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Abstract
Multiscalemodels are among the cutting-edge technologies used for face detection and recognition. An example isDeformable
part-based models (DPMs), which encode a face as a multiplicity of local areas (parts) at different resolution scales and their
hierarchical and spatial relationship. Although these models have proven successful and incredibly efficient in practical
applications, the mutual position and spatial resolution of the parts involved are arbitrarily defined by a human specialist and
the final choice of the optimal scales and parts is based on heuristics. This work seeks to understand whether a multi-scale
model can take inspiration from human fixations to select specific areas and spatial scales. In more detail, it shows that a
multi-scale pyramid representation can be adopted to extract interesting points, and that human attention can be used to
select the points at the scales that lead to the best face detection performance. Human fixations can therefore provide a valid
methodological basis on which to build a multiscale model, by selecting the spatial scales and areas of interest that are most
relevant to humans.

Keywords Multiscale face model · Facial visual attention · Attention-guided model · Multiscale face detection

1 Introduction

Face detection is a fundamental preliminary step of all facial
analysis algorithms, from face tracking to identity verifica-
tion, mood recognition, and many more, which are applied
to countless consumer applications and devices characterized
by intelligent, vision-based, human–computer interaction.

According to the categorization proposed by Zafeiriou et
al. [1], face detection techniques can be broadly divided into
two main classes: the family of algorithms based on iconic
rigid templates and the family of algorithms represented by
Deformable Parts-based Models (DPM).
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The first family of algorithms, that we better denote as
holistic methods, comprises old handcrafted template-based
methods [2] and appearance-based methods, where the mod-
els are learned from a set of training images which should
capture the representative variability of the face [3]. Among
the family of rigid templates are a series of improvements
based on boosting or statistical classification techniques;
among these, the Viola–Jones architecture [4] has been a
source of inspiration for many variants such as SURF cas-
cades [5] or the aggregate channel features method for
multi-view face detection [6]. The rigid template category
finally includes algorithms based on deep-learning archi-
tectures such as convolutional neural networks (CNNs) and
DeepCNN (DCNNs) [7, 8] that have been successfully intro-
duced for face detection tasks. In the last few years, we have
witnessed the advance of such kind of detectors. Real-time
face detection based onYOLO[9, 10] has outperformed,with
stronger robustness and faster detection speed, all previous
detectionmethods [11, 12], and it has recently been surpassed
by the pixel-wise face localization RetinaFace [13] which,
notably, makes use of manual face annotations, and by the
Multi-task Cascaded Convolutional Networks (MTCNN),
which inputs a scale pyramid of the original face image into
a three stage framework that progressively refines the bound-
ing boxes found initially [14].
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Deformable parts-based models [15], on the other side,
see the human face as a collection of parts trained side by
side with the face using a spring-like constraint. Very often
DPMs are multi-scale models [16], as they bring together
holistic (at a coarse scale) and local (at fine scale) informa-
tion. Support vector machines (SVM) are typically used to
find the parts and their relationships; furthermore these parts
are adjusted to operate efficiently with the HOG descrip-
tors [17]. As shown by Zhu and Ramanan [18] and Mathias
et al. [19], these models can give impressive results even
though they are trained with a few hundreds of faces, which
is an important advantage over neural networks that usually
require billions of examples. The downside is that DPMs fol-
low a top-down, multi-scale approach based on handcrafted
features that is arbitrarily defined by a human specialist and
then validated on the basis of heuristics. On the contrary,
deep learning-based models are bottom-up, where interest-
ing regions of the image emerge through internal layers [20],
but they are not intrinsically scale-invariant, an ability that
humans can achieve after a single exposure to a novel object
[21], and lack explainability (human understanding of what
actually happens within the network is so far very limited).
Deep learning-based models in general seem to show mod-
erate correlation with human visual attention [22], but the
higher the correlation, the better they perform at classifica-
tion tasks [23], which is one of the reasons why it is desirable
to build machine models that incorporate human attention.

