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Abstract. Long conduction delays in the nervous system
prevent the accurate control of movements by feedback
control alone. We present a new, biologically plausible
cerebellar model to study how fast arm movements can
be executed in spite of these delays. To provide a realistic
test-bed of the cerebellar neural model, we embed the
cerebellar network in a simulated biological motor
system comprising a spinal cord model and a six-muscle
two-dimensional arm model. We argue that if the
trajectory errors are detected at the spinal cord level,
memory traces in the cerebellum can solve the temporal
mismatch problem between efferent motor commands
and delayed error signals. Moreover, learning is made
stable by the inclusion of the cerebello-nucleo-olivary
loop in the model. It is shown that the cerebellar
network implements a nonlinear predictive regulator by
learning part of the inverse dynamics of the plant and
spinal circuit. After learning, fast accurate reaching
movements can be generated.

1 Introduction

What is the role of the cerebellum in the control of
reaching movements? Bastian et al. (1996b) demonstrat-
ed that the cerebellum compensates for interaction
torques that would otherwise push the arm off its
desired equilibrium path during fast-reaching move-
ments. While feedback control could, in principle,
compensate for interaction torques, it is limited by both
long delays in the nervous system and the dynamic
properties of muscles and proprioceptors. In the present
study, we show how the cerebellum can implement a
feedforward, nonlinear predictive regulator by learning
part of the inverse dynamics of the arm. After learning,
accurate fast movements can be performed in spite of the
long conduction delays.
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The cerebellar cortex is often viewed as an array of
perceptrons (Marr 1969; Albus 1971; Ito 1984). In this
theory, the granule cells (GCs) — Purkinje cell (PC)
synapses can be modified by climbing fiber (CF) inputs.
The input to the cerebellum is characterized by its di-
vergence from the mossy fibers (MF) to the GCs (we
refer the reader to Ito 1984 for all the non-referenced
data). The GCs are known to give, via their axons, the
parallel fibers, excitatory projections to the PCs and to
all the inhibitory interneurons (basket, stellate and Golgi
cells) of the cerebellar cortex. The Golgi cells (GOs) feed
back onto the GCs and have very powerful synapses
with longlasting effects. As PCs have inhibitory action
upon nuclear cells (collaterals of some MFs excite the
nuclear cells), they modulate the signal flow from the
nuclear cells. The PCs of the intermediate cerebellum
project to the interpositus nucleus (IP), which itself
projects to the motor cortex via the thalamus and to the
spinal cord via the red nucleus. Thus, the intermediate
cerebellum plays a major role in controlling ongoing
movements. The climbing fibers, which are the axons of
inferior olive cells (I0s), convey signals encoding error
in the performance of the system in which the cerebellar
subsystem 1is installed. CF signals induce long-term
depression (LTD) in those PF-PC synapses that were
activated in conjunction with the climbing fiber.

In the error feedback learning scheme of Miyamoto
et al. (1988), a feedback controller acts both to control
movement and to provide a teaching signal for the ac-
quisition of an internal inverse dynamics neural model;
the feedback error approximates the direction and
magnitude of the necessary modifications to the internal
neural model. During learning, the feedback torque is
slowly replaced by a feedforward torque from the in-
ternal model, and movements gradually become more
ballistic in nature. Schweighofer et al. (1998a) proposed
a model for the role of the intermediate cerebellum in the
control of voluntary movement based on feedback error
learning. The model embeds a neural network based on
known cerebellar circuitry to control a six-muscle two-
link planar arm. Simulation results showed that this
cerebellar model was able to learn to compensate for
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interaction forces, as indicated by an improved track-
ing performance of desired trajectories after learn-
ing. However, the system required a large number of
training repetitions and could only learn to control slow
movements. This relatively poor performance was due to
long delays in the afferent and efferent paths.

Indeed, if the feedback error is computed in long
cerebrospinal loops (as in Miyamoto et al. 1988 or
Schweighofer et al. 1998a), delays cause the controller to
produce a feedback error given (for the simple case of a
position feedback error) by:

1 = K[04(t) — 0(t — AT)] . (1)

Due to this temporal mismatch, the feedback error
would lead to the acquisition of an incorrect inverse
dynamics model. To solve this problem, we propose, in a
manner reminiscent to Contreras-Vidal et al. (1997),
that direct gamma drive to the spinal segments sets up
an expectation of the desired state in muscle spindles. Ia
afferents, which have been shown to excite IOs (Murphy
et al. 1973), act as error detectors. Thus, by detecting
errors at the low latency reflex feedback circuit, 04 and 6
become time aligned, and the training signal is now
accurate, albeit delayed:

1 = K[04(t — AT) — 0(t — AT)] . (2)

The delay is on the forward path and can be eliminated
provided that z, can be generated at time (r — AT) in a
feedforward manner using the inverse model. Note that
this scheme further eliminates the need to compute a
weighted difference between cortical desired variables
and the sensed state in the inferior olive, and solves the
problem of coordinate system transformation and
scaling. How can the inverse model be learned if the
movements are very fast, i.e. if the feedback errors are
severely delayed compared to the efferent commands?
We argue that synaptic eligibility permits the inverse
model to be learned despite the delayed (but accurate)
training signals. The synapses participating in a compu-
tation are said to be eligible when a second messenger is
released in the PC dendritic spine following parallel fiber
activation. The location of the “tagged” synapses solves
the spatial credit assignment problem and reproduces
the specificity of LTD; if a parallel-fiber-PC synapse
participates in synaptic transmission, it becomes eligible
to be weakened by LTD if a CF signal is received
somewhat later.

