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Abstract
Mathematical modeling of neuronal dynamics has experienced a fast growth in the last decades thanks to the biophysical
formalism introduced by Hodgkin and Huxley in the 1950s. Other types of models (for instance, integrate and fire models),
although less realistic, have also contributed to understand neuronal dynamics. However, there is still a vast volume of data
that have not been associated with a mathematical model, mainly because data are acquired more rapidly than they can be
analyzed or because it is difficult to analyze (for instance, if the number of ionic channels involved is huge). Therefore,
developing new methodologies to obtain mathematical or computational models associated with data (even without previous
knowledge of the source) can be helpful to make future predictions. Here, we explore the capability of a wavelet neural
network to identify neuronal (single-cell) dynamics. We present an optimized computational scheme that trains the ANNwith
biologically plausible input currents. We obtain successful identification for data generated from four different neuron models
when using all variables as inputs of the network. We also show that the empiric model obtained is able to generalize and
predict the neuronal dynamics generated by variable input currents different from those used to train the artificial network.
In the more realistic situation of using only the voltage and the injected current as input data to train the network, we lose
predictive ability but, for low-dimensional models, the results are still satisfactory. We understand our contribution as a first
step toward obtaining empiric models from experimental voltage traces.
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1 Introduction

Modeling based on biophysics or statistical mechanics has
allowed big advances in Neuroscience. Contributions like
Lapicque’s (1907) introducing the integrate-and-fire formal-
ism to model neuron’s activity or the conductance-based for-
malism introduced by Hodgkin and Huxley (1952) together
with a myriad of experimental work have led to a corpus
of specific models that is extremely useful to model and
make predictions in Neuroscience. Advances in single-cell
electrophysiology have emerged through ingenious proce-
dures often based on the application of (controlled) current
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injections while recording the only measurable variable, the
membrane voltage. They havemade it possible to identify the
active ionic channels, measure its ionic conductances and,
ultimately, manage to describe channel dynamics. Modeling
work has benefited from these advances and has focused pri-
marily on single-cell studies. In the realm of neural networks,
experimental techniques (magnetic resonances, diffusion
tensor imaging, calcium imaging, magnetoencephalography,
multielectrode recordings, local field potentials,…), as well
as modeling approaches, have made a great progress in
recent decades. However, the insight into neuronal popula-
tion dynamics has progressed more slowly, mainly because
the complexity of neuronal networks (different cell types,
connectivity configurations, spatiotemporal scales,…) does
not allow a biophysical comprehensive approach as for the
single-cell studies. Population models have been basically
developed using mean-field approaches that assume a high
degree of homogeneity, see for instance the seminal papers
of Knight (1972) and Wilson and Cowan (1972). Exam-
ples of different approaches to model network dynamics
are firing rate models (Wilson and Cowan 1972; Chizhov
et al. 2007; Montbrió et al. 2015), population density mod-
els (Knight et al. 1996; Brunel and Hakim 1999; Nykamp
and Tranchina 2000; Apfaltrer et al. 2006; Ly and Tranchina
2007;Chizhov andGraham2007), neuralmassmodels (Free-
man 1972, 1975), neural fields (Amari 1977; Beim Graben
andRodrigues 2013), kinetic theory (Ventriglia 1974;Knight
et al. 2000) and graph theory (Sporns 2010).

Despite this humongous work, there is still a vast volume
of data that have not been associated with a mathematical
model, due to different reasons, specially recordings that have
not been followed by a meticulous electrophysiological task
to uncover the channel dynamics (because of costs, other
goals, or physical constraints) or data obtained from indirect
registering methods (e.g., non-invasive). Thus, developing
newmethodologies to obtain mathematical or computational
models associated with data (even without much prior bio-
physical information) can be helpful to make predictions in
future experiments.

Artificial neural networks (ANNs) were born as replicas
of brain circuitry (McCulloch and Pitts 1943; Rosenblatt
1962) and evolved along scientific paths that were practically
disconnected from their inspirational biological counterpart.
Nevertheless, in recent years, we have been increasingly
witnessing connections between machine learning and neu-
roscience, in both directions, see Saxe et al. (2021). However,
as far aswe know, few contributions have addressed the prob-
lem of using artificial neural networks as black boxes that
potentially substitute biophysical models.

The main goal of this paper is to prove the ability of an
artificial network to identify the neural dynamics of a model
and make predictions.We aim to provide an in silico proof of
concept in order to apply the same procedure to experimen-

tal data later. More precisely, taking as input the time traces
of the system variables in response to a prescribed injected
current, we train the neural network on this input data and
then use the trained network to predict the voltage response
to other injected currents. In this paper, we perform this pro-
cedure in two paradigms: using all variables as input, i.e.,
voltage and auxiliary variables (we will call it Paradigm I),
and using only voltage (Paradigm II). Note that Paradigm I
aims to address the fundamental goal of the paper (the abil-
ity of the ANN in learning neuronal data), while Paradigm
II is essential to our ultimate goal of applying the method-
ology to experimental data because in the experiments only
the voltage trace can be measured.

In particular, the input current applied to a specific mathe-
matical neuron model is designed to sweep the biophysically
reasonable range, according to the corresponding bifurca-
tion diagram. In this way, the ANN can “learn" about all
the physiologically plausible neuron’s responses. The input
current and the time course of the state variables obtained
from the simulations constitute the inputs that feed the net-
work. The training procedure allows us to identify the ANN
parameters that fit the best to the data, and ultimately, it
provides a black-box model of the neuron that can be used
as a predictive or inference tool. The mathematical mod-
els simulated in this paper have been chosen to incorporate
complexity gradually and illustrate the effect of the increase
in dimensionality and the appearance of new time scales.
The choice of parameters for each model has been made
so that the bifurcation diagram (for constant input currents)
presents only quiescent states and regular spiking, which are
the simplest dynamicbehaviors; however, as a result of apply-
ing non-constant input currents, we can eventually induce
bursting-like or other complex behaviors.

In this paper, we choose a specific type of ANN based on
wavelets, which we will refer to as wavenet, in which activa-
tion functions are based on Mallat’s multiresolution analysis
(Mallat 1989). Although we could achieve similar results
with other types of ANNs, wavenets have the advantage that
lead to solve a linear optimization problem which provides a
global solution.

The paper is organized as follows: In Sect. 2, we present
the methods used along the paper, namely the structure of
the artificial neural network (wavenet) and the training-and-
testing procedure. Section3 is devoted to the presentation
of the results, which are finally summarized in Sect. 4 and
discussed in Sect. 5. In order to ease the reading of the article,
the neuron models used to obtain the data are presented in
“Appendix A”.
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2 Methods

In order to test the modeling capability of our artificial neu-
ral network, we first simulate the neuron models described in
“Appendix A” using as inputs those described in Sect. 2.1.4.
The ensemble of inputs and outputs involved in these sim-
ulations is then combined to build up the dataset that we
use to train the network for each neuron model. Section2.1
is devoted to explain the specific artificial neural network
used in this paper (that is, what we call wavenet); we give
details of how we train and test the network in Sect. 2.1.6.
Finally, in Sect. 2.1.5 we also present the methodology used
to choose the hyperparameters of the network, a key point
for the computational performance of our methods. Compu-
tational details of the neural network are provided inSect. 2.2.

2.1 Artificial neural network

Artificial neural networks consist of nodes in different lay-
ers (usually an input layer, an output layer and one or
more hidden layers), interconnected with weights resulting
in high-dimensional and mathematically complex models
that are capable of predicting a large variety of processes.
The most used neural network for control and nonlinear sys-
tem’s identification is the feed forward, which profits from
the backpropagation algorithm during supervised training
(Rumelhart and McClelland 1986).

However, due to the complexity of the network struc-
ture (number of hidden layers, nodes per layer, activation
functions, etc.) and training parameters (weights, loss func-
tion, etc.) that one has to heuristically set up (Haykin 1999),
feed-forward networks aremathematically less tractable and,
sometimes, they are replaced by nonlinear models that are
linear on their parameters, so that the problem reduces to
determine the parameters that approximate the underlying
data in a given functional space. Wavenets (networks com-
posed by wavelets) belong to this second kind of model: they
consist of a single hidden layer where each artificial neuron
(also called node) has a different activation function. A pair
formed by a node and its associated activation function is
called a wavelon. The activation functions are based on Mal-
lat’s multiresolution analysis (Mallat 1989) which provides
a structure for the approximation of functions at different
degrees of resolution, based on wavelets theory (Daubechies
1992; Strang and Nguyen 1996), see Sect. 2.1.2 for details.
Therefore, the approximation function for which we seek is a
linear combination of the activation functions and the training
process consists in determining the coefficients of the pro-
jection of the function underlying the data over the different
frames of the multiresolution subspaces; these coefficients
will be the weights of the wavenet.

The values of the weights of the network are obtained by
solving a low-rank system of linear equations using the least-

squares method (see Sect. 2.1.1). Therefore, in the context of
this paper, training the network will simply mean computing
the set of coefficients of a frame. We next explain the specific
network structure of our wavenet and the training process
in more detail. In this paper, the input dataset will always
come from values of the state variables (generally, the mem-
brane voltage v of the cell and other auxiliary variables with
biophysical meaning) and input current values. The output
variables will always coincide with the state variables.

2.1.1 Wavenet structure and training

Our goal is training the network in order to identify every sys-
tem presented in “Appendix A”, that is, obtaining a wavenet
that mimics the dynamics of each neuron model. Sometimes,
wewill refer to this procedure as the identification of the neu-
ron.

In order to succeed in the training process, there have
to be enough variations in the inputs so that most of the
possible situations in the estimation phase are embedded in
the wavenet model. For this purpose, we will use the current
Iapp (seeSect. 2.1.4) that appears in all themodels as a control
input that will allow the numerical simulation to visit a wide
range of dynamical states of the system.

Depending on the paradigm, we will have different inputs
and outputs of the network:

I In Paradigm I, for each time step, we will have the cur-
rent values of the state variables plus the value of the
control input current as inputs of the network, while the
output will be the values of the state variables at the fol-
lowing time step, obtained from numerical integration;
see Fig. 1b for a schematic picture in the case of two state
variables v and w.

II In Paradigm II (closer to the experimental situation), for
each time step, the inputs of the network will be the cur-
rent voltage sample and the q preceding ones (q to be
determined for each model) plus the value of the control
input current, while the output will be the values of the
voltage variable at the following time step, obtained from
numerical integration; see Fig. 1c for a schematic picture.

