
Abstract. Within a linear ®eld approach, an architec-
tural model for simple cell direction selectivity in the
visual cortex is proposed. The origin of direction
selectivity is related to recurrent intracortical interac-
tions with a spatially asymmetric character along the
axis of stimulus motion. No explicit asymmetric tempo-
ral mechanisms are introduced or adopted. The analyt-
ical investigation of network behavior, carried out under
the assumption of a linear superposition of geniculate
and intracortical contributions, shows that motion
sensitivity of the resulting receptive ®elds emerges as a
dynamic property of the cortical network without any
feed-forward direction selectivity bias. A detailed anal-
ysis of the e�ects of the architectural characteristics of
the cortical network on directionality and velocity-
response curves was conducted by systematically varying
the model's parameters.

1 Introduction

Recent theoretical and neurophysiological studies
(DeAngelis et al. 1993a,b; Hamilton et al. 1989; McLean
et al. 1994; Reid et al. 1991; Tolhurst and Dean 1991)
pointed out that the origin of direction selectivity can be
related to the linear space-time receptive ®eld structure
of simple cells. A large class of simple cells shows a very
speci®c space-time behavior in which the spatial phase of
the receptive ®eld changes gradually as a function of
time. This results in receptive ®eld pro®les that tilt along
an oblique axis in the space-time domain (i.e., they are
space-time inseparable). Accurate estimates of the
velocity components to which the cell is selective (the
preferred speed of motion) can be derived by measuring
the slope of oriented receptive ®eld subregions in the
space-time domain. Since lateral geniculate nucleus

(LGN) cells do not exhibit tilted subregions, the origin
of space-time inseparability must take place within the
striate cortex. In general, the construction of inseparable
simple-cell receptive ®elds implies a position-dependent
alteration of the temporal response characteristics of the
a�erent inputs, presumably associated with cortical
circuits characterized by asymmetric architectural
schemes in space and/or time (for a review, see Koch
and Hildreth 1987). Several models have been proposed.
Some postulate the combination of spatially o�set
geniculate receptive ®elds with di�erent temporal dy-
namics (Mastronarde 1987; Saul and Humphrey 1990;
Wimbauer et al. 1994, 1997). Others assume intracortical
interactions among separable simple-cell receptive ®elds,
possibly mediated by cortical interneurons (Ganz 1984;
Ru� et al. 1987; Sillito 1977; Somers et al. 1995). Most
models, however, do not consider explicit recurrent
asymmetric intracortical processes, and furthermore, a
clear distinction between the roles of purely spatial and
purely temporal mechanisms has not yet been made.

In this paper, we point out that a purely spatial
asymmetry is su�cient to generate directional selectivity
when spatially asymmetric contributions arise through
recurrent intracortical inhibitory circuits. Therefore, the
space-time orientation of the resulting receptive ®elds
emerges as a dynamic property of our cortical network,
thus leading to highly structured space-time receptive
®elds from space-time separable Gaussian subunits (i.e.,
LGN inputs). The model starts from a simple basic
arrangement of inhibitory interconnections character-
ized by a symmetrical spatial structure. By adding dif-
ferent degrees of asymmetry, di�erent types of direction
selectivities arise, like those observed in the visual
cortex.

2 The architectural model

2.1 Basic architecture

Following a linear neural ®eld approach (Amari 1977;
Wilson and Cowan 1972), we regard the visual cortex as
a continuous distribution of neurons and synapses.
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Accordingly, the geniculocortical pathway is modeled by
a multilayer network coupled through feedforward and
feedback connections, both inter- and intralayers (Mal-
lot and Giannakopoulos 1996). The network layers
represent spatially homogeneous population models
where each point in space [x=�x; y�] corresponds to an
`average neuron.' The spatial coupling of these popula-
tions is described continuously by space-invariant ker-
nels on the plane; the kernels represent the functional
spread of the synaptic in¯uence of a population on its
neighbors, as mediated by local axonal and dendritic
®elds.

An architectural diagram of the cortical network is
shown in Fig. 1. Two populations of cortical cells can be
distinguished: excitatory cells and inhibitory interneu-
rons. To each population corresponds a neural layer
that is activated by retinotopic LGN inputs. The dy-
namics of each layer is modeled as a ®rst-order low-pass
®lter -characterized by a speci®c time constant.

Recurrent processing depends upon the interactions
between the excitatory and inhibitory populations (P-S
system). If one assumes identical time constants and
identical LGN inputs to both populations, the resulting
excitation e�x; t� can be obtained as the solution of a
single-layer linear ®eld equation of lateral inhibition
type (Amari 1977):

s
de�x; t�

dt
�ÿ e�x; t� � b

Z
kd�xÿ n�m�n; t� dn

�
Z

kd�xÿ n�e0�n; t� dn �1�

with

m�x; t� �
Z

ka�xÿ n�e�n� dn �2�

where b is the interaction strength, ka�xÿ n� and
kd�xÿ n� are the spatial distributions of the pre- and
post-synaptic sites, respectively, modeled by Gaussian
connection density functions; m�n; t� is the distribution
of presynaptic activity where excitatory and inhibitory
contributions accumulate before being collected by the
recurrent loop or by further processing stages.

