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Abstract

Jeff Hawkins is one of those rare individuals who speaks the languages of both Al and neuroscience. In his recent book,
"A Thousand Brains: A New Theory of Intelligence", Hawkins proposes that current learning algorithms lack four attributes
which will be necessary for true machine intelligence. Here we demonstrate that a minimal learning system which satisfies
all four points can be constructed using only simple, classical machine learning techniques. We illustrate that such a system
falls short of biological intelligence in some important ways. We suggest that Hawkins’ list is a useful model, but the “recipe”
for true intelligence—if there is one—may not be so easily defined.

Keywords Artificial intelligence - Reinforcement learning - Machine intelligence

In his recent book, “A Thousand Brains: A New Theory of
Intelligence", Jeff Hawkins proposes that four attributes of
intelligence are key to creating truly intelligent machines [1]:

1. Learning many models. Various aspects of the world
are modeled separately. One model might describe how
to anticipate and catch a baseball, while another describes
how to catch a frisbee. The most relevant models have the
greatest influence on behavior in a given situation.

2. Learning through movement and sensation. Agents
should learn by moving sensors around the thing being
modeled, just as we might learn about a small object
by looking at it from every side. The meaning of “move-
ment” depends on how the agent is embodied and situated
(a web-crawling Al “moves” through web pages).

3. Using general-purpose reference frames. Hippocam-
pal circuitry (grid cells, place cells, etc.) that evolved
to serve spatial navigation now likely supports all kinds
of learning [2]. In Hawkins’ view, most knowledge is
stored—and most reasoning performed—using generic
map-like structures.
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4. Continuous learning—unlike today’s artificial neural
networks, which typically learn new things by modify-
ing connection weights (essentially overwriting previous
knowledge).

This list of attributes is an insightful and useful model of
intelligence. But God is in the details, and these four points
abstract away so much complexity, they may not be a suf-
ficient “recipe” for intelligence. To illustrate this limitation,
we construct a minimal learning agent which satisfies all four
points at a fundamental level, using only classical machine
learning techniques (challenging Hawkins’ claim that the
machine learning field lacks these four attributes). We then
illustrate a few questions that the list leaves unanswered.

We envision our agent living in a “world” containing
many tasks. Each task is described by a Markov Decision
Process (MDP), following the usual reinforcement learning
paradigm [3]. When immersed in a task, the agent can sense
its current state, perform actions that move it to a new state,
and sense again (thus implementing the principle of learning
through movement and sensation). The agent must learn how
to achieve a goal located in one of the states. MDPs like this
are perhaps the simplest possible metaphor for the sequential
decision making of life.

Our minimal learning agent is a reinforcement learner
based on the Dyna algorithm [4]. This algorithm maintains
tables that track state transition and reward events. After suf-
ficient experience, these tables can estimate state transition
probabilities and expected rewards for particular actions, and
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Fig.1 The agent learns a model
of a task (above) that includes
the shortest route between blue
start and green goal states. If the
red state is deleted, the agent
can learn a new model
representing the altered task, but
this takes time (below). Better
would be to flexibly adapt the
old model, but how?
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so together they serve as a model of the underlying MDP.
These tabular models are generic structures that can track
reward and transition probabilities for any MDP in the agent’s
“world”, and so they are an abstraction of the general-purpose
reference frames Hawkins describes. We then use the priori-
tized sweeping algorithm [5] to estimate the value (expected
discounted reward) of executing a particular action from a
particular state, given the tabular model.

We extend this minimal learning system with a memory
of recent state transitions, and the ability to learn and store
multiple tabular models as in Chalmers et al. [6]. At each
decision, the agent computes the likelihood of its recent expe-
riences under each model, and uses the one that seems most
relevant. If none of the existing models match the recent expe-
riences, anew one is started. In this way the agent implements
the principles of continuously learning multiple models.

This minimal learning system learns the shortest route to
a task’s goal state. If we then create a blockage by delet-
ing one of the MDP states along this route, the agent can
learn a new model to represent the new best route. But in our
minimal learning system this requires learning a completely
new model, which takes time and effort (Fig. 1). A more
intelligent, more animal-like response to the blocking prob-
lem would be to flexibly adapt the contents of the existing
model to the new situation—trying the other, counterclock-
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wise route to the goal before resorting to learning a new
model. This example is quite simple, but one can imagine
more dramatic environmental changes (multiple obstacles,
changes in reward locations, etc.) that would require more
sophisticated adaptation of previously-learned models. A
later paper co-authored by Hawkins does acknowledge the
importance of this kind of flexibility [7], but how does it
work?

Along with the “blocking” problem we could consider the
related “shortcutting” problem. If a new transition appears in
the MDP should the agent explore it, hoping it represents
a shortcut to a desired state? Or exploit a tried-tested-and-
true behavior? Animals can sometimes respond intelligently
to the appearance of apparent shortcuts, using a cognitive
map to predict whether the shortcut will lead in the right
“direction”. To be fair, Hawkins’ point 3 surely envisions
precisely such a sophisticated cognitive map [2, 8]. But how
is egocentric sensory information transformed to build an
allocentric cognitive-map-style representation, and how is
the map used to modulate exploration vs exploitation? The
list of four attributes does not seem to offer guidance on these
details.

Perhaps the tabular models are too simple to support such
intelligent behaviors, and function approximation through
neural networks is required. But then the key to machine
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intelligence would lie not only in the four attributes, but also
(or perhaps instead) in the neural architecture. And if the
issues of flexible model adaptation, cognitive mapping, and
exploration/exploitation are solved, how then is the agent to
compose skills hierarchically [9], communicate with other
agents [10], or use a cognitive map to make plans [11] as
biological agents do? Of course, these phenomena are not
complete mysteries: many computational accounts of each
phenomena have been proposed. The point is that those pro-
posals are part of a rich discussion about intelligence which
seems impossible to contain in a list of four attributes.

Considering that this list of attributes may be insufficient
as a recipe for intelligence, the question remains: what are
the missing secret ingredients? It’s been suggested that artifi-
cial intelligence falls short of biological intelligence in areas
like hierarchical composition and transfer learning [9], meta
learning [12], few-shot learning [13], and energy efficiency
[14]. Would these features complete the recipe? Or should
we focus instead on the more fundamental question: what is
a truly intelligent machine? The evolution of the Turing test
and its variants and alternatives over the years [15] suggests
that this question is just as slippery—and sometimes “pass-
ing” such a test only reveals how far we have yet to go [16].
One begins to wonder; is writing a recipe for intelligence
even possible?
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