
ar
X

iv
:c

s/
02

09
02

3v
1

 [c
s.

N
I]

 2
1

S
ep

 2
00

2
1

Practical Load Balancing for Content Requests
in Peer-to-Peer Networks

Mema Roussopoulos Mary Baker
Department of Computer Science

Stanford University
Stanford, California, 94305

{mema, mgbaker}@cs.stanford.edu
http://mosquitonet.stanford.edu/

Abstract—This paper studies the problem of load-
balancing the demand for content in a peer-to-peer
network across heterogeneous peer nodes that hold
replicas of the content. Previous decentralized load
balancing techniques in distributed systems base
their decisions on periodic updates containing infor-
mation about load or available capacity observed at
the serving entities. We show that these techniques
do not work well in the peer-to-peer context; either
they do not address peer node heterogeneity, or they
suffer from significant load oscillations. We propose a
new decentralized algorithm, Max-Cap, based on the
maximum inherent capacities of the replica nodes and
show that unlike previous algorithms, it is not tied to
the timeliness or frequency of updates. Yet, Max-Cap
can handle the heterogeneity of a peer-to-peer envi-
ronment without suffering from load oscillations.

I. Introduction

Peer-to-peer networks are becoming a popular ar-
chitecture for content distribution [Ora01]. The ba-
sic premise in such networks is that any one of a set
of “replica” nodes can provide the requested con-
tent, increasing the availability of interesting con-
tent without requiring the presence of any particular
serving node.

Many peer-to-peer networks push index en-
tries throughout the overlay peer network in re-
sponse to lookup queries for specific content [gnu],
[RFH+01], [RD01], [SMK+01], [ZKJ01]. These
index entries point to the locations of replica nodes
where the particular content can be served, and are
typically cached for a finite amount of time, after

which they are considered stale. Until now, how-
ever, there has been little focus on how an individual
peer node should choose among the returned index
entries to forward client requests.

One reason for considering this choice is load
balancing. Some replica nodes may have more ca-
pacity to answer queries for content than others,
and the system can serve content in a more timely
manner by directing queries to more capable replica
nodes.

In this paper we explore the problem of load-
balancing the demand for content in a peer-to-peer
network. This problem is challenging for several
reasons. First, in the peer-to-peer case there is
no centralized dispatcher that performs the load-
balancing of requests; each peer node individually
makes its own decision on how to allocate incoming
requests to replicas. Second, nodes do not typically
know the identities of all other peer nodes in the net-
work, and therefore they cannot coordinate this de-
cision with those other nodes. Finally, replica nodes
in peer-to-peer networks are not necessarily homo-
geneous. Some replica nodes may be very powerful
with great connectivity, whereas others may have
limited inherent capacity to handle content requests.

Previous load-balancing techniques in the litera-
ture base their decisions on periodic or continuous
updates containing information onload or avail-
able capacity. We refer to this information as load-
balancing information (LBI). These techniques have
not been designed with peer-to-peer networks in
mind and thus

http://arxiv.org/abs/cs/0209023v1
http://mosquitonet.stanford.edu/

• do not take into account the heterogeneity of
peer nodes (e.g., [GC00], [Mit97]), or

• use techniques such as migration or handoff of
tasks that cannot be used in a peer-to-peer en-
vironment (e.g., [LL96]), or

• suffer from significant load oscillations, or
“herd behavior” [Mit97], where peer nodes si-
multaneously forward an unpredictable num-
ber of requests to replicas with low reported
load or high reported available capacity, caus-
ing them to become overloaded. This herd
behavior defeats the attempt to provide load-
balancing.

Most of these techniques also depend on the time-
liness of LBI updates. The wide-area nature of peer-
to-peer networks and the variation in transfer delays
among peer nodes makes guaranteeing the timeli-
ness of updates difficult. Peer nodes will experi-
ence varying degrees of staleness in the LBI up-
dates they receive depending on their distance from
the source of updates. Moreover, maintaining the
timeliness of LBI updates is also costly, since all
updates must travel across the Internet to reach in-
terested peer nodes. The smaller the inter-update
period and the larger the overlay peer network, the
greater the network traffic overhead incurred by LBI
updates. Therefore, in a peer-to-peer environment,
an effective load-balancing algorithm should not be
critically dependent on the timeliness of updates.

In this paper we propose a practical load-
balancing algorithm, Max-Cap, that makes deci-
sions based on the inherent maximum capacities of
the replica nodes. We define maximum capacity as
the maximum number of content requests per time
unit that a replica claims it can handle. Alterna-
tive measures such as maximum (allowed) connec-
tions can be used. The maximum capacity is like
a contract by which the replica agrees to abide. If
the replica cannot sustain its advertised rate, then it
may choose to advertise a new maximum capacity.
Max-Cap is not critically tied to the timeliness or
frequency of LBI updates, and as a result, when ap-
plied in a peer-to-peer environment, outperforms al-
gorithms based on load or available capacity, whose
benefits are heavily dependent on the timeliness of
the updates.

We show that Max-Cap takes peer node hetero-
geneity into account unlike algorithms based on

load. While algorithms based on available capac-
ity take heterogeneity into account, we show that
they can suffer from load oscillations in a peer-to-
peer network in the presence of small fluctuations in
the workload even when the workload request rate
is well below the total maximum capacities of the
replicas. On the other hand, Max-Cap avoids over-
loading replicas in such cases and is more resilient
to very large fluctuations in workload. This is be-
cause a key advantage of Max-Cap is that it uses
information that is not affected by changes in the
workload.

Since it is most probable that each replica node
will run other applications besides the peer-to-peer
content distribution application, Max-Cap must also
be able to handle fluctuations in “extraneous load”
observed at the replicas. This is load caused by ex-
ternal factors such as other applications the users of
the replica node are running or network conditions
occurring at the replica node.

We modify Max-Cap to perform load-balancing
using the “honored maximum capacity” of each
replica. This is the maximum capacity minus the
extraneous load observed at the replica. Although
the honored maximum capacities may change fre-
quently, the changes are independent of fluctuations
in the content request workload. As a result, Max-
Cap continues to provide better load-balancing than
availability-based algorithms even when there are
large fluctuations in the extraneous load.

In a peer-to-peer environment the expectation is
that the set of participating nodes changes con-
stantly. Since replica arrivals to and departures from
the peer network can affect the information carried
in LBI updates, we also compare Max-Cap against
availability-based algorithms when the set of repli-
cas continuously changes. We show that Max-Cap
is less affected by changes in the replica set than the
availability-based algorithms.

We evaluate load-based and availability-based
algorithms and compare them with Max-Cap in
the context of CUP [RB02], a protocol that asyn-
chronously builds and maintains caches of index
entries in peer-to-peer networks through Controlled
Update Propagation. The index entries for a particu-
lar content contain IP addresses that point to replica
nodes serving the content. Load-balancing deci-
sions are made from amongst these cached indices

2

to determine to which of the replica nodes a request
for that content should be forwarded. CUP period-
ically propagates updates of desired index entries
down a conceptual tree (similar to an application-
level multicast tree) whose vertices are interested
peer nodes. We leverage CUP’s propagation mecha-
nism by piggybacking LBI such as load or available
capacity onto the updates CUP propagates.