The LGN contribution
R

kd�xÿ n�e0�n; t� dn can be
modeled directly as a spatiotemporal convolution on
the visual input s�x; t� through a separable kernel,
h0�x; t� � f0�x�g0�t�, characterized in the spatial do-
main by a Gaussian shape with an extension r0 and,
in the temporal domain, by the biphasic impulse re-
sponse:

g0�t� �
A�t=a21 exp�ÿt=a1�
ÿLt=a22 exp�ÿt=a2�� for t � 0

0 for t < 0

8><>: �3�

where a1 = 8 ms, a2 = 16 ms, L � 0:9 (Maex and
Orban 1992) and A is a normalization factor. The
asymptotic behavior of the ®lter in (3) can be compared
with that of a ®rst-order low-pass ®lter with an
equivalent time integration constant s0 ' 20 ms. On
such a basis, the geniculate (i.e., feedforward) and the
intracortical (i.e., feedback) dynamics can be compared
directly through the time constants s0 and s.

2.2 Average intracortical connectivity

The spatial distribution of inhibitory and excitatory
in¯uences can be summarized in the feedback interac-
tion kernel de®ned as

kFB�xÿ n� �
Z

kd�xÿ n0�ka�n0 ÿ n� dn0 �4�

Though kFB may be positive and negative in sign,
depending on excitatory and inhibitory couplings, in the
following we shall principally consider negative kernels
representative of merely inhibitory schemes. Comments
on the role of additional recurrent excitation will be
made in Sect. 3.6.

In a previous work (Sabatini 1996) we showed how
the steady-state solutions of (1) and (2) can give rise to
highly structured Gabor-like receptive ®eld pro®les,
when inhibition arises from laterally distributed clusters
of cells. The inhibitory kernel kFB was modeled as the
sum of two Gaussian functions, symmetrically o�set
with respect to the target cell (see Fig. 2):

Fig. 1. a Schematic neural circuitry
of our architecture: P represents a
population of excitatory neurons (pu-
tative pyramidal or spiny stellate
cells), and S a population of inhibitory
interneurons (putative smooth or bas-
ket cells). Shaded region represents the
presynaptic recurrent activity m�x; t�
that is collected by the recurrent loop
or by higher layer cells. b Equivalent
block diagram representation: the P-S
system is reduced to a ®rst-order
recurrent loop with time constant s,
ignited by lateral geniculate nucleus
(LGN) contributions (e0). ka and kd
represent the spatial distributions of
the pre- and postsynaptic sites, respec-
tively, and b is the inhibition strength

a b
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kFB�x; y� � 1

2p
w1

r2
1

exp
h
ÿ ��xÿ d1�2 � y2�=2r2

1

i�
�w2

r2
2

exp
h
ÿ ��x� d2�2 � y2�=2r2

2

i�
�5�

This corresponds to a situation in which the self-
inhibition of each neuron of the network is small
compared with the mutual inhibition (i.e., reciprocal
inhibition between di�erent neurons of the network).

This work aimed to investigate how spatial asymme-
tries in the intracortical coupling function lead to non-
separable space-time interactions in the resulting
discharge ®eld of simple cells. To this end, we varied
systematically the geometrical parameters (r;w; d) of the
inhibitory kernel to consider three di�erent types of
inhibitory asymmetries: (1) di�erent spatial spread of
inhibition (i.e., r1 6� r2); (2) di�erent amount of inhibi-
tion (i.e., w1 6� w2); (3) di�erent spatial o�set (i.e.,
d1 6� d2). A more rigorous treatment should also con-
sider the continuous distortion of the topographic map
(Mallot et al. 1990). In our analysis, this would result in
a continuous deformation of the inhibitory kernel, but
for the small distances over which inhibition occurs, the
approximation of an uniform mapping is expected to
produce only a negligible error.

2.3 Parameter setting

Architectural parameters were derived from the mea-
sured values of receptive ®elds of simple cells (Albus
1975; De Angelis et al. 1993a, 1995; Jones and Palmer
1987). Concerning the spatial domain, we ®xed the size
(r0) of the initial receptive ®eld (due to LGN contribu-
tions) for an `average' cortical simple cell with a
resultant discharge ®eld of �5 deg; accordingly, we
adjusted the parameters of the inhibitory kernel in order
to account for spatial interactions only within the
receptive ®eld.

Considering the temporal domain, one should
distinguish the time constant s, characterizing the pop-
ulation temporal response of intracortical interactions
(P-S system), from the time constant s0 characterizing
the temporal response of `individual' cells (i.e., closest
to the temporal response of single cell membranes). In
all the simulations, we set s0 to 20 ms, and we varied s in
the range 2±200 ms.

3 Results

3.1 The emergence of spatiotemporal receptive ®elds

Due to the linearity assumption, the behavior of the
network can be thoroughly analyzed by means of linear
system theory. Accordingly, we can solve the system of
integro-di�erential equations (1), (2), and (4) in the
Fourier domain:

E�u;x� � H�u;x�S�u;x�
with

H�u;x� � H0�u;x�
1� jxsÿ bKFB�u� �

G0�x�F0�u�
1� jxsÿ bKFB�u� �6�

where u � �u; v� and x represent the spatial and
temporal frequency variables, respectively, and the
upper-case letters refer to Fourier transforms. The
transfer function H�u;x� represents the spectral re-
sponse pro®le of the resultant receptive ®eld h�x; t�,
interpreted as the spatiotemporal distribution of all the
e�ects of cortical interactions. To avoid system insta-
bility, it is necessary that the interaction strength b be
kept below a threshold value bth, thus preventing the
denominator in (6) from becoming null.

For the sake of simplicity, in the following, we restrict
the spatial analysis to a one-dimensional (1D) case, in
the direction orthogonal to the preferred orientation of
the receptive ®eld. This 1D model produces spatiotem-
poral results h�x; t� that are directly comparable with the
spatiotemporal plots usually obtained by reverse-corre-
lation studies (De Angelis et al. 1993a, 1995; McLean
and Palmer 1989).