To provide a realistic test-bed of the cerebellar model,
we embedded the system in a simulated biological motor
system. The muscle-driven two-segment arm with spinal
reflex circuitry (described in the Appendix) constrains
the model in several ways: (1) the spinal delays limit the
gain of the spinal feedback control; (2) the redundant
muscles allow control of the stiffness of a joint, but add
control complexity; (3) circuitry in the spinal cord pro-
vides damping. Moreover, although the reflex feedback
loops give low-latency compensation to perturbations,
they make the arm highly nonlinear when viewed from
the higher level controllers. Our results show that the
embedded cerebellar model allows stable and robust

control of fast-reaching movements if it combines de-
tection of the trajectory errors at the spinal cord level
and memory traces in the cerebellum.

2 The model
2.1 General architecture

Muscles are often viewed as damped springs with
resting lengths determined as a function of the alpha
motor command (Ozkaya and Nordin 1991). The result
of this property is that a given vector of motor
commands to a set of antagonistic muscles defines a
point attractor for the limb in joint space. In the
equilibrium-point theory (Bizzi et al. 1984, 1992; Feld-
man 1986), movements are effected by moving this
equilibrium point from the starting point to the target
position. This model does not seem to be sufficient
because measured muscle stiffness values would lead to
unrealistic trajectories. McIntyre and Bizzi (1993) have
suggested that the spinal reflex path could serve as a
low latency position and velocity feedback servo, but
Schweighofer (1995) has shown that fast multi-joint
movements still require some feedforward compensa-
tion to account for interaction torques.

We propose here a new model that bridges the gap
between equilibrium-point control and inverse dynam-
ics learning. The model comprises an inverse kinematic
model controller (IKM), an inverse static model con-
troller (ISM), and an inverse dynamics model control-
ler (IDM). The IKM generates the required postural
commands used to control slow movements and to get
the system in the correct ball park by driving the
muscle spindles through the gamma system. Because
spindles are activated when a muscle is stretched longer
than its desired length, which is determined by the
gamma drive provided by the IKM, deviations from
the desired position activate the spinal servo to provide
an additional restoring force. As in the parallel hier-
archical control scheme proposed by Katayama and
Kawato (1991), the ISM learns the part of the inverse
dynamics that depends only on posture, and the IDM
provides the part of the inverse dynamics that depend
on derivatives of joint angles. The ISM provides the
alpha drive to set muscle tensions so that the limb has
an equilibrium point at the instantaneous position
specified by the trajectory generator. The IDM pro-
vides a second input to the alpha motoneurons that
compensates for trajectory deviations from the equi-
librium path.

In the present model, the IKM is simply computed
with standard forward kinematics equations. The ISM,
whose muscle output is a simple function of two vari-
ables, is a lookup table that is generated off-line. As
described in the following, the IDM is implemented as
a neural cerebellar model that learns on-line using a
biologically plausible mechanism. The spindle activity
is used to train the IDM cerebellar controller (see
Gomi and Kawato 1993 and Contreras-Vidal et al.
1997).



2.2 The cerebellar model

2.2.1 Cerebellar inputs

As reviewed in Schweighofer et al. (1998a,b), the
intermediate cerebellum receives via MFs extensive
inputs from cerebral cortices as well as feedback from
Ia muscle spindles. In the present model, inputs from
central origins contain representations of the descending
postural commands, as well as the desired joint position,
velocity and acceleration, and spindles inputs carry arm-
state information.

Following Georgopoulos et al. (1986), variables are
coded in the activity of a population of neurons with
each neuron tuned to a specific value and its output
defined as a cosine function of the difference between the
value of the variable and the neuron’s preferred value.
We model a total of 680 MFs; after preliminary simu-
lations, we found that if 340 conveyed desired kinematic
variables (position, velocity and acceleration for each
joint), 280 target and movement distance information
and 60 fibers are Ia afferents from the six muscles, good
performance could be obtained. These are not arbitrary
numbers, but chosen so that variables could be coded
using a large, but manageable arrays of neurons.

Alexander and Crutcher (1990, 1992) identified cells
in the supplementary motor areas that fire selectively for
different spatial targets while evidence has also been
found for a coding of movement distance (Riehle and
Requin 1989; Fu et al. 1993). Based on this evidence, the
desired arm position was represented using two 10 x 10
populations, receptive to the instantaneous desired arm
configuration (Fig. 1A), and eventual target arm con-
figuration (Fig. 1B). In both populations, each neuron is
tuned to a specific combination of shoulder and elbow
angles. In the model, the neurons are arranged so that
the arm configuration is coded as a bump of activity on a
grid with shoulder angle represented on the y-axis, and
elbow angle on the x-axis.

