optimize the performance while
minimizing the number of events, the goal to be
reached is situated on the upper left corner of
this plot. Event count emerges as the method for
optimal salience detection.



Fig. 11: Study of the qualitative aspect of the saliency detection, based on the semantic segmentation
performance. The plot depicts the average semantic segmentation performance according to the method
on which the saliency was detected. The overlayed dots correspond to different reduction methods with
which the multi-resolution merging was achieved, using the RoI detected with one specific method. The
goal is to minimize the mean number of events per sample while increasing the performance, thus it is to
tend to the subplot’s upper left corner. Foveated data using RoI detected on event count are the closest
to this goal.

3.3 Classification

Furthermore, we test the impact of the neuro-
morphic foveation on a classification task, which
assigns a label to each sample of a dataset.

3.3.1 Classification model

To test for the impact of the different event
reduction methods on classification per-
formances, we use an existing event-based
algorithm [Grimaldi et al., 2022]. This online
classification algorithm is an extension of a
previous study entitled HOTS: A Hierarchy of
Event-Based Time-Surfaces for Pattern Recog-
nition [Lagorce et al., 2016]. In this work, they
make object recognition on a stream of events
through a feedforward hierarchical architecture
using time surfaces, an event-driven analog repre-
sentation of the local dynamics of a scene. Using
a form of Hebbian learning, the network is able to
learn, in an unsupervised way, progressively more
complex spatio-temporal features which appear
in the event stream. Once trained, one layer of
this network transforms any incoming event from
the stream of events into a novel event as it is
selected in a layer of spiking neurons. Using it
as a building block, such layers can be stacked

together, each layer’s output address space defin-
ing a novel input address space for the next layer.
Inspired from this dynamical processing of the
visual information, [Grimaldi et al., 2022] added
a Multinomial Logistic Regression (MLR) as an
online classifier and transformed the previous
post hoc classification process, that counted the
activity of the neurons of the last layer, into an
always-on decision process. The MLR layer also
takes time surfaces as input, and a formal demon-
stration was made to assimilate this algorithm to
a SNN with Hebbian learning.

We test this method on a widely used and
challenging event-based dataset for gesture recog-
nition: DVS128 Gesture, described above.

3.3.2 Classification results

Fig. 12 presents a comparison between the dif-
ferent versions of the DVS 128 Gesture dataset
[Amir et al., 2017], i.e. in high (blue marks) and
low (green marks) resolutions and after foveation
(red marks), according to the classification model
HOTS ’s performance. Fig. 12 depicts the trade-
off between the accuracy, the MIoU and the mean
number per sample for each reduction method —
the first subplot corresponding to the mean and
confidence ellipse for all methods combined. The
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Fig. 12: Classification performance on DVS 128 Gesture according to the number of events in the dataset
after processing for the event data in high resolution (in blue), low resolution (in green) and after foveation
(in red). The subplot on the left depicts the mean values and the corresponding confidence ellipsis; it
shows that the foveation applied to classification leads in average to a good trade-off between number of
events and performance. The mean values are plotted as an overlay in the subsequent subplots, to assess
the quality of the foveation and the reduction compared to the others. This highlights .

foveation is obtained using the same process as for
the segmentation results.

3.4 Quantitative assessment of the

saliency detection

Fig. 13 presents the spatial and temporal density
according to the mean number of RoI detected
per method, to discuss the quantitative aspect of
the saliency detection.

The temporal density Dt corresponds to the
activation probability of pixels averaged over the
whole sensor, and is defined in Eq. 8.

Dt =

∑w

x=0

∑h

y=0 Px,y

w · h
(8)

with w and h respectively the width and height
of the sensor. The activation probability Px,y is
calculated as the number of events (positive or
negative) occurring at a given pixel divided by the
time length of the sample:

Px,y =

∑tmax

t=tmin
δ(xt, x) · δ(yt, y)

tmax − tmin

(9)

with Px,y the activation probability of one pixel
of coordinates (x, y), tmin and tmax respectively
the minimum and maximum timestamp of the

sample, and δ the Kronecker delta function,
which returns 1 if the variables are equal, and 0
otherwise.

A contrario, the spatial density Ds is the
activation probability of the whole sensor over a
limited time-window averaged over the temporal
length of the sample, as described in Eq. 10.

Ds =

∑T

t=twindow
P[t−tw,t]

Nw

(10)

with tw and T respectively the length of the time-
window and the length of the sample in time. The
results in Fig. 13 are presented for tw = 50µs.
Nw corresponds to the number of successive time-
windows in the sample, as presented in Eq. 11.

Nw = ⌈
T

tw
⌉ (11)

The activation probability P[t−tw,t] is calcu-
lated as the ratio between the number of pixels
activated during the time-window [t − tw, t] and
the overall number of pixels in the sensor:

P[t−tw,t] =

∑t

t=t−tw

∑w

x=0

∑h

y=0 δ(tx, t) · δ(ty, t)

w · h
(12)

with w and h respectively the width and height of
the sensor, tx and ty the timestamp of any events
occuring at coordinates (x, y) and δ the Kronecker



Fig. 13: Study of the quantitative aspect of the saliency detection, by comparing the RoI’s spatial and
temporal density according to the mean number of RoI detected per sample. No goal is to be reached
here. However this graph shows that the funnelling method has a significantly higher temporal and spatial
density, as well as a highest mean number of RoI detected.

delta function, which returns 1 if the variables are
equal, and 0 otherwise.