The spatial and temporal components of the resulting
transfer function H�u;x� are closely coupled considering
that the spatial and temporal frequencies are no longer
factorizable. The nature of this coupling strongly de-
pends on the shape of the interaction kernel. Speci®cally,
asymmetrical pro®les of kFB�x� give rise to complex
forms of KFB�u� � RefKFB�u�g � jImfKFB�u�g in (6)
and hence to complex poles that result in spatiotemporal
oscillatory behaviors. The presence of such poles is the
determining factor of the generation mechanism of
motion sensitivity. To aid discussion of this point, it is
convenient to rewrite (6) as:

H�u;x� � A�u�B�u;x�H0�u;x� �7�
with

A�u� � 1

1ÿ bRefKFB�u�g the spatial term and

B�u;x� � 1

1� jseff�xÿ c�u�� the spatiotemporal term

where

seff � seff�u� � s
1ÿ bRefKFB�u�g �8�

is the e�ective time constant of the system resulting from
the recurrence loop (see Fig. 3b), and

Fig. 2. The basic (symmetric) inhibitory kernel kFB�xÿ n�. The cell in
the center receives inhibitory contributions from laterally distributed
clusters of cells. The kernel is fully characterized by the values of three
geometrical parameters (r;w; d) for each Gaussian function, associ-
ated with the spatial extent of the inhibitory couplings. The
asymmetric kernels used in the model derive from this basic kernel
by systematic variations of the geometrical parameters of one
Gaussian function with respect to those of the other one
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c�u� � bImfKFBg
s

�9�

is the value of the temporal frequency shift in the
amplitude amplitude spectrum (see Fig. 3c). The real
part of the recurrent kernel is primarily responsible for
the low-pass to band-pass transition in the spatial
domain, whereas the shift in the spectrum in the
spatiotemporal frequency domain depends exclusively
on its imaginary part. Speci®cally, considering the
spatial term of the resulting operator H�u;x�, we
observed that, for low values of the inhibition strength,
the spectrum of H�u;x� maintains a low-pass structure;
for higher values of b, two peaks start growing
approximately at u� � �1=�d1 � d2�, thus gaining a
band-pass ®lter character that corresponds in space to
an oscillatory receptive ®eld pro®le closely resembling a
Gabor function (Sabatini 1996). Concerning the e�ects
of the spatiotemporal term in (7), if the dependence of c
on the spatial frequency u is approximately linear
(c ' vu) (see Fig. 3c), at least in the range of frequencies
where most of the spectrum energy is concentrated, the
energy distribution along the spatial frequency u shifts
into the temporal frequency in x� � vu�, giving H a
sheared aspect corresponding to a speci®c direction
selectivity. The system extracts energy from two blobs
that lie along a diagonal through the origin; the spectral
energy along this diagonal corresponds to the motion in
a given direction and at the velocity v � ÿx�=u�. In Fig.
3a, we show a pictorial description of how the spatial
and spatiotemporal terms in (7) act on the initial

operator H0�u;x� and mold its energy distribution in
the resulting operator H�u;x�. It is worth noting that
the working principle of recurrent inhibition di�ers from
those of quadrature models (Adelson and Bergen 1985;
Watson and Ahumada 1985), which are based on the
summation of a pair of separable simple-cell receptive
®elds that are arranged in spatial and temporal quad-
rature. More speci®cally, the shearing of the energy
spectrum into two major blobs that lie along a diagonal
in the odd or the even quadrants derives from a
redistribution of the spectrum energies, rather than
implies a cancellation of parts of the spectrum, as occurs
in quadrature models. Further general comments on the
comparison of our approach to other models will be
presented in Sect. 4.2.

3.2 Structural asymmetries and direction tuning

To better understand the role of the asymmetries and to
discriminate among them, it is convenient to think of the
recurrent inhibitory kernel kFB as the sum of an even and
an odd component:

kFB�x� � keven�x� � kodd�x� �10�
where

keven�x� � kFB�x� � kFB�ÿx�
2

and kodd�x� � kFB�x� ÿ kFB�ÿx�
2

�11�

Fig. 3. a Schematic representation of the in¯uence of recurrent inhibition on the spatiotemporal receptive ®eld spectrum. The shearing of
amplitude spectrum into two major blobs that lie along a diagonal in the odd quadrants derives from a redistribution of the spectrum energies of
the LGN contribution H0. The corresponding pro®les of seff and c as a function of the spatial frequency are evidenced in b and c, respectively
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The odd component is responsible for the imaginary
part of KFB, whereas the even component is responsible
for the real part of KFB.

The relative energy of the odd component, as com-
pared with the total energy of the kernel, is indicative of
the in¯uence of the kernel's asymmetry on the slant of
the spatiotemporal amplitude spectrum. More speci®-
cally, we can de®ne a discriminative parameter:

D1� eeven ÿ eodd
eeven � eodd

� eeven ÿ eodd
etot

� 2
R1
0 kFB�x�kFB�ÿx�dxR1

0 �k2FB�x� � k2FB�ÿx��dx

�12�
that varies in the range from 0 (i.e., fully asymmetric
kernel) to 1 (i.e., symmetric kernel).

If we recall that the shift value c�u� is most e�ective
when high shift values are in the range of frequencies
where the spectrum energy peaks, we can evaluate the
e�ciency of translation by introducing a second dis-
criminative parameter, D2, related to the balance of the
right-hand and left-hand parts of the connection kernel:

D2 � e� ÿ eÿ
e� � eÿ

� e� ÿ eÿ
etot

� 4 j R10 keven�x�kodd�x�dx jR1
0 �k2FB�x� � k2FB�ÿx��dx

�13�
where e� and eÿ are the right-hand and left-hand
energies, respectively. D2 ranges from 0 (i.e., balanced
kernel) to 1 (i.e., fully unbalanced kernel) and is related
to the degree of similarity (i.e., correlation) between the
odd and even components of the coupling kernel. A high
degree of similarity implies that the the real and
imaginary parts of the energy spectrum of kFB will peak
in the same range of frequencies.