In the velocity group, three populations of neurons
are tuned to the current desired velocity (Fig. 1D), peak
shoulder velocity (Fig. 1F) and peak elbow velocity
(Fig. 1G), respectively. Since premotor neurons also
show sensitivity for the direction of movement (Kalaska
et al. 1989; Fortier et al. 1993; Fu et al. 1993), each
neuron on a 8 x 15 grid representing the current desired
velocity input is tuned to a specific point in a polar
representation of the signal, i.e. a neuron fires maximally
for a specific combination of direction and amplitude of
the signal that it is receptive to. Peak velocity signals
were coded on 3 x 30 grids using a simple population
code where each neuron is broadly tuned to a specific
value in the input range. To prevent discontinuity in the
inputs, the peak velocity signal is modulated to ramp up
before a movement begins and to fade as deceleration
begins. As shown in Fig. 1E, the desired joint accelera-
tion values are coded on a 8 x 15 array using the same
coding scheme as used for the desired velocity.

Although three of the model input signals, target lo-
cation and the two peak velocity signals, are not re-
quired for inverse dynamics computation, we found that
providing these signals improved performance. We note
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that, although the cerebellar learning model implements
part of an inverse dynamics model, it is not a parametric
model and acquires the function as an associative
memory. These redundant signals provide an additional
context facilitating the recall of specific function points.

Position and velocity errors are sensed by the static
and dynamic spindles. The output of each spindle (one
static and one dynamic for each muscle) is represented as
a 1 x 5array of fibers, with thresholds set so that a value
is coded by both the number and activity of active fibers.
Sample output is shown in Fig. 1C. Spindle responses
are modeled as linear functions of muscle length and
velocity respectively:

Tali, g = [K5(1(0) = 1:(39)]" (3)
Iaiiynamic = [Kd(l(a 0) - id(“/d))ﬁ (4)

where constants Ky and Ky were set to 120 and 30,
respectively, /(0) and (0, 0) are the length and stretch
velocity of the muscle as a function of the arm state;
I¢(p,) is the neutral length of the spindle, modulated by
the static gamma drive; /4(yq) is the neutral stretch
velocity of the dynamic spindle, modulated by the
dynamic gamma drive;

o ={}

2.2.2 Cerebellum model
The neural implementation of the IDM is shown
schematically in Fig. 2. We used the same cerebellar
module described in Spoelstra and Arbib (1997) for
learning visuomotor transformations when throwing
while wearing wedge prism glasses.

All cells are modeled as leaky integrators with mem-
brane potential defined by

ifx>0
ifx<O0

(5)

m
=" +x (6)
where x is the current synaptic input. With the exception
of 10s (for which we used the integrate-and-fire model
discussed in more detail in Sect. 2.3), the output of each
cell is a positive real number representing the instanta-
neous firing rate Y (m) and is derived from the membrane
potential as

1
1 4 exp[—s(m — 0)]

Y(m) = Ymax , (7)
with o and s parameters that determine the baseline
firing rate and linear range, respectively, of the cell. The
parameters used for the different cells in the model are
listed in Table 1.

Inputs arrive via MFs to the GCs whose axons bi-
furcate to form parallel fibers in the cerebellar cortex.
Each of 1200 (30 x 40) GCs receives excitatory input
(Wme = 0.5) from four randomly selected MFs (the set
) and an inhibitory input (wy, = —0.02) from the
GOs. The GCs make nonlinear combinations of the
inputs to serve as expansion encoders as originally
proposed by Albus (1971).
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Fig. 1A-H. Cerebellar inputs and outputs. Desired position: A In-
stantaneous desired joint angles; B current target joint angles are
coded on 10 x 10 matrices. Sensory feedback: C for each of the six
muscles, the output of the static- and dynamic spindle is coded in a
1 x 5 array. Desired velocity: D instantaneous desired velocity and
E acceleration are coded on 8 x 15 matrices using a polar (direction
and amplitude) tuning scheme as described in the text. Peak velocity:

F peak shoulder velocity and G peak elbow velocity are coded
on 3 x 30 matrices using simple amplitude tuning. Output represen-
tation: H nuclear cells code shoulder and elbow flexion and extension
synergies with groups of five adjacent cells, using the same convention
as for spindle output, i.e. output is equal to the sum of the activity
of the five cells



Desired- and target position (PP) Desired velocity and acceleration (PM)

Mossy fibers
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Fig. 2. The neural implementation

Spinal cord

Table 1. Simulation parameters for the different cerebellar neu-
rons. GC, granule cell; GO, golgi cell; PC, Purkinje cell; IP, in-
terpositus nucleus

GC GO PC 1P
Time constant (t) 0.02 0.05 0.02 0.02
Slope (s) 8 0.5 0.005 0.08
Offset (0) 0.5 15 750 =50
Maximum rate (¥Ypax) 100 50 200 100
dmyge
T = —Mg. — WeoGO + Z wmtMF; . (8)
d icl

The single GC receives input from all the GCs
(Wge = 0.00083) and inhibits the entire population in a
negative feedback loop.

dmg,
Tgo d—tg = —mgo + wecGC . 9)

This implementation is in line with the hypothesis that
the function of the Golgi-granule loop is to act as a
gain control, both maintaining the total energy in the
GC layer at a constant level and ensuring a sparse
encoding.