The rest of this paper is organized as follows.
Section II briefly describes the CUP protocol and
how we use it to propagate the load-balancing in-
formation necessary to implement the various load-
balancing algorithms across replica nodes. Sec-
tion III introduces the algorithms compared. Sec-
tion IV presents experimental results showing that
in a peer-to-peer environment, Max-Cap outper-
forms the other algorithms with much less or no
overhead. Section V describes related work, and
Section VI concludes the paper.

II. CUP Protocol Design

In this section we briefly describe how we leverage
the CUP protocol to study the load-balancing prob-
lem in a peer-to-peer context. CUP is a protocol for
maintaining caches of index entries in peer-to-peer
networks throughControlledUpdatePropagation.

CUP supports both structured and unstructured
networks. In structured networks lookup queries
for particular content follow a well-defined path
from the querying node toward anauthority node,
which is guaranteed to know the location of the con-
tent within the network. In unstructured networks
lookup queries are flooded haphazardly throughout
the network until a node that knows the location
of the content is met. In this paper, we will de-
scribe how CUP works within structured networks
[RFH+01], [RD01], [SMK+01], [ZKJ01].

In CUP every node in the peer-to-peer network
maintains two logical channels per neighbor: a
query channel and an update channel. The query
channel is used to forward lookup queries for con-
tent of interest to the neighbor that is closest to the
authority node for that content. The update channel
is used to forward query responses asynchronously
to a neighbor. These query responses contain sets
of index entries that point to nodes holding the con-
tent in question. The update channel is also used to

update the index entries that are cached at the neigh-
bor.

Figure 1 shows a snapshot of CUP in progress in
a network of seven nodes. The four logical chan-
nels are shown between each pair of nodes. The
left half of each node shows the set of content items
for which the node is the authority. The right half
shows the set of content items for which the node
has cached index entries as a result of handling
lookup queries. For example, node A is the author-
ity node for contentK3 and nodes C,D,E,F, and G
have cached index entries for contentK3. The pro-
cess of querying and updating index entries for a
particular contentK forms a CUP tree whose root
is the authority node for contentK. The branches of
the tree are formed by the paths traveled by lookup
queries from other nodes in the network. For exam-
ple, in Figure 1, node A is the root of the CUP tree
for K3 and branch{F,D,C,A} has grown as a result
of a lookup query forK3 at node F.

It is the authority node A for contentK3 which is
guaranteed to know the location of all nodes, called
content replica nodes or simply replicas, that serve
contentK3. Replica nodes first send birth messages
to authority A to indicate they are serving content
K3. They may also send periodic refreshes or in-
validation messages to A to indicate they are still
serving or no longer serving the content. A then for-
wards on any birth, refresh or invalidation messages
it receives, which are propagated down the CUP tree
to all interested nodes in the network. For example,
in Figure 1 any update messages for index entries
associated with contentK3 that arrive at A from
replica nodes are forwarded down theK3 CUP tree
to C at level 1, D and E at level 2, and F and G at
level 3.

CUP has been extensively studied in [RB02].
While the specific update propagation protocol CUP
uses has been shown to provide benefits such as
greatly reducing the latency of lookup queries, the
specific CUP protocol semantics are not required for
the purposes of load-balancing. We simply lever-
age the update propagation mechanism of CUP to
push LBI such as replica load or capacity to inter-
ested peer nodes throughout the overlay network.
These peer nodes can then use this information
when choosing to which replica a client request
should be forwarded.

3

K1, K5
K3
 K4
 K2, K5

K6
 K1, K3, K5

K1, K3, K4
K5
 K7
 K1, K2, K3

K1, K2
 K3, K4, K5

C

K8, K9
 K3, K4

A

F

D

B

E

G

Fig. 1
CUP TREES

III. The Algorithms

We evaluate two different algorithms, Inv-Load and
Avail-Cap. Each is representative of a different class
of algorithms that have been proposed in the dis-
tributed systems literature. We study how these al-
gorithms perform when applied in a peer-to-peer
context and compare them with our proposed al-
gorithm, Max-Cap. These three algorithms depend
on different LBI being propagated, but their overall
goal is the same: to balance the demand for content
fairly across the set of replicas providing the con-
tent. In particular, the algorithm should avoid over-
loading some replicas while underloading others,
especially when the aggregate capacity of all repli-
cas is enough to handle the content request work-
load. Moreover, the algorithm should prevent indi-
vidual replicas from oscillating between being over-
loaded and underloaded.

Oscillation is undesirable for two reasons. First,
many applications limit the number of requests a
host can have outstanding. This means that when a
replica node is overloaded, it will drop any request it
receives. This forces the requesting client to resend
its request which has a negative impact on response
time. Even for applications that allow requests to
be queued while a replica node is overloaded the
queueing delay incurred will also increase the av-
erage response time. Second, in a peer-to-peer net-

work, the issue of fairness is sensitive. The owners
of replica nodes are likely not to want their nodes to
be overloaded while other nodes in the network are
underloaded. An algorithm that can fairly distribute
the request workload without causing replicas to os-
cillate between being overloaded and underloaded is
preferable.

We describe each of the algorithms we evaluate
in turn:

Allocation Proportional to Inverse Load (Inv-
Load). There are many load-balancing algorithms
that base the allocation decision on the load ob-
served at and reported by each of the serving enti-
ties (see Related Work Section V). The representa-
tive load-based algorithm we examine in this paper
is Inv-Load, based on the algorithm presented by
Genova et al. [GC00]. In this algorithm, each peer
node in the network chooses to forward a request to
a replica with probability inversely proportional to
the load reported by the replica. This means that the
replica with the smallest reported load (as of the last
report received) will receive the most requests from
the node. Load is defined as the number of request
arrivals at the replica per time unit. Other possible
load metrics include the number of request connec-
tions open at the replica at reporting time [AB00] or
the request queue length at the replica [Dah99].

The Inv-Load algorithm has been shown to per-
form as well as or better than other proposed algo-
rithms in a homogeneous environment and for this
reason we focus on this algorithm in this study. But,
as we show in Section??, Inv-Load does not handle
node heterogeneity well.

As we will see in Section IV-A, Inv-Load is not
designed to handle replica node heterogeneity.

Allocation Proportional to Available Capacity
(Avail-Cap). In this algorithm, each peer node
chooses to forward a request to a replica with proba-
bility proportional to the available capacity reported
by the replica. Available capacity is the maximum
request rate a replica can handle minus the load (ac-
tual request rate) experienced at the replica. This
algorithm is based on the algorithm proposed by
Zhu et al. [ZYZ+98] for load sharing in a clus-
ter of heterogeneous servers. Avail-Cap takes into
account heterogeneity because it distinguishes be-
tween nodes that experience the same load but have
different maximum capacities.