In order to analyze comparatively the tuning prop-
erties of the modeled cortical cells for di�erent values of
the parameters D1 and D2, we de®ne a direction index
(DI) as a quantitative measure of the directionally se-
lective response to drifting sine-wave gratings. The DI is
de®ned as the di�erence between the response ampli-
tudes in the preferred (P) and non-preferred (NP) di-
rections, normalized by P:

DI � PÿNP

P
�14�

Given the linearity of our model, DI can be straightfor-
wardly derived from the amplitude spectra of the
resulting receptive ®elds. P is evaluated as the peak
value of the spectrum and corresponds to the amplitude
response of a cell to a drifting sine-wave grating
characterized by the wave vector �u�;x��; NP corre-
sponds to the value of the amplitude spectrum in
�u�;ÿx��. By convention, DI is negative if the preferred
direction has a leftward component. A more sound
measure for direction selectivity that takes into account
the variability of the DI according to the velocity of the
stimulus is the mean direction index (MDI), de®ned as
the weighted average of the direction indices over a
signi®cant range of velocities, and the responses (Pi) in
the preferred direction are used as weighting factors
(Orban 1984):

MDI �
PN
i�1

PiDIi

PN
i�1

Pi

�15�

where DIi is the direction index at the ith velocity, and N
is the number of velocities for which the direction index
has been computed. The contour plot in Fig. 4 illustrates
the dependence of the MDI on the type and degree of
kernel asymmetries, as summarized by the parameters
D1 and D2. The remaining parameters of the model are
set to typical values (e.g., the inhibition strength is set to
75% of its speci®c threshold value); their in¯uence on
the MDI is discussed in the next section. The most
in¯uential parameter is D1: the highest values of the
MDI are obtained for low values of D1, whereas the
MDI is almost una�ected by the balance parameter D2.
These facts point to the importance of asymmetries for
the emergence of direction selectivity.

In general, the inhibitory kernel corresponding to a
speci®c couple of values �D1;D2� is characterized by a
particular mixture of asymmetries in all its geometrical
parameters �r; d;w�. To distinguish the di�erent role of
the three types of asymmetries, we superimpose the loci
corresponding to variations in single geometrical pa-
rameters (dashed lines in Fig. 4). In particular, we chose
four couples of �D1;D2� (indicated by asterisks in Fig. 4)
as representative of di�erent kinds of asymmetries.

Fig. 4. Contour plot of the mean direction index (MDI) on the
(D1;D2) plane, when the inhibition strengths b are set to 75% of their
threshold values, s0=20 ms, and s=10 ms. Each couple of values
�D1;D2� is related to a speci®c asymmetry of the inhibitory kernel,
obtained by choosing the architectural parameters �r; d;w� of one
Gaussian di�erent from those of the other. Asterisks indicate couples
of (D1;D2) representative of di�erent asymmetries. Bold dashed lines
represent the loci of points on the (D1;D2) plane corresponding to
variations in a single geometrical parameter of the inhibitory kernel:
The horizontal line coincident with the D1 axis corresponds to
variations in the spatial o�set (d1 6� d2); the small arc departing from
(1,0) corresponds to variations in the spatial spread (r1 6� r2); the long
arc from (1,0) to (0,1), which bounds the MDI surface, corresponds to
variations in the amount of inhibition (w1 6� w2)
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In Fig. 5, we show the four asymmetric intracortical
kernels considered, together with the corresponding re-
ceptive ®elds resulting from our model. As previously
reported (Sabatini et al. 1996), asymmetries in the spatial
o�set of the cortical inhibitory sites (e.g., ASY-28 and
ASY-45) are more e�ective in inducing a high direction
selectivity than other types of asymmetries (e.g., ASY -32
and ASY-53), as is evident from the resulting spectra
characterized by a marked motion-type nonseparability.
For a more intuitive understanding of how the model
cells respond to stimuli in motion, we carried out the
inverse Fourier transform of the spatiotemporal spectra.
This yields the spatiotemporal weighting functions or
spatiotemporal receptive ®elds shown in the right col-
umn of Fig. 5. The shape of the spatiotemporal receptive
®elds of direction-selective cells (e.g., ASY-28 and ASY-45)
is basically similar. They are elongated and oriented in
space-time at an orientation which corresponds to the
drift velocity of the test grating. Each ®eld is made up of
several subregions of alternating polarity, produced by
the modulation in space and time. The receptive ®eld of
a non-direction-selective cell (e.g., ASY-32 and ASY-53) is
quite di�erent from the others. It is not oriented in
space-time and has a preferred velocity proximal to 0
deg/s. Along the spatial axis, it has subregions of alter-
nating polarity, but along the temporal axis it does not.