The humans visual system seems to be wired to detect
faces. This ability has been recently explored in Baek
et al. [24] where, by using a hierarchical deep neural net-
workmodel of the ventral visual stream, itwas found that face
selectivity arises without any prior training.While studies on
the performance of the detection step of face perception are
scarse, the results in [25] seem to point to the fact the human
visual system is very efficient at detecting faces, and that fail-
ures in face processing tasks such as identification arise after
the segmentation step. An interesting study [26] that investi-
gated the detection performance by observers on images that
were falsely detected as faces by the Viola–Jones algorithm
[4], found that human observers are more prone to classify
these as faces compared to images of non-faces. However,
humans where able to correctly classify about 20% of these
images as non-faces, and in a short time of 20ms. Despite the
fact that there are not direct comparisons between humans
and algorithms on face detection, from the existing litera-
ture it seems that humans can compete and likely surpass
face detection algorithms if given enough time to observe
the images.

To overcome the dichotomy between top-down algorith-
mic models and bottom-up black-box models, in this paper
we apply the well-known scale-space theory developed by
Lindeberg [27] to construct a multi-scale model that derives
fromapyramidal bottom-up process.More in detail, we show

that persistent points that characterize some kind of visual
information like a face easily emerge at different scale lev-
els; as a consequence, it is not necessary to pre-determine the
number of features or the spatial scales that better represent
the image information. Considering the extreme complexity
of such a pyramidal model, the choice of essential scales,
i.e. the scales that contain most of the image information,
becomes a crucial problem. Here we explore if human visual
attention, specifically the fixations of humans on face images,
can guide the selection of the essential scales in building the
proposed face model.

In [28] the authors find that although different human
observers adopt different strategies when looking at the same
face, when cumulating the fixations of all observers the atten-
tion areas tend to cluster around some facial features (e.g.,
the areas around the eyes, the nose and the mouth). Also,
several authors argue that humans gaze follow a coarse to
fine pattern when observing natural scenes [29].

To see if human visual attention could be embedded in
our face model, we specifically acquired the gaze paths of
20 observers on a face images subset of the Karolinska
dataset [30]. By performing a cluster analysis on the features
extracted using the scale-space theory and the fixations we
showed that the selection of the spatial scales can be guided
by human attention. In particular, we found that by using
only two spatial scales defined by human attention the model
performs better or similarly than it does when using other
available scales. Attentional mechanisms typical of humans
can thus drastically simplify the construction and the use of
a multi-scale model.

The paper is structured as follows: In Sect. 2 the bottom-up
multiscale model is introduced; in particular the construc-
tion of a 10-scales pyramid, from the Labeled Faces in the
Wild (LFW) dataset, and the training of the HOG model
descriptors at different scales is detailed. The collection of
a face-based fixation dataset and the clusterization leading
to the selection of the most representative spatial scales
is described in Sect. 3. Section4 presents some extensive
results of the experimental application of the model to a large
database and gives an the comparison with other state-of-
the-art face-detectors. Finally, the conclusions are drown in
Sect. 7.

2 Bottom-upmulti-scale model

2.1 Image features extraction

The extraction of the features used in the proposed model is
based on the scale-space theory developed byLindeberg [27].
Given an image f : R

2 → R, a Gaussian scale-space
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representation is defined to be a map:

L(x, y; σ) =
∫

(u,v)∈R2
f (x − u, y − v) g(u, v; σ) du dv

(1)

where g(u, v; σ) = 1
2π t e

−(u2+y2)/2σ is the Gaussian ker-
nel of variance σ , which represents the scale parameter.
Starting from this representation, given a scale σ , Linde-
berg defines four spacial differential operators based on the
Hessian matrix HL of L , each leading to a particular type of
feature points. Among the operators we chose the Laplacian,
defined as:

∇2L = L2
xx + L2

yy = λ1 + λ2, (2)

where λ1, λ2 are the eigenvalues of the Hessian matrix, or
the principal curvatures of L(, , σ ).

Extrema of ∇2L correspond to dark or bright blobs,
according to whether the Hessian is positive or negative def-
inite. Edges will also be detected, but they are discarded to
improve the repeatability of points detection [27].

For the Laplacian operator a pyramid of 10 layers was
built, one for each scale σk = √

n, for n = 2(k−1), k =
1, . . . , 10, starting from the original image, and halving the
image every two steps. For each scale, local extrema were
calculated with respect to the image coordinates. Most of
these extrema are likely to persist across two or more scales.
Scale linking as described in Lindeberg [27] has been carried
out to select their strongest response across scales.

