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Abstract. A computational model of hippocampal ac-
tivity during spatial cognition and navigation tasks is
presented. The spatial representation in our model of
the rat hippocampus is built on-line during exploration
via two processing streams. An allothetic vision-based
representation is built by unsupervised Hebbian learn-
ing extracting spatio-temporal properties of the environ-
ment from visual input. An idiothetic representation is
learned based on internal movement-related information
provided by path integration. On the level of the hip-
pocampus, allothetic and idiothetic representations are
integrated to yield a stable representation of the environ-
ment by a population of localized overlapping CA3-CA1l
place fields. The hippocampal spatial representation is
used as a basis for goal-oriented spatial behavior. We fo-
cus on the neural pathway connecting the hippocampus
to the nucleus accumbens. Place cells drive a population
of locomotor action neurons in the nucleus accumbens.
Reward-based learning is applied to map place cell ac-
tivity into action cell activity. The ensemble action cell
activity provides navigational maps to support spatial
behavior. We present experimental results obtained with
a mobile Khepera robot.

1 Introduction

As the complexity of the tasks and the perceptual capa-
bilities of biological organisms increase, an explicit spa-
tial representation of the environment appears to be em-
ployed as a cognitive basis to support navigation [25]. In
rodents, hippocampal place cells exhibit such a spatial
representation property. Recordings from single place
cells in the rat hippocampus [24, 25] show that these
neurons fire as a function of the rat’s spatial location.
A place cell shows action potentials only when the an-
imal is in a specific region of the environment, which
defines the place field of the cell. Place cells have been
observed in the hippocampus proper (CA3 and CA1 pyra-
midal cells) [24, 41], and in other extra-hippocampal ar-
eas such as the dentate gyrus [16], the entorhinal cortex
[29], the subiculum [36], and the parasubiculum [38].
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In addition, recent experimental findings show the
existence of head-direction cells, neurons whose activity
is tuned to the orientation of the rat’s head in the az-
imuthal plane. Each head-direction cell fires maximally
when the rat’s head is oriented in a specific direction,
regardless of the orientation of the head with respect to
the body, and of the rat’s spatial location. Thus, the en-
semble activity of head-direction cells provides a neural
allocentric compass. Head-direction cells have been ob-
served in the hippocampal formation and in particular
in the postsubiculum [39], in the anterior thalamic nuclei
[1, 17], and in the lateral mammillary nucles [18].

Place coding and directional sense are crucial for
solving spatial learning tasks. Hippocampal lesions se-
riously impair the rat’s performance in spatial tasks (see
[31] for an experimental review). This supports the hy-
pothesis that the hippocampus plays a functional role in
rodent navigation, and that it provides a neural basis for
spatial cognition and spatial behavior [24, 25, 41, 20].

Hippocampal place fields are determined by a combi-
nation of environmental cues whose mutual relationships
code for the current animal location [25]. Experiments on
rats show that visual cues are of eminent importance for
the formation of place fields [17]. Nevertheless, rats also
rely on other allothetic non-visual stimuli, such as audi-
tory, olfactory, and somatosensory cues [15]. Moreover,
place cells can maintain stable receptive fields even in
absence of reliable allothetic cues (e.g., in the dark) [28].
This suggests a complex architecture where multimodal
sensory information is used for learning and maintaining
hippocampal place fields. In the dark, for instance, id-
iothetic information (e.g., proprioceptive and vestibular
stimuli) might partially replace external cues [10].

We present a computational model of the hippocam-
pus which relies on the idea of sensor-fusion to drive
place cell activity. External cues and internal self-genera-
ted information are integrated for establishing and main-
taining hippocampal place fields. Receptive fields are
learned by extracting spatio-temporal properties of the
environment. Incoming visual stimuli are interpreted by
means of neurons that only respond to combinations
of specific visual patterns. The activity of these neu-



rons implicitly represents properties like agent-landmark
distance and egocentric orientation to visual cues. In a
further step, the activity of several of these neurons is
combined to yield place cell activity. Unsupervised Heb-
bian learning is used to build the hippocampal neu-
ral structure incrementally. In addition to visual in-
put we also consider idiothetic information. An extra-
hippocampal path integrator drives Gaussian-tuned neu-
rons modeling internal movement-related stimuli. During
the agent-environment interaction, synapses between vi-
sually driven cells and path-integration neurons are es-
tablished by means of Hebbian learning. This allows us
to correlate allothetic and idiothetic cues to drive place
cell activity. The proposed model results in a neural spa-
tial representation consisting of a population of localized
overlapping place fields (modeling the activity of CAl
and CA3 pyramidal cells). To interpret the ensemble
place cell activity as spatial location we apply a pop-
ulation vector coding scheme [14, 41].

In order to accomplish its functional role in spatial
behavior, the proposed hippocampal model must incor-
porate the knowledge about relationships between the
environment, its obstacles and specific target locations.
As in Brown and Sharp [2], and in Burgess et al. [4],
we apply reinforcement learning [37] to enable target-
oriented navigation based on hippocampal place cell ac-
tivity. We focus on a specific neural pathway, namely the
forniz projection, connecting the hippocampus (in par-
ticular the CA1 region) to the nucleus accumbens. The
latter is an extra-hippocampal structure that is probably
involved in reward-based goal memory and in locomotor
behavior [2, 31]. Place cell activity drives a population
of locomotor action neurons in the nucleus accumbens
[2]. Synaptic efficacy between CA1 cells and action cells
is changed as a function of target-related reward signals.
This results in an ensemble activity of the action neu-
rons that provides a navigational map to support spatial
behavior.

In order to evaluate our hippocampal model in a real
context, we have implemented it on a Khepera minia-
ture mobile robot (Fig. 6(b)). Allothetic information
is provided by a linear vision system, consisting of 64
photo-receptors covering 36 degrees of azimuthal range.
Eight infrared sensors provide obstacle detection capa-
bility (similar to whiskers). Internal movement-related
information is provided by dead-reckoning (odometry).
Robotics offers a useful tool to validate models of func-
tionalities in neuro-physiological processes [27]. Artificial
agents are simpler and more experimentally transparent
than biological systems, which makes them appealing for
understanding the nature of the underlying mechanisms
of animal behavior.