3.3 Parametric variations and response diversity

Up to now, we have investigated the e�ects on direction
selectivity of di�erent choices of kernel parameters
(r,d,w) that correspond to speci®c patterns of intracor-
tical couplings, having set the other parameters of the
model to typical values. Although the speci®c shape of
the inhibitory kernel determines the qualitative behavior
of the system, we should evaluate the e�cacy of the
recurrent scheme on direction selectivity also in relation
to the values of the inhibitory strength and of the loop
dynamics. Accordingly, we varied the percentage of
inhibition strength b, as compared with its threshold
value bth, and the time constant of the recurrent loop s
related to the time constant of LGN contributions s0.
The spatiotemporal plots of the resulting receptive ®elds
h�x; t� are tabulated in Fig. 6. According to the
classi®cation proposed by Orban (1984), we distinguish
three classes of visual cortical cells: nondirectional
(MDI < 0:5), directional asymmetric (0:5 � MDI
< 0:66), and direction-selective (MDI � 0:66). Incre-
ments of b enhance the e�ects of inhibition and result in
larger MDIs. Moreover, we observe that for motion-
sensitive cells (e.g., ASY-28 and ASY-45), strong direction
selectivity can be obtained when the values of the s=s0
ratio are in the range 0.5±2.0 (e.g., s � 10±40 ms, and

Fig. 5. Typical receptive ®elds for
two nondirectional cells (ASY-32 and
ASY-53) and two direction-selective
cells (ASY-28 and ASY-45), obtained
from the corresponding inhibitory
coupling kernels depicted on the
left. The x-t plots in the right
column are obtained by numerical
Fourier transform of the amplitude
spectra. Solid lines indicate excitato-
ry subregions, whereas dashed lines
indicate inhibitory sub-regions. The
time constants used are s0 �
s � 20 ms. The inhibition strength
b is 75% of its threshold value bth
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s0 � 20 ms); with larger or lower values of the s=s0
ratio, such cells lose their direction selectivity. On the
contrary, nondirection-selective cells (e.g., ASY-32 and
ASY-53) achieve only a poor direction-asymmetric be-
havior for very low values of the s=s0 ratio. The
corresponding velocity response curves are tabulated in
Fig. 7. According to Orban's classi®cation, the di�erent
shadings of the boxes indicate di�erent degrees of
direction selectivity (darkest gray corresponds to non-
direction-selective cells). A strong direction selectivity
(MDI � 0:66) is usually associated with velocity-tuned
cells. Though other classes of cells are also present,
these are predominantly nondirection-selective or direc-
tional asymmetric (Orban 1984; WoÈ rgoÈ tter and Holt
1991). It is worth noting that increasing the s=s0 ratio
strengthens the velocity low-pass behavior, even when
the MDI values are still quite high. Moreover, by
decreasing the inhibition strength b, the velocity-
response curve broadens. The range of optimal veloc-
ities we can obtain spans from 0 deg/s up to more than
100 deg/s, depending on the time constants used and on
the size of the initial receptive ®eld. Increments of the

value of the time constants of the model lower the
optimal velocity, whereas the opposite occurs for
increments of the size of the initial receptive ®eld (cf.
WoÈ rgoÈ tter and Holt 1991).

To validate the values of the direction selectivity in-
dices we obtained with our model, let us brie¯y discuss
the in¯uence of the model's parameters on the activation
levels of our cells. Concerning orientation selectivity,
David Somers (Somers et al. 1995) reported that the
activity of his cells would go basically to zero when using
only inhibition to obtain realistic orientation tuning.
The large MDIs we observe for high values of inhibition
strength b are instead still associated with a signi®cant
degree of activation. This peculiarity of our model de-
rives from the particular spatial distribution of recurrent
inhibitory interactions. Indeed, the small percentage of
self-inhibition compared with the inhibition received by
neighboring cells (let us recall that the inhibitory cou-
pling kernel kFB peaks at a certain distance from its
center) prevents the activation level from being reduced
by the inhibition. On the contrary, high values of inhi-
bition strength (b > bth) will lead to unstable behavior,

Fig. 6. Spatiotemporal receptive
®elds resulting from systematic
variations of the percentage of
inhibition strength b, as compared
with its threshold value bth, and of
the time constant of the recurrent
loop (s) with respect to the genicu-
late time constant (s0), for the four
asymmetries considered. The MDI
as de®ned by (14) is shown for each
spatiotemporal plot. Note that by
convention the MDI is negative if
the preferred direction has a left-
ward component
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thus resulting in an increased amplitude level and in an
increased width of the receptive ®eld. The activation
level is de facto insensitive to variations of the inhibition
strength b, when it is kept below its threshold value
(b < bth).

The situation is di�erent for variations of cell dy-
namics. In this case, we observe decreasing amplitude
signals as the time constant of the recurrent loop s
increases with respect to that of the geniculate input s0.
The decrease of the activation value is associated with
the temporal low-pass characteristics of the neural layer
(a leaky integrator with time constant s). This behavior
can be understood intuitively by observing that for the
recurrent inhibition to be e�ective, su�cient time is
required for it to be fed back. For fast-changing ge-
niculate inputs (s=s0 � 1), the inhibition may not keep
up, and thus resulting activation patterns are signi®-
cantly attenuated. However, this does not represent a
true problem since real cortical cell dynamics cannot
vary over so broad a range of values, which has been
here considered only to characterize the behavioral
trends of the network. It is worth noting that in Fig. 6,
to best represent the spatiotemporal organization of the
resulting receptive ®eld pro®les for a s=s0 ratio that
varies over two orders of magnitude, we decided to
represent them by using, for each plot, the whole range
of gray levels.