4 Discussion

To validate our initial hypothesis, the foveation
would have to produce a number of events sig-
nificantly closer to the low resolution’s while
allowing for a performance closer to the high
resolution’s. In other terms, the foveated results
should be above the dotted grey line on Fig. 8 and
Fig. 12. We do observe a striking decrease in the
number of events between pre- (high resolution)
and post-processing (low resolution and foveation)
of the dataset. Concerning the DDD17 dataset
(Fig. 8), in average, the spatial downscaling and
the foveation keep 30% of the original events. The
most important drop of event is seen with the
linear method: the reduced data drops to only
1% of the original size, and the foveated data to
10%. Similarly, the foveation’s semantic segmen-
tation performance is averaged over all methods
are remarkably close to the high resolution’s per-
formance. A similar behaviour is found with the
DVS128 Gesture dataset and its classification per-
formance (Fig. 12): the average number of events
per sample drops to 1% of the original metric after
reduction, and to 50% after foveation, while the
performance decreases respectively by 63% and
only by 25%.

Fig. 8 pictures an outlier, the cubic method.
The trade-off between performance and data size

displayed by the foveation is not as good as in
other methods; this can be explained by the fact
that the method produces too sparse data to offer
a coherent saliency detection.

All in all, those observations combined do con-
firm our core thesis, that neuromorphic foveation
leads to the best trade-off between information
quantity and quality, at least on a software level.

Furthermore, it is interesting to note that
when comparing the proportional decrease of the
number of events in the dataset post-process in
Fig.10 while all three types of data show the
same behaviour, the averaged foveated data out-
performs the high resolution data from an 60%
decrease and downwards. This is explained by
the fact that the majority of events kept in the
foveated dataset provides relevant information to
the semantic segmentation model, while a signifi-
cant part of the events in the original dataset is
not as useful.

The less important drop of the data size when
applying foveation to the classification of DVS 128
Gesture (Fig. 12) compared to the one presented
in Fig. 8 is explained by the inner properties of
the DVS 128 Gesture dataset: the lower spatial
density of this dataset compared to DDD17, due
to a static recording and a non-moving camera,
leads to the detection of more densely aggregated
RoI already containing most of the sample’s event
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data. In other words, the principal object of inter-
est in DVS 128 Gesture is the hand, which will
be the main subject of the saliency detection due
to its constant movement. This is confirmed in
Fig. 7 where the high resolution is only visible on
the hand in the foveated sample. As the move-
ment of the hand is the main cause of event
production while recording the scene, the corre-
sponding region contains the most events — thus
the foveation on the DVS 128 Gesture dataset do
not decrease the data size as much as when applied
to a moving camera recording.

This theoretical reasoning is confirmed by the
results presented in Fig. 13: the mean number of
RoI detected on DVS 128 Gesture and its cor-
responding temporal and spatial densities (right
sub-graph) are all significantly greater than those
detected on DDD17 (middle sub-graph). Fig. 13
also highlights the important quantitative varia-
tions of the saliency detection according to the
foveation method used: funnelling produces a
great amount of RoI, due to its lack of event
drop; while linear detects the least saliency. The
choice of the method on which to detect the
salience is not trivial, each one having its inter-
ests and its disadvantages. One must thus take
time to think upstream about the physical proper-
ties of the dataset and the desired intensity of the
foveation. All in all, when applying the foveation
to classification of DVS 128 Gesture and seman-
tic segmentation of DDD17, event count seems
like a good trade-off between the three proposed
methods.

The qualitative study of the saliency detection
displayed in Fig. 11 using different methods (i.e.
detecting saliency on data reduced using those
methods) reinforces the interest of using the event
count method for foveation. Indeed this figure
highlights the overall advantage of event count,
as its use leads to a minimised data quantity for
a maximised semantic segmentation performance.

To meet our initial goal of finding the ideal
process to reduce the number of events while
maintaining the quality of the information trans-
mitted, a final aspect can be discussed here to
complete the results presented above: that of
the generation time. Indeed the spatial reduc-
tion of events as well as the neuromorphic
detection of salience requires a non-negligible
generation time. The first has been discussed

in [Gruel et al., 2022a], and depends strongly on
the selected reduction method. The second varies
with the technical material used. Indeed the SNN
model can be run either on CPU, using a SNN
simulator such as PyNN [Davison et al., 2009],
or on GPU with adapted simulators such as
Norse [Pehle and Pedersen, 2021]. On both cases
the simulation time increases with the num-
ber of neurons in the model and the size of
the input data. A third option could be to
use neuromorphic chips, such as Human Brain
Project’s SpiNNaker [Furber and Bogdan, 2020]
or Loihi [Davies et al., 2018], which enable fast
and low power simulations and which simulation
time only relies on the input data size. All in all,
it is very unlikely that these two processes (reduc-
tion and saliency detection) combined can be done
in real time.

However we seek to convert this software
neuromorphic foveation process into a hard-
ware implementation, using the foveated sensor
introduced by [Serrano-Gotarredona et al., 2022].
With such a sensor that implements the spa-
tial reduction and foveation electronically, we can
disregard the generation time.

5 Conclusion

In this work, we demonstrate the stakes of
foveation applied to event data for semantic seg-
mentation. Such a strategy does concurrently pre-
serve the accuracy of event data processing and
greatly reduce the amount of data needed for the
task.

Further work will implement the hardware
neuromorphic foveation feedback process by con-
currently using the foveated DVS presented in
[Serrano-Gotarredona et al., 2022] and a neuro-
morphic chip, e.g. Human Brain project’s SpiNN-
3 [Furber and Bogdan, 2020], in order to record
foveated event data in an embedded fashion.
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