In the model, 100 (20 x 5) PCs each receive input
from a beam of GCs (the set #) comprising one
third of the GC population. The weights wys are
initialized with random numbers in the range [0:1].
Twenty stellate cells (one for each row of PCs) re-
ceive input (wpgs = 0.0075) from the same population
of GCs as the PCs in their row. Each provides a
fixed inhibitory connection to the PCs on its row
(wse = —0.04)

Muscle error (Spindles)

——» Muscles and limb 4*

of the inverse dynamic model (IDM)
with input and output connections.
Brain areas and distinct cell types
are implemented as either one-di-
mensional or two-dimensional layers
of neurons. PP Posterior parietal
cortex; PM premotor cortex; /0
inferior olive; IP interpositus; MX
motor cortex

dmy

Tsc ? = —Mgc —|— ;WPfSGCi , (10)
d
Tpe Zintpc = —mmpe + WseSC + Z wptGC; . (11)

i€c?

As described by Bullock et al. (1994), the inhibition
from the stellate cells effectively allows negative GC-PC
weights (which gives the PCs greater discriminatory
capabilities) while keeping the parallel fiber-Purkinje
weights positive as dictated by biology; as long as the
stellate cell operates in its linear region, the effective
weight from each GC is wpr + ws.. Because wy is
constant and negative, the total weight can be regulated
to as low as wy.. PCs also receive a single CF input from
the inferior olive. We ignore the real-time effect of this
input and use it exclusively for adapting PF-PC synaptic
efficacies as described later.

In order to control limb stiffness through coacti-
vation of agonist-antagonist muscle pairs, the de-
scending torque signal for each joint consists of two
parts: separate flexion and extension torque com-
mands. In the model, there are 20 NCs. Ten code a
shoulder torque, and ten code an elbow torque. For
each of the shoulder and elbow torques, five cells code
flexion synergy, while the other five cells code exten-
sion synergy. The same amplitude coding as was de-
scribed for the spindle output is used (sample output
is shown in Fig. 1H). The vector of 20 (4 x 5) IP cells
each receive inhibition (wpc = —0.4) from a corre-
sponding column of PCs.

dm] .
Tip d—lp = —mj, + ZWPCPC,-j : (12)
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The parameters of IP cells are chosen to ensure a high
spontaneous rate, so that PCs ““carve out” the IP firing
profile. NCs make inhibitory synapses with the same 10s
that give rise to the CFs innervating the PCs from which
the NC receives input, closing the loop. The torque-like
output of the cerebellar module then has to be converted
to commands in muscle space. We assume that this is
handled in the brainstem as described in Appendix B.

2.3 Learning

Mauk and Donegan (1997) showed that LTD of parallel
fiber-Purkinje synapses, together with the known recur-
rent projections between cerebellar NCs and 10s (Kim
et al. 1998), produce a stable input-following learning
system. Similarly, to allow stable, realistic learning, we
model the self-regulating cerebello-olivary loop that
allows learning to be stable for a large range of learning
parameters and avoids the need to resort to synaptic
normalization for stable learning.

Each IO cell receives excitatory spindle afferents and
a topographic inhibitory projection from an IP cell. In
turn, it projects to the column of PCs connected to that
IP cell where its effect is to modify wpr, the strength of
parallel fiber-Purkinje cell synapses. Activity of 10 cell is
computed as:

T dmyy _ —ml, — TP+ " wi, g Ia
o4 T io : Ta(S) " “static

(13)

The weights w}, 5) and w§a<D) are set to +1 for muscles
that contribute %o torques in the same direction as the
IDM microcomplex that the IO cell forms part of: —1
for antagonist muscles. This setup will train the system
to provide an additional torque if a muscle is stretched
more than expected, while at the same time penalizing
cocontraction. A feature of learning in biological
systems is that early in the process of adaptation a
strategy of high co-contraction (giving higher limb
stiffness and improving accuracy) is adopted, but with
practice the level of co-contraction is reduced (Ghez
1991). As shown in Fig. 3, this feature is reproduced by
the current cerebellar system; by subtracting the signals
produced by the spindles in the antagonist muscle, the
system will first try to relax an activated muscle before
increasing the activation of the antagonist, so that co-
contraction is minimized to produce effective reciprocal
muscle activations.

IO cells are known to fire at very low rates — spon-
taneous firing occurs at about 2 Hz, while the maximum
rate is a little over 10 Hz. This presents a challenge to
the model, since the entire movement lasts only on the
order of 600 ms, which would allow for a maximum of
six error-correcting inputs/movement. Because such a
biological limitation could not be ignored, we used an
integrate-and-fire 10 model; the output of 10 cells are
binary signals to indicate the presence or absence of an
action potential (similar to the I0 model developed in

i i
+ 5 Wla(D)Iadynamic :

110

105 |

100

Cocontraction
©
(3]

90
85
80 - . - . :
0 5 10 15 20 25 30
Trial

Fig. 3. The effect of learning on coactivation of antagonist muscle
pairs. The plot shows the sum of the coactivation of the three
antagonist muscle pairs, averaged over the 16 movements as a
function of learning trials. As in a biological system learning reduces
the level of coactivation

Schweighofer et al. 1998a,b), rather than the real-valued
rate output used for the other neurons. Formally,

if mio > Vinreshold

then mj, = mjo — Viebound; IO =1

else [O=0 ,

with 7, = 0.055; Vipreshold = —0.0001; and Viepound = 1.

The traditional view of cerebellar learning is that
Awpr o< —[GC][IO]. However, the Ia efferents (and
therefore the 10 error signals) are delayed, so when up-
dating weights, we have to change them proportional to
the GC activity some time earlier. We propose here that
the concept of synaptic eligibility (Sutton and Barto
1981; Klopf 1982) solves this temporal credit assignment
problem. The process of LTD has been shown to involve
second messengers whose concentration can tag synapses
eligible for modification (Houk et al. 1990). Schweigho-
fer et al. (1996) suggested that the second messenger
concentration might follow second-order dynamics to
peak at a specified instant after parallel fiber activity, and
that this could be used to solve the temporal credit as-
signment problem in saccade adaptation where the error
information is available only after the control action. We
used the same method and show that the cerebellum
learns to associate current control actions with prior
states and learns to act as a predictive feedforward con-
troller. A second-order differential equation effectively
keeps a memory trace of GC activity (e) in each synapse,
peaking approximately 100 ms after the event:

de1

e—— = — GC , 14

T a er + (14)
e

e—:— s 1

Ty e+e (15)

with 7, = 0.1.

The learning rule used for each PF-PC synapse can be
formalized as:

Aw(t) = —ae(t)[yio — f] » (16)
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Fig. 4. Simplified schematic of the cerebello-olivary loop. Nuclear
cells (NUC) receive inhibition from Purkinje cells (PC) and inhibit the
same inferior olive (/0) cells involved in the adaptation of said PCs. C,

I and D denote “context”, “input” and “desired” (training signals),

respectively. This setup adapts PC(C) until NUC(I) = D

with o = 0.0002 the learning rate, y;o the climbing fiber
input, f=2.0 the baseline 10 firing rate, and e(¢)
defined as above. From (16), it is clear that IO firing
above baseline will produce LTD, while firing below
baseline will produce LTP as originally proposed by
Fujita (1982).

Figure 4 shows a simplified schematic of the cere-
bello-olivary loop. Assuming simple linear models for
the neurons and a linear learning rule, we have

[PC] = Cw (17)
[NUC] = 1 — [PC] (18)
[10] = D — [NUC] (19)

with learning rule

Aw x —C[IO] (20)
Where [PC], [NUC] and [I1O] represent the firing rate of a
Purkinje, nuclear and inferior olive cell, respectively;
C represents a context provided by parallel fibers; w is
the synaptic efficacy of parallel-fiber—PC synapses; D is a
training signal activating the inferior olive.

Rewriting (20) gives
Awx —C(D -1+ Cw) . (21)
The system is stable (Kenyon et al. 1998) and w will
exponentially approach the equilibrium value of
(1 —D)/C, to give [NUC] = D. In terms of the cerebellar
system, this implies that training will drive the cerebellar
nuclear cells to predict (as described below) any
excitatory inferior olive afferent signals. Thus, in our
model, input from the spindles determine the IO firing
(13), which in turn determine the output of the IPs (16).
The net effect is that the cerebellar model IDM produces
a signal similar to the Ia spinal efferents (signaling
muscle errors) which opposes the error and causes
improved trajectories.

However, delays would cause this signal to be ap-
plied too late. Synaptic eligibility (described above)
solves this temporal credit assignment problem by
shifting the blame earlier in time so that the corrective
actions are associated with an earlier system state,
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Fig. 5. Simplified schematic of the control system. The trajectory
generator defines a minimum jerk kinematic trajectory, i.e. at each
time step, the desired position, velocity and acceleration are computed
for each joint so that the hand would move along a straight line
towards the target with bell-shaped velocity profile. The inverse static
model (ISM) provides alpha-muscle control input to define a static
equilibrium point for the limb at the current desired position. The
inverse kinematic model (IKM) generates static and dynamic gamma
drive for the spindles to detect length and velocity errors at the
muscles. The inverse dynamic model (IDM), implemented as a
cerebellar model, uses the sensed muscle tension produced by the
spinal reflex circuitry as teacher signal and learns to associate this with
the system state (provided by the trajectory generator and muscle
spindles as discussed in the text) to provide corrective control signals
in a feedforward manner

Spinal delays

Spindle efferents

allowing the IDM to provide adaptive, predictive
control, as shown by Barto et al. (1999). A further
effect of the synaptic eligibility trace is to smooth the
control signal over the temporal evolution of the
movement, favoring solutions that minimize motor
command changes.

One temporal problem remains: the cerebellar output
must be aligned with the error signal in the cerebello-
olivary loop. Thus, we incorporate a delay ATj (set to
100 ms) as shown in Fig. 5 between the NCs and the 10.
This delay matches approximately AT, + AT;. Such a
long-latency response has been shown to exist in cats by
Ruigrok and Voogd (1995). Simulation experiments (as
shown in Fig. 6B) suggest, however, that this delay need
not precisely match the spinal loop delay. Learning
performance varied by less than 10% for variations in
AT; of 0.02-0.16 s.

3 Results

Simulation results that show the effectiveness of the
system to learn accurate trajectory control for fast
movements are presented in Fig. 7. Movements are
made from a central position to eight radial targets at a
rate of 0.6 s/movement with loop delays AT} =
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Fig. 6A,B. Sensitivity to different
delays. The eligibility time constant
was kept constant while the system
delays were varied. The small
change in performance error indi-
cates the robustness of the system.

o e
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
A Loop delay (T1+T2) (s) B

somm ! c

Fig. 7TA-C. Tracking results. Movements are made from a central
position to eight radial targets. Each segment of the pattern is
completed in 0.6 s. A Tracking performance before learning, i.e. using
only postural control; B the best tracking performance using a
proportional-derivative (PD) controller shown for comparison; C
performance of the cerebellar model after learning

0 1 1 n 1 n 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Nucleo-olivary delay T3 (s)

A Effect of varying spinal delays
AT, + AT,. B Effect of varying the
nucleo-olivary delay AT

AT, =50 ms, and AT; =100 ms. The trajectory in
Fig. 7A is produced using only the IKM and spinal
reflex controllers by moving the equilibrium point along
the desired trajectory. Coriolis, centripetal and inertial
forces cause the limb to stray from the prescribed path.