2.2 Model construction

To learn a model of the human face, we selected images
of faces from the LFW dataset [31]. In particular we con-
sidered the subset of LFW [32] consisting of one or more
aligned images of 5749 different subjects. The images are not
controlled for illumination, backgrounds, slight face poses,
expressions or the presence of accessories such as glasses,
hats etc. We selected a subset TN by randomly picking N
identities from the training set of LFW and choosing the
first image from their folder. For each of the N images in
TN we build the 10 layers pyramid, applied the operator
∇2L(x, y, σ ) at each scale and then performed scale link-
ing to extract the extrema in scale-space.

For each image Ii ∈ TN we get 10 sets of features
Fσk (Ii ), one for each scale. At this stage, for each scale
σk , we considered the union of all the feature points sets
UFσk

(N ) = ⋃
i=1,...,N Fσk (Ii ). For a sufficient number of

images (we started from N = 25 in our experiments),
UFσk

(N ) can be thought as a set of random samples drown
from a distribution whose probability density function can be
estimated via a kernel density estimation (KDE). The result-

ing probability density function PDF(∇2L, σk) will be our
feature density map at the scale σk .

In Fig. 1 we can see the projections of the density maps
PDF(∇2L, σk) on the image plane, one for each scale for
k = 1, . . . , 10. The brighter the area the higher the value
of the probability density function. The density maps were
obtained by applying the scale-space extrema extraction to
N = 2000 randomly picked images. We can clearly see
different face patterns emerging: at the smaller scales, the
Laplacian generates a feature map where the strongest areas
are around the eyes, the nose and the mouth, while the con-
tour of the face oval is weakly outlined. As we go up the
scale pyramid, we can see other interesting patterns, such as
the area at the top of the nose and in between the eyes. At
the top of the pyramid, the Laplacian responds the oval of
the face. This result suggests that by cumulating the features
at each scale a representation of the face naturally emerges,
which strengthens the hypothesis in Baek et al. [24] where, in
a very similar way, the face representation emerges without
any supervised training in the deep neural network model of
the ventral visual stream.

By projecting the feature maps on top of one of the face
images used to generate them, as in Fig. 2, we can clearly
see what areas of the face are learned by the model.

2.3 Featuremaps convergence

In the previous sections, we have defined the feature maps
as the probability density functions estimated by KDE on N
face images. Here we see how they change as N increases.
To evaluate it, for each scale we generated the feature maps
startingwith the distribution obtained from features extracted
from 25 random images and updating it with the features
extracted from a newly added image. Each timewe estimated
the density via KDE and measured the difference between
one density map and the next using two different similarity
indexes, the Bray–Curtis index and 1 − JSD, where JSD is
the Jensen–Shannon divergence. The two similarity indexes
were consistent.We can say that the probability density func-
tions come from the same distribution if the two indexes are
equal to 1. In Fig. 3, the graph on the bottom right shows
the similarity scores (vertical axis) as the number of images
N increases (horizontal axis). We can see that after a rough
start, for N > 200 the curve is very smooth with index val-
ues always above 0.99. In fact, as few as 100 images could
be used to generate the density maps, but since the database
we choose is not controlled for poses, expressions and back-
ground we might want to use 1000 or 2000 images to reach
a good symmetry of the face areas.

The model here proposed is generated directly from the
pyramid of feature density maps. More in detail, the process
analyzes all levels of the pyramid and for each determines
where the relevant information is located. For a scale σk ,
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Fig. 1 Projections of the density maps on the image plane and strongest local maxima for different spatial scales (top left image corresponds to
σ1 = 1, bottom right to σ10 = 16

√
2)

Fig. 2 Feature density maps for the operator ∇2L for the 10 scales projected onto a face image

we find the global maximum max{PDF(∇2L, σk)} of the
feature density map PDF(∇2L, σk). We then find all local
maxima and we select those whose value is not less than
70% of the global maximum. Figure1 shows an example of
the final result. Notably, the number of significant points is
not excessive and it is well distributed over the full scale
range.