4

Intuitively, Avail-Cap seems like it should work;
it handles heterogeneity by sending more requests to
the replicas that are currently more capable. Repli-
cas that are overloaded report an available capacity
of zero and are excluded from the allocation deci-
sion until they once more report a positive available
capacity. Unfortunately, as we will show in Section
IV-B, this exclusion can cause Avail-Cap to suffer
from wild load oscillations.

Both Inv-Load and Avail-Cap implicitly assume
that the load or available capacity reported by a
replica remains roughly constant until the next re-
port. Since both these metrics are directly affected
by changes in the request workload, both algorithms
require that replicas periodically update their LBI.
(We assume replicas are not synchronized in when
they send reports.) Decreasing the period between
two consecutive LBI updates increases the timeli-
ness of the LBI at a cost of higher overhead (in num-
ber of updates pushed through the peer-to-peer net-
work). In large peer-to-peer networks, there may be
several levels in the CUP tree down which updates
will have to travel, and the time to do so could be on
the order of seconds.

Allocation Proportional to Maximum Capacity
(Max-Cap). This is the algorithm we propose. In
this algorithm, each peer node chooses to forward
a request to a replica with probability proportional
to the maximum capacity of the replica. The max-
imum capacity is a contract each replica advertises
indicating the number of requests the replica claims
to handle per time unit. Unlike load and available
capacity, the maximum capacity of a replica is not
affected by changes in the content request workload.
Therefore, Max-Cap does not depend on the timeli-
ness of the LBI updates. In fact, replicas only push
updates down the CUP tree when they choose to ad-
vertise a new maximum capacity. This choice de-
pends on extraneous factors that are unrelated to and
independent of the workload (see Section IV-D). If
replicas rarely choose to change contracts, Max-Cap
incurs near-zero overhead. We believe that this in-
dependence of the timeliness and frequency of up-
dates makes Max-Cap practical and elegant for use
in peer-to-peer networks.

IV. Experiments

In this section we describe experiments that mea-
sure the ability of the Inv-Load, Avail-Cap and
Max-Cap algorithms to balance requests for con-
tent fairly across the replicas holding the con-
tent. We simulate a content-addressable network
(CAN) [RFH+01] using the Stanford Narses sim-
ulator [MGB01]. A CAN is an example of a struc-
tured peer-to-peer network, defined in Section II. In
each of these experiments, requests for a specific
piece of content are posted at nodes throughout the
CAN network for 3000 seconds. Using the CUP
protocol described in Section II, a node that receives
a content request from a local client retrieves a set
of index entries pointing to replica nodes that serve
the content. The node applies a load-balancing al-
gorithm to choose one of the replica nodes. It then
points the local client making the content request at
the chosen replica.

The simulation input parameters include: the
number of nodes in the overlay peer-to-peer net-
work, the number of replica nodes holding the con-
tent of interest, the maximum capacities of the
replica nodes, the distribution of content request
inter-arrival times, a seed to feed the random num-
ber generators that drive the content request arrivals
and the allocation decisions of the individual nodes,
and the LBI update period, which is the amount of
time each replica waits before sending the next LBI
update for the Inv-Load and Avail-Cap algorithms.

We assign maximum capacities to replica nodes
by applying results from recent work that measures
the upload capabilities of nodes in Gnutella net-
works [SGG02]. This work has found that for the
Gnutella network measured, around 10% of nodes
are connected through dial-up modems, 60% are
connected through broadband connections such as
cable modem or DSL where the upload speed is
about ten times that of dial-up modems, and the
remaining 30% have high-end connections with
upload speed at least 100 times that of dial-up
modems. Therefore we assign maximum capacities
of 1, 10, and 100 requests per second to nodes with
probabilty of 0.1, 0.6, and 0.3, respectively.

In all the experiments we present in this paper,
the number of nodes in the network is 1024, each
individually deciding how to distribute its incoming

5

content requests across the replica nodes. We use
both Poisson and Pareto request inter-arrival distri-
butions, both of which have been found to hold in
peer-to-peer networks [Cao02], [Mar02].

We present five experiments. First we show that
Inv-Load cannot handle heterogeneity. We then
show that while Avail-Cap takes replica heterogene-
ity into account, it can suffer from significant load
oscillations caused by even small fluctuations in the
workload. We compare Max-Cap with Avail-Cap
for both Poisson and bursty Pareto arrivals. We also
compare the effect on the performances of Avail-
Cap and Max-Cap when replicas continuously enter
and leave the system. Finally, we study the effect on
Max-Cap when replicas cannot always honor their
advertised maximum capacities because of signifi-
cant extraneous load.

A. Inv-Load and Heterogeneity

In this experiment, we examine the performance of
Inv-Load in a heterogeneous peer-to-peer environ-
ment. We use a fairly short inter-update period of
one second, which is quite aggressive in a large
peer-to-peer network. We have ten replica nodes
that serve the content item of interest, and we gen-
erate request rates for that item according to a Pois-
son process with an arrival rate that is 80% of the
total maximum capacities of the replicas. Under
such a workload, a good load-balancing algorithm
should be able to avoid overloading some replicas
while underloading others. Figure 2 shows a scat-
terplot of how the utilization of each replica pro-
ceeds with time when using Inv-Load. We define
utilization as the request arrival rate observed by
the replica divided by the maximum capacity of the
replica. In this graph, we do not distinguish among
points of different replicas. We see that throughout
the simulation at any point in time, some replicas
are severely overutilized (over 250%) while others
are lightly underutilized (around 25%).

Figure 3 shows for each replica, the percentage
of all received requests that arrive while the replica
is overloaded. This measurement gives a true pic-
ture of how well a load-balancing algorithm works
for each replica. In Figure??b, the replicas that
receive almost 100% of their requests while over-
loaded (i.e., replicas 0-6) are the low and middle-
end replicas. The replicas that receive almost no

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

100% Utilization
Replica Utilization

Fig. 2
REPLICA UTILIZATION VERSUS TIME FOR INVLOAD

WITH HETEROGENEOUS REPLICAS.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 3
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR INV-LOAD WITH HETEROGENEOUS

REPLICAS.

requests while overloaded (i.e., replicas 7-9) are the
high-end replicas. We see that Inv-Load penalizes
the less capable replicas while giving the high-end
replicas an easy time.

Inv-Load is designed to perform well in a homo-
geneous environment. When applied in a heteroge-
neous environment such as a peer-to-peer network,
it fails. As we will see in the next section Max-
Cap is much better suited. Apart from showing that
Max-Cap has comparable load balancing capability
with no overhead in a homogeneous environment
(see Appendix), we do not consider Inv-Load in the
remaining experiments as our focus here is on het-
erogeneous environments.

6

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

100% Utilization
Replica Utilization

Fig. 4
REPLICA UTILIZATION VERSUS TIME FOR

AVAIL -CAP WITH HETEROGENEOUS REPLICAS.

B. Avail-Cap versus Max-Cap

In this set of experiments we examine the perfor-
mance of Avail-Cap and compare it with Max-Cap.