For comparison, Fig. 7B show the best attempt using
a proportional derivative (PD) controller. In this case,
torques for each joint were generated using

T =K, (0q — 0) + Kp(04 — 0) , (22)

with 0q and 04 desired joint velocity and position,
respectively. Optimal gain values of K, =0.11 and
K, =0.01 were experimentally determined. These tor-
ques were not directly applied to the joints, but simply
used to replace the output of the cerebellar controller, so
this controller had to deal with the same delays and
nonlinearities of the spinal circuit. The delays in the
system limit the gains, with the result that a rather large
MSE remains.

The trajectory in Fig. 7C was produced by the full
system after 30 learning trials; the trajectories are almost
straight.

The results shown in Fig. 8A confirm that accurate
trajectories can be generated in a small number visits to
each target. The system also reduces the integral of jerk
while learning, as can be seen in Fig. 8B.

The sensitivity of the MSE to changes in the eligibility
profile is shown in Fig. 9. A value of 0.01 gives a profile
with a sharp peak near zero, effectively eliminating the
eligibility trace. It is clear that having a trace with a
delayed peak improves performance, with the best per-
formance for cases where the peak occurs at around
100 ms (which coincides with the value chosen for
ATy + AT).

'Best PD Controller (.6s)
Cerebellar controller -+ 1

i

Fig. 8A,B. Learning performance
for two movement speeds. The
performance of the best propor-
tional-derivative (PD) controller is
shown for reference. A Tracking
error (MSE in cm?) and B normal-

P |

4 ' ; . - 500
| Best PD Controller (.6s)
35t | .4s Movements —+— | 450
.6s Movements - 200
3 1
~ 4 & 30
g 20 1 $ 800 | w
= 2p § 250 f
& ¥ 200 |
g 151 RN ] 5
j ™ 150
1% e |
et ey ] 100 |
0.5 VIS VNNVIMIVIN 50
0 : 0
0 5 10 15 20 25 30 0 5
A Trial B

10 15 20 25 30 ized integral of jerk as a function of
Trial learning trials



14
12

08 r
06
04 |

MSE (cm”2)

02|

0.05 0.1 0.15 0.2 0.25
Eligibility time constant (s)

Fig. 9. Sensitivity of the eligibility profile. A value of 0.01 produces a
sharp peak at 0, corresponding to no eligibility trace and caused the
system to diverge. A value of 0.1 produces a trace that peaks around
100 ms

A key feature of the model is the ability to learn,
despite long delays, by temporal alignment of error
signals with the inputs at the time the outputs were
generated. The eligibility trace does not produce a pure
delay, but rather ‘smears’ the inputs over a time with
dynamics that have time constants close to the actual
delays in the control path. This has the advantage that
the match does not have to be perfect. The results shown
in Fig. 6A and B were obtained by varying the loop
delays while fixing the eligibility time constant. Al-
though the eligibility profile peaks at around 100 ms,
performance degrades only slightly for a large mismatch
in the actual delay.

Finally, to show that the cerebellar model does in
fact learn predictive feedforward control, we computed
the cross correlation between the training inputs
arriving at the inferior olive and the outputs generated
by the cerebellar model. As shown in Fig. 10, the
correlations peak at values of 0.05-0.1 s, indicating
that the cerebellar output leads the training signals by
that time.

4 Conclusion

In this paper, we have shown that a biologically inspired
cerebellar network was able to learn accurate trajectory
control in spite of long delays in the feedback error. We
further proposed a new model that bridges the gap
between equilibrium-point control and inverse dynamics
learning. We assumed that a postural module generates
the required postural commands to control slow
movements and to get the system in the correct ball
park. The trajectory deviations from the equilibrium
path are detected at the muscle spindle level and are used
to train an inverse dynamics model. The proposed
architecture uses synaptic eligibility to time-align de-
layed error signals (from the spindles) with earlier
system states in order to learn predictive feedforward
control. In Schweighofer et al. (1996), synaptic eligibility
was used for saccadic eye movements to learn a gain
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Fig. 10. Cross correlation between the output produced by the
cerebellar module and training signals arriving at the 10 taken over
one trail of 16 movements after learning. The peaks to the right of
zero indicate that the output of the cerebellar module leads that of the
training signal

adaptation from a delayed error. Here, we show that it is
also useful for on-line learning of arm control.