2.4 HOGs extraction and training

Having extracted the most salient points from each scale,
we can now use this information to train a classifier. We
use one image from each of the first 3000 subjects of the

LFW dataset. After extracting the maxima of the Laplacian
at the scales corresponding to k = 1, . . . , 10 as described
in section 2, we consider squared patches of size 25 × 25
pixels, centered at the density maxima and having identical
size at each pyramid level. Figure4 shows a general example
of the pyramid with the patches centered at the maxima of
the ∇2L operator. From each patch, 9 HOGs are extracted
so that the resulting vector has 144 components. Note that,
for practical implementation reasons, in the experiments we
only consider scales corresponding to k = 1, . . . , 7;we could
have started from the scale σ10 but this would have required a
smaller patch at the expense of a less descriptiveHOGvector.
The vectors are used to train a SVM classifier with the first
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Fig. 3 Top row: feature maps deriving from points extracted at scale σ2 = √
2 from 25, 50, 75 and 100 face images. Bottom row, left: density

obtained with 1000 images. Bottom row, right: graph of number of images on the horizontal axis and Bray-Curtis similarity on the vertical axis

1000 positive sample images from the LFW dataset and the
first 1000 negative sample images from the val2017 partition
of the COCO2017 dataset [33], which consist of a random
selection of images.

3 Fixations guided scales selection

The number and proximity of scales in Lindeberg [27] is cho-
sen in order to obtain a robust set of extrema in scale space.
However, adjacent scales will often generate very similar
features, and there are not, a priori, meaningful criteria for
selecting one scale over another and so to decide what the
most relevant scales to build themodel are. To guide the scale
decision process, we propose to use the human fixations from
the datasetUniss-FFD [34]. Thefixationswere collectedwith
a Tobii Eye Tracker [35] from 20 observers (10 males and
10 females), 18 of which were university students 20 to 24
years of age, while 2 were academic staff aged 30 and 50.
The observers were shown a selection of images of the first

20 male and the first 20 female individuals from the KDEF
dataset [36], namely the front-facing images of the expres-
sions “neutral”, “happy”, and “sad”, resulting in a total of 120
images which were randomly arranged in a sequence. The
images in the sequence were free-viewed by the participants,
each image was shown on the screen for three seconds and
interleaved with two seconds of black screen. The maximum
number of fixations for any one face by any observer was 14,
but therewere very few of them, so, for our purposes, we con-
sidered the first 12 fixations. The three seconds viewing time
was chosen to provide enough time for the exploration of the
face, which some recent works argue can be split into three
phases: A first saccade is followed by an initial exploration
characterized by a gradual broadening of the fixation den-
sity which then reaches a steady state after about 10 fixations
[37].

Confirming previous findings (see for instance [28]),
by analyzing the Uniss-FFD dataset it turns out that each
observer has her/his own strategy to look at faces. Whether
this is holistic or analytic, the observations areas tend to clus-
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Fig. 4 Example of bottom-up
multi-scale pyramid. At the top
of the pyramid (first image on
the left), the patch includes the
oval of the face on the image at
scale σ10. The next scale level
selected is σ8, and the patch is
over the forehead of the face. By
keeping going down the pyramid
every other scale the patches
will cover smaller and smaller
areas of the image, capturing the
area around the pupils at the last
layer of the pyramid

Fig. 5 Example of HOG
extraction

ter around some facial features such as the eyes, the central
part of the face around the nose (often shifted on one of the
sides) or the mouth area.

To compare the features at the various scales to the human
fixations, a cluster analysis of all sets of features and fixa-
tions is performed. Some authors argue that when observing
scenes, the eye movement follows a scanning strategy that
starts on a coarse scale and then progressively focuses on
finer scales. Whether this interpretation is correct or not, we
can see in [29] that the pattern of fixations and saccades
when observing scenes consists of a rapid increase of fix-
ations duration for the first three fixations, followed by a
further slight increasing duration for later fixations, while
the amplitude of the first three saccades also rapidly grows
but it reaches a maximum at around fixation 5 and then grad-
ually decreases. This pattern suggests a quick, ample scan
at the start of the observation and a more focused, local
scanning strategy from fixation 5 onwards. Since the fea-
tures were extracted from the coarser to the finest scales, to
include the “coarse to fine” pattern of fixations we choose
to compare all scales to all fixations (from the first to the
12th). The fixations of all observers were therefore parti-
tioned into 12 sets Fi , i = 1, . . . 12, where each Fi contains
the i-th fixations of all observers on all face images, while
the features of ∇2L were extracted and are collected into the
sets ∇2Lk for k = 1, . . . , 7. Each of these sets is clustered

using a k-means algorithm with 10 repeated initializations
and the optimal number of clusters in the integer interval
[1, 7] is chosen using the Davies–Bouldin index, which per-
forms well in case of overlapping clusters. Let C(∇2Lk)

denote the set of cluster centers found for the set of features
∇2Lk at scale k, and C(Fi ) the cluster centers for the i-th
fixations set Fi . If |C(∇2Lk)| = nk , for each cluster center
ck j ∈ C(∇2Lk), j = 1, . . . , nk , the closest cluster center in
C(Fi ) is found, and the distances between these centers are
averaged to get dk,i . We repeat the search for the minimum
distance cluster centers for each i = 1, . . . , 12 so, for each
scale k, we get the vector Dk(∇2 L) = {dk,1, . . . , dk,12}.
By averaging it, we get the distance dk relative to the com-
parison of the features ∇2L at scale k with all the human
fixations Fi . The procedure to find the distances between the
cluster centers of the features and the cluster centers of the
fixation was repeated 100 times to avoid instability of the k-
means initialization. Figure6 shows the Laplacian features
clusters at scales k = 1, . . . , 10, while Fig. 7 depicts the
clusters for the human fixations. Figure8 shows the plot of
the average distances vector. We select the scales for which
the distance vector has a local minimum, which correspond
to scales where features clusters are more similar to fixations
clusters. From the graph, thiswouldmean selecting the scales
σ4 and σ7 and σ10, although the model will start with scale σ7
as σ10 proved too small for the descriptor to be meaningful.
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Fig. 6 Clusters of nabla maximum points at the 10 scales

4 Multi-scalemodel applied to face detection

The proposed trained model can be promptly used to detect
faces in images. In particular, starting from the coarsest scale
of the model (σ7 in our case), the search gradually proceeds
to finer scales that may or may not confirm the presence of
significant details.

Given an image, since a priori we do not know what the
sizes of the (possibly contained) faces are, the image is first
resized to match the size of the coarsest scale of the model
(32 pixels). Then, for each pixel of the image, a patch of size
25 × 25 centered at the pixel is evaluated by extracting the
HOGs,which are then fed into theSVMclassifier. If the result
is negative, the pixel is discarded, otherwise it is analyzed at
the successive (finer) scale of the model (e.g., σ6 if all scales
were used; σ4 if the model guided by human fixations were
used). If all scales of the model give positive results, a face is
assumed to be present in the image with a dimension given
by the coarsest scale. If not, the original image is resized to
match the size of the successive (finer) scale of the model
and the multi-scale analysis just described is repeated. The
process stops as soon as all the scales foreseen by the model
cannot find a corresponding level of analysis on the original
image (i.e. when the dimension of the possibly contained
face in the original image is too small to be processed at any
of the scale levels of the model).

5 Experimental setup

To evaluate the face detection capability of the proposed
model we run extensive experiments on the Face Detection
Data Set and Benchmark (FDDB) [38], which contains the
annotations for 5171 faces in a set of 2845 images divided
into 10 folders. The images were taken from the Faces in the
Wild data set. Annotations were carried out by observers,
who were instructed to not annotate as faces image regions
containing faces that where rotated more than 90◦ from the
camera, or if neither of the two eyes (or glasses) were visible.
They were also requested to reject a face region if they were
unable to estimate its position, size, or orientation. A region
was finally labeled as a face based on aggregating statistics
of the labeling from multiple observers.

We designed several test protocols to evaluate the seg-
mentation performance of the face model with and without
human attention guidance. With the proposed method, the
confidence score of each detected image region can only
assume two values (0 and 1), as we are using a binary clas-
sifier. For each input image, the output is a (possibly empty)
set of image regions of rectangular shape classified as faces.
The size of the detected rectangles is related to the coarsest
scale at which the face was found.

To see which scales combinations had the best segmen-
tation capability we run a preliminary test on a subset of
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Fig. 7 Clusters of cumulative fixations from all observers over all images, segmented by number of fixation

Fig. 8 Plot of average distance of features clusters from the fixation clusters, as a function of features scale
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FDDB. Since each of the 10 folders of FDDB contains ran-
dom images from Faces in the Wild, we choose the first
folder as a representative subset of the whole dataset and we
run experiments by considering face models with the most
meaningful scales combinations, excluding adjacent scales
that have similar Laplacian extrema and ultimately similar
information:

1. FM{i}, with i ∈ {1, . . . , 7} are the models based on a
single scale σi , i = 1, . . . , 7.

2. FM{5,3} and FM{5, 1} are themodels based on two scales,
with initial scale σ5.

3. FM{7,i}, with i ∈ {5, 4, 3, 2, 1} are the models with first
scale equal to (σ7). This set includes the model FM{FG}
based on the scales that are most similar to human fixa-
tions, namely σ7 and σ4.

4. FM{7,5,2} and FM{7,4,1} are the models based on three
scales with initial scale σ7.

5. FM{7,6,5,4,3,2,1} is the models based on all scales.

The face detection performance of these models is reported
in Fig. 9. As expected, a single scale is not enough for the
model to perform face detection. The human-driven model
FM{FG} = FM{7, 4} proves to be the most accurate if we
consider both precision and recall, while the models that
could challenge it are, starting from the left-hand side of
the bar plot, the tenth and the last six. All these models are
based on two or more scales that start at σ7 and they are the
ones we included in the experiments on the whole FDDB.

For the full experiments, all images contained in all the
10 folders of FDDB were processed to search for faces. No
training was performed on FDDB. To establish if the fixation
guidedmodel could competewith themost promisingmodels
in the experiments restricted to the first folder, we run all the
experiments listed in points 4 and 5 above.

6 Experimental results

As prescribed in [38], the measure we use to evaluate the
regions selected by a face detection model is the discon-
tinuous Intersection over Union (IoU), and the suggested
threshold to establish a true positive region is set to 0.5. It
is then suggested that if you have a classifier that outputs
a confidence score, the ROC curve should be calculated as
the confidence score varies. In our case we only have two
possible confidence scores (0 and 1), so to establish the per-
formance of the fixation guidedmodel with respect tomodels
based on other scales we evaluate the precision and recall at
the IoU suggested threshold 0.5 as well as at different values
of IoU in the range [0, 1].

The results of the face detection are shown in Fig. 10.
The FMFG has the best scores among all models based on
two scales FM{7,i}, i = 1, 2, 3, 5. The models FM{7,4,1},

FM{7,5,2} and FM{7,6,5,4,3,2,1} provide the highest precision
at the expense of a lower or much lower recall, which can be
explained by the fact that more genuine faces are discarded
when adding one scale as the regions might be discarded by
the classifier at that scale. The human-based model allows an
overall better precision and recall of all of the other models,
at the same time limiting the processing to only two scales
and so decreasing the computational burden.

In Fig. 11 we can see the precision (left) and the recall
(right) as IoUvaries. FMFG has a high precision in the interval
of IoU = [0, 5], comparable to the models based on three
scales, and a much higher recall than the three scales or the
all scales models. Considering both precision and recall, we
can conclude that the model guided by human fixations is the
one with the best performance, so this first result tells us that
human attention can successfully guide the selection of the
scales.

As an example, in Table 1 we can see an image from the
dataset FDDB and the results of the face detection of the
models based on different scales. The FMFG detects all faces
while all the others miss one or more.

To compare our human attention guided model with the
state of the art in face detection we see how precision and
recall vary as the IoU threshold varies in the range [0, 1],
and in particular for the suggested value 0.5. In Fig. 13 it is
shown a plot of the precision (left) and of the recall (right) for
the proposed FMFG method, two state-of-the-art face detec-
tion methods based on deep convolutional neural networks:
the multiscale MTCNN [14] and Retina Face [13], and the
well-known Viola Jones [4]. The plots show that the pro-
posed method has a precision superior to all other methods
in the IoU range [0, 0.40] and up to IoU= 0.66 is below only
MTCNN. In the interval [0.66, 0.76] the precision of FMFG,
Retina Face and Viola Jones are very close, while precision
of MTCNN is quite superior in this range. In the IoU range
of [0.76, 1], FMFG precision surpasses all the other methods
again. Regarding recall, in the right plot in Fig. 13 we see
how FMFG finds less faces in the FDDB dataset, at least in
the range [0, 0.78], with MTCNN and Retina Face showing
the highest recall scores.

In Fig. 12, the precision and recall values are reported at
the IoU threshold of 0.5. MTCNN has high scores of both
precision and recall at this threshold, Retina Face detects
even more faces than MTCNN at the expense of a much
higher false positive numbers. Our proposed method has the
lowest recall, but still reasonable for several face detection
applications. It has however a very high precision, a behavior
that is also typical of human observers [25].

In Fig. 14 we can see some instances of false negative and
false positive detections of the model FMFG (detected faces
are in yellow boxes while ground truths are in green boxes).
The model clearly struggles with heavily occluded, blurred
faces (image on the left). This is explained from the fact that
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Fig. 9 Precision and Recall of various Face Models for face detection on the first folder of the FDDB database

Fig. 10 Precision and recall at IoU = 0.5 for FMFG and the competing face models based on other scale combinations

Fig. 11 Precision and Recall at varying IoU thresholds for FMFG and other face models based on various scale combinations
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Table 1 Examples of face detection using our face model at different scales

FM{7,5} FMFG FM{7,3} FM{7,2} FM{7,1}

Fig. 12 Precision and recall at
the I oU = 0.5 for our proposed
method FMFG, and MTCNN,
Retina Face and Viola Jones

Fig. 13 Precision and Recall at varying IoU thresholds for FMFG, MTCNN, Retina Face and Viola Jones

the facial areas our model is based on are not visible at all
in these images. On the right image in figure we can see a
(rare) case of false positive, which is a “double detection” of
a face.

The lower recall of the proposed FMFG method with
respect to the state of the art was somehow expected, as the

model was trained on the aligned partition of LFW which
contains only slight rotations away from the frontal pose.
Moreover, the binary classifier limits the detection of pos-
sible face regions. However, while the model is not able to
detect all faces, the number of false positive is very low, bet-
ter than all other methods and comparable to MTCNN, so it
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Fig. 14 Some examples of
system failure of FMFG on two
images from the FDDB dataset.
The detected face are bounded
by yellow boxes and the ground
truths by green boxes

Table 2 Examples of face detection 4 images of WIDER FACE

Viola-Jones RetinaFace MTCNN FMFG

From the left, Viola Jones, RetinaFace, MTCNN and FMFG

could be exploited in contexts where low false positives are
desirable.

In Table 2, we compare FMFG to the other state-of-the-
art methods on 4 selected challenging images from the Face
DetectionBenchmarkWIDERFACE[39] containing expres-
sions, makeup and occlusions. Viola–Jones shows a high
number of false positive (4 on the third image from the top)
and cannot detect the soldier in the second image from the
top. Our method does not detect any false positives and is
comparable to MTCNN and RetinaFace for not occluded
faces.

7 Conclusions

Multi-scale face detectors could represent a valid, lighter
and explainable alternative to deep learning models for face
detection. In this work, we propose to use human fixations
to guide the construction of a bottom-up multi-scale model,
by selecting the scales at which feature clusters are clos-
est to human fixations clusters. Extensive experiments on
the FDDB dataset show that the model based on the scales
that best correlate with human attention achieves a good face
detectionperformance,with the best recallwith respect to any
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of themodels based on different scales (and different number
of scales) paired with a very high precision. The model con-
struction is versatile and could be realized for other object
classes of interest, such as cars, pedestrian, etc. In this regard,
it would be intriguing to investigate whether human attention
on these classes can enhance the model’s performance in a
similar manner as it does for faces.

In terms of performance, there are multiple ways to
improve recall rates. A first approach could be to explore
alternative descriptors besides HOGs, enabling the utiliza-
tion of the model’s coarser scale σ10 that strongly aligns with
human attention. The multi-scale model could also be devel-
oped into a full DPM model by using the probability density
maps information to define slight movements of the differ-
ent patches which will likely improve the recall. Finally, by
adopting a non-binary SVM classifier that enables the choice
of a threshold, it would be possible to optimize the precision
versus recall trade-off according to the face detection context.
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