1) Poisson Request Arrivals: In Figures 4 and
5 we show the replica utilization versus time for an
experiment with ten replicas with a Poisson request
arrival rate of 80% the total maximum capacities of
the replicas. For Avail-Cap, we use an inter-update
period of one second. For Max-Cap, this parame-
ter is inapplicable since replica nodes do not send
updates unless they experience extraneous load (see
Section IV-D). We see that Avail-Cap consistently
overloads some replicas while underloading others.
In contrast, Max-Cap tends to cluster replica utiliza-
tion at around 80%. We ran this experiment with
a range of Poisson lambda rates and found similar
results for rates that were 60-100% the total maxi-
mum capacities of the replicas. Avail-Cap consis-
tently overloads some replicas while underloading
others whereas Max-Cap clusters replica utilization
at around X% utilization, where X is the overall re-
quest rate divided by the total maximum capacities
of the replicas.

It turns out that in Avail-Cap, unlike Inv-Load,
it is not the same replicas that are consistently
overloaded or underloaded throughout the experi-
ment. Instead, from one instant to the next, indi-
vidual replicas oscillate between being overloaded
and severely underloaded.

We can see a sampling of this oscillation by look-
ing at the utilizations of some individual replicas

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

100% Utilization
Replica Utilization

Fig. 5
REPLICA UTILIZATION V . TIME FOR MAX -CAP WITH

HETEROGENEOUS REPLICAS.

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 6
LOW-END REPLICA UTILIZATION VERSUS TIME FOR

AVAIL -CAP, POISSON ARRIVALS.

over time. In Figures 6-11, we plot the utilization
over a one minute period in the experiment for a rep-
resentative replica from each of the replica classes
(low, medium, and high maximum capacity). We
also plot the ratio of the overall request rate to the
total maximum capacities of the replicas and the
line y = 1 showing 100% utilization. We see that
for all replica classes, Avail-Cap suffers from sig-
nificant oscillation when compared with Max-Cap
which causes little or no oscillation. This behavior
occurs throughout the experiment.

Figures 12 and 13 show the percentage of re-
quests that arrive at each replica while the replica
is overloaded for Avail-Cap and Max-Cap respec-
tively. We see that Max-Cap achieves much lower

7

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 7
LOW-END REPLICA UTILIZATION VERSUS TIME FOR

MAX -CAP, POISSON ARRIVALS.

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 8
MEDIUM-END REPLICA UTILIZATION VERSUS TIME

FOR AVAIL -CAP, POISSON ARRIVALS.

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 9
MEDIUM-END REPLICA UTILIZATION VERSUS TIME

FOR MAX -CAP, POISSON ARRIVALS.

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 10
HIGH-END REPLICA UTILIZATION VERSUS TIME FOR

AVAIL -CAP, POISSON ARRIVALS.

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 11
HIGH-END REPLICA UTILIZATION VERSUS TIME FOR

MAX -CAP, POISSON ARRIVALS.

percentages than Avail-Cap.
We also see in Figure 13 that Max-Cap ex-

hibits a step-like behavior where the low-capacity
replica (replica 1) is overloaded for about 35% of
its queries, the middle-capacity replicas (replicas 0
and 2-6) are each overloaded for about 14% of their
queries, and the high-capacity replicas (replicas 7-9)
are each overloaded for about 0.1% of their queries.
To verify that this step effect is not a random coinci-
dence, we ran a series of experiments, with ten repli-
cas per experiment, and Poisson arrivals of 80%
the total maximum capacity, each time varying the
seed fed to the simulator. In Figure 14, we show
the overloaded percentages for ten of these exper-
iments. On the x-axis we order replicas according

8

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 12
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR AVAIL -CAP, WITH INTER-UPDATE

PERIOD OF1 SECOND.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 13
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR MAX -CAP.

to maximum capacity, with the low-capacity repli-
cas plotted first (replica IDs 1 through 10), followed
by the middle-capacity replicas (replica IDs 11-70),
followed by the high-capacity replicas (replica IDs
71-100). From the figure we see that the step behav-
ior consistently occurs. This step behavior occurs
because the lower-capacity replicas have less toler-
ance for noise in the random coin tosses the nodes
perform while assigning requests. They also have
less tolerance for small fluctuations in the request
rate. As a result, lower-capacity replicas are over-
loaded more easily than higher-capacity replicas.

Figure 12 shows that Avail-Cap with an inter-
update period of one second causes much higher

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 14
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR MAX -CAP FOR TEN EXPERIMENTS.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 15
PERCENTAGEOVERLOAD QUERIES VERSUSREPLICA

ID FOR AVAIL -CAP WITH INTER-UPDATE PERIOD OF

1 SECOND, FOR TEN EXPERIMENTS.

percentages than Max-Cap (more than twice as high
for the medium and high-end replicas). Avail-Cap
also causes fairly even overloaded percentages at
around 40%. Again, to verify this evenness, in Fig-
ure 15, we show for a series of ten experiments,
the percentage of requests that arrive at each replica
while the replica is overloaded. We see that Avail-
Cap consistently achieves roughly even percentages
(at around 40%) across all replica types in contrast
to the step effect observed by Max-Cap. This can be
explained by looking at the oscillations observed by
replicas in Figures 6-11. In Avail-Cap, each replica
is overloaded for roughly the same amount of time
regardless of whether it is a low, medium or high-

9

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 16
PERCENTAGEOVERLOAD QUERIES VERSUSREPLICA

ID FOR AVAIL -CAP WITH INTER-UPDATE PERIOD OF

10 SECONDS, FOR TEN EXPERIMENTS.

capacity replica. This means that while each replica
is getting the correct proportion of requests, it is re-
ceiving them at the wrong time and as a result all
the replicas experience roughly the same overloaded
percentages. In Max-Cap, we see that replicas with
lower maximum capacity are overloaded for more
time that higher-capacity replicas. Consequently,
higher-capacity replicas tend to have smaller over-
load percentages than lower-capacity replicas.

The performance of Avail-Cap is highly depen-
dent on the inter-update period used. We find that
as we increase the period and available capacity up-
dates grow more stale, the performance of Avail-
Cap suffers more. As an example, in Figure 16,
we show the overloaded query percentages in the
same series of ten experiments for Avail-Cap with a
period of ten seconds. The overloaded percentages
jump up to about 80% across the replicas.

In a peer-to-peer environment, we argue that
Max-Cap is a more practical choice than Avail-Cap.
First, Max-Cap typically incurs no overhead. Sec-
ond, Max-Cap can handle workload rates that are
below 100% the total maximum capacities and can
handle small fluctuations in the workload as are typ-
ical in Poisson arrivals.

A question remaining is how do Avail-Cap and
Max-Cap compare when workload rates fluctuate
beyond the total maximum capacities of the repli-
cas? Such a scenario can occur for example when
requests are bursty, as when inter-request arrival

times follow a Pareto distribution. We examine
Pareto arrivals next.

2) Pareto Request Arrivals: Recent work has
observed that in some peer-to-peer networks, re-
quest inter-arrivals exhibit burstiness on several
time scales [Mar02], making the Pareto distribution
a good candidate for modeling these inter-arrival
times.