How could our model be mapped on the central
nervous system? Thach et al. (1982a,b, 1986) have
shown that the cerebellum is involved in the differential
control of alpha and gamma motoneurons. Moreover,
four lines of evidence suggests that the cerebellum plays
a role in controlling muscle spindles (Ito 1984): (1) sig-
nals of groups Ia, Ib and II muscle afferents reach the
cerebellar cortex; (2) cerebellectomy affects the dynamic
characteristics of the stretch reflex; (3) the stretch reflex
exhibits a high degree of adaptability, but cerebellar
patients are unable to adapt the long-latency reflex gain;
(4) cerebellar stimulation affects the stretch reflex. Thus,
we propose that the IKM is located in the cerebellum.
The IKM cerebellar controller generates the required
postural commands by driving the muscle spindles
through the gamma system to control slow movements
via the spinal reflex circuitry, thereby providing ap-
proximate control that facilitates the learning process.
Fortier et al. (1993) studied the responses of motor
cortical cells and cerebellar neurons during whole-arm
movements. Motor cortical neurons were found to be
more related to active maintenance of different arm
postures and cerebellar neurons were found to be more
related to phasic movements. Moreover, both popula-
tions exhibited shifts in activity during movements.
Bastian et al. (1996a) found that cerebellar subjects
performing fast-reaching movements often generate in-
appropriate muscle torques relative to the dynamic in-
teraction torques. The inability to produce muscle
torques that compensate for the dynamic interaction
torques appears to be an important cause of the deficits
shown by cerebellar subjects during reaching. From
these studies, we predict that the motor cortex is re-
sponsible for the generation of static torques (ISM) and
the cerebellum is responsible for the generation of dy-
namic torques (IDM). The ISM provides alpha drive to
set muscle tensions so that the limb has an equilibrium
point at the instantaneous position specified by the tra-
jectory generator. The IDM provides a second input to
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the alpha motoneurons that compensates for trajectory
deviations from the equilibrium path. We further pro-
pose that the cerebellar IDM controller is trained by the
errors between the specified muscle lengths (as specified
by the IKM) and actual muscle lengths (via the inferior
olive; Murphy et al. 1973).

Biological control of arm movements has attracted a
lot of attention from modelers in the last 20 years. Here,
we compare several previous models to the present one.

1. Cerebellar model articulation controller (CMAC)
(Albus 1975a,b; Miller et al. 1990): Our implementation
of a cerebellar model is far removed from a hash table
used in the CMAC, but population coding of inputs give
GCs local receptive fields in input space which encap-
sulates the principle of the CMAC architecture.

2. Adjustable pattern generator (APG) models
(Berthier et al. 1993; Fagg et al. 1997): We do not use
the positive feedback loops to build up nuclear activity,
thus do not require the bistable PCs to shut down the
activity. Instead, we learn a continuous, real-valued
output in the cerebellar cortex and assume that MF
activity, combined with a natural high baseline firing
rate will provide the NC activity. Moreover, the present
model includes arm dynamics.

3. Feedback-error learning (Miyamoto et al. 1988;
Kawato and Gomi 1992; Gomi and Kawato 1993): The
learning principle is similar, but we added explicit
treatment of delays. In contrast to Schweighofer et al.
(1998a) or the feedback error learning model (Miyamoto
et al. 1988), we did not use the long-loop feedback
controller as a means to drive learning. This solves the
problem of delays that cause the feedback system to
generate faulty training signals. Instead, we use the servo
mechanism of the spinal reflex circuitry as a key element
to allow kinematic control of slow movements for the
default controller, and the short loop spinal feedback
circuit to drive learning.

4. Virtual trajectory (Katayama and Kawato 1993):
In the present model, we do not explicitly change the
equilibrium trajectory by changing the desired kinematic
path. The model just adds feedforward assistive torque.

5. Inverse dynamics cerebellar learning models
(Schweighofer et al. 1998a,b): The current model
evolved from these models, but takes into account a
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Fig. A1. A The neural circuit used to implement a spinal segment
(redrawn from Chou and Hannaford, 1997). Descending commands
excite alpha- and gamma-motoneurons which drive the muscles and
spindles, respectively. Feedback from spindles excite the alpha-
motoneuron while inhibiting the antagonist muscle through Ia

number of desirable features: We added a postural
control system utilizing spinal reflexes; spindle afferents
are used as more plausible trajectory error detectors;
the cerebello-olivary loop is exploited for stable learn-
ing in a way that drives the cerebellum to provide
predictive torque compensation for accurate move-
ments; and we explicitly address the problem of long
delays.

6. VITE/FLETE (Contreras-Vidal et al. 1997): This
model is closest to the present one, in terms of the
basic principles of operation. In their model, cerebellar
learning modifies velocity commands from the VITE
system to produce feedforward signals to the FLETE
system in order to improve trajectories. They use
FLETE as the spinal controller, VITE to provide
feedforward motor commands and drive the gamma
system, and then also use spindle errors to drive 10.
However, their cerebellar network has a single PC per
muscle whose function it is to gate VITE velocity
commands from agonist and antagonist channels on an
IP cell. As in our model, the output of the IP cell is
added to the motor command, but they also use it to
modulate the spinal reflex circuit. Finally, in Contreras-
Vidal et al. (1997), no delays are taken into account
and the movements are unrealistically slow (several
seconds).

In summary, unlike previously published models, the
model developed in the present paper permits the con-
trol of realistically fast and accurate arm movements,
while retaining a high degree of biological plausibility.
For robotic applications, we have shown that the cere-
bellar architecture is suitable for fast, on-line learning of
a complex control function.

Appendix A. Arm model

With an eye on robotic implementation, the plant simulated was a
two-segment planar arm, actuated by six antagonistic McKibben
artificial muscles (Chou and Hannaford 1996) as shown in
Fig. AIB.