Our approach is similar in spirit to earlier studies
[4, 32, 31, 13, 40, 19, 2]. In contrast to Burgess, Recce
and O’Keefe [4], we do not directly use metric informa-
tion (i.e., distance to visual cues) as input for the model.
Rather, we interpret visual properties by learning a pop-
ulation of neurons sensitive to specific visual stimulation.
Moreover, there is no path integration in the model of
Burgess et al.. In contrast with their model, we consider,
along with vision, the path integrator as an important

constituent of our hippocampal model. This allows us to
account for the existence of place fields in the absence
of visual cues (e.g., in complete darkness) [28]. Redish
and Touretzky [32, 31] have put forward a comprehen-
sive theory of the hippocampal functionality where place
fields are important ingredients. Our approach puts the
focus on how place fields in the CA3-CA1 areas might
be built from multimodal sensory inputs (i.e., vision and
path integration). Gaussier et al. [13] propose a model
of the hippocampal functionality in long-term consoli-
dation and temporal sequence processing. Trullier and
Meyer [40] build a topological representation of the en-
vironment from sequences of local views. In contrast to
those two models, temporal aspects are, in our approach,
mainly 4mplicit in the path integration. In contrast to
Mallot et al. [19], who construct a sparse topological rep-
resentation, our representation is rather redundant and
uses a large number of place cells. Similarly to Brown
and Sharp [2], we consider the cell activity in the nu-
cleus accumbens to guide navigation. However, we do not
propose an explicit model for the nucleus accumbens. Fi-
nally, similarly to Schultz, Dayan and Montague [35, 6]
we consider the role of dopaminergic neurons in reward-
based learning. However, we study hippocampal goal-
oriented navigation in a real agent-environment context.

2 Spatial Representation in the Hippocampus
2.1 Biological Background

Fig. 1 shows the functional rationale behind the model:
(7) External stimuli (i.e., visual data) are interpreted to
characterize distinct regions of the environment by dis-
tinct sensory configurations. This results in an allothetic
(vision-based) spatial representation consistent with the
local view hypothesis suggested by McNaughton in 1989
[20]. (%) Internal movement-related stimuli (i.e., pro-
prioceptive and vestibular) are integrated over time to
provide an idiothetic (path integration-based) represen-
tation. (i) Allothetic and idiothetic representations are
combined to form a stable spatial representation in the
hippocampus (CA3-CA1 place fields). (iv) Spatial nav-
igation is achieved based on place cell activity, desired
targets, and rewarding stimulation.

Fig. 2 shows the anatomical framework underlying
our computational model. The hippocampus proper (C-
shaped structure in Fig. 2) consists of the CA3-CAl
areas. The hippocampal formation consists of the hip-
pocampus proper, the dentate gyrus (DG), the entorhi-
nal cortex (in particular, we consider superficial (SEC)
and medial (mEC) entorhinal regions), and the subicu-
lum (SC).

The hippocampus receives multimodal highly pro-
cessed sensory information mainly from neocortical ar-
eas, and from subcortical areas (e.g., inputs from the
medial septum via the fornix fiber bundle) [3]. We focus
on neocortical inputs and in particular on the informa-
tion coming from the posterior parietal cortex. Lesion
data on humans and monkeys, suggest that parietal ar-
eas are involved in spatial cognition and spatial behavior
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Fig. 1. Functional overview of the model. Allothetic and idiothetic
stimuli are combined to yield the hippocampal space representation.
Navigation is based on place cell activity, desired targets, and rewards.
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commands

[3]. The posterior parietal cortex receives inputs from vi-
sual, sensory-motor, and somatosensory cortices. This in-
formation reaches the entorhinal regions, within the hip-
pocampal formation, via the parahippocampal (PaHi)
and the perirhinal (PeRh) cortices. Finally, the entorhi-
nal cortex projects to the hippocampus proper via the
perforant path (PP) [3].

As previously mentioned, we consider the spatial rep-
resentation in the CA3-CA1 areas as the result of inte-
grating idiothetic and allothetic representations (Fig. 1).
The idiothetic representation is assumed to be enviro-
nment-independent. Recordings from cells in the me-
dial entorhinal cortex (mEC) show place fields with a
topology-preserving property across different environ-
ments [29, 31]. Thus, we suppose that the idiothetic rep-
resentation takes place in the medial entorhinal cortex.
A fundamental contribution to build the idiothetic space
representation in mEC comes from the head-direction
system (Fig. 2). The latter is formed by the neural circuit
including the lateral mammillary nuclei (LMN), the an-
terodorsal nucleus of anterior thalamus (ADN), and the
postsubiculum (poS) [1, 31]. Head-direction information
is projected to the medial entorhinal cortex (mEC) from
the postsubiculum (poS).

On the other hand, we suppose that the allothetic rep-
resentation is formed in the superficial entorhinal cortex
(sEC) [31]. Superficial layers of the entorhinal cortex re-
ceive spatial information about allothetic landmarks (lo-
cal view) from the posterior parietal cortex, and project
massively to the CA3 region via the perforant path [31].

The hippocampus proper projects its output (i) to
the subiculum and the deep layers of the entorhinal cor-
tex via the angular bundle, (i) to several subcortical
areas (e.g., the nucleus accumbens (NA)) via the fornix
(FX). In particular, we consider the output of CA1 cells
that reaches the nucleus accumbens via the fornix!. We
identify the NA as the area where navigation control is
achieved by means of reward-based learning [2, 32]. We
consider the dopaminergic input that NA receives from
the ventral tegmental area (VTA). Indeed, dopamine
neuron activity codes for external rewarding stimulation
[35].

1 Actually, the fornix receives most of its inputs from the subicu-
lum. However, experiments show that CA1 cells also project into
it [31].
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Fig. 2. A simplified overview of the anatomical counterparts of the
constituents of our model. Glossary: PaHi: parahippocampal cortex,
PeRh: perirhinal cortex, poSC: postsubiculum, LMN: lateral mammil-
lary nuclei, ADN: anterodorsal nucleus of anterior thalamus (ATN),
mEC: medial entorhinal cortex, sEC: superficial entorhinal cortex, DG:
dentate gyrus, SC: subiculum, NA: nucleus accumbens, VTA: ventral
tegmental area, PP: perforant path, FX: fornix. The hippocampus
proper consists of the CA3-CA1l areas. The hippocampal formation
consists of the hippocampus proper, the dentate gyrus, the entorhinal
cortex, and the subicular complex [31, 3]. Adapted from Redish and
Touretzky [32], and from Burgess et al. [3].