The Pareto distribution has two parameters as-
sociated with it: the shape parameterα > 0 and
the scale parameterκ > 0. The cumulative dis-
tribution function of inter-arrival time durations is
F (x) = 1 − (κ

(x+κ))
α. This distribution is heavy-

tailed with unbounded variance whenα < 2. For
α > 1, the average number of query arrivals per
time unit is equal to(α−1)

κ
. Forα <= 1, the expec-

tation of an inter-arrival duration is unbounded and
therefore the average number of query arrivals per
time unit is 0.

Typically, Pareto request arrivals are character-
ized by frequent and intense bursts of requests fol-
lowed by idle periods of varying lengths. During the
bursts, the average request arrival rate can be many
times the total maximum capacities of the replicas.
We present a representative experiment in whichα

andκ are 1.1 and 0.000346 respectively. These par-
ticular settings cause bursts of up to 230% the to-
tal maximum capacities of the replicas. With such
intense bursts, no load-balancing algorithm can be
expected to keep replicas underloaded. Instead the
best an algorithm can do is to have the oscillation
observed by each replica’s utilization match the os-
cillation of the ratio of overall request rate to total
maximum capacities.

In Figures 17-22 we plot the same representative
replica utilizations over a one minute period in the
experiment. We also plot the ratio of the overall re-
quest rate to the total maximum capacities as well
as they = 100% utilization line. From the figures
we see that Avail-Cap suffers from much wilder os-
cillation than Max-Cap, causing much higher peaks
and lower valleys in replica utilization than Max-
Cap. Moreover, Max-Cap adjusts better to the fluc-
tuations in the request rate; the utilization curves for
Max-Cap tend to follow the ratio curve more closely
than those for Avail-Cap.

(Note that idle periods contribute to the drops in
utilization of replicas in this experiment. For exam-

10

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 17
LOW-CAPACITY REPLICA UTILIZATION VERSUS

TIME FOR AVAIL -CAP, PARETO ARRIVALS.

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 18
LOW-CAPACITY REPLICA UTILIZATION VERSUS

TIME FOR MAX -CAP, PARETO ARRIVALS.

ple, an idle period occurs between times 324 and
332 at which point we see a decrease in both the
ratio and the replica utilization.)

3) Why Avail-Cap Can Suffer: From the ex-
periments above we see that Avail-Cap can suffer
from severe oscillation even when the overall re-
quest rate is well below (e.g., 80%) the total max-
imum capacities of the replicas. The reason why
Avail-Cap does not balance load well here is that a
vicious cycle is created where the available capac-
ity update of one replica affects a subsequent up-
date of another replica. This in turn affects later
allocation decisions made by nodes which in turn
affects later replica updates. This description be-
comes more concrete if we consider what happens

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 19
MEDIUM-CAPACITY REPLICA UTILIZATION VERSUS

TIME FOR AVAIL -CAP, PARETO ARRIVALS.

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 20
MEDIUM-CAPACITY REPLICA UTILIZATION VERSUS

TIME FOR MAX -CAP, PARETO ARRIVALS.

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 21
HIGH-CAPACITY REPLICA UTILIZATION VERSUS

TIME FOR AVAIL -CAP, PARETO ARRIVALS.

11

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 22
HIGH-CAPACITY REPLICA UTILIZATION VERSUS

TIME FOR MAX -CAP, PARETO ARRIVALS.

when a replica is overloaded.
In Avail-Cap, if a replica becomes overloaded, it

reports an available capacity of zero. This report
eventually reaches all peer nodes, causing them to
stop redirecting requests to the replica. The exclu-
sion of the overloaded replica from the allocation
decision shifts the entire burden of the workload
to the other replicas. This can cause other repli-
cas to overload and report zero available capacity
while the excluded replica experiences a sharp de-
crease in its utilization. This sharp decrease causes
the replica to begin reporting positive available ca-
pacity which begins to attract requests again. Since
in the meantime other replicas have become over-
loaded and excluded from the allocation decision,
the replica receives a flock of requests which cause
it to become overloaded again. As we observed
in previous sections, a replica can experience wild
and periodic oscillation where its utilization contin-
uously rises above its maximum capacity and falls
sharply.

In Max-Cap, if a replica becomes overloaded, the
overload condition is confined to that replica. The
same is true in the case of underloaded replicas.
Since the overload/underload situations of the repli-
cas are not reported, they do not influence follow-up
LBI updates of other replicas. It is this key property
that allows Max-Cap to avoid herd behavior.

There are situations however where Avail-Cap
performs well without suffering from oscillation
(see Section IV-C). We next describe the factors

that affect the performance of Avail-Cap to get a
clearer picture of when the reactive nature of Avail-
Cap is beneficial (or at least not harmful) and when
it causes oscillation.

4) Factors Affecting Avail-Cap: There are four
factors that affect the performance of Avail-Cap: the
inter-update periodU , the inter-request periodR,
the amount of timeT it takes for all nodes in the
network to receive the latest update from a replica,
and the ratio of the overall request rate to the total
maximum capacities of the replicas. We examine
these factors by considering three cases:

Case 1: U is much smaller thanR (U << R),
andT is sufficiently small so that when a replica
pushes an update, all nodes in the CUP tree receive
the update before the next request arrival in the net-
work. In this case, Avail-Cap performs well since
all nodes have the latest load-balancing information
whenever they receive a request.

Case 2: U is long relative toR (U > R) and the
overall request rate is less than about 60% the to-
tal maximum capacities of the replicas. (This 60%
threshold is specific to the particular configuration
of replicas we use: 10% low, 60% medium, 30%
high. Other configurations have different threshold
percentages that are typically well below the total
maximum capacities of the replicas.) In this case,
when a particular replica overloads, the remaining
replicas are able to cover the proportion of requests
intended for the overloaded replica because there is
a lot of extra capacity in the system. As a result,
Avail-Cap avoids oscillations. We see experimental
evidence for this in Section IV-C. However, over-
provisioning to have enough extra capacity in the
system so that Avail-Cap can avoid oscillation in
this particular case seems a high price to pay for
load stability.

Case 3: U is long relative toR (U > R) and
the overall request rate is more than about 60% the
total maximum capacities of the replicas. In this
case, as we observe in the experiments above, Avail-
Cap can suffer from oscillation. This is because ev-
ery request that arrives directly affects the available
capacity of one of the replicas. Since the request
rate is greater than the update rate, an update be-
comes stale shortly after a replica has pushed it out.
However, the replica does not inform the nodes of
its changing available capacity until the end of its

12

current update period. By that point many requests
have arrived and have been allocated using the pre-
vious, stale available capacity information.

In Case 3, Avail-Cap can suffer even ifT = 0
and updates were to arrive at all nodes immediately
after being issued. This is because all nodes would
simultaneously exclude an overloaded replica from
the allocation decision until the next update is is-
sued. AsT increases, the staleness of the report
only exacerbates the performance of Avail-Cap.