3.4 Conjoint spatiotemporal system behavior

In Sect. 3.1, we observed the rising of complex poles due
to the imaginary component of the Fourier transform of
the recurrent interaction kernel KFB�u� in the denomi-
nator of the transfer function H�u;x�. The presence of
these poles turns out to be the determining factor in the
formation of the speci®c spatiotemporal coupling which
underlies motion sensitivity. As it appears from the
relationships obtained for seff�u� and c�u�, (8) and (9),
the system shows di�erent temporal behaviors when
excited by gratings with di�erent spatial frequencies. To
investigate quantitatively the nature of this spatiotem-
poral coupling and how it in¯uences the response
properties of the resulting receptive ®elds, we can write,
in the Laplace domain (s � t � jx), the temporal
response of the system for a set of N spatial frequencies
(i.e., complex phasors), uniformly distributed over the
range in which we are interested in characterizing the
system. By considering both positive and negative
spatial frequencies (i.e., pairs of conjugate phasors),
for each frequency �ui the system responds with a pair
of complex conjugate poles pi and p�i . Therefore, the
resulting ®lter can be expressed as a sum of (decoupled)
second-order systems, each of which determines the
temporal evolution of the related spatial frequency
component of the output:

Fig. 7. E�ects on the velocity-
response curves of the systematic
variations of the model's parame-
ters s and b, as in Fig. 6. Curves
represent the normalized cell re-
sponses to drifting gratings with
di�erent velocities, marked with a
logarithmic scale from 1 to 100
cycles/deg. For each curve, the
optimal velocity value is indicated.
By convention, rightward direc-
tion of motion corresponds to
positive velocities. Solid lines rep-
resent the responses in the pre-
ferred direction, while broken lines
represent the responses in the
nonpreferred directions. Di�erent
shadings of the boxes emphasize
di�erent types of direction selec-
tivity (lighter gray corresponds to
higher direction tuning)
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~H�s� � G0�s� �
XN

i�1
F0�ui� �sÿ zi�

�sÿ pi��sÿ p�i �
�16�

where

zi � ÿ2=seff�ui�

pi � ÿ1=seff�ui� ÿ jc�ui�; p�i � ÿ1=seff�ui� � jc�ui�
In order to compare the contribution of each term to the
sum, it is convenient to introduce the normalized system
response

~Hi�s� � 1�����
Ei
p �sÿ zi�
�sÿ pi��sÿ p�i �

�17�

where Ei is the energy of the second-order system at
spatial frequency ui. Therefore, (16) becomes:

~H�s� � G0�s� �
XN

i�1
ci ~Hi�s� �18�

where ci � F0�ui�
�����
Ei
p

.

The ci coe�cient weights the importance of the con-
tribution of the spatial eigenmode, ui, to the network
response. For spatial frequencies below the cut-o� fre-
quency of F0, the highest values of ci are associated with
the strongest temporal responses, which we call resonant
modes of the system or resonant peaks. The presence of
resonant peaks around a speci®c temporal frequency, in
correspondence with a restricted range of (pass band)
spatial frequencies, implies a speci®c tuning in the spa-
tiotemporal frequency domain. However, the e�cacy of
such a con®guration will depend also on the position of
the corresponding complex conjugate poles with respect
to the imaginary axis and the open loop poles associated
with the LGN contribution G0�s�. To this end, we con-
sider the closed loop contour pole diagrams representing
the positions in the s-plane of the complex poles pi and
p�i as a function of the spatial frequencies ui. In Fig. 8,
we show two typical contour pole diagrams for a non-
directional and a direction selective cell. For the sake of
clarity, only the parts of the diagrams corresponding to
positive spatial frequencies are reproduced, whereas the
specular parts, corresponding to negative spatial fre-
quencies, are represented by dotted lines. The shading
used to ®ll the squares codes for the value of ci associ-
ated with each pole: the darkest grays correspond to
resonant modes. The system is stable if and only if all of
the poles of the spatiotemporal transfer function lie in
the open left-hand side of the complex plane. The dy-
namic behavior of the system is mostly determined by
complex conjugate poles close to the imaginary axis
(dominant poles). Indeed, dynamic behaviors associated
with other poles farther from the imaginary axis are of
minor importance, and their contributions decay more
rapidly.

By examining the contour pole diagrams in Fig. 8,
we can infer some architectural design principles un-
derlying cortical cell motion sensitivity and interpret
the receptive ®elds reported in Sect. 3. For nondirec-

tional cells, the poles corresponding to resonant modes
span a broad range of temporal frequencies, thus in-
dicating that the system is not tuned to any speci®c
temporal mode but has di�erent temporal responses
depending on the spatial frequency component of the
input signal. Moreover, their e�ect is masked by the
open loop poles which are closer to the imaginary axis.
A di�erent pattern is obtained for direction-selective
cells: The contour diagram twists into a branched
structure, and complex poles concentrate within a re-
stricted area of the s-plane, proximal to the imaginary
axis. This yields dominant temporal modes character-
ized by a limited set of temporal frequencies. This be-
havior, for direction-selective cells, re¯ects the low-pass
to band-pass transition both in space and time caused
by the inhibitory feedback that gives the skewed aspect
to the amplitude spectrum that characterizes motion
sensitivity (cf. Fig. 3a).

Fig. 8. Contour pole diagrams of the closed loop complex poles pi of
the network as a function of positive spatial frequencies (a) for a non-
directional cell (ASY-32) and (b) for a direction-selective cell (ASY-45).
The importance of each pole with respect to the spatial response
modes of the system is coded by the gray level of the shading used to
®ll the squares (() (the darker the shading, the greater the importance
of the corresponding pole). The diagrams were obtained by uniform
spacing of the spatial frequency that was considered as a parameter
and varied from 0 to 3 cycles/deg. The curves are graduated by values
of the spatial frequency. The specular parts of the diagrams
corresponding to the variations of the conjugate poles p�i as a
function of negative spatial frequencies are represented as dotted lines.
Asterisks (�) represent the open loop double poles of the system
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3.5 Direct in¯uences of geniculate inputs