We will denote by x = {x (m)}NE
m=1 the input dataset

obtained from simulating a neuron model during NE inte-
gration steps. In the example of Paradigm I shown in
Fig. 1b, x (m) = (v(tm−1), w(tm−1), Iapp(tm−1)), where tm−1

is the time at which we apply the m-th integration step.
In the example of Paradigm II shown in Fig. 1c, x (m) =
(v(tm−1), . . . , v(tm−1−q), Iapp(tm−1)). The output dataset

will be denoted by y = {y(m)}NE
m=1; in the example of

Fig. 1b, y(m) = (v(tm), w(tm)) and in the example of Fig. 1c,
y(m) = v(tm).
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Fig. 1 Wavenet structure and training. a Simplified diagram of a single
variable (1-input) wavenet. b Simplified wavenet representation for the
prediction of a two-dimensional model with an external stimulus Iapp in
Paradigm I: we feed the network with the values of all the state variables
and the input current at time i (input nodes; left); the information flows
through the wavenet and gives the predicted values of all the state vari-

ables (output nodes; right). The long-range connections stand for the
linear terms added to the wavenet structure. c Same as b for Paradigm
II, that is: we feed the network with q +1 values of the voltage variable
and the input current at time i and it gives the predicted value of the
voltage variable

In order to explain the general approximation procedure,
we will momentarily consider x (m) to be one-dimensional
and assume that we want to approximate a one-variable real
function f by a wavenet formed by J nodes, which corre-
spond to the number of nodes in themiddle layer of the panels
of Fig. 1a. Let g = (g1, . . . , gJ ) be the vector of the corre-
sponding activation functions, with g j belonging to a frame
of functions within a function space that approximates f to
a given bounding error, see Sect. 2.1.2. Note that, with this
notation, thewavelons are the pairs ( j, g j ), for j = 1, . . . , J .
Thus, the approximation procedure builds upon

f (x (m)) = g(x (m)) σ , (1)

form = 1, . . . , NE , where f (x (m)) = y(m), g(x (m)) is a row
vector of dimension J and σ is a column vector of dimension
J whose components correspond to the values of the projec-
tion of f (x) over each frame function, that is, the weights of
the network.

In a compact way, we can write equation (1) as the low-
rank system:

ŷ = G σ , (2)

where ŷ is a column vector of dimension NE where each
component is a different output y(m) := f (x (m)), and G is
a NE × J matrix where each row is given by g(x (m)). In
this way, training the wavenet consists of determining σ , the
vector of the coefficients, by solving system (2).

To solve the low-rank linear system in equation (2), the
mean-squared error (MSE) is used as an objective function,
following themultiple linear regression expression presented
in Claumann (2003):

MSE = 1

NE
‖ y − Gσ‖2. (3)

Later on, the norm vector of the squared weights ‖σ‖2 is
added as a regularizer, turning theMSE function into a regu-
larized objective function. The regularizer is able to smooth
the curvature of the model’s surface by reducing the oscil-
lations around the data used as a target for the model and
avoiding possible problems related to the inverse of the
covariance matrix when solving the minimized system with
the least-squares method. The new objective function O is

O = 1

NE

(
‖ y − Gσ‖2 + γ ‖σ 2‖

)
. (4)

The γ parameter is a multiplier; indeed, γ = μλmax , where
λmax is the largest eigenvalue of the covariance matrix GᵀG
and μ is a constant found through experimentation. In order
to minimize the objective function, that is, ∂O

∂σ
= 0, we must

solve the linear system

(GᵀG + γ I )σ = Gᵀ ŷ. (5)

2.1.2 Activation functions

We defined the activation functions associated with the
network nodes from Mallat’s multiresolution analysis (see
Mallat (1989) or Mallat (2008), Ch. 7) with additional
modifications introduced for computational purposes. Our
particular frame of functions is constructed upon a scaling
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Fig. 2 Scale function and
displaced scaling functions.
Scale function a and three
displaced scaling functions c
associated to it. Here, we use the
so-called quadratic spline
scaling function, see (7); similar
representations are achieved
from other choices of scaling
functions. The functions φ0 (in
blue), φ1 (in green) and φ2 (in
red) are computed from (8) with
d = NS = 3. In the rightmost
panels, we show the
corresponding wavelet mother
(b) and its displaced wavelets
(d), ψ0 (in blue), ψ1 (in green)
and ψ2 (in red), which are
computed from (9). All
functions are already restricted
to the support � = [0, 1]

function. In general, scaling functions are defined as:

φ(x) =
N∑

n=0

pnφ(2x − n), (6)

where pn are called interscale coefficients and fulfill
∑N

n=0
pn = 2, see Strang (1989) and Claumann (2003). In this
paper, we have used standard scaling functions; as a particu-
lar example, in Fig. 2, we show the quadratic spline scaling
function, given by

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2
2 x ∈ [0, 1),
−x2 + 3 x − 3

2 x ∈ [1, 2),
x2
2 − 3 x + 9

2 x ∈ [2, 3],
0 otherwise,

(7)

and rescaled to the interval [0, 1]. In general, we assume that
the scaling functions have compact support on an interval
� = [0, d]. The frame of functions that we consider consists
of three groups of functions:

1. A set {φk}NS−1
k=0 of displaced scaling functions, obtained

by translations of the scaling function φ, see Fig. 2. Each
function φk is centered at x = 1 − k

NS−1 . The parameter
NS > 1 is chosen ad hoc in each example. The precise
formula, for k = 0, . . . , NS −1, to obtain these displaced
functions is:

φk(x) :=
{

φ
((

x − 1
2 + k

NS−1

)
d
)

x ∈ [0, d],
0 otherwise.

(8)

2. The family of wavelet functions {ψ(k)
r ,n}, with (r , n) ∈ Z

2,
corresponding to each φk , for k = 0, . . . , NS − 1. Each
family is obtained from the correspondingmotherwavelet

ψk(x) =
N∑

n=0

(−1)n pnφk(2x − n), (9)

and each wavelet is defined as

ψ(k)
r ,n(x) = |a0|r/2ψk(a

r
0x − nb0), r , n ∈ Z, (10)

where a0 = 2 and b0 = 1 have been chosen, as in Clau-
mann (2003). The parameter r is called the resolution
level and n ∈ {0, 1, 2, . . . , 2r −1} represents the so-called
translation index.

3. We also consider the identity function of each state vari-
able. As proposed in Fisco-Compte (2020) and Alexan-
dridis and Zapranis (2011), it might be useful to reduce
the prediction error. This is equivalent to approximating
f (x) − L(x), where L(x) is a linear function of the state
input vector, instead of f (x) in Eq. (1), by the neural
network. This corresponds to adding new edges to the
wavenet; more precisely, the peripheral connections in
Fig. 1b. For the sake of simplicity, we will consider that
each pair formed by a node containing a variable of the
system and the identity function is also a wavelon, despite
the fact that the function is not a wavelet.

Finally, all functions of the frame are restricted to� and taken
as zero on �c. In order to avoid a cumbersome notation, we
do not change the names of the functions after this restriction.
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We will call F the resulting frame of functions:

F := Id ∪ {φk} ∪ {ψ(k)
r ,n}, (11)

where k = 0, . . . , NS − 1; r = 0, . . . , NR − 1 and n =
0, . . . , 2r − 1.

In the practical implementation, we are seeking for an
approximation

f̂ (x) = a x +
NS−1∑
k=0

bkφk(x)

+
NS−1∑
k=0

NR−1∑
r=0

2r−1∑
n=0

c(k)
r ,nψ

(k)
r ,n(x),

(12)

where we will have to determine the parameters a, bk , c
(k)
r ,n ,

NS (number of displaced scaling functions) and NR (levels of
resolution). The higher the level of resolution one achieves,
the finer the approximation of the function. However, more
levels of resolution mean larger vector functions g which
results in a higher computational cost when solving system
(2) by the modified least-squares method. Notice thatF adds
redundancy to the Mallat’s scheme because we increase the
number of functions of the frame. Despite losing the struc-
ture of basis, we gain capability to capture the details of the
system. This strategy increases the computational effort in
each resolution level but lowers the number of levels needed
to reach the same performance, thus reducing the overall
computational costs, see also Claumann (2003).

Apart from the exponential increase in wavelons when
the number of independent variables increases, wavenets also
present some issues in termsof domain support. Scaling func-
tions usually take values close to zero at both ends of their
domain which results in data points closer to the center of
the domain having a greater relevance in the regression prob-
lem. As a consequence, prediction of data points that live in
both ends of the activation function domain is less reliable.
The superposition of the displaced scaling functions (8) in
the same domain (Claumann 2003), which in turn results in
superposition of wavelets in higher resolution levels, miti-
gates this problem. The number of wavelons increases by a
factor of NNI

S but, as pointed out above, the improved perfor-
mance allows for fewer levels of resolution in order to obtain
accurate results.

Note that the components of the vector function g consid-
ered above are the functions belonging to F . In a wavenet
diagram, as in Fig. 1b, the addition of the identity function
is represented by a direct connection between the input and
the output, without an intermediate node. All other functions
correspond (one-to-one) to the nodes of the middle layer.

2.1.3 The multi-input/multioutput case

The procedure explained so far for a single input and a single
output can be naturally extended both to the multi-input, by
interpreting each vector input as a single input, and to the
multioutput case, by considering a specific problem for each
output component. However, as we will explain in detail, the
number of functions of the frame up to a certain level of
resolution increases exponentially with the dimension of the
input, and so does the number J of wavelons in the wavenet.
For instance, in the example shown in Fig. 1b, the dimension
of the input is NI = 3 since x = (v,w, Iapp) while the
dimension of the output is NO = 2 since y = (v,w).

While, for the single-input case, the levels of resolution
are easily defined from the scaling functions, for the multi-
input case, the definition is more elaborate, see Claumann
(2003) and Fisco-Compte (2020).

The level of scaling functions is composed by NNI
S func-

tions defined as all the combinations of products of the NS

scaling functions applied to the NI input variables; that is,
NI -variable functions of type

φi1(x1)φi2(x2) · · · φiNI
(xNI ), (13)

for i j ∈ {0, . . . , NS −1}. For instance, in the example shown
in Fig. 1b, we have 27 functions in this level (assuming that
NS = 3).

The first level of resolution of wavelets represents the r =
0 level of resolution. It involves products of mother wavelets
ψ

(k)
0,0, together with scaling functions φk , for k = 0, . . . , NS ;

that is, NI -variable functions of type

ξi1(x1)ξi2(x2) · · · ξiNI
(xNI ), (14)

for i j ∈ {0, . . . , NS −1}, where ξ∗ represents either a scaling
function or a mother wavelet, excluding the case in which
all ξi j , for j = 1, . . . , NI , are scaling functions, which
has already been considered in (13). Note that this leads to
(2 NS)

NI − NNI
S functions. For instance, for NI = NS = 3,

we get 189 functions in this level.
The following levels of resolution are constructed in a

similar way than (14) but taking ξ∗ as either scaling func-
tions or wavelets of the corresponding level of resolution
as defined in (10), always excluding the case in which all
ξi j , for j = 1, . . . , NI , are scaling functions. Note that for
r ≥ 1, we are considering 2r displaced scaling functions
and so the number of functions grows rapidly with r . For
instance, if we have NI = 3 input variables (e.g., Morris–
Lecar model or Fitzhugh–Nagumo model, see “Appendix
A”), the number of functions at the level of resolution r
is N 3

S

(
3 · 2r + 3 · 22r + 23r

)
; for NS = 3 (NS = 4), this

gives 702 (1664), 3348 (7936), 19656 (46592), 132624
(314368),…functions for r = 1, 2, 3, 4, . . . , respectively.
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Fortunately, for the purposes of this paper (from Sect. 3.1
on), we get satisfactory results with only few levels of reso-
lution.

Finally, it is also possible to approximate vector (i.e., mul-
tioutput) functions

f (x) = ( f1(x), . . . , fn(x)) . (15)

by applying the above procedure [that is, solving system (2)]
for each component of f (x). Note that, since the input data
are the same for each component, all n systems share the
matrix G and one only needs to change the output vector ŷ
in (2) by { fi (x(m))}NE

m=1.

2.1.4 Current inputs for training

Input currents used for training are represented in the mod-
els by the Iapp term. For this purpose, Iapp(t) is generated
randomly, in a way that forces the system to visit all biologi-
cally plausible regimes of the neuron and causes all possible
dynamical states to manifest. For anymodel, the biologically
plausible regimes are determined from the corresponding
bifurcation diagram (see Figs. 20, 21, 22 and 23, respectively)
by sampling the Iapp within a prescribed interval I close to
the bifurcation between equilibria and limit cycle oscilla-
tions. We want to cover both equilibrium states at any level
of excitability within the physiological range and oscilla-
tions at any physiological frequency. For values out of this
interval, the current values are either so small that the cell
remains hopelessly in a quiescent state or too large that they
can induce a nerve block. Moreover, the current Iapp(t) has
to be designed so that enough time (
T ) is spent in each
equilibrium or oscillation value for the network to learn; that
is, we want the wavenet to account for all possible responses
of the neuron model to external excitation. This results in a
stepwise temporal series that takes uniformly distributed ran-
dom values in I. In Fig. 3, a sample of an Iapp signal used to
identify the Morris–Lecar model (see also Fig. 20) is shown.
As it can be seen, the signal remains a certain period of time
in a constant Iapp value, allowing the model to reach the sta-
tionary state in its trajectory with the objective of obtaining
a rich dataset that is suitable for training the wavenet.

The interval I, the parameter 
T , and the training dura-
tion are selected for eachmodel and experiment. In particular,
I = [20, 60] for theMorris–Lecarmodel, [0.07, 0.09] for the
FitzHugh–Nagumo model, [0.05, 0.07] for the FitzHugh–
Nagumo–Rinzel model and [−3, 3] for the Wang model.
Because they were less computationally demanding, the
training for the 2Dmodels lasted 2500 s but it could be much
less; for the Fitzhugh–Nagumo–Rinzel model it lasted 375s
and for the Wang model, 230 s.

Fig. 3 Input current used for training. Trace of the Iapp signal used to
train the Morris–Lecar model (see “Appendix A.1”)

2.1.5 Wavenet’s hyperparameters selection

Hyperparameters are the parameters that are set before the
learning process is started, such as the number of superposed
wavelets discussed at the end of Sect. 2.1.1, the number of
resolution levels, the scaling functions used as activation
functions (see Sect. 2.1.2) and the regularizer (a parameter
that improves training results and computational robustness),
defined right after (4).

Hyperparameters are determined previous to training with
the purpose of optimizing overall performance of the net-
work, aiming at reducing both the prediction error and the
computation time. With the aim of helping the user make an
appropriate choice of hyperparameters, we have performed a
prediction error versus computational cost study in which we
explore many of the possible hyperparameter combinations.

The regularizer is studied apart from the other hyperpa-
rameters. The μ parameter from the regularizer will be set
to a constant value of 2 · 10−16 during the study so as not
to interfere with the mathematical features of the model; its
main function is to introduce a small computational error to
avoid numerical problems with the matrix inverse while the
least-squares method is applied, as mentioned in Sect. 2.1.1.

We use the FitzHugh–Nagumo model, see Sect.A.2, as
a showcase. We study the behavior of the hyperparameters
of the corresponding wavenet and propose possible config-
urations when training this specific model. The wavenet has
been trained to approximate the FitzHugh–Nagumo model
for each combination of hyperparameters, keeping the same
set of inputs, and the testing scores have been stored and
compared. The training dataset is obtained by integrating
equations in (A.4) with a time step of 
t = 0.05ms, with
500 different random Iapp values, drawn from a uniform dis-
tribution in the interval I = [0, 0.1] and kept constant for

T = 200ms. Note that this specific choice of 
T and the
number of Iapp values is only used here, for the Fitzhugh–
Nagumo model, in order to select the hyperparameters of
the network. Thus, for each hyperparameter configuration,
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we integrate over 100 s. In the testing simulations, we use
shorter simulations.

The study of hyperparameters is organized along the fol-
lowing steps:

1. A plausible range for each hyperparameter is selected.
We have chosen NR = 0, 1, 2 for a total of three different
levels of resolution, NS = 4 and 5 superposed activation
functions in the wavenets, as discussed in the last para-
graph of Sect. 2.1, and two different scaling functions: the
quadratic spline and the bicubic spline.

2. The model is trained with one of the 12 possible combi-
nations at a time.

3. The total number of wavelons used to approximate the
neuron model and the relative error of the prediction are
used as scores. The error is computed using a test dataset
to assess the robustness of the prediction during 5000ms
of the oscillatory signal used for this model (see Table
2). The error score taken is from the v variable of the
FitzHugh–Nagumo model.

4. The best performing hyperparameters are chosen accord-
ing to a balance between the computational cost, defined
by the number of wavelons, and the prediction error. As
the number of wavelons is a measure of the wavenet com-
plexity, it is also an estimator of the time needed to train
the neural network.

2.1.6 Testing wavenet’s generalization: indicators

Once the network has been trained, we get a solution σ̂ of
the least-squares problem (5) associated with system (2).
In order to test the training process and assess the ability
of the network to generalize, we consider a test dataset,
(xT , yT ), which is obtained by integrating the ODEs of
the neuron model subject to a new perturbation Iapp,T (t)
for NT integration steps with initial conditions at times
{tm}NT −1

m=0 . Thus, as in Sect. 2.1.1, xT = {x (m)
T }m=1,...,NT and

yT = {y(m)
T }m=1,...,NT , where x (m)

T has NI = n + 1 com-

ponents, being n the number of state variables, and y(m)
T has

NO = n components. The components x (m)
T are the values

of the n state variables at time tm−1 and the value of Iapp,T ,

whereas the components y(m)
T are the values of the n state

variables at time tm . We then evaluate GT := G(xT ) and
compute ŷT := GT σ̂ .

In order to assess the accuracy and validity of the wavenet
predictive capabilities, we have compared the test and the
predicted output datasets, yT and ŷT , respectively, using dif-
ferent indicators:

• The (1 − r2)-score: For the i-th state variable, for i =
1, . . . , n, we define

(1 − r2)i =
∑NT

m=1

(
y(m)
T − ŷ(m)

T

)2

∑NT
m=1

(
y(m)
T − yT

)2 , (16)

where yT is the mean of the variable in the test dataset.
The closer the (1 − r2)i error gets to zero, the better the
prediction for the i th state variable.

• The normalized cross-correlation function between the
test and the predicted output datasets is given by:

R(k) :=
∑NT

m=1 y
(m)
T ŷ(m+k)

T

‖yT ‖ ‖ŷT ‖ , (17)

where k is the displacement or lag.
• The cosine similarity: the cosine of the angle between the
projection and the original signal,

SC := SC (ŷ, y) = R(0) (18)

It is worth mentioning that the (1 − r2)-score provides a
good detection of the outstanding identifications but, in the
presence of time-lags in the predicted signal, it can be a pes-
simistic indicator, even if the spikes are all well identified. As
we will see in the results, in these cases, the cross-correlation
R and the cosine similarity SC provide a better assessment of
the goodness of the identification. For this purpose, we will
also compare the distributions of interspike intervals (ISI)
of y and ŷ to illustrate how well essential features like the
number of spikes and the frequency are predicted (given a
sequence of spike times {t1, . . . , tp} of a specific voltage time
series, with t1 < t2 < · · · < tp, we define ISI j = t j+1 − t j ,
for j = 1, . . . , p − 1).

2.1.7 Robustness of the identification method

In the testing phase, our aim is to assess the robustness of
the identification method. On the one hand, we will consider
noise in some parameters of the system and, on the other, we
will introduce different random features in the currents used
for training.

Models are modified by adding uniformly distributed
noise to some of its relevant parameters. More, precisely,
for a given parameter, say κ , we consider κ(1 + ξ(t)),
where ξ(t) is randomly distributed in [−ξ̄ , ξ̄ ], for some
ξ̄ = ξ̄ (κ) > 0. For the conductance-based models, that
is, the Morris–Lecar (“Appendix A.1”) and Wang models
(“Appendix A.4”), the noisy parameters are the leakage con-
ductance, gL , and the potassium conductance, gK , while for
the FitzHugh–Nagumo models (“Appendices A.2 and A.3”),
the noisy parameters are a and γ . In our simulations, we have
taken ξ̄ = 0.01 since, from a biological and an engineering
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Table 1 Parameters of the stepwise testing current: #Iapp refers to the
number of different Iapp (random) values used to designed the testing
input,
T is the time (in ms) that each Iapp value is kept constant and I
is the interval of Iapp values (in µA/cm2 for Morris–Lecar and Wang
models) in which the Iapp are randomly chosen

Model #Iapp 
T I

Morris Lecar 50 100 [20, 60]

FitzHugh–Nagumo 50 100 [0.07, 0.09]

FitzHugh–Nagumo 3D 50 100 [0.05, 0.07]

Wang 50 100 [−3, 3]

standpoint, it is plausible to work with this percentage of data
variation.

Two types of random testing currents have been consid-
ered:

1. Stepwise testing current. The stepwise input current used
for testing has been generated randomly as the input cur-
rents used for training, see Fig. 3. The parameter values
used to generate such input are shown in Table 1. They
were also selected in order to place the neuron’s activity
in the biologically plausible regime (see again Figs. 20,
21, 22 and 23, respectively).

2. Oscillatory testing current. In this case, the determinis-
tic model is externally forced by means of an oscillatory
process defined by:

d Iapp
dt

= 1
τ
(Iapp,0 + ν cos(ω t) − Iapp)

+σdWt ,

(19)

where Wt is the Wiener process, which is more real-
istic from a biological point of view. In Fig. 4, we see
one realization of the stochastic oscillatory input for the
Morris–Lecar model. The input signal in the other models
is adjusted accordingly to the parameters in Table 2. As
with the stepwise current traces, they have been selected
for the purpose of studying the neuron models around
their bifurcation point (encompassing both quiescent and
oscillatory regimes).

2.2 Computational aspects

Let us nowcomment some important aspects about the imple-
mentation. As a general remark concerning the four models
we have studied, we note that the hyperparameter selec-
tion provides an optimized configuration for the model to
be easily explored at different levels of resolution. For two-
dimensional models, the identification is possible with few
levels of resolution and, therefore, fewwavelons; however, in

Fig. 4 Oscillatory testing input current. Example of input data gener-
ated from the stochastic process (19) and used for predictions in the
Morris–Lecar model

three-dimensional systems the number of wavelons is more
critical, since a higher frame is needed to project the details
of a complex model in the wavelet space. Computationally
speaking, theWang model resulted to be even more complex
than the FitzHugh–Nagumo–Rinzel: at least the second level
of resolution was needed for a good model approximation.
Playing with the number of superposed functions was useful
to overcome the computational difficulties derived from the
exponential growth of the wavelons due to the number of
wavenet inputs.

It is worth mentioning that solving the overdetermined
systems needed to train the network implies a great compu-
tational cost in terms of time and memory space. The matrix
of activation functions built for thesemodels canbecomevery
large: for instance, the matrix derived in theWangmodel was
trained with 11500 Iapp values and 20ms of signal in each
Iapp, corresponding to a total of 4000 integration steps of
the model using Euler’s method. Each integration step cor-
responds to a row of the matrix of activation functions, and
every wavelon from the wavenet’s model representation cor-
responds to a column of this matrix. Since the Wang model
used a total of 24,579 wavelons, then the total number of
elements in the matrix is 1.130634 · 1012, which represents
nearly 8.23 TB of memory in 64-bit floating-point data. This
example reveals the magnitude of the arrays used in this type

Table 2 Parameter values used in (19) to generate the oscillatory input

Model τ ν σ

Morris Lecar 10 10 9.5

FitzHugh–Nagumo 10 0.005 0.0045

FitzHugh–Nagumo 3D 10 0.005 0.0045

Wang 10 1.5 2.85

The frequency used across all models isω = 1.2·π ·10−4. The intervals
I from which we have randomly taken the values of Iapp,0 are the same
as in Table 1
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of problems, with the need to compute an ordinary least-
squares algorithm to a matrix with this much memory.

For the sake of simplicity, the custom algorithm is coded
mainly using Python, and Cython for the construction of the
matrix G, as a useful language to write the pure C functions
used to speed up the wavelet computations in Python. As we
could not have access to 8.23 TB of available memory, we
had to store the matrix in a Miles et al. (2020) file with the
Zstandard compression (Collet and Kucherawy 2021), using
a 1TBNVMeSSD, 192GBofRAMandadual IntelXeon(R)
Silver 4116 CPUworkstation, for parallel chunk-based com-
putation alongside with Dask library (Rocklin 2015).

Generally, in a context of chunk-based computations, the
very dimension of the chunks would be an hyperparameter to
study if a low precision data format, like 8-bit floating-point,
is used with the goal to achieve an accuracy similar to having
used single or double-precision floating-points, reducing the
complexity of the calculations and therefore the computation
time (Wang et al. 2018). Due to the fact that the wavenet has
only one hidden layer and there are not enoughpartial product
accumulations, typical of deep learning models with several
hidden layers, the size of the chunks is not as significant
enough to have a place in the study of hyperparameters and
there is not much benefit to use other data formats than a
double-precision floating point as in our case.

The distributed modules from Dask did provide us out-
of-core chunk-based computations, allowing us to perform
the ordinary least-squares algorithm for a 8.23 TB low-rank
matrix in a single computer. The distributed modules access
the matrix in the computer’s hard drive and perform partial
operations on smaller chunks of data that are loaded in par-
allel into the RAM. All files that come from Dask operations
from the disk data are stored in parquet files, such us the
final weights’ vector, which is a good solution to be able to
continue using the libraries Numpy (Harris et al. 2020), Pan-
das (Wes McKinney 2010) and Scipy (Virtanen et al. 2020)
libraries to perform the following operation from the par-
quet files. It has to be mentioned that a JIT compiler, such
as Numba (Lam et al. 2015), was used with the function that
generates the arrays of data for the inputs and targets of the
wavenet.

3 Results

Ourmain contribution is the identification of different neuron
models alongside with the illustration of the high predictive
power of our method, see Sect. 3.2 (Paradigm I) and Sect. 3.3
(Paradigm II). Before that, in Sect. 3.1, we explain how the
hyperparameters’ configuration is achieved. Despite being
a very technical question, we think it is relevant since it is
essential to achieve accurate predictions in the model.

3.1 Configuration of hyperparameters

We have investigated the performance of different hyperpa-
rameter configurations of the wavenet. To choose the optimal
configuration, we have taken into account not only the error
of the identification but also its computational cost since,
as explained in Sect. 2.1.3, the number of wavelons of the
wavenet increases very fast with the levels of resolution. In
Fig. 5, we show the error of different configurations used
for the FitzHugh–Nagumo model (A.4) against the number
of wavelons; in the left panel, the error is quantified by the
(1−r2)-score (16), while in the right panel it is quantified by
the cosine similarity (18). Only configurations that approxi-
mate the model with enough accuracy are displayed. Similar
qualitative descriptions (not shown) were obtained for the
other models, with the exception of the Wang model (A.6)
that will be commented below. It is worth noticing that for
three-dimensional models the number of wavelons given in
the x-axes of Fig. 5 increases substantially.

An important factor in order to reduce the computational
cost is the quality of the data. It is mainly determined by the
intrinsic complexity of the model and by the choice of the
Iapp inputs, which have been thoroughly chosen as explained
in Sect. 2.1.4, Fig. 3 and Sect. 2.1.7.

In Fig. 5, we have explored the effect of three factors: the
scaling function (encoded by point shapes in Fig. 5), the num-
ber of superposed functions (NS , encoded by colors in Fig. 5),
and the number of levels of resolution (r , indicated by num-
bers next to the shaped points). From the eight configurations
explored, we observe:

(1) The bicubic spline scaling functions with 5 superposi-
tions give a better performance than the quadratic spline
scaling functions with 4 or 5 superpositions. (The bicu-
bic spline scaling functions with 4 superpositions is not
shown because of its low performance.) In particular, the
performance with bicubic splines and 5 superpositions
using only up to the first level of resolution (that is, up to
r = 0 or, equivalently, NR = 1) is better than the perfor-
mancewith quadratic splines and 4 or 5 superpositions up
to r = 1, at a much lower computational expense (1002
wavelons against 2178 or 4252).

(2) If we fix a scaling function and a number of superposi-
tions so that we observe only one of the three curves, the
performance (obviously) increases but the computational
cost is too high. For instance, for the bicubic spline with
5 superpositions, we need 4252wavelons instead of 1002
wavelons in order to reduce the error from 10−2.3, which
is already satisfactory, to 10−3.
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Table 3 Hyperparameters chosen for the model training: φ indicates
the (spline) scaling function, NS is the number of superposed functions
NS and NR is the number of levels of resolution

Model φ NS NR

Morris–Lecar Bicubic 5 1

FitzHugh–Nagumo Bicubic 5 1

FitzHugh–Nagumo 3D Bicubic 5 1

Wang Quadratic 4 2

According to this analysis, we decided to choose the bicu-
bic spline scaling function with 5 superpositions and NR = 1
(that is, up to r = 0) for theMorris–Lecar, Fitzhugh–Nagumo
and Fitzhugh–Nagumo 3D models, as displayed in Table 3.
For theWang model, the quadratic spline with 4 superposing
functions (that is, the analogue to the blue curve in Fig. 5)
provides the best performance compared to the other cases,
but we need to go at least to the r = 1 (that is, NR = 2)
level of resolution to get an acceptable performance; this
fact leads, unfortunately, to 24,579 wavelons, a much higher
computational cost.

3.2 Identification of the neuronmodels with
wavenets and prediction tests: Paradigm I

In this section, we show the main results of the paper within
Paradigm I, that is: we identify the neuron models by train-
ing the wavenet with the data obtained from integration of

the corresponding systems, see “Appendix A”, and using the
input current and all variables as input data. In order to gener-
ate the data, we use a stepwise Iapp current trace for training,
as the one plotted in Fig. 3. Then, for each model, we use two
different types of input testing currents to examine how the
wavenet model generalizes, as pointed out in Sect. 2.1.7.

The goodness of the prediction tests is quantified in
terms of the different indicators mentioned in Sect. 2.1.6
((1− r2)-score, cross-correlation, cosine similarity and ISIs
comparison) in order to compare the data predicted by the
wavenet with the data generated by the model. In general,
these indicators are computed from 5-second simulations
withdrawing the first 100 milliseconds in order to avoid tran-
sients of the predicted signals. The time windows shown for
each model in the figures are adapted in order to highlight
the most interesting features.

3.2.1 The Morris–Lecar model: training and prediction
within Paradigm I

We have identified the Morris–Lecar model by training the
wavenet with the data obtained from integration of system
(A.1), see “Appendix A.1”. The performance of the iden-
tification process for the variable v (similar for the other
variable, not shown) using a stepwise testing input current is
shown in Fig. 6. The (1 − r2)-scores are (1 − r2)v ≈ 6.3%
and (1 − r2)w ≈ 7.2%, whereas the cosine similarity SC is

Fig. 5 Performance of hyperparameter configurations. Performance
of different wavenet hyperparameter configurations for the FitzHugh–
Nagumomodel (A.4) using two indicators: (1−r2)-score (a) and cosine

similarity (b). In-graph numbers indicate the level of resolution (NR) of
the wavenet. Color encodes the number of superposed functions (NS)
and symbols indicate the different wavelet families
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Fig. 6 Generalization capability
of the wavenet corresponding to
the Morris–Lecar model using a
stepwise testing input current.
Upper panels: Membrane
voltage obtained both
integrating the model (orange),
v, and using the wavenet’s
prediction (blue), v̂. On the left,
comparison in a 1-second
window; on the right, a zoom
showing the only discrepancy in
the detection of spikes. Bottom
panels: (left) cross-correlation
function between v and v̂;
(right) comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

approximately 0.9903 and 0.9726 for v and w, respectively.
Both indicators confirm an excellent prediction power of the
wavenet, as it can be also observed in Fig. 6: most of the
time the two trajectories overlap and the discrepancies are
insignificant. There is only one notable difference between
the two traces a time close to 2500ms (zoomed in the upper-
right panel in Fig. 6), where the wavenet reproduced a spike
that was not present in the model simulation. Clearly, this is
due to the fact that a small error for voltage values close to the
spiking threshold is more critical. However, the subthreshold
activity around that spike is captured well. In fact, the cross-
correlation function R (bottom-left panel in Fig. 6) shows a
slight shift to positive values, which can be responsible for
the small errors observed. Nevertheless, the high coincidence
between the ISI distributions of v and v̂ (bottom-right panel
in Fig. 6) confirms the high ability of the wavenet to identify
the neuron’s dynamics and make accurate predictions.

The oscillatory testing provides even better results. For
this purpose, we integrate the system (A.1) again but using
a stochastic and oscillating signal as the one defined in (19),
see also Fig. 4. Results for the main state variable, v, are
shown in Fig. 7. In this case, the wavenet prediction is quite
more accurate, resulting in scores of (1 − r2)v ≈ 0.0003%
and (1 − r2)w ≈ 0.0003%. whereas the cosine similarity
SC is approximately 1.0000 both for v and w. We remark
that, even though the type of input used for this prediction
is qualitatively different from the type of input used to train
the wavenet, the performance increases, which confirms the
efficiency of the training protocol.

This fact is observed across models as we will show in the
next examples. In the upper-left panel of Fig. 7, we barely
notice discrepancies between the model and the predicted
voltage traces (less than 0.01 mV as shown in the upper-
right panel). The cross-correlation function R (bottom-left
panel) shows an insignificant shift from zero, whereas the
ISI distributions of v and v̂ (bottom-right panel) exhibit a
complete agreement.

3.2.2 The FitzHugh–Nagumomodel: training and
prediction within Paradigm I

For the identification of the FitzHugh–Nagumo model (see
“Appendix A.2”), system (A.4) is integrated following the
same procedure as in Sect. 3.2.1. The performance of the
identification of the model for the state variable v (similar
for the other variable, not shown) when using a stepwise
testing input current Iapp is shown in Fig. 8, which contains
a 1-second sample of a more complete 5-second simulation
(upper-left panel).

The (1 − r2)-scores for the complete simulation are
(1 − r2)v ≈ 6.6% and (1 − r2)w ≈ 5.7%. The only small
differences are appreciated at some peaks where the network
prediction undershoots and is slightly displaced (see a detail
in the upper-right panel of Fig. 8). This feature creates slight
differences between the ISI distributions (bottom-right panel
in Fig. 8). The cosine similarity SC is approximately 0.9954
and 0.9970 for v andw, respectively. Both indicators confirm
that the wavenet is able to predict the target trajectories. Due
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Fig. 7 Generalization capability
of the wavenet corresponding to
the Morris–Lecar model using
an oscillatory testing input
current. Upper panels:
Membrane voltage obtained
both integrating the model
(orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing the excellent
performance even at the tips of
the spikes. Bottom panels: (left)
cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

to the relatively fast (around 30Hz) and regular oscillations
of the neuron’s response, the cross-correlation function R
(bottom-left panel) shows several peaks at multiples of the
approximated period.

We now examine the generalization of the network under
the oscillatory testing input current. The resulting plots for
the state variable v (similar for w, not shown) are displayed
in Fig. 9. Again, one can see that thewavenet is able to predict
the behavior of the model dynamics (see upper-left panel),
in this case being able to even capture the target dynamics at
the peaks and troughs (see upper-right panel). The prediction
for both variables v and w produced the (1−r2)-scores (1−
r2)v ≈ 0.0025% and (1 − r2)w ≈ 0.0023%, respectively.
The cosine similarity SC is approximately 1.000 both for v

and w and the cross-correlation function R is sensitive to
the relative high-frequency oscillations (bottom-left panel).
The ISI distributions (bottom-right panel) show also a high
agreement.

We observe that there is a noticeable difference between
the predictions of the dynamics resulting from the stepwise
(see Figs. 6 and 8) and the stochastic signals (see Figs. 7
and 9). The stochastic input predictions are more accurate
(lower (1 − r2)-score), probably due to the smooth oscil-
latory basis used to generate the stochastic input, which
makes its variation less abrupt, whereas the design of the
stepwise input allows sudden excursions from lower to the
higher values within the admissible range of currents. This
phenomenon also occurs in the following (3D) examples,
consistently showing the difficulty of the wavenet to identify
abrupt changes in the dynamics.

3.2.3 The FitzHugh–Nagumo–Rinzel model: training and
prediction within Paradigm I

Following the same procedure as in the examples above,
we now study the FitzHugh–Nagumo 3D model (A.5), see
“Appendix A.3”. Notice that we are now handling a three-
dimensional system with an additional (slow) timescale
through the variable y, which makes transient activity
between different Iapp values more relevant. From a com-
putational point of view, this turns into a harder learning
process and so, it has implied an increment of integration
steps, which means significantly more data. The identi-
fication results for the variable v (similar for the other
variables, not shown) are displayed in Fig. 10. We can appre-
ciate that the increase in dimensionality and the presence
of a new timescale compromise the goodness of the pre-
diction. Nonetheless, the wavenet is able to qualitatively
follow the target dynamics. The identification scores for this
model are (1 − r2)v ≈ 16.01%, (1 − r2)w ≈ 14.15% and
(1 − r2)y ≈ 2.203%. In the upper-right panel of Fig. 10,
we display how, in some time regions, the predicted trace
(blue) overshoots and has a noticeable displacement to the
left; however, the ISI distributions (bottom-right panel) still
exhibit a high level of coincidence. The cosine similarity SC
is approximately 0.9885, 0.9923 and 1.0000 for v, w and
y, respectively. Similar to the FHN2D model studied above,
the cross-correlation function R (bottom-left panel) shows
again different peaks related to the relatively high-frequency
oscillations, but the peak at 0-lag is still prominent.
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Fig. 8 Generalization capability
of the wavenet corresponding to
the FitzHugh–Nagumo model
using a stepwise testing input
current. Upper panel: Membrane
voltage obtained both
integrating the model (orange),
v, and using the wavenet’s
prediction (blue), v̂. On the left,
comparison in a 1-second
window; on the right, a zoom
showing slight discrepancies at
the tip of a spike. Bottom
panels: (left) cross-correlation
function between v and v̂;
(right) comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

Fig. 9 Generalization capability
of the wavenet corresponding to
the FitzHugh–Nagumo model
using an oscillatory testing input
current. Upper panel: Membrane
voltage obtained both
integrating the model (orange),
v, and using the wavenet’s
prediction (blue), v̂. On the left,
comparison in a 1-second
window; on the right, a zoom
showing the largest inaccuracy
found. Bottom panels: (left)
cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas
indicated full coincidence

The results of the generalization of the network under the
oscillatory testing input current are shown in Fig. 11. As with
the 2D FitHugh–Nagumo model, we observe a much better
approximation, with (1 − r2)-scores (1 − r2)v ≈ 0.0098%,
(1 − r2)w ≈ 0.0093% and (1 − r2)y ≈ 0.0086%. The
cosine similarity SC is approximately 1.000 for all variables,
v, w and y. The cross-correlation function R (bottom-left
panel) shows the usual peaks related to the relatively high-

frequency oscillations and the ISI distributions (bottom-right
panel) exhibit again a strong overlap.

3.2.4 TheWangmodel: training and prediction within
Paradigm I

Finally, for the wavenet identification of the Wang model
(see “Appendix A.4”), we use Eqs. (A.6) and (A.7) with
parameter values from (A.8) and (A.9). The results of the
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Fig. 10 Generalization
capability of the wavenet
corresponding to the
FitzHugh–Nagumo–Rinzel
model using a stepwise testing
input current. Upper panel:
Membrane voltage obtained
both integrating the model
(orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing the most critical
discrepancies. Bottom panels:
(left) cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (blue) and v̂

(orange), where gray areas
indicated full coincidence

Fig. 11 Generalization
capability of the wavenet
corresponding to the
FitzHugh–Nagumo–Rinzel
model using an oscillatory
testing input current. Upper
panel: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing maximal
discrepancies, which are
insignificant. Bottom panels:
(left) cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (blue) and v̂

(orange), where gray areas
indicated full coincidence

generalization for the variable v (similar for the other vari-
ables, not shown) under the stepwise testing input current
are shown in Fig. 12. It is easily verified that the wavenet is
able to mimic the target dynamics qualitatively most of the
time. However, we observe some small (about 1ms) delays
in the spike-time prediction (see upper-right panel). As with
the FitzHugh–Nagumo–Rinzelmodel, the increase of dimen-
sionality implies important computational demands, which
turn as well into relatively large (1− r2)-scores, (1− r2)v ≈

65.06%, (1 − r2)h ≈ 60.69% and (1 − r2)n ≈ 56.29%,
obtained along a 5-second simulation. The persistent delay
in the spike-time prediction may be the cause of these bad
scores. Looking at the other indicators, we can assess the
good quality of the identification. On the one side, the cosine
similarity SC is 0.9750, 0.9895 and 0.7874 for v, h and
n, respectively. Note that we get excellent agreements for
the voltage v and the sodium gating variable h. However,
for the potassium gating variable, n, the cosine similarity
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Fig. 12 Generalization
capability of the wavenet
corresponding to the Wang
model using a stepwise testing
input current. Upper panel:
Membrane voltage obtained
both integrating the model
(orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
500-milliseconds window; on
the right, a zoom showing a
small delay in the spike-time
prediction. Bottom panels: (left)
cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (blue) and v̂

(orange), where gray areas
indicated full coincidence

decreases significantly; the fact that n is specially active dur-
ing the hyperpolarization regime is probably increasing its
sensitivity to the spike-time delays. On the other side, the
cross-correlation function R (bottom-left panel) also shows
a prominent peak at zero and the ISI distributions (bottom-
right panel) exhibit again a strong overlap, which confirms
that, even though some indicators raise a warning message,
the wavenet essentially captures the neuron dynamics. It is
worth noticing that the cross-correlation function is less sym-
metric than in other cases, showing secondary peaks close to
−9ms and +8ms; the presence of the peaks is due to rela-
tively high-frequency spiking activity while the asymmetry
is probably a side effect of a slight variability of the above-
mentioned spike-time delays.

We train the network now under the oscillatory testing
input current. The resulting plots for the state variables v

(similar for h and n, not shown) are displayed in Fig. 13. The
results improve, as in the previous example, those obtained
with the stepwise testing input current. The (1 − r2)-scores
are still high, (1 − r2)v ≈ 59.43%, (1 − r2)h ≈ 44.39%
and (1− r2)n ≈ 43.57%, but we observe a better agreement
between the trajectory obtained from the model and the pre-
diction provided by thewavenet (see upper panels of Fig. 13).
The cosine similarity SC is 0.9891, 0.9961 and 0.8398 for v,
h and n, respectively. Note that the cosine similarity for n has
increased with respect to the stepwise testing input current
but it is still low. The cross-correlation function R (bottom-
left panel) shows a nice sharp peak at zero, whereas the
ISI distributions (bottom-right panel) exhibit again a strong

overlap, which confirms again the good performance of the
wavenet.

3.3 Identification of the neuronmodels with
wavenets and prediction tests: Paradigm II

In this section, we show the main results of the paper within
Paradigm II, that is:we identify the neuronmodels by training
the wavenet with the data obtained from integration of the
corresponding systems, see “Appendix A”, and using only
the input current and the voltage variable as input data (see
the scheme in Fig. 1c). The testing procedures (stepwise and
oscillatory) and all the indicators ((1− r2)-score and cosine
similarity) are the same as in Sect. 3.2. Obviously, in this
paradigm we only obtain results for the voltage variable. At
this stage, we can present satisfactory results for the 2Dmod-
els (Morris–Lecar and Fitzhugh–Nagumo); we show anyway
the results for the Fitzhugh–Nagumo–Rinzel model to illus-
trate the problems that arise for higher-dimensional data. For
the 2D models, the input data consisted of input current plus
the current voltage value and the preceding one (q = 1 in
the notation established in Sect. 2.1.1). For the Fitzhugh–
Nagumo–Rinzel model, we have taken q = 4, that is, we
have used v j , for j = k − 3, k − 2, k − 1, k, in order to pre-
dict the next state (vk+1). We note that the resulting wavenet
contains 7780 wavelons, with one resolution level and only 3
overlapping functions. If we were to use 4 overlapping func-
tions, the network would increase up to 32,772 wavelons;
if we maintained the number of overlapping functions but
increased the resolution, then the network would scale up
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Fig. 13 Generalization
capability of the wavenet
corresponding to the Wang
model using an oscillatory
testing input current. Upper
panel: Membrane voltage
obtained both integrating the
model (green) and using the
wavenet’s prediction (orange).
On the left, comparison in a
1-second window; on the right, a
zoom showing the accumulated
delay in the prediction of v.
Lower panels: Same plot for the
gating variables h (left panel)
and n (right panel) along 1
second. The (1 − r2)-scores are
computed for the complete
5-second simulation

to 66586 wavelons. We have preferred to show the results
obtained at a lower computational cost.

3.3.1 The Morris–Lecar model: training and prediction
within Paradigm II

The performance of the identification process for the variable
v using a stepwise testing input current is shown in Fig. 14.
The (1 − r2)-score is approximately 52.22%, whereas the
cosine similarity SC is approximately 0.9196.

We observe that (1 − r2)-score decays considerably with
respect to the corresponding value for Paradigm I, but all
other indicators show a high performance: the cosine simi-
larity keeps at high values and the ISI distributions are similar
(compare Figs. 6c and 14c). The worsening of the (1 − r2)-
score may be due to small delays in the prediction. We must
take into account that using previous values of the voltage
instead of the values of the auxiliary variables may induce
a delay; this is confirmed by the autocorrelation function
shown in Fig. 14c, which is clearly not centered at zero. As
in Paradigm I, we note that the wavenet generates a spike that
was not present in the model simulation.

Theoscillatory testing provides similar results, seeFig. 15.
In panel (a), we observe again a clear matching in agreement
with the value of the cosine similarity, SC ≈ 0.9210; how-
ever, it is not reflected in the (1 − r2)-score, (1 − r2) ≈
65.51%. The explanations provided for the stepwise testing
are applicable also here. Compared to Paradigm I,we observe
a lower performance of the ISI prediction. This may be due
to lags in the prediction (again, the autocorrelation is clearly

centered away from zero, see Fig. 15c), which have slightly
different lengths over time and shift the prediction to a neigh-
boring bin of the histogram.

3.3.2 The FitzHugh–Nagumomodel: training and
prediction within Paradigm II

The performance of the identification process for the variable
v using a stepwise testing input current is shown in Fig. 16.
The (1 − r2)-score is approximately 24.38%, whereas the
cosine similarity SC is approximately 0.9828. The results
are slightly better than for the Morris–Lecar model studied
in the last section. It is worth mentioning that, compared to
Paradigm I (see Fig. 8d), the ISI distributions do notmatch for
the shortest ISIs but show a satisfactory match for intervals
larger than 20 units of time, which are the most common
ones.

For the oscillatory testing, see Fig. 17, the (1 − r2)-score
is approximately 44.28%, whereas the cosine similarity SC
is approximately 0.9853. Panel (d) confirms that lower ISIs
are not captured by the network; in contrast to the stepwise
testing, lower ISIs are more numerous because, by design,
the oscillatory input elicitsmore activitywith short amplitude
and higher frequency in this model.

3.3.3 The FitzHugh–Nagumo–Rinzel model: training and
prediction within Paradigm II

The performance of the identification process for the variable
v using a stepwise testing input current is shown in Fig. 18.
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Fig. 14 Generalization
capability of the wavenet
corresponding to the
Morris–Lecar model using only
the external current and the
voltage as inputs and the
stepwise testing input. Upper
panels: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing the only
discrepancy in the detection of
spikes. Bottom panels: (left)
cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

Fig. 15 Generalization
capability of the wavenet
corresponding to the
Morris–Lecar model using only
the external current and the
voltage as inputs and the
oscillatory testing input. Upper
panels: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing an instance of the
slight delay of the prediction.
Bottom panels: (left)
cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

The (1 − r2)-score is approximately 75.58%, whereas the
cosine similarity SC is approximately 0.9449. The predic-
tion signal is similar to the target and the identification fails
in the same Iapp regions as in Fig. 10. In some regions, we
observe a combination of phase-lag and small inaccuracies
in amplitude. As for the preceding model in Sect. 3.3.2, the
lower ISIs are not captured by the network. The most notice-
able difference with the 2D examples and also with the same

model for Paradigm I is the autocorrelation function which
has lost the harmonics.

For the oscillatory testing, see Fig. 19, the (1 − r2)-score
is approximately 62.64%, whereas the cosine similarity is
SC ≈ 0.9753. Here, the phase-lag and inaccuracies shown
in Fig. 19b are more persistent along the simulation.
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Fig. 16 Generalization
capability of the wavenet
corresponding to the
Fitzhugh–Nagumo model using
only the external current and the
voltage as inputs and the
stepwise testing input. Upper
panels: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing the small delay in
the wavenet prediction. Bottom
panels: (left) cross-correlation
function between v and v̂;
(right) comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

Fig. 17 Generalization
capability of the wavenet
corresponding to the
Fitzhugh–Nagumo model using
only the external current and the
voltage as inputs and the
oscillatory testing input. Upper
panels: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing typical
inaccuracies in the wavenet
prediction. Bottom panels: (left)
cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (orange) and v̂

(blue), where gray areas indicate
full coincidence

4 Conclusion

We have applied an ANN based on wavelets (called
wavenet) to identify the dynamics of several neuron models:
Morris–Lecar, the FitzHugh–Nagumo, a three-dimensional
version of FitzHugh–Nagumo and a model of a pyramidal
neuron in two different paradigms (I and II) according to
whether we consider all the state variables for the training
or only the voltage one. The weights of the network were

obtained by solving a least-square optimization problem,
which is linear in the parameters, thus ensuring a global
solution. The datasets used for the optimization procedure
were obtained from simulations of the neuron models under
a stepwise stimulus that swept the biological plausible inter-
val of the applied current. To assess the performance of the
network, we simulated new trajectories using two different
stimuli types, one similar to the training protocol and another
one generated by means of an oscillatory stochastic differen-
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Fig. 18 Generalization
capability of the wavenet
corresponding to the
FitzHugh–Nagumo–Rinzel
model using only the external
current and the voltage as inputs
and the stepwise testing input.
Upper panel: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing maximal
discrepancies, which combine
phase-lag and small inaccuracies
in amplitude. Bottom panels:
(left) cross-correlation function
between v and v̂; (right)
comparison of the ISI
distributions of v (blue) and v̂

(orange), where gray areas
indicated full coincidence

Fig. 19 Generalization
capability of the wavenet
corresponding to the
FitzHugh–Nagumo–Rinzel
model using only the external
current and the voltage as inputs
and the oscillatory testing input.
Upper panel: Membrane voltage
obtained both integrating the
model (orange), v, and using the
wavenet’s prediction (blue), v̂.
On the left, comparison in a
1-second window; on the right, a
zoom showing the onset of
relevant discrepancies. Bottom
panels: (left) cross-correlation
function between v and v̂;
(right) comparison of the ISI
distributions of v (blue) and v̂

(orange), where gray areas
indicated full coincidence

tial equation. Then, the solutions obtained from the neuron
models (target) were compared with the solutions provided
by the trainedwavenet (prediction) using different indicators
(a regression score, the cosine similarity and ISI distribu-
tion); cross-correlation functions of the two traces were also
monitored. The values of these indicators for all models ana-
lyzed are summarized in Table 4 for Paradigm I and Table
5 for Paradigm II. Regarding Paradigm I, for the 2D models
(Morris–Lecar and Fitzhugh–Nagumo) even the regression

score, the most sensitive indicator to small errors in the pre-
dictions gives excellent results. By analyzing the 3D models
(Fitzhugh–Nagumo–Rinzel andWang),wedetect two factors
that make predictions more difficult: the increase of dimen-
sionality and the timescales separation. For both models, the
regression score worsens significantly compared to the 2D
models, but specially for the Wang model. Recall that the
Wang model is more realistic (pyramidal cell model) and
presents sharper spikes (relaxation-oscillation-like) than the
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Table 4 Summary of the
comparisons between target and
predicted variables using the
(1 − r2)-score and the cosine
similarity indicators

Model (1 − r2)-score (%) Cosine similarity

MLstep (6.3, 7.2) (0.990, 0.973)

MLosc (0.0003, 0.0003) (1.00, 1.00)

FHNstep (6.6, 5.7) (0.995, 0.997)

FHNosc (0.0025, 0.0023) (1.00, 1.00)

FHN3Dstep (16.01, 14.15, 2.20) (0.989, 0.992, 1.00)

FHN3Dosc (0.0098, 0.0093, 0.0086) (1.00, 1.00, 1.00)

Wangstep (65.06, 60.69, 56.29) (0.975, 0.990, 0.787)

Wangosc (59.43, 43.39, 43.57) (0.989, 0.996, 0.840)

For eachmodel, we give the results for the two different stimuli type: stepwise (step) and oscillatory (osc). The
components of each vector refer to the 2 or 3 variables of the model, that is, (v,w) for the Morris–Lecar (ML)
model and for the Fitzhugh–Nagumo (FHN) model, (v,w, y) for the Fitzhugh–Nagumo–Rinzel (FHN3D)
model and (v, h, n) for the Wang model. All values are approximate

Fitzhugh–Nagumo–Rinzel model; this is possibly the rea-
son of the loss of accuracy and indicates the influence of
timescales in the identification of the neuronal dynamics
since the discrepancies found in the comparison between tar-
get and predicted trajectories concentrate around the spike
times. However, even for these two 3D models, the other
indicators (cosine similarity and ISI distribution comparison)
still confirm a high performance of our wavenet in captur-
ing the neuron dynamics. Paradigm II is more challenging
since we avoid using the non-measurable variables which
requires to extract more information from the voltage trace.
For this purpose, we use previous iterates of the voltage. For
the Morris–Lecar and Fitzhugh–Nagumo models, one previ-
ous iterate is enough to obtain excellent results: compared
to Paradigm I, only the most sensitive score, (1− r2)-score,
gets worse. For the Fitzhugh–Nagumomodel, the lowest ISIs
(very few of them) are not well captured by the wavenet.
For the 3D cases, having an additional (slow) time scale
makes the identification more difficult. We still do not obtain
completely satisfactory results, but we show those obtained
with the Fitzhugh–Nagumo–Rinzel model using four previ-
ous voltage values as input data: the cosine similarity is still
acceptable, the ISI distribution shows satisfactory agreement
for intervals larger than 20 time units, which are the most
common, but the autocorrelation function loses the harmon-
ics.

5 Discussion

We have explored the potentiality of a specific family of
artificial neural networks to identify and predict neuronal
dynamics with the aim of providing a proof of concept of
how they may help obtaining empirical models of neuronal
activity. We have generated the training data from math-
ematical models of neuronal activity. We have used both
mechanistic (e.g. FitzHugh–Nagumomodel) and simple bio-

Table 5 Summary of the comparisons between target and predicted
variables using the (1 − r2)-score and the cosine similarity indicators
in Paradigm II

Model (1 − r2)-score (%) Cosine similarity

MLstep 52.22 0.9196

MLosc 65.51 0.9210

FHNstep 24.38 0.9828

FHNosc 44.28 0.9853

FHN3Dstep 75.58 0.9449

FHN3Dosc 62.64 0.9753

For each model, we give the results for the two different stimuli type:
stepwise (step) and oscillatory (osc). All indicators refer to the variable
v

physically meaningful models (e.g., Morris–Lecar or Wang
model) exhibiting the most simple behaviors under constant
applied current: silent states and spiking dynamics. We have
followed this parsimonious approach in order to be able to
describe the main obstacles that hinder the identification pro-
cedure.

We have used a specific type of artificial neural network,
wavenets, consisting of a regression procedure on a fixed net-
work architecture whose activation functions are wavelets;
more precisely, they are based on the so-called Mallat mul-
tiresolution frames. The main advantage of using wavenets
versus other types of ANNs is that the centers and supports
of the network neurons (the frame) are already defined by
the theory of wavelets. Hence, the unique parameters to be
optimized are the coefficients of the approximation in its
expression as a linear combination of wavelets. (Each node
of the network is related to a specific wavelet.) We solve
a least-squares optimization problem, which is linear in the
parameters, thus ensuring a global solution. We believe that
similar results can be also obtainedwith other types ofANNs;
the challenge, in each case, is to refine the chosen method to
obtain accurate results.
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We have examined two different paradigms: the first one,
which only aims to analyze the ANN’s ability to learn neu-
ronal data, uses all model variables as input; the second one,
on the other hand, considers only voltage data as input and
is closely related to the ultimate goal of this research: to
apply the methodology to experimental data. In Paradigm
I, we have obtained an excellent performance. We have
detected, however, a lower training capability when different
timescales are present. This becomes evident when pass-
ing from two-dimensional to three-dimensional models by
means of additional slow variables. We have resolved this
problem by increasing the number of nodes (wavelons); of
course, this scales up the computational demands, but allows
to maintain the identification capability of the network. In
order to train the wavenet, we have used data that spans up
to 2500s when the computational cost was low (basically,
for 2D models). However, we think that there is room for
a decrease of the training time, which would play in favor
of the experimental conditions. The results for Paradigm II
are not as accurate, but still satisfactory for the 2D models.
In this case, we observe delays in the prediction that reduce
performance, probably due to the fact that we take previous
iterates of the voltage as input data at each time step. These
inaccuracies could be mitigated by considering more iter-
ates, although one has to be careful because this approach
can lead to a sudden increase in computational cost. Before
scaling up computational cost, it is worth exploring alterna-
tive options. We believe that, using techniques from control
theory, it would be possible to build up a state observer to
infer the non-measurable variables. This would allow to pass
from Paradigm II to Paradigm I eventually improving the
performance. However, pursuing this line goes beyond the
scope of the current paper.

Even though we have restricted ourselves to models with
simple dynamics, it is worth noting that the intervals of input
currents used to train the network include both current lev-
els for which the neuron is quiescent and current levels that
elicit spikes and, moreover, as a result of applying non-
constant input currents, we have also identified bursting-like
or other input-induced complex behaviors. This implies fre-
quent alternations between different topological attractors,
thus showing the ability of our method to identify abrupt
changes in the bifurcation diagram, from almost linear input–
output relationships to highly nonlinear ones. Therefore,
we think that the methodology presented is applicable to
other neuron models or parameter regions encoding more
sophisticated types of intrinsic dynamics (bistability, burst-
ing, adaptation, mixed-mode oscillations, etc.); however, we
must be cautious since the presence of multiple timescales
will require improvements of the algorithms in order to
increase the computational efficiency.

An open question that we would like to explore next
(indeed, our ultimate goal) is what happens with real data.

One would need to pharmacologically isolate a cell (or a
population) and inject an input current (denoted as Iapp(t)
throughout the paper), using, for example, a dynamic clamp
technique, which should cover the range of eventual synaptic
inputs. We would then obtain the voltage data, which could
be used together with the signal Iapp(t) to train the wavenet.
This is exactly what we have done in Paradigm II. In spirit,
the results achieved in this paradigm are model-free except
for the “nuance" that we have an a priori idea of the dimen-
sion of the system. Therefore, for real data, we would have to
guess what the dimension of the underlying dynamics behind
a membrane voltage or a firing rate time series is, or how
many timescales they encode. It is difficult to answer these
questions in general, but in specific cases one could try to
increase the number of previous iterations used in Paradigm
II, with the risk, of course, of excessively increasing the com-
putational cost. We are optimistic about the potential success
of this approach based on the results we are presenting.

Opening another focus of discussion,we are aware that the
models obtained using the procedure presented in this paper
are black boxes, blind to the biophysical features underlying
the data. This circumstance constrains their use for further
analysis and predictions since the general question behind
this problem, “how does the wavenet change when modi-
fying biophysical parameters?" is challenging and difficult.
A preliminary sensitivity analysis in the FitzHugh–Nagumo
model (not shown here) reveals a one-to-one relationship
between some parameters of the model and the informa-
tion encoded in the weights of the network (for instance
the influence of the different levels of resolution used in the
wavenet), but the results are not conclusive enough yet. Even
though, we think that, because of its structure, wavenets may
be more appropriate than other ANNs to tackle this chal-
lenge. Sensitivity analysis of deep neural networks (DNNs)
has been recently studied in Shu and Zhu (2019), where the
authors introduce a new perturbation manifold and its asso-
ciated influence measure to quantify the sensitivity of DNNs
to different perturbations. In fact, this problem connects with
the concept of explainability, which is a current hot topic in
machine learning, see Linardatos et al. (2020) for a recent
review. We think that pursuing this direction would allow to
provide hints of how to use biological constraints to construct
the network; in other words, how to alter the trained neural
network in order to mimic the variation of some biological
meaningful parameters.

The above question poses also an interesting alternative:
thanks to the analogy of neuronal dynamics with electrical
circuits, which was Hodgkin and Huxley’s inspirational idea
to come upwith its famousmodel, one can assume that single
neuronmathematicalmodels have a particular shape, namely,

123



Biological Cybernetics (2024) 118:83–110 105

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
dv

dt
= −gL(v − VL)

− ∑
ι∈ϒ

gι w
pι
ι (v − Vι) + Iapp,

dwι

dt
= Wι(v) − wι

τι(v)
, |ϒ | ≈ � ionic channels,

where |ϒ |, {gι}ι∈ϒ , {Vι}ι∈ϒ and the parameters that define the
functions Wi (v) and τi (v) (typically, two and four, respec-
tively, for each ι) become the unknown parameters involved.
For populationmodels, as discussed in the Introduction, there
are not comprehensive models as the Hodgkin–Huxley one,
yet there are a limited number of approaches (firing rate, neu-
ral mass, neural fields, population density,…), which leads to
a short list of candidate models. Then, an interesting alterna-
tive would be using machine learning methods (e.g., genetic
algorithms) to identify parameters instead of doing a com-
plete identification of the system, as we have performed in
this work. Although this is not a new idea (see for instance
(Schmidt and Lipson 2009) where the authors apply what
they call genetic programming), the application to neural data
would bring up “non-black" boxes which would allow a sub-
sequent mathematical analysis using tools from dynamical
systems. Besides, this would bring up a connection to the
ambiguity of models: parameter searching algorithms could
lead to different optima, that is, different parameter sets, with
similar dynamics.

Another possible extension of our work is estimating the
inputs fromvoltage (or other observable) data. Assuming that
we have an accurate wavenet model, like the ones we have
obtained in the presentwork,we canmassively obtain voltage
output data fromprescribed current input traces (for instance,
randomly generated). This procedure provides a way to build
up a dataset of time-series pairs, formed by voltage and cur-
rent traces; therefore, voltage traces can be thought as inputs
and current traces as outputs. From this point on, it would
be possible to identify the voltage–current relationship with
a wavenet network that could be considered as the inverse
of the original one. Of course, here the term “inverse" has
to be taken carefully since it is not clear that two differ-
ent current input traces could lead to the same voltage trace
for the original model. In this possible extension, wavenet
models take advantage with respect to classical differential
equation models since they are more easily invertible. Pre-
liminary tests have shown promising results, and it will be a
line of continuation of the present work.

Recently, other works have appeared that use machine
learning to understand neural dynamics. An excellent over-
view can be found in Saxe et al. (2021), where the authors
highlight the incipient role of DNNs as promising theories of
neural computations. They address interesting topics, some
of them already mentioned above: Are biological signals
related to activation of the nodes of the artificial network?

Do the learning rule of the artificial networks explain learn-
ing rule at the biological level? We also emphasize the work
of Beniaguev et al. (2020), where they introduce a novel
approach to study neurons as sophisticated I/O information
processing units by utilizing recent advances in the field
of machine learning, by training DNNs to mimic the I/O
behavior of a detailed nonlinear model of a layer 5 corti-
cal pyramidal cell, receiving rich spatiotemporal patterns of
input synapse activations. Another interesting application of
machine learning tools to single-cell data is in spike detection
(cell classification in order to sort neural action potentials)
(Ekanadham et al. 2014).

Summing up, despite the computational challenges
involved, our approach opens promising avenues when
applied to real neurons, since it naturally leads to a heuristic
model of a real neuron just stimulating it by means of proto-
cols that allow to inject a prescribed input current trace (for
instance, dynamic-clamp, a well-known electrophysiology
protocol) and using this input current together with the out-
put data to train thewavenet. In particular, this procedure will
be able to host datasets into such heuristic models without
needing to go through expensive and time-consuming bio-
physical experiments, as well as reusing existing data. This
application extends to both single-cell data and population
data obtained withmodern recordingmethods and ultimately
provides a strong predictive tool with extraordinary potential
applications.
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A Neuronmodels

As benchmark neuron models, we consider several well-
known models in computational neuroscience aiming at
exploring diverse dynamical features, the most prominent
being the presence of both quiescent states and regular spik-
ing, and timescale separation. They have been integrated
using the Euler method in order to maintain the compu-
tational algorithm simple enough and to obtain reliable
predictions from our ANN. In conductance-based models,
described in Sects.A.1 and A.4, the time step has been taken
to be 
t = 0.05ms and 
t = 0.005ms, respectively, both
close to usual experimental sampling frequencies. For the
FitzHugh–Nagumo models, described in Sects.A.2 and A.3,
a dimensionless time step of 
t = 0.05 has been taken,
having ensured that using shorter time steps provides similar
qualitative results.

Note that, despite the poor accuracy of the Euler method
compared to higher-order ODE integrators, it is not an essen-
tial issue here because it is only used to generate the input
data and the purpose of the paper is to identify the simulated
data with a neural network. Therefore, it is not relevant how
the target data are created. In other words, one can think that
our data source is not the continuous model under consid-
eration but the “discrete model obtained by integrating the
continuous model with the Euler method".

A.1 Morris–Lecar

The Morris–Lecar model was proposed in Morris and Lecar
(1981).While it models a fundamental type of neural dynam-

ics, it is still feasible to make a qualitative analysis of it, see
for instance (Rinzel and Ermentrout 1998). The dynamics
of the neuron are modeled by a continuous-time dynami-
cal system composed of the current-balance equation for the
membrane potential, v = v(t), and the K+ gating variable
0 ≤ w = w(t) ≤ 1, which represents the probability of the
K+ ionic channel to be active:

Cm
dv

dt
= −IL − IK − ICa + Iapp,

dw

dt
= φ

w∞(v) − w

τw(v)
,

(A.1)

where the leakage, calcium, and potassium currents are
defined as IL = gL (v − EL), ICa = gCa m∞(v) (v − ECa),
and IK = gK w (v − EK ), respectively; gL , gCa and gK are
the maximal conductances of each current, whereas EL , ECa

and EK denote the Nernst equilibrium potentials, for which
the corresponding current is zero, also known as reversal
potentials. The constant Cm is the membrane capacitance, φ
is a dimensionless constant and Iapp represents the (exter-
nally) applied current. The auxiliary functions of the model

Fig. 20 Bifurcation diagram of system (A.1) in terms of the param-
eter Iapp . All other parameter values are given in (A.3). a The graph
shows the maximal value of the variable v on the equilibrium points or
on the periodic orbits which, indeed, are limit cycles. b Frequency of
oscillation
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are given by:

m∞(v) = (1 + tanh((v − V1)/V2)) /2,
w∞(v) = (1 + tanh((v − V3)/V4)) /2,
τw(v) = (cosh((v − V3)/(2 V4)))−1 .

(A.2)

In our computations, we have used the following set of
parameters (units are expressed for each parameter type),
see Rinzel and Ermentrout (1998):

Cm = 20 (µF/cm2), φ = 1/15,
EL = −60, EK = −84,
ECa = 120 (mV),

V1 = −1.2, V2 = 18,
V3 = 12, V4 = 17.4 (mV),

gL = 2, gK = 8.0, gCa = 4.0 (mS/cm2).

(A.3)

Figure20 shows thebifurcationdiagramof system (A.1) in
terms of the parameter Iapp. In the experiments, a prescribed
Iapp(t) that spans from 20 to 80 μA/cm2 was used. Note
that for Iapp below Ibi f ≈ 39.9632, there is one attractor,
which is an equilibrium point of the system, while for Iapp ∈
(Ibi f , 80), also there is a unique attractor, which is a limit
cycle (only the maximal value of the variable v on the limit
cycle is shown).

A.2 FitzHugh–Nagumomodel

The FitzHugh–Nagumo model, derived independently by
FitzHugh (1961) and Nagumo et al. (1962), is a reduced
version of the Hodgkin–Huxley model (Hodgkin and Hux-
ley 1952) that captures its key features but is analytically
more tractable. By means of steady-state assumptions and
approximating invariant manifolds, the four variables of the
Hodgkin–Huxley model are reduced to two, essentially a fast
variable related to the membrane potential and a slow vari-
able related to the channel dynamics. Namely,

dv

dt
= − f (v) + w + Iapp,

dw

dt
= ε (−v − γ w),

(A.4)

where f (v) = v (v − 1) (v − a). Unless otherwise stated,
we will take the parameter values a = 0.14, γ = 2.54 and
ε = 0.1. In Fig. 21, we show the bifurcation diagram of
system (A.4) in terms of Iapp for this choice of parameters.

In fact, the system is a caricature of the original Hodgkin–
Huxley model aiming at capturing the geometry and relative
position of the nullclines, as well as the timescales.

Fig. 21 Bifurcation diagram of system (A.4) in terms of the parameter
Iapp . a The graph shows themaximal value of the variable v on the equi-
librium points or on the periodic orbits which, indeed, are limit cycles.
b Frequency of oscillation. The system presents two Hopf bifurcations
at IH B1 ≈ 0.08008 and IH B2 ≈ 0.106044

A.3 FitzHugh–Nagumo–Rinzel model

In order to test the effect of adding a third variable with a
slowest time scale, we consider an extension of the Fitzhugh–
Nagumo model proposed by Rinzel in 1987, see Rinzel
(1987) and Izhikevich (2001), departing from (A.4) and
adding an additional slow variable. We consider the system

dv

dt
= − f (v) + w − α y + Iapp,

dw

dt
= ε (−v − γ w),

dy

dt
= δ (c − v − d y),

(A.5)

where f (v) = v (v−1) (v−a) as in (A.4). Unless otherwise
stated,wewill take the parameter values a = 0.14, γ = 2.54,
ε = 0.1, δ = 0.01, c = −0.775 and d = 1. In Fig. 22, we
show the bifurcation diagram of system (A.5) in terms of
Iapp and α for this choice of parameters; panels (c) and (d)
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Fig. 22 Bifurcation diagrams of
system (A.5). Upper row: in
terms of the parameter Iapp . a
The graph shows the maximal
value of the variable v on the
equilibrium points or on the
periodic orbits which, indeed,
are limit cycles. b Frequency of
oscillation. The system presents
two Hopf bifurcations at
IH B1 ≈ 0.0595108 and
IH B2 ≈ 0.0803052. Lower row:
in terms of parameters Iapp and
α. c Full-scale visualization to
show the two Hopf bifurcation
curves on the two-parameter
bifurcation diagram. d
Visualization restricted to
Iapp ≥ 0 and α ≥ 0

are biparametric bifurcation diagrams intended to include the
parameter α.

Our choice of parameters avoids bursting because we
are more interested in exploring the difficulties that our
neural network encounters when trying to identify three-
dimensional systems with an extra timescale. The extended
FitzHugh–Nagumo system we consider is graded by the
parameter α which modulates the effect of the slow vari-
able y: for α = 0 we have a decoupled system but already
a slow dynamics, while for α > 0 and small enough, the
model still keeps the essence of the FitzHugh–Nagumo sys-
tem (A.4), that is, the presence of an attracting limit cycle in
some region of the Iapp bifurcation diagram.

A.4 Wangmodel of a pyramidal neuron

In order to test more realistic models, we use a conductance-
basedmodel that describes the activity of a cortical pyramidal
cell. We adapt a simplification of Traub’s model, borrowing
the values for the characteristic conductances from Wang
(1998). In order to avoid complicated dynamics in this testing
stage of our methods, we only consider the soma compart-
ment from Wang’s model and neglect the dendritic one;
moreover, we have removed the differential equation for the
calcium concentration and brought the gating variable m to
its steady-state, m = m∞(v). The resulting model contains
both a sodium and a potassium current, which drive themem-
brane potential during spiking.

Cm
dv

dt
= −IL − INa − IK + Iapp. (A.6)

As in the other models, equation (A.6) contains a constant
applied current (Iapp). The ionic currents in (A.6) are given
by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IL = gL (v − VL),

INa = gNa m3∞(v) h (v − VNa),

IK = gK n4 (v − VK ).

The gating variables h and n satisfy the usual type of
differential equation:

dw

dt
= φ [αw(v) (1 − w) − βw(v) w], (A.7)

where w represents either h or n, and

αh(v) = 0.07 exp (−(v + 50)/10),

βh(v) = 1

1 + exp (−0.1 (v + 20))
,

αn(v) = −0.01
v + 34

exp (−0.1 (v + 34)) − 1
,

βn(v) = 0.125 exp (−(v + 44)/25),

αm(v) = −0.1
v + 33

exp (−0.1 (v + 33)) − 1
,

βm(v) = 4 exp (−(v + 58)/12),
m∞(v) = αm(v)/(αm(v) + βm(v)).

(A.8)

In our computations, we have used the following set of
parameter values (units are expressed for each parameter
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Fig. 23 Bifurcation diagram of system (A.6) in terms of the parameter
Iapp . a The graph shows themaximal value of the variable v on the equi-
librium points or on the periodic orbits which, indeed, are limit cycles.
b Frequency of oscillation. The system presents a SNIC bifurcation at
Iapp ≈ 0.225653 and a Hopf bifurcation at Iapp ≈ 108.2843

type):

Cm = 1 (μF/cm2), φ = 4,
VL = −65, VNa = 55, VK = −80,
gL = 0.1, gNa = 45,
gK = 18 (mS/cm2).

(A.9)

Figure23 shows the bifurcation diagram in terms of
parameter Iapp.
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