In a large peer-to-peer network (more than 1000
nodes) we expect thatT will be on the order of
seconds since current peer-to-peer networks with
more than 1000 nodes have diameters ranging from
a handful to several hops [RF02]. We considerU

= 1 second to be as small (and aggressive) an inter-
update period as is practical in a peer-to-peer net-
work. In fact even one second may be too aggres-
sive due to the overhead it generates. This means
that when particular content experiences high popu-
larity, we expect that typicallyU+T >> R. Under
such circumstances Avail-Cap is not a good load-
balancing choice. For less popular content, where
U + T < R, Avail-Cap is a feasible choice, al-
though it is unclear whether load-balancing across
the replicas is as urgent here, since the request rate
is low.

The performance of Max-Cap is independent of
the values ofU , R, andT . More importantly, Max-
Cap does not require continuous updates; replicas
issue updates only if they choose to re-issue new
contracts to report changes in their maximum ca-
pacities. (See Section IV-D). Therefore, we believe
that Max-Cap is a more practical choice in a peer-
to-peer context than Avail-Cap.

C. Dynamic Replica Set

A key characteristic of peer-to-peer networks is that
they are subject to constant change; peer nodes con-
tinuously enter and leave the system. In this exper-
iment we compare Max-Cap with Avail-Cap when
replicas enter and leave the system. We present re-
sults here for a Poisson request arrival rate that is
80% the total maximum capacities of the replicas.

We present two dynamic experiments. In both ex-
periments, the network starts with ten replicas and
after a period of 600 seconds, movement into and

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 23
REPLICA UTILIZATION VERSUS TIME FOR

AVAIL -CAP WITH A DYNAMIC REPLICA SET. ONE

REPLICA ENTERS AND LEAVES EVERY60 SECONDS.

out of the network begins. In the first experiment,
one replica leaves and one replica enters the net-
work every 60 seconds. In the second and much
more dynamic experiment, five replicas leave and
five replicas enter the network every 60 time units.
The replicas that leave are randomly chosen. The
replicas that enter the network enter with maximum
capacities of 1, 10, and 100 with probability of 0.10,
0.60, and 0.30 respectively as in the initial alloca-
tion. This means that the total maximum capacities
of the active replicas in the network varies through-
out the experiment, depending on the capacities of
the entering replicas.

Figures 23 and 24 show for the first dynamic ex-
periment the utilization of active replicas through-
out time as observed for Avail-Cap and Max-Cap.
Note that points with zero utilization indicate newly
entering replicas. The jagged line plots the ratio of
the current sum of maximum capacities in the net-
work, Scurr, to the original sum of maximum ca-
pacities,Sorig. With each change in the replica set,
the replica utilizations for both Avail-Cap and Max-
Cap change. Replica utilizations rise whenScurr

falls and vice versa.
From the figure we see that between times 1000

and 1820,Scurr is between 1.75 and 2 timesSorig,
and is more than double the overall workload rate of
0.8 ∗ Sorig. During this time period, Avail-Cap per-
forms quite well because the workload rate is not
very demanding and there is plenty of extra capac-

13

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 24
REPLICA UTILIZATION VERSUS TIME FOR MAX -CAP

WITH A DYNAMIC REPLICA SET. ONE REPLICA

ENTERS AND LEAVES EVERY60 SECONDS.

ity in the system (Case 2 above). However, when at
time 1940Scurr falls back toSorig, we see that both
algorithms exhibit the same behavior as they do at
the start, between times 0 and 600. Max-Cap read-
justs nicely and clusters replica utilization at around
80%, while Avail-Cap starts to suffer again.

Figures 25 and 26 show for the first dynamic
experiment the percentage of queries that were re-
ceived by each replica while the replica was over-
loaded for Avail-Cap and Max-Cap. Replicas that
entered and departed the network throughout the
simulation were chosen from a pool of 50 replicas.
Those replicas in the pool which did not participate
in this experiment do not have a bar associated with
their ID in the figure. From the figure, we see that
Max-Cap achieves smaller overload query percent-
ages across all replica IDs.

Figures 27 and 28 show the utilization scatterplot
and Figures 29 and 30 show the overloaded query
percentage for the second dynamic experiment. We
see that changing half the replicas every 60 seconds
can dramatically affectScurr. For example, when
Scurr drops to0.2Sorig at time 2161, we see the uti-
lizations rise dramatically for both Avail-Cap and
Max-Cap. This is because during this period the
workload rate is four times that ofScurr. However
by time 2401,Scurr has risen to1.2Sorig which al-
lows for both Avail-Cap and Max-Cap to adjust and
decrease the replica utilization. At the next replica
set change at time 2461,Scurr equalsSorig. Dur-

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 25
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR AVAIL -CAP WITH A DYNAMIC

REPLICA SET. ONE REPLICA ENTERS AND LEAVES

EVERY 60 SECONDS.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 26
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR MAX -CAP WITH A DYNAMIC

REPLICA SET. ONE REPLICA ENTERS AND LEAVES

EVERY 60 SECONDS.

ing the next minute we see that Max-Cap overloads
very few replicas whereas Avail-Cap does not re-
cuperate as well. Similarly, when examining the
overloaded query percentage we see that Max-Cap
achieves smaller percentages when compared with
Avail-Cap.

The two dynamic experiments we have described
above show two things; first, when the workload
is not very demanding and there is unused capac-
ity, the behaviors of Avail-Cap and Max-Cap are
similar However, Avail-Cap suffers more as over-

14

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 27
REPLICA UTILIZATION VERSUS TIME FOR

AVAIL -CAP WITH A DYNAMIC REPLICA SET. HALF

THE REPLICAS ENTER AND LEAVE EVERY60
SECONDS.

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 28
REPLICA UTILIZATION VERSUS TIME FOR MAX -CAP

WITH A DYNAMIC REPLICA SET. HALF THE REPLICAS

ENTER AND LEAVE EVERY 60 SECONDS.

all available capacity decreases. Second, Avail-Cap
is affected more by short-lived fluctuations (in par-
ticular, decreases) in total maximum capacity than
Max-Cap. This is because the reactive nature of
Avail-Cap causes it to adapt abruptly to changes in
capacities, even when these changes are short-lived.

D. Extraneous Load

When replicas can honor their maximum capacities,
Max-Cap avoids the oscillation that Avail-Cap can
suffer, and does so with no update overhead. Oc-
casionally, some replicas may not be able to honor

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 29
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR AVAIL -CAP WITH A DYNAMIC

REPLICA SET. HALF THE REPLICAS ENTER AND

LEAVE EVERY 60 SECONDS.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 30
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR MAX -CAP WITH A DYNAMIC

REPLICA SET. HALF THE REPLICAS ENTER AND

LEAVE EVERY 60 SECONDS.

their maximum capacities because ofextraneous
load caused by other applications running on the
replicas or network conditions unrelated to the con-
tent request workload.

To deal with the possibility of extraneous load,
we modify the Max-Cap algorithm slightly to work
with honored maximum capacities. A replica’s hon-
ored maximum capacity is its maximum capacity
minus the extraneous load it is experiencing. The
algorithm changes slightly; a peer node chooses a
replica to which to forward a content request with

15

probability proportional to the honored maximum
capacity advertised by the replica. This means
that replicas may choose to send updates to indi-
cate changes in their honored maximum capacities.
However, as we will show, the behavior of Max-Cap
is not tied to the timeliness of updates in the way
Avail-Cap is.