2.2 Learning Place Fields

The model system consists of a multi-layer neural ar-
chitecture that models high-dimensional continuous sen-
sory input by means of overlapping place fields. Starting
with no prior knowledge, the system grows incremen-
tally and on-line as the agent interacts with the environ-
ment. Unsupervised Hebbian learning is used to detect
the low-dimensional view manifold representing the vi-
sual input space. However, since distinct spatial locations
might provide identical visual stimuli, such a view man-
ifold might be singular [19]. Hebbian learning is applied
to correlate visual cues and path integration in order to
remove such singularities. The combination of internal
and external stimuli yields a stable state space represen-
tation. On the one hand, unreliable visual data can be
compensated for by means of path integration. On the
other hand, reliable visual information can be used to
reset the path integrator system.

2.2.1 Representation of Visual Input

We apply a simple computational strategy to emulate
the feature-extraction mechanism observed in the visual
cortex. Moving up the visual pathway, visual neurons
become responsive to stimuli of increasing complexity,
from orientation sensitive cells, to neurons sensitive to
more complex patterns, such as faces [33].

We model spatio-temporal relationships between vi-
sual cues by means of neural activity. Incoming visual
stimuli are interpreted by mapping images into a filter-
activity space (Fig. 3). We define several classes of Walsh-
like filters2. Each class corresponds to a specific visual

2 Walsh filters are simple and permit effective and low-cost
feature-detection in one-dimensional visual spaces. We are cur-
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Fig. 3. Linear images (top) are mapped into a filter activity
space (bottom). Along the x-axis we have different Walsh-like filters,
P1,---,Pn, each of which responds to a specific pattern. Along the y-
axis the spatial frequency of each pattern p; is varied to represent the
same pattern seen from different distances. Each image is encoded by
the cluster of filters which maximally respond to that image.

pattern

pattern. The set of filters in that class corresponds to dif-
ferent spatial frequencies for that pattern (which endows
the system with a distance discrimination property). In
total we define 5 different classes of filters each contain-
ing filters at 10 different frequencies. Let F} be one our
Walsh filters, where 1 < k < 50 is the index of the filter,
and let [, be its length (i.e., number of pixels covered by
the filter). Given the input image x = (z1,...,Z4), the
response ay, of filter F}, is computed by convolution
le—1

ap = mgx{ Z: Fy.(i) an} (1)

where 0 < n < 64 — ;. Since —1 < z; <1 and Fj(i) =
+1 for all ¢, k, the relationship |ag| < Ii holds.

Each neural filter F}, responds to a particular pattern.
In order to detect more complex features, we consider a
layer of visual cells one synapse downstream the neural
filter layer. We call these neurons snapshot cells. The
idea is to represent each image by the cluster of filters
with the highest activation value, defined by Eq. 1. Let
C = 0.7 - l;; be the threshold above which a filter Fj is
considered as active. Given an image x, the set of active
filters projects one layer forward to form a snapshot cell

sc={Fy | ax > C} (2)
The firing activity r; of a snapshot cell sc; is given by

rj = ZkeSCj Zjak - C) (3)

where 3, .~ sums over all the NV; filters projecting to

the cell sc;j, and H is the Heaviside function. The nor-
malization has been chosen so that 0 < r; < 1.

2.2.2 Allothetic Representation: Place Fields in the
Superficial Entorhinal Cortex

The activity of snapshot cells depends on the current
gaze direction, and does not truly code for a spatial lo-
cation. In order to achieve spatial sensitivity, we apply

rently implementing our model on a two-dimensional vision system
by using biologically inspired Gabor filters [12].

(a) (b)

Fig. 4. Two examples of receptive fields of cells in our superficial
entorhinal layer. The darker a region, the higher the firing rate of the
cell when the robot is in that region of the environment. (a) The visual
input is reliable, so that the maximal activity is confined to a localized
spot in the environment. (b) The receptive field has multiple peaks
indicating that similar visual stimuli occur at different locations.

unsupervised Hebbian learning to create a population
of place cells one synapse downstream of the snapshot
cell layer. We suppose that the anatomical counterpart
for this neural layer is the superficial entorhinal cortex
(Fig. 2). We call these neurons sEC cells.

Every time the robot is at a new location, all simul-
taneously active snapshot cells are connected to a newly
created sEC cell. Each new synapse is given a random
weight in (0, 1). Let ¢ and j be indices for sEC cells and
snapshot cells, respectively. If r; is the firing activity of
a snapshot cell j, then
Y ="H(r; —e)rnd o1 (4)

U)Z-]

where ¢ = 0.75 is the activity threshold above which a
snapshot cell is considered to be active. The firing rate
r; of a sEC cell ¢ is given by the average activity r; of
its presynaptic neurons j

Do Wi
>, Wij
Once synapses are established, their efficacy is changed

according to a Hebbian learning rule

Awij = rj (ri — wij) (6)

()

Ti

where j is the index of the presynaptic neuron. If the
robot is visiting a spatial location, it first checks whether
there are already sEC cells coding for this location. New
connections from snapshot cells to new sEC cells are cre-
ated only if

ZH(” —e) <A (7)

that is, only if the number of SEC cells activated at that
location does not exceed a threshold A. Eq. 7 is a mere
algorithmic implementation. We believe, however, that
in some way rodents must have a possibility to detect
novelty. Eq. 7 allows the system to control the redun-
dancy level in the resulting spatial representation. We
call the learning scheme defined by Egs. 4, 6, and 7, an
unsupervised growing network (see, e.g., [11]).

By definition, each sEC cell is driven by a set of
snapshot cells whose activities code for visual features



Fig. 5. A sample of place field of a place cell in our CA3-CA1 hip-
pocampal layer. When the robot is in the region of the black spot the
firing rate of the cell is maximal. Notice the gaussian-like tuning curve,
which is compatible with single cell recordings from real place cells.

of the environment. As a consequence, the activity of a
sEC cell depends on the combination of multiple visual
cues. This results in an ensemble sEC cell activity coding
for spatial locations. Fig. 4 shows two examples of place
fields in the superficial entorhinal layer of the model.
The darker a region, the higher the firing rate of the
cell. Fig. 4(a) shows that the cell is activated only if the
robot is in a localized region of the environment. Thus,
the robot may use the center of the field (the darkest
area) for the self-localization task. On the other hand,
Fig. 4(b) shows a cell with multiple subfields. The activ-
ity of this SEC cell encodes an ambiguous visual input:
the multi-peak receptive field identifies different spatial
locations which yield similar visual stimuli. About 70%
of the cells in our superficial entorhinal layer are of type
(a), and about 30% of type (b). As previously mentioned,
a way to solve the ambiguities of cell-type (b) is to con-
sider along with the visual input the internal movement-
related information provided by the path integrator (i.e.,
dead-reckoning), which is the topic of Sec. 2.2.3.

Place fields in our model of sEC are non-directional.
This is due to the fact that sEC cells bind together the
several snapshot cells that correspond to the north, east,
south, and west views. Experimental data show that
place cells tend to have directional place fields (i.e., their
firing activity depends on head direction) in very struc-
tured arenas (e.g., linear track mazes and radial nar-
row arm mazes [22]). On the other hand, when the rat
can freely move over two-dimensional open environments
(e.g., the arena of Fig. 6(a)) place fields tend to be non-
directional [23]. In order to obtain directionally inde-
pendent place fields in our model, the system takes four
snapshots corresponding to the north, east, south, and
west views at each location visited during exploration [4].
Thus, each visited location in the environment is charac-
terized by four snapshot cells, which are bound together
to form a non-directional local view. On the other hand,
in a linear track maze the rat always runs in the same
direction. If we would model this by taking a single view
only, then we would get directionality.

2.2.3 Idiothetic Representation: Place Fields in the
Medial Entorhinal Cortex

In this paper we do not present an explicit model for
the path integrator system [8]. We simply define extra-

hippocampal neurons, namely path-integration cells (PI
cells), whose activity provides an allocentric spatial rep-
resentation based on dead-reckoning [21]. Thus, as the
robot moves, the activity of the PI cells changes accord-
ing to proprioceptive stimuli and the robot’s orientation
provided by the head-direction system. The firing rate
rp of a PI cell p is taken as a Gaussian

*(pdr - pp)z) (8)
202
where pg, is the position estimated by dead-reckoning,
Py is the center of the field of cell p, and o is the width
of the Gaussian field. In the current implementation, the
value of the dead-reckoning position pg, is evaluated by
direct mathematical integration of the movement signals
(wheel turns). The activity of the PI cells is environment-
independent, that is place fields of PI cells do not change
from environment to environment [32]. We suppose that
the spatial representation provided by the PI place fields
takes place in the medial entorhinal cortex [29] (Fig. 2).
Our PI cell assembly could be interpreted as one of
the charts of the multichart path integrator proposed by
McNaughton et al. [21]. A chart is an imaginary frame
of reference appropriately mapped into the environment
and where each cell is located at the center of its place
field. In the model of McNaughton et al. several charts
are stored in the same recurrent network. Additional spa-
tial reference cues trigger which chart to pick so that
different charts are mapped into different environments.
Our system would correspond to one finite chart. Since in
this study we concentrate on a single environment only,
we have not implemented how the system would switch
to a new chart if it leaves the reference frame [31].

Tp = exXp (

2.2.4 Hippocampal Representation: Place Fields in the
CA8 and CA1 Regions

Allothetic and idiothetic representations converge onto
the hippocampus proper to form a spatial representation
based on CA3-CA1 place fields.

sEC cells project to CA3-CA1l neurons by means
of downstream synapses that are incrementally created
by applying our unsupervised growing network scheme
(Egs. 4, 6, and 7). Simultaneously active sEC cells are
connected to create new CA3-CA1 place cells. If i and
j represent CA3-CA1 place cells and sEC cells, respec-
tively, synapses are created according to Eq. 4 and they
are changed on-line by Hebbian learning (Eq. 6). The
firing rate of each CA3-CA1 cell is a weighted average of
the activity of its presynaptic cells (Eq. 5).

In addition, during the agent-environment interac-
tion, Hebbian learning is used to learn synapses between
PI cells and CA3-CA1 place cells. If i and p represent a
place cell in the hippocampus and a PI cell, respectively,
the synaptic weight w;), is established according to

Awip, = rpri(1 — wip) 9)

As a consequence, the place cell activity in the CA3-CA1
layer depends on the activity of both sEC cells and PI
cells. This combination of internal and external stimuli



(b)
Fig. 6. (a) The experimental setup: The 60 x 60 cm square arena with
the Khepera robot inside. Walls are covered by a random sequence of
black and white stripes of variable width, which form the visual input
patterns for the system. (b) The mobile Khepera robot equipped by a
linear-vision system. Eight infrared sensors provide obstacle detection
capability. Two motors drive the two wheels independently. Two wheel
encoders provide the dead-reckoning system. In this configuration the
robot is about 7 cm tall with a diameter of about 6 cm.

yields a rather stable spatial representation. Fig. 5 shows
a typical receptive field of a place cell in the CA3-CA1
layer of our model. Again, the darker a region, the higher
the firing rate of the cell.

About 3% of our CA3-CA1 place cells show multi-
ple subfields. This is consistent with experimental single-
unit recordings data which show that about 5% of ob-
served cells have multiple subfields within a single envi-

ronment [30].
2.8 Population Vector Coding

The proposed model yields a spatial representation con-
sisting of a large number of overlapping place fields.
Fig. 6(a) shows the square arena used for the experi-
ments with the mobile Khepera robot (Fig. 6(b)). Walls
are covered by random sequences of black and white
stripes of variable width. Combinations of these stripes
form the input patterns for the linear vision system. Dur-
ing exploration (see Sec. 2.4) the robot tries to cover the
two-dimensional space uniformly and densely by a pop-
ulation of CA3-CA1 place fields. Fig. 7 shows the distri-
bution of CA3-CA1 place cells after learning. Each dot
represents a place cell, and the position of the dot rep-
resents the center of the place field. In this experiment
the robot, starting from an empty population, created
about 800 CA3-CA1 place cells.