The contour pole diagrams (derived in the previous
section) represent intrinsic characteristics of the cortical
network by giving the response components associated
with the feedback loop only. In direction-selective cases,
although such components are usually dominant, their
amplitudes can be in¯uenced by the pattern of the ®xed
(i.e., invariant with spatial frequency ui) open loop poles
and zeros due to the LGN contributions. Hence,
di�erent choices of the LGN temporal responses may
produce di�erent behaviors of the overall system ~H�s�.
A complete investigation of the e�ects of di�erent LGN
inputs is beyond the scope of this work. However, an
interesting case study concerns the analysis of the ®nal
value response of the model simple cells in relation to
transient and sustained types of LGN inputs. The choice
of the parameters in (3) adopted so far (a1 = 8 ms,
a2 = 16 ms, L � 0:9) characterizes the time response of
a transient-type LGN cell. With a di�erent parameter
setting (a1 = 16 ms, a2 = 32 ms, L � 0:1), we obtain a
time response that approximates that of a sustained-type
LGN cell. In Fig. 9, we show the temporal behaviors of
the geniculate inputs together with the velocity-response
curves of the model simple cells driven by the corre-
sponding inputs, for di�erent asymmetries. The respons-
es for sustained-input cells (see Fig. 9b) show a shift of
the velocity-response curves to lower speeds, leading to
velocity low-pass behavior that is not observed (see Fig.
9a) for transient-input cells (cf. Orban 1984, Fig. 8/5).

3.6 E�ects of additional recurrent excitation

Up to now, we have analyzed the e�ects of purely
inhibitory intracortical interactions. However, local
cortical circuits include dense recurrent connections
among spiny stellate cells (Douglas et al. 1989, 1995;
Stratford et al. 1996). Such connections provide a
signi®cant source of recurrent excitation and have been
suggested to be very e�ective in generating cortical
direction selectivity (Suarez et al. 1995). Therefore, we
incorporated additional excitatory couplings (modeled
by an extra positive Gaussian function) into the
recurrent kernel kFB, and we varied systematically both
its displacement (d) related to the center and its weight
(w). The resulting shape of the interaction kernel
resembles a local connectivity scheme based on short-
range excitatory and longer-range inhibitory connec-
tions that have been extensively used in the neural
network literature (Amari 1977; Grossberg 1976; von
der Malsburg 1973; Xing and Gerstein 1996). The results
(not shown here) con®rmed the importance of recurrent
excitation for the re®ning of direction selectivity,
provided that excitation is spatially displaced from the
location of the target cell. Speci®cally, simple cells show
higher MDIs and are tuned to higher velocities when
excitation originates from the side where the inhibitory
couplings are the weakest (i.e., the faintest or the
farthest); on the contrary, simple cells lose direction
selectivity so much that they show a reversal in the
preferred direction when excitation arises from the
opposite side. Symmetrically centered excitation always
results in a considerable worsening of direction selectiv-
ity. The results agree with recent models of cortical

Fig. 9a,b. Direct in¯uences of the
LGN inputs on the velocity-response
curves of simple cells. On the right,
the velocity-response curves of sim-
ple cells obtained for di�erent types
of asymmetries, when driven by
transient (a) and sustained (b) LGN
inputs. The di�erent temporal char-
acteristics of LGN contributions in
time and Laplace domains �s �
v� jx� are shown on the left: open
loop poles are represented as
asterisks (�), and open loop zeros
are shown as solid circles (�). Tran-
sient-type LGN inputs facilitate the
formation of velocity-tuned simple
cells, whereas sustained-type LGN
inputs facilitate the formation of low-
pass velocity simple cells

1 The in¯uence of the closed loop zeros is ignored.
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direction selectivity based on massive recurrent excit-
atory interactions (Suarez et al. 1995), and they also
substantiate the importance of asymmetric interactions
for visual cortical direction tuning (cf. also von Seelen
et al. 1987).

4 Discussion

Our architectural model can be characterized as a linear
model of homogeneous layers with feedback. The
linearity assumption, together with the model's essenti-
ality, allows a detailed analysis of the basic mechanism
of directionality in the Fourier domain. The analysis has
shown that spatial asymmetries in the intracortical
interactions are su�cient to generate direction selectivity
without any additional feedforward direction selectivity
bias. By varying the model's parameters, we obtained
di�erent types of direction selectivities and velocity
responses that closely match experimental data.

4.1 Interpretation of the resultant receptive ®eld

When stimulated with an external signal s�x; t�, the
network reacts with a distribution of activity e�x; t� that
corresponds to the neural representation of the stimulus
(Mallot 1995). Speci®cally, the spatiotemporal point
image (i.e., impulse response) obtained by inverse
Fourier transform of the network transfer function (6)
represents the distribution of activation of the layered
network when externally stimulated by a Dirac function
d�x; t� in space and time (e.g., a small spot of light brie¯y
¯ashed on the retina). Since the model is linear and
space-invariant, the impulse response may be identi®ed
with the weighting function of the receptive ®eld of any
unit of the neural layer. One drawback of this approach
is that the population of model neurons is unrealistically
homogeneous. Thus, the model cannot represent the
individual behavior of single cortical cells, but rather
indicates basic general properties probably common to
all or most neurons within the averaging area. The
overall spatiotemporal ®ltering operation performed by
the continuous network can be compared with the
spatiotemporal ¯ow of excitation revealed by current
source density analysis (Luhmann et al. 1990a,b;
Nicholson 1973), local ®eld potentials (Eckhorn et al.
1993; Lohmann et al. 1988), or optical imaging (Arieli
et al. 1995; Grinvald et al. 1994).

We explored the information processing capabilities
of these spatiotemporal patterns of activity in relation to
the construction of spatiotemporal receptive ®elds in the
primary visual cortex. The positive and negative subre-
gions of the resultant average receptive ®eld correspond
to excitatory and inhibitory in¯uences on the cell's re-
sponse, respectively. To be consistent with the spatio-
temporal pro®les measured through responses to
complementary stimuli (e.g., bright and dark stimuli),
one assumes that inhibition elicited by a bright stimulus
is equivalent to excitation elicited by a dark stimulation,
and vice versa. Accordingly, the inhibitory subregions

could also be interpreted as dark subregions (i.e., regions
which are responsive to the onset of a dark stimulus).
This is a common measurement assumption (De Angelis
et al. 1993a, Jones and Palmer 1987) that yields linear
estimations of receptive ®eld pro®les that can be directly
compared with our results.

4.2 Comparison to other models

Various models have been proposed to describe the
origin of direction selectivity in the primary visual
cortex and, more generally, to seek to answer the
question of how cortical simple cells respond to motion
signals. This issue has been considered from two distinct
perspectives.

From a computational perspective, the problem of
motion detection can be rede®ned to the problem of
measuring local speci®c spatiotemporal correlation in
the input signal. Within a linear framework, this corre-
sponds to detecting, tilted edges in space-time dimen-
sions by spatiotemporally oriented linear ®lters (Adelson
and Bergen 1991). Hence, ®lters with appropriately
oriented impulse responses (or cells with appropriately
oriented receptive ®elds) will selectively respond to mo-
tion in particular directions. Pioneering work in this ®eld
has been conducted by Adelson and Bergen (1985) and
by Watson and Ahumada (1985) (see also Wilson 1985),
who also suggested simple feedforward neural mecha-
nisms to construct directionally tuned receptive ®elds, by
adding together the outputs of two separable ®lters in
quadrature both in spatial and temporal domains. Over
the years, these `quadrature models' have been improved
to account for more accurate aspects of simple cell re-
sponses to visual motion, by alternating linear ®ltering
operations with point nonlinearities such as recti®ca-
tions, squaring operations, threshold-like nonlinearities,
normalization stages, etc. (Carandini and Heeger 1994;
Emerson 1997; Emerson and Huang 1997; Heeger 1993,
Wilson 1985). All computational models, both linear
and linear-nonlinear, follow a neuromorphic ®lter design
approach that behaviorally characterizes simple cells at
the level of their receptive ®elds, but disregards ana-
tomical and electrophysiological facts on the basis of
their response properties.

On the contrary, from an architectural point of view,
one tends to emphasize the detailed circuitry and the
dynamics of cortical networks. Realistic biophysical
models of a part of the primary visual pathway, with
tens of thousands of integrate-and-®re neurons con-
nected in networks, have been recently proposed and
their function investigated through extensive computer
simulations (Maex and Orban 1996; Somers et al. 1995;
Suarez et al. 1995; Wehmeier et al. 1989; WoÈ rgoÈ tter and
Koch 1991). Orientation speci®city and direction selec-
tivity of simple cells have been revealed as emergent
properties of massive excitatory and inhibitory interac-
tions [cf. canonical cortical microcircuit (Douglas et al.
1989)]. Due to the computational complexity (high-di-
mension) of the system of coupled nonlinear partial
di�erential equations at stake, analytical predictions of
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the network's behavior have only rarely been attempted,
under heavy simplifying assumptions, and always re-
stricted to basic functioning mechanisms of cortical
microcircuits (Douglas et al. 1995; Maex and Orban
1992, 1996; Suarez et al. 1995).

The model we present in this paper is based on ar-
chitectural considerations, but adopting a linear mean
®eld description, it can be straighforwardly reduced to a
computational model that is directly comparable (see
Sect. 3.1) with those of Adelson and Bergen (1985) and
of Watson and Ahumada (1985). More speci®cally, we
changed from an architectural description of cortical
function, in which a simple cell's response was a com-
bination of geniculate and intracortical contributions, to
a behavioral description in which we relate the simple
cell response directly to the stimulus intensity, through
an equivalent feedforward linear operator. Therefore,
our model combines the simplicity of feedforward linear
®ltering approaches with a certain degree of structural
speci®city of cortical networks, by incorporating more
advanced architectural principles, such as lateral inter-
actions and recurrent (i.e., feedback) computation (cf.
Mallot and Giannakopoulos 1996; von Seelen et al.
1987).

As for quadrature models, additional nonlinearities in
cascade could, of course, improve the functionality of
our model, too, but a detailed analysis on this point is
beyond the scope of this paper.

4.3 Conclusions

The ®eld approach allows a concise mathematical
treatment of the basic architectural principles incorpo-
rated in the model. Though very simplistic, the model
represents a valid starting point for analyzing the
cortical network's function and grasping the basic
mechanism for direction selectivity, thus providing a
possible alternative to `spiking -models' (Maex and
Orban 1996; Suarez et al. 1995). A progressive (i.e.,
hierarchical) complication of the model, e.g., by collect-
ing the recurrent loop activity on higher layers, would
account for the observed variability in the spatiotempo-
ral responses of cortical simple cells, without compro-
mising the modus operandi of the basic architectural
core. Further improvements in the model should con-
sider a number of other phenomena that might contrib-
ute to direction selectivity, in particular, the e�ect of a
combination of lagged and nonlagged geniculate inputs
(Mastronarde 1987; Saul and Humphrey 1990; Wi-
mbauer et al. 1994, 1997), expansive nonlinearities
(Emerson 1997; Heeger 1993), and ON-OFF interac-
tions (Ferster 1988; Gaudiano 1994). We plan to
investigate these topics in future studies.
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