We view the honored maximum capacity reported
by a replica as a contract. If the replica cannot ad-
here to the contract or has extra capacity to give,
but does not report the deficit or surplus, then that
replica alone will be affected and may be overloaded
or underloaded since it will be receiving a request
share that is proportional to its previous advertised
honored maximum capacity.

If, on the other hand, a replica chooses to issue
a new contract with the new honored maximum ca-
pacity, then this new update can affect the load bal-
ancing decisions of the nodes in the peer network
and the workload could shift to the other replicas.
This shift in workload is quite different from that ex-
perienced by Avail-Cap when a replica reports over-
load and is excluded. The contracts of any other
replica will not be affected by this workload shift.
Instead, the contract is are solely affected by the
extraneous load that replica experiences which is
independent of the extraneous load experienced by
the replica issuing the new contract. This is unlike
Avail-Cap where the available capacity reported by
one replica directly affects the available capacities
of the others.

In this section we study the performance of Max-
Cap in an experiment where all replica nodes are
continuously issuing new contracts. Specifically,
for each of ten replicas, we inject extraneous load
into the replica once a second. The extraneous load
injected is randomly chosen to be anywhere be-
tween 0% and 50% of the replica’s original maxi-
mum capacity. Figures 31 and 32 show the replica
utilization versus time and the overloaded query
percentages for Max-Cap with an inter-update pe-
riod of 1 second. The jagged line in Figure 31 shows
the total honored maximum capacities over time.
Since throughout the experiment each replica’s hon-
ored maximum capacity varies between 50% and
100% its original maximum capacity, the total max-
imum capacity is expected to hover at around 75%
the original total maximum capacity and we see that

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 31
REPLICATION UTILIZATION VERSUS TIME FOR

MAX -CAP WITH EXTRANEOUS LOAD AND AN

INTER-UPDATE PERIOD OF ONE SECOND.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 32
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID, M AX -CAP WITH EXTRANEOUS LOAD

AND AN INTER-UPDATE PERIOD OF ONE SECOND.

the jagged line hovers around this value. We there-
fore generate Poisson request arrivals with an aver-
age rate that is 80% of this value to keep consistent
with our running example of 80% workload rates.

From the figures, we see that Max-Cap continues
to cluster replica utilization at around 80%, but there
are more overloaded replicas throughout time than
when compared with the experiment in which all
replicas adhere to their contracts all the time (Fig-
ure 5). We also see that the overloaded percentages
are higher than before (Figure 13). The reason for
this performance degradation is that the randomly
injected load (of 0% to 50%) can cause sharp rises

16

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 33
REPLICATION UTILIZATION VERSUS TIME FOR

MAX -CAP WITH EXTRANEOUS LOAD AND AN

INTER-UPDATE PERIOD OF TEN SECONDS.

and falls in the reported contract of each replica
from one second to the next. Since the change is so
rapid, and updates take on the order of seconds to
reach all allocating nodes, allocation decisions are
continuously being made using stale information.

In the next experiment we use the same param-
eters as above but we change the update period to
10 seconds. Figures 33 and 34 show the utilization
and overloaded percentages for this experiment. We
see that the overloaded percentages increase only
slightly while the overhead of pushing the updates
decreases by a factor of ten. In contrast, when we
perform the same experiment for Avail-Cap, we find
that the overloaded query percentages for Avail-Cap
increase from about 55 to more than 80% across all
the replicas when the inter-update period changes
from 1 to 10 seconds. However, this performance
degradation is not so much due to the fluctuation of
the extraneous load as it is due to Avail-Cap’s ten-
dency to oscillate when the request rate is greater
than the update rate.

We purposely choose this scenario to test how
Max-Cap performs under widely fluctuating extra-
neous load on every replica. We generally expect
that extraneous load will not fluctuate so wildly, nor
will all replicas issue new contracts every second.
Moreover, we expect the inter-update period to be
on the order of several seconds or even minutes,
which further reduces overhead.

We can view the effect of extraneous load on the

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 34
PERCENTAGEOVERLOADED QUERIES VERSUS

REPLICA ID FOR MAX -CAP WITH EXTRANEOUS

LOAD AND AN INTER -UPDATE PERIOD OF TEN

SECONDS.

performance of Max-Cap as similar to that seen in
the dynamic replica experiments. When a replica
advertises a new honored maximum capacity, it is
as if that replica were leaving and being replaced by
a new replica with a different maximum capacity.

V. Related Work

Load-balancing has been the focus of many studies
described in the distributed systems literature. We
first describe load-balancing techniques that could
be applied in a peer-to-peer context. We classify
these into two categories, those algorithms where
the allocation decision is based on load and those
where the allocation decision is based on available
capacity. We then describe other load-balancing
techniques (such as process migration) that cannot
be directly applied in a peer-to-peer context.

A. Load-Based Algorithms

Of the load-balancing algorithms based on load,
a very common approach to performing load-
balancing is to choose the server with the least re-
ported load from among a set of servers. This
approach performs well in a homogeneous system
where the task allocation is performed by a single
centralized entity (dispatcher) which has complete
up-to-date load information [Web78], [Win77]. In

17

a system where multiple dispatchers are indepen-
dently performing the allocation of tasks, this ap-
proach however has been shown to behave badly,
especially if load information used is stale [ELZ86],
[MTS89], [Mit97], [SKS92]. Mitzenmacher talks
about the “herd behavior” that can occur when
servers that have reported low load are inundated
with requests from dispatchers until new load infor-
mation is reported [Mit97].

Dahlin proposesload interpretation algorithms
[Dah99]. These algorithms take into account the
age (staleness) of the load information reported by
each of a set of distributed homogeneous servers as
well as an estimate of the rate at which new requests
arrive at the whole system to determine to which
server to allocate a request.

Many studies have focused on the strategy of us-
ing a subset of the load information available. This
involves first randomly choosing a small number,
k, of homogeneous servers and then choosing the
least loaded server from within that set [Mit96],
[ELZ86], [VDK96], [ABKU94], [KLH92]. In par-
ticular, for homogeneous systems, Mitzenmacher
[Mit96] studies the tradeoffs of various choices of
k and various degrees of staleness of load informa-
tion reported. As the degree of staleness increases,
smaller values ofk are preferable.

Genova et al. [GC00] propose an algorithm,
which we callInv-Load that first randomly selects
k servers. The algorithm then weighs the servers by
load information and chooses a server with proba-
bility that is inversely proportional to the load re-
ported by that server. Whenk = n, wheren is the
total number of servers, the algorithm is shown to
perform better than previous load-based algorithms
and for this reason we focus on this algorithm in this
paper.

As we see in Section IV-A, algorithms that base
the decision on load do not handle heterogeneity.