The muscle tension (as a function of motor command u) is
defined as:

T(u) = [Ke(Kpu = Pa)(I = o) + T]" (23)

Y

interneurons. Muscle tension is sensed by Golgi tendon organs and
provide feedback via Ib interneurons. B Schematic representation of
the muscle attachments on the two-link arm. Six muscles are arranged
in antagonist pairs. Two sets actuate single joints, while the third is a
set of bi-articulate muscles



Table A1. Muscle constants. With the view of possible robotic
implementation, these values were chosen to model McKibben
artificial muscle pneumatic actuators, as reported by Chou and
Hannaford (1996)

Muscle Description Iy a

1 Shoulder flexor 0.26 0.04

2 Shoulder extensor 0.26 0.04

3 Elbow flexor 0.275 0.025

4 Elbow extensor 0.275 0.025

5 Biarticulate flexor 0.237 0.028 and 0.035
6 Biarticulate extensor 0.237 0.028 and 0.035

Table A2. Muscle parameters. /j is the resting length of the muscle
with no motor command. The value is chosen to be the maximum
length such that, with a motor command of zero, the muscle would
have a non-zero tension for all arm postures. a is the offset of the
attachment point from the joint and determines the effective mo-
ment arm. The values were taken from Katayama and Kawato
(1993)

Constant Description Value
K, Spring constant 0.466
P, Activation threshold 0.062
K, Input scaling constant 5000

T, Offset -16.0

where K,,Kp, P, and T, constants as defined in Table Al, / the
length of the muscle as determined by the geometry of the limb and
Iy the passive resting length of the muscle (See Table A2).

In addition, la-pathway kinematic feedback was provided from
each muscle by static and dynamic spindle pairs; separate gamma
drive inputs set a “desired” length and velocity, the spindle output
is a clipped (positive only) function of the position or velocity error.
Simulated Golgi tendon organs provide force feedback to the Ib
interneurons. The output was modeled as a linear function of
muscle tension:

G=K,T , (24)

With T the muscle tension and constant K, set to 0.2 to ensure that
receiving Ib neurons do not saturate.

Appendix B. Spinal motor pattern generators

Realized torques are related to muscle tension as follows:
T =AT , (25)

with 7' the vector of six muscle tensions, = = [¢{7¢t{7¢]” the flexion

and extension torques and

asin(6) 0 0 0 assin(6)) 0
A= 0 azsin(f)g) 0 ) 0 0 ) aesin((?;)
0 0 azsin(0) 0 azsin(0.) 0

0 0 0 agsin(0) 0 agsin(0)
with 0, = 0, + /4.

T was computed from 7 using the Moore-Penrose inverse of 4:
T=4%1 . (26)

To simplify the angle dependencies of the moment, arms were ig-
nored so that A% could be calculated only once and held constant.
Direct application of this pseudo inverse could produce negative
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muscle tensions. To prevent this, we note that the muscles are
symmetrical around each joint and simply move negative values in
the constant A% to the opposing muscle and change the sign to give
the positive inverse 47 .

Making the simplifying assumption that muscle tension is
proportional to descending motor commands, motor synergies are
computed as:

uy, = KAt (27)

with K, = 0.04.

Appendix C. Spinal segment circuitry

A neural model of the spinal segment circuitry implemented the
motor servo, with the circuit shown in Fig. A1A duplicated for
each antagonist pair of muscles. We used a model that was im-
plemented in DSP hardware by Chou and Hannaford (1997) for
single joint posture control. As shown in Fig. A2A, the model in-
corporates alpha and gamma motoneurons, Renshaw cells, Ia and
Ib interneurons.

We modeled only one neuron of each type for each muscle. All
neurons are modeled as leaky integrators with a positive real-val-
ued output representing the instantaneous firing rate of the neuron.
The firing rate (f) is computed from the membrane potential (p)
using the standard sigmoid function:

1
—Foy—

S0 = o e alp = )
with F,x the maximum firing rate, o determining the slope and f§
the offset of the sigmoid. The membrane potential is governed by
the differential equation

dp

A | 29
=Pt (29)
with 7 the current synaptic input. Table A3 shows the parameter
values for each of the neuron types, while the connection weights
are listed in Table A4.

Updating of the network is parallel, i.e. for every time-step
the synaptic inputs for all neurons are computed, using current
external inputs and firing rates computed the previous time-step,
before membrane potentials and firing rates are updated. To

(28)

Table A3. Spinal circuit neuron parameters

Type Finax o B T
a-Motoneuron 1.0 10.0 0.5 0.02
y-Motoneuron 1.0 10.0 0.5 0.1
Ia interneuron 1.0 10.0 0.5 0.1
Ib interneuron 1.0 10.0 0.5 0.1
Renshaw cell 1.0 10.0 0.5 0.1

Table A4. Spinal circuit weights for network connections as shown
in Fig. A1A

Source Destination

o Ia Ib Rn
o 1.0
Ia -0.5 -0.5
Ib -0.5 -0.25
Rn -0.25 -0.25 -0.5
Spindle 0.5 0.25
Golgi tendon 1.4
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demonstrate, external input to an alpha-motoneuron at time ¢
will increase the firing rate of the neuron in the current simu-
lation time-step, but Renshaw cell activity will only be affected
at time f#;4; and the inhibitory effect on the alpha-motoneuron
will only be seen at #;,;.
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