The ensemble place cell activity shown in Fig. 7 codes
for the robot’s location in Fig. 6(a). The darker a cell, the
higher its firing rate. In order to interpret the informa-
tion represented by the ensemble pattern of activity, we
apply population vector coding [14]. This approach has

Fig. 7. The learned population of CA3-CA1l place cells. Each dot
denotes the center of a place field. The darker a dot, the higher the
firing rate of the corresponding place cell. The ensemble activity corre-
sponds to the robot’s location in Fig. 6(a). The white cross represents
the center of mass of the population activity.

been successfully applied to interpret the neural activity
in the hippocampus [41]. We average the activity of the
neural population to yield the encoded spatial location.
Let us suppose that the robot is at an unknown location
s. If r;(s) is the firing activity of a neuron i and x; is the
center of its place field, the population vector p is the
center of mass of the network activity:
> Xiri(s)

Notice that the encoded spatial position p is near, but
not necessarily identical to, the true location s of the
robot. The approximation p ~ s is good for large neural
populations covering the environment densely and uni-
formly [34]. In Fig. 7 the center of mass (Eq. 10) coding
for the robot’s location is represented by the white cross.

Note that the place field center x; has been made
explicit for interpreting and monitoring purposes only.
Associated with each place cell i is a vector x; which
represents the estimated location of the robot (based on
dead-reckoning) when it creates the cell i. While the vec-
tor x; is used in Eq. 10 for the interpretation of the
population activity, knowledge of x; is not necessary for
navigation as discussed later in Sec. 3.

2.4 Exploration and Path Integrator Calibration

The robot moves in discrete time steps At which deter-
mine the frequency at which it senses the world, inter-
prets sensory inputs, and takes an action. Experiments
on rats show that, during motion, hippocampal process-
ing is timed by a sinusoidal EEG signal of 7 — 12 Hz,
namely the theta rhythm. The activity of hippocampal
cells is correlated to the phase of theta [26]. We assume
that each time step At corresponds to one theta cycle
of approximately 0.1 seconds, thus place cell activity is
updated with a frequency of 10 Hz (the real movement
of the robot is, of course, slower than this).

The robot uses a simple active-exploration technique
which helps to cover the environment uniformly. At each
time step, it chooses its new direction of motion based on
the activity in the CA3-CA1 layer. If a relatively large
number of neurons are currently active, it means that a
well known region of the environment is being visited.
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Fig. 8. The variance of the sEC cell activity around the center of mass
Psec. When the variance falls below the fixed threshold X the spatial
location pgsec is used to calibrate the robot’s position.

Then, a small directional change, A¢s, will increase the
probability of leaving that area. Conversely, a large vari-
ability of the robot’s direction, A¢gy, is associated to low
CA3-CA1 place cell activity, which results in a thorough
exploration of that region. In our experiments A¢s and
Ag¢y are randomly drawn from [—5,45] and [-60, +60],
respectively.

Path integration is vulnerable to cumulative errors
in both biological and robotics systems [10]. As a conse-
quence, to maintain the allothetic and idiothetic repre-
sentations consistent over time, we need to bound dead-
reckoning errors by occasionally resetting the path in-
tegrator. Visual information may be used to accomplish
this aim [21].

The robot adopts an exploration strategy which em-
ulates the exploratory behavior of animals [10, 5]. It
starts from an initial location (e.g., the nest) and, as
exploration proceeds, it creates new place cells. At the
very beginning, exploration consists of short return trips
(e.g., narrow loops) which are centered in the nest and
directed towards the principal radial directions (e.g.,
north, north-east, east, and so on). This overall behav-
ior relies on the head-direction system and allows the
robot to explore the space around the nest exhaustively.
Afterwards, the robot switches to a more open-field ex-
ploration strategy. It starts moving in a random direc-
tion and it uses the above active-exploration technique
to update its direction at each time step. After a while,
the robot “feels” the need to re-calibrate its path inte-
grator. We do not propose a specific uncertainty model
for the dead-reckoning system. We simply assume that
the “need of calibration” grows monotonically as some
function n(t) of time ¢. When, after a time t.q, n(t)
overcomes a fixed threshold n.q;, the robot stops cre-
ating place cells and starts following the homing vector
[10, 5] to return towards the nest location. As soon as the
robot finds a previously visited location (not necessarily
the nest location), it tries to use the learned allothetic
spatial representation to localize itself.

We take the visually driven activity of sEC cells as
the signal for the calibrating process. Let pse. be the
center of mass of the sEC cell activity and let o be
the variance of the activity around it. In order to evalu-
ate the reliability of the sEC cell activity, we consider a
fixed variance threshold Y. If ¢ is smaller than X', then
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Fig. 9. Uncalibrated dead-reckoning error (curve (a)) versus cali-
brated robot positioning using sEC cell activity (curve (b)).
the spatial location pge. is suitable for re-calibrating the

robot (Fig. 8). More precisely, we define a weight coeffi-
cient

{15

and then we use it to compute the calibrated robot po-
sition p*

o<X
otherwise (11)

p>k = Q& Psec + (1 - Oé) Pdr (12)

where pg, is the position estimated by the dead-reckoning
system. Eq. 12 is an algorithmic implementation. In the
future, we would like to implement odometry calibration
by applying associative learning to correlate the sEC cell
activity to the PI cell activity.

Once the robot has calibrated itself, exploration is
resumed and it starts creating new place cells. This
technique allows the robot to explore the environment
by keeping the dead-reckoning error within a bounded
range. Fig. 9 shows calibrated versus uncalibrated path-
integrator error during an exploration session of about
350 time steps.

Even though this case has never occurred in our ex-
periments, during the homing behavior the robot might
reach the nest without having re-calibrated its path inte-
gration (i.e., without having found a location where sEC
activity is suitable to calibrate odometry). In this case,
the robot resorts to a spiral searching behavior centered
around the nest location. As soon as it finds a calibration
location, the open-field exploring behavior is resumed.

3 Spatial Behavior: Learning Navigation Maps

The above hippocampal model allows the robot to self-
localize itself within its environment (Fig. 7). In order to
provide a cognitive support for spatial behavior, place
cell activity has to be used to guide navigation. We de-
rive navigational maps by applying reinforcement learn-
ing [37] to map CA3-CA1l ensemble activity into goal-
oriented behavior. The navigation part has not been im-
plemented on the robot yet, but done in simulation.

8.1 Reinforcement Learning in Continuous Space

The nucleus accumbens has been thought to play an im-
portant role in reward-based spatial learning [2, 31]. It
receives place coding information from the hippocampal



Thorth Tsouth Tivest Teast

Action Cells in
Nucleus Accumbens

CA3-CAl
Place Cells

Environment
Place Field

Fig. 10. CA3-CA1 place cells project to action cells (four for each tar-
get type) in the nucleus accumbens. Reinforcement learning is used to
find the function which maps continuous spatial locations to locomotor
actions.

formation (via the fornix) as well as rewarding stimula-
tion from dopaminergic neurons (via the ventral tegmen-
tal area) [31].

We consider a population of action cells in the nu-
cleus accumbens whose activity provides directional mo-
tor commands [2]. For each type of target (e.g., food
or water), four action cells (coding for north, south,
west, east allocentric actions) are driven by the popu-
lation of CA3-CA1 place cells [4]. Synapses from hip-
pocampal place cells to action cells are modified to learn
the continuous location-to-action mapping function in
goal-directed tasks. LTP occurs to associate spatial lo-
cations to rewarding actions, otherwise LTD takes place
(Fig. 10).

Learning an action-value function over a continuous
location space endows the system with spatial general-
ization capabilities. Thus, the robot may be able to asso-
ciate appropriate actions to spatial positions that it has
never seen before. Overlapping localized place fields in
the CA3-CALl layer, provide a natural set of basis func-
tions that can be used to learn such a mapping function.

Let s be the robot’s location (state), and let a be
an action cell in the nucleus accumbens, with a € A :=
{north, south, west, east}. Let us denote the activation
of a CA3-CA1 place cell i by r;, and the activity of an
action cell a by r,. A robot position s is encoded by
the place cell activity r(s) = (ri(s),r2(s),...,r(8)),
where n is the number of CA3-CA1l place cells. Let
w® = (wf,...,w?%) be the synaptic projections from hip-
pocampal place cells to the action cell a (Fig. 10). The
activity r, depends linearly on the robot’s position s and
on the synaptic weights w:

ra(s) = (W) r(s) = Z wi ri(s) (13)

The learning task consists of updating w® to approx-
imate the optimal goal-oriented function which maps
states s into action cell activity rq(s). To do this, we
use the linear gradient-descent version of Watkins’ Q-
learning algorithm [37]. Given a robot position s, we in-
terpret the neural activity r,(s) as the “expected gain”
when taking action a at location s of the environment.
During training, the robot behaves in order to either
consolidate goal-directed paths (exploitation) or find
novel routes (ezploration). This exploitation-exploration
trade-off is determined by an e-greedy action selection

policy, with 0 < e < 1 [37]. At each time ¢, the robot
takes the “optimal” action a; with probability 1 —e (ex-
ploitation)

ay = arg maxrq(st) (14)
a

or, it might resort to uniform random action selection
with probability equal to € (exploration). At each time
step At, the synaptic efficacy of projections w® changes
according to [37]

Aw? =« 5t €t (15)
The terms in Eq. 15 have the following interpretation:

(i) The factor a, 0 < @ < 1, is a constant learning rate.
(#) The term ¢ is the prediction error defined by

0 = Rep1 +7y max Ta(St41) — Ta(st) (16)

where R; 1 is the actual reward delivered by an in-
ternal brain signal, and v, 0 < v < 1, is a constant
discount factor. The temporal difference §; estimates
the error between the expected and the actual reward
when, given the location s at time ¢, the robot takes
action a and reaches location s” at time ¢+ 1. Training
trials allow the robot to minimize this error signal.
Thus, asymptotically §; ~ 0, which means that, given
a state-action pair, the deviation between predicted
and actual rewards tends to zero.
Neuro-physiological data show that the activity of
dopamine neurons in mammalian midbrain encodes
the difference between expected and actual occur-
rence of reward stimuli [35]. In particular, the more
reliably a reward is predicted, the more silent a
dopaminergic neuron. Thus, the temporal difference
error §; used to update our synaptic weights w® may
be thought of as a dopamine-like teaching signal.
(##i) During training paths, Eq. 15 allows the robot to
memorize action sequences. Since recently taken ac-
tions are more relevant than earlier ones, we need a
memory trace mechanism to weight actions as a func-
tion of their occurrence time. The vector e;, called
eligibility trace, provides such a mechanism [37]. The
update of the eligibility trace depends on whether the
robot selects an exploratory or an exploiting action.
Specifically, the vector e; changes according to

0 if exploring (17)

where A\, 0 < XA < 1, is a trace-decay parameter [37],
and r(s;) is the CA3-CA1 vector activity. We start
with €y = 0.

3.2 Behavioral Experiments

Given the experimental setup shown in Fig. 6, we define a
specific target region (e.g., a feeding location) within the
environment. We apply the above reward-based learning
scheme to build up a navigational strategy leading the
robot toward the target from any location, while avoid-
ing obstacles. In this work, we do not address the prob-
lem of consolidating and recalling hippocampal repre-
sentations [31]. We simply assume that entering a fa-
miliar environment results in recalling the hippocampal



chart associated with this environment [21]. To study
robot behavior, we adopt the same protocol as employed
by neuro-ethologists with rats [31]. Navigational maps
are learned through a training session consisting of a
sequence of trials. Each trial begins at a random loca-
tion and ends when the robot reaches the target. At the
beginning of each trial the robot retrieves its starting lo-
cation on the hippocampal chart based on the allothetic
(visually-driven) representation (Sec. 2.2.2) [21, 20].

During learning we consider a discrete set of four
actions A = {north, south,west, east}. However, after
learning, population vector coding is applied to map A
into a continuous action space A’ by averaging the en-
semble action cell activity. Given a position s of the
robot, the action d’(s) o (‘;’rfi’) is a direction in the
environment encoded by the action cell activity in the
nucleus accumbens

ZaGA aTq (S)
ZaEA T'a (S)

where a,, = ((1)), as = (Bl), Ay = ( 0 ), and a, = ((1)) are
the four principal directions. Eq. 18 results in smooth
trajectories.

The experiments have been carried out with a learn-
ing rate a = 0.1, a discount factor v = 1.0, and a decay
factor A = 0.9. The reward-signal function R(s) is de-
fined by

a'(s) = (18)

1 if s = target state
R(s) = ¢ —0.5 if s = collision state (19)
0 otherwise

where collision means contact with walls or obstacles.

We adopt a dynamically changing e-probability. The
idea is to increase the probability of exploring novel
routes as the time to reach the target increases. The
e parameter is defined by the exponential function

exp(Bt) + k1

)= 7 - 20
elt) = TE (20)
where 3 = 0.068, k; = 100, and k2 = 1000, where
t=20,1,2,... are discrete time steps. If we consider the

dynamic of € over a time window of 100 time steps, at
t = 0 the robot behaves according to a value ¢ = 0.101
(i.e., enhancing exploitation), and at ¢ = 100 it behaves
according to a value € = 1.0 (i.e., enhancing exploration).
If at the end of the time, ¢ = 100, the target is not
reached yet, exploration is further enhanced by keeping
a fixed € = 1.0 for another 100 time steps. Then, exploita-
tion is resumed by setting ¢ = 0 and ¢ = 0.101. More-
over, every time the target is reached the time window
is re-initialized as well, and € is set equal to 0.101. These
are heuristic methods to ensure a sufficient amount of
exploration.

3.2.1 Experiment with a single target type (e.g., food)

Fig. 11(a) shows a two-dimensional view of the arena of
Fig. 6(a). White objects are transparent obstacles. Only
infrared sensors can detect obstacles, which are transpar-
ent with respect to the vision system. Since obstacles are
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Fig. 11. (a) A two-dimensional view of the environment with a feeder
location (dark grey square), and two obstacles (white rectangles). An
example of robot trajectory induced by the action cell activity after
learning. (b) Vector field representation of the learned navigational
map.

not visible and have been added after learning, the place
fields in the model are not affected. The dark square
represents the feeder location. The target area is about
2.5 times the area occupied by the robot (grey circle).
In Fig. 11(b) we show the navigational map learned by
the robot in about 920 time steps, which correspond to
50 trials from random starting positions to the target.
The vector field representation of Fig. 11(b) has been
obtained by rastering uniformly over the whole environ-
ment. Dots represent sampled positions and pointers in-
dicate the direction calculated from Eq. 18 at each po-
sition. Finally, the solid line shown in Fig. 11(a) is an
example of a robot trajectory from a novel starting lo-
cation using the learned navigational map.

3.2.2 Moving the learned target

This experiment consists of changing the location of a
previously learned target, and of allowing the robot to
adapt its navigational behavior consequently. The idea is
to endow the system with an internal reward-expectation
mechanism.

During training trials, the robot learns to correlate
the CA3-CA1 place cell activity to the positive reward
signal, R = 1, which it receives at the food location.
This is achieved by considering a neuron d, that we
call the reward-expectation cell, one synapse downstream
the place cell layer (Fig. 12(a)). Let i be an index over
the CA3-CA1l cell population. Connections wgy; from
place cells to the reward predicting cell are inhibitory
synapses, and are initialized to random values within
the interval [—0.1, 0]. The cell d receives as input the ex-
ternal rewarding stimulus R as well. The activity rq of
cell d is non linear and it is defined by

{g(ZZ wdﬂ'i> + R ifR>0 (21)

fd = otherwise.
where f(x) = tanh(z). Thus, the activity of cell d de-
pends on both the external reward R and the CA3-CA1
network activity.

In order to learn the desired correlation between the
event “positive reward” and the place cell activity, we ap-
ply Hebbian learning and modify the inhibitory weights
wg; by an amount
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Fig. 12. (a) The internal reward-ezpectation mechanism. The ac-
tivity of cell d depends on the CA3-CA1l place cell activity and
on the external reward signal R. (b) The arena and the previously
learned target (dark square) which has been moved to a new loca-
tion. Solid lines represent trajectories of the robot searching for the
previously learned food location. (c) The re-adapted navigational
map corresponding to the new rewarding location.

Awg; = rirg(wg; — 1) (22)

The more correlated the activity r;rg, the more in-
hibitory the synapses wy;.

As a consequence, before correlating the external re-
ward signal with internal spatial representation, cell d
responds maximally when the robot receives a positive
R = 1. Indeed, since weights wy; are initially close to
zero, the activity rq &~ R = 1 (according to Eq. 21).
As training proceeds, the robot starts predicting the ex-
ternal stimulus R by learning synapses wg;. Then, ev-
ery time the robot is near the target location, the cell d
receives a strong inhibitory input ), wg;r; which com-
pensates for the excitatory reward R. Thus, when R is
fully predicted, even if the robot receives the R = 1
signal the cell d remains silent. On the other hand, if
the fully predicted reward signal fails to occur (i.e., the
learned target has been moved away), the activity of cell
d is strongly depressed (rq = —1), and an internal nega-
tive reward is generated. When the number of collected
negative internal rewards exceeds a fixed threshold D
(e.g., D = 10), the robot “forgets” the previous target
location and starts looking for a new goal. Fig. 12(b)
shows the same environment of Fig. 11(a) where the
previously learned target has been moved to another
location. The robot is attracted by the previous feeder
position and it accumulates internal negative rewards.
Fig. 12(c) presents the navigational map re-adapted to
the new food location.

Our reward-expectation cell d finds its neuro-physio-
logical counterpart in dopaminergic neurons observed in
mammalian midbrain. The response of these neurons is

a function of the unpredictability of incoming stimuli
[35]. In particular, they respond positively to external
rewards which occur unpredictably. Instead, they remain
silent if a fully predicted stimulus arrives. By contrast,
when a fully expected reward fails to occur, dopamine
neurons respond negatively exactly at the time at which
the reward is expected [35]. Instead of Eq. 21, we could
have also used the prediction error ¢; defined in Eq. 16
to monitor an unexpected target location.

3.2.3 Ezperiment with multiple target types (e.g., food
and water)

The reward-based learning scheme described in Sec. 3.1,
Fig. 10, can also be applied to multiple target types.
Let T = {T1,...,Tn} be a set of distinct target types
(e.g., Ty could be a food location, Ty a water location,
and so on). For each given target T; we consider a set of
location-to-action mapping function 7% (s), and a set of
synaptic weights w®T¢, We also consider distinct reward-
ing signals R = {R™,..., RT»}. Then, we adopt the
above Q-learning algorithm to approximate the r1:(s)
functions.

In this experiment we consider two distinct types
of rewarding stimulations 77 (food) and T, (water).
Fig. 13(a) shows the two target locations (left and right
bottom squares) within the environment. The learning
session starts by focusing on the feeder location T%. Thus
the primary task for the robot is to approximate the
rI1(s) functions. The navigational map learned during
about 1300 time steps is shown in Fig. 13(b).

Notice that when searching for food it might happen
that the robot encounters the water location and receives
a positive reward signal with respect to T, R> = 1. This
information can be exploited by the robot by adjusting
w2 weights. That is, even if T, is not the current target,
the robot can partially learn a navigational map leading
to it. Fig. 13(c) shows the knowledge about the water
location T acquired by the robot while learning the op-
timal policy to reach the food T3. Thus, when the robot
decides to focus on the water target (i.e., to approximate
the r12(s) action cell activity), it does not start from zero
knowledge. This results in a shorter learning time for 1%,
and accelerates the robot’s progress. Fig. 13(d) presents
the navigational map learned by the robot after about
440 time steps when looking for water.

4 Discussion

We have presented a computational model of the hip-
pocampus to study its role in spatial cognition and nav-
igation. Even if it relies on neuro-physiological experi-
mental data, the proposed neural architecture is highly
simplified with respect to biological hippocampal cir-
cuitry.

In particular, we have stressed the importance of in-
tegrating external and internal stimuli to drive place
cell activity in CA3-CA1 regions [28, 32]. An allothetic
vision-based representation is formed in a model of the
superficial entorhinal cortex. Spatial properties of the
environment are extracted from visual inputs in order to
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Fig. 13. (a) The arena with two distinct target types 71 (e.g.,
food) and T (e.g., water). The white rectangle is an obstacle. (b)
The navigation map corresponding to the food rewarding location
Ti. (c) The partial navigation map corresponding to the water
location T% learned by the robot when focusing on food 7i. (d)
The final map acquired by the robot when focusing on water T%.

characterize distinct regions of the environment by com-
binations of visual cues. On the other hand, an idiothetic
representation takes place in our model of the medial
entorhinal cortex, integrating the internal movement-
related information provided by proprioception. Allo-
thetic and idiothetic representations converge onto CA3-
CA1 areas of the hippocampus and form a rather sta-
ble place fields representation. Allothetic and idiothetic
charts are correlated by associative learning. This in-
duces a mutual benefit in the sense that path integra-
tion may disambiguate visual singularities [9] and, con-
versely, visual information may be used for resetting the
path integration [21]. This process is done on-line during
the development of the hippocampal space representa-
tion (i.e., exploration). A threshold mechanism is used
to evaluate the reliability of the visual input being used
for dead-reckoning calibration.

Unsupervised Hebbian learning is applied to build
the neural system incrementally and on-line. Redun-
dancy in the place cell activity is considered as a crucial
property to yield robustness. After learning, the model
has developed a spatial representation consisting of a
large population of overlapping place fields covering the
environment uniformly and densely. To interpret the en-
semble place cell activity as spatial locations we apply
population vector coding [14, 41].

The hippocampus projects to the nucleus accum-
bens, a subcortical structure involved in spatial behav-
ior [2, 31]. We consider a population of locomotor ac-
tion neurons [4] in the nucleus accumbens and we apply

reward-based learning to adjust synapses from CA3-CA1l
cells to action cells [2]. For a given target location, this
results in learning a mapping function from the contin-
uous space of physical locations to the activity space of
action cells. This allows us to accomplish goal-oriented
navigation based on the neural activity in the nucleus
accumbens. Navigation maps are derived by interpreting
the ensemble action cell activity by means of population
coding [4]. Note, however, that while population vector
decoding allows us an interpretation of the place cell
activity, this interpretation is not necessary for action
learning by reinforcement: For Q-learning, place cells are
simply a set of basis functions in the high-dimensional
input space. Burgess et al. [4] have previously postulated
a goal-memory system consisting of a population of goal
cells (GC) driven by hippocampal place cells. The goal
cell activity encodes the animal’s position with respect
to the goal (i.e., north, east, south, west). In his model,
however, only the activity of hippocampal cells whose
place field contains the target is correlated to the GC ac-
tivity by Hebbian learning. This results in GC of limited
attraction radius which impairs the animal’s navigation
at large distances from the target and does not allow for
detours around obstacles. In addition, Burgess et al. [4]
do not propose any re-learning mechanism to cope with
targets whose location might change.

A robotic platform has been used to validate our
computational model in real task-environment contexts.
There is, of course, a whole body of work on robot navi-
gation with neural networks (e.g., [9, 27, 7]), but only few
authors have previously implemented hippocampal mod-
els on real robots [4, 13, 19]. Understanding the underly-
ing mechanisms of hippocampal place cell activity offers
the attractive prospect of developing control algorithms
that directly emulate mammalian navigational abilities.
On the other hand, the simplicity and the transparency
of artificial agents make them suitable for studying and
understanding neuro-physiological processes.

In the future, data analysis will be focused on the
dynamics of the robot behavior using the same method-
ology as employed by ethologists for living animals.
In particular, we will evaluate our hippocampal model
through experiments concerning environment manipula-
tions (e.g., shrinking and stretching the arena, chang-
ing light conditions). We are interested in studying the
potential conflicts which might occur between allothetic
and idiothetic information [10], and in modeling the mu-
tual relationships between path integration and visual
stimuli. For example, a system which is dominated by
vision-based information will show stretched place fields
in a stretched environment, whereas a system which
mainly relies on path integration will not. Hopefully, a
systematic study of these effects will allow us to make
neuro-ethological predictions concerning animals trained
in controlled environments [10].
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