B. Available-Capacity-Based Algorithms

Of the load-balancing algorithms based on avail-
able capacity, one common approach has been
to choose amongst a set of servers based on the
available capacity of each server [ZYZ+98] or the
available bandwidth in the network to each server
[CC97]. The server with the highest available ca-

pacity/bandwidth is chosen by a client with a re-
quest. The assumption here is that the reported
available capacity/bandwidth will continue to be
valid until the chosen server has finished servicing
the client’s request. This assumption does not al-
ways hold; external traffic caused by other applica-
tions can invalidate the assumption, but more sur-
prisingly the traffic caused by the application whose
workload is being balanced can also invalidate the
assumption. We see this in Section IV-B.

Another approach is to to exclude servers that fail
some utilization threshold and to choose from the
remaining servers. Mirchandaney et al. [MTS90]
and Shivaratri et al. [SKS92] classify machines as
lightly-utilized or heavily-utilized and then choose
randomly from the lightly-utilized servers. This
work focuses on local-area distributed systems. Co-
lajanni et al. use this approach to enhance round-
robin DNS load-balancing across a set of widely
distributed heterogeneous web servers [CYC98],
Specifically, when a web server surpasses a utiliza-
tion threshold it sends an alarm signal to the DNS
system indicating it is out of commission. The
server is excluded from the DNS resolution until it
sends another signal indicating it is below thresh-
old and free to service requests again. In this work,
the maximum capacities of the most capable servers
are at most a factor of three that of the least capable
servers.

As we see in Section IV-B, when applied in
the context of a peer-to-peer network where many
nodes are making the allocation decision and where
the maximum capacities of the replica nodes can
differ by two orders of magnitude, excluding a serv-
ing node temporarily from the allocation decision
can result in load oscillation.

C. Other Load-balancing Techniques

We now describe load-balancing techniques that ap-
pear in the literature but cannot be directly applied
in a peer-to-peer context.

There has been a large body of work devoted to
the problem of load-balancing across a set of servers
residing within a cluster. In some cluster systems
there is one centralized dispatcher through which
all incoming requests to the cluster arrive. The dis-
patcher has full control over the allocation of re-

18

quests to servers [DKMT96], [cis]. In other sys-
tems there are multiple dispatchers that make the
allocation decision. One common approach is to
have front-end servers sit at the entrance of the clus-
ter intercepting incoming requests and allocating re-
quests to the back-end servers within the cluster that
actually satisfy the requests [CDR99]. Still others
have requests be evenly routed to servers within the
cluster via DNS rotation (described below) or via
a single IP-switch sitting at the front of the cluster
(e.g., [fou98]). Upon receiving a request each server
then decides whether to satisfy the request or to dis-
patch it to another server [ZYZ+98]. Some cluster
systems have the dispatchers(s) poll each server or a
random set of servers for load/availability informa-
tion just before each allocation decision [AAFL96],
[SYC02]. Others have the dispatcher(s) periodically
poll servers, while still others have servers period-
ically broadcast their load-balancing information.
Studies that compare the tradeoffs among these in-
formation dissemination options within a cluster in-
clude [ZYZ+98], [SYC02].

Regardless of the way this information is ex-
changed, cluster-based algorithms take advantage of
the local-area nature of the cluster network to de-
liver timely load-balancing updates. This character-
istic does not apply in a peer-to-peer network where
load-balancing updates may have to travel across
the Internet.

Most cluster algorithms assume that servers are
homogeneous. The exceptions to this rule include
work by Castro et al. [CDR99]. This work as-
sumes that servers will have different processing ca-
pabilities and allows each server to stipulate amax-
imum desirable utilization that is incorporated into
the load-balancing algorithm. The algorithm they
use assumes that servers are synchronized and send
their load updates at the same time. This is not
true in a peer-to-peer network where replicas can-
not be synchronized. Zhu et al. [ZYZ+98] as-
sume servers are heterogeneous and use a metric
that combines available disk capacity and CUP cy-
cles to choose a server within the cluster to handle
a task [ZYZ+98]. Their algorithm uses a combina-
tion of random polling before selection and random
multicasting of load-balancing information to a se-
lect few servers. Both are techniques that would not
scale in a large peer-to-peer network.

Another well-studied load-balancing cluster ap-
proach is to have heavily loaded servers hand-
off requests they receive to other servers within
the cluster that are less loaded or to have lightly
loaded servers attempt to get tasks from heavily
loaded servers (e.g., [Dan95], [SK90]). This can be
achieved through techniques such as HTTP redirec-
tion (e.g., [CCY99], [AYI96], [CCY00]) or packet
header rewriting (e.g., [AB00]) or remote script ex-
ecution [ZYZ+98]. HTTP redirection adds addi-
tional client round-trip latency for every resched-
uled request. TCP/IP hand-off and packet header
rewriting require changes in the OS kernel or net-
work interface drivers. Remote script execution re-
quires trust between the serving entities.

Similar to task handoff is the technique of pro-
cess migration. Process migration to spread job load
across a set of servers in a local-area distributed sys-
tem has been widely studied both in the theoreti-
cal literature as well as the systems literature (e.g.,
[DO91], [LM93], [DHB95], [PL95], [LL96]). In
these systems overloaded servers migrate some of
their currently running processes to lighter loaded
servers in an attempt to achieve more equitable dis-
tribution of work across the servers.

Both task handoff and process migration require
close coordination amongst serving entities that can
be afforded in a tightly-coupled communication en-
vironment such as a cluster or local-area distributed
system. In a peer-to-peer network where the replica
nodes serving the content may be widely distributed
across the Internet, these techniques are not possi-
ble.

A lot of work has looked at balancing load across
multi-server homogeneous web sites by leveraging
the DNS service used to provide the mapping be-
tween a web page’s URL and the IP address of a
web server serving the URL. Round-robin DNS was
proposed, where the DNS system maps requests
to web servers in a round-robin fashion [KBM94],
[AYHI96]. Because DNS mappings have a Time-
to-Live (TTL) field associated with them and tend
to be cached at the local name server in each do-
main, this approach can lead to a large number
of client requests from a particular domain getting
mapped to the same web server during the TTL pe-
riod. Thus, round-robin DNS achieves good balance
only so long as each domain has the same client re-

19

quest rate. Moreover, round-robin load-balancing
does not work in a heterogeneous peer-to-peer con-
text because each serving replica gets a uniform
rate of requests regardless of whether it can handle
this rate. Work that takes into account domain re-
quest rate improves upon round-robin DNS and is
described by Colajanni et al. [CYD97].

Colajanni et al. later extend this work to bal-
ance load across a set of widely distributed het-
erogeneous web servers [CYC98]. This work pro-
poses the use of adaptive TTLs, where the TTL for
a DNS mapping is set inversely proportional to the
domain’s local client request rate for the mapping
of interest (as reported by the domain’s local name
server). The TTL is at the same time set to be pro-
portional to the chosen web server’s maximum ca-
pacity. So web servers with high maximum capac-
ity will have DNS mappings with longer TTLs, and
domains with low request rates will receive map-
pings with longer TTLs. Max-Cap, the algorithm
proposed in this thesis, also uses the maximum ca-
pacities of the serving replica nodes to allocate re-
quests proportionally. The main difference is that in
the work by Colajanni et al., the root DNS sched-
uler acts as a centralized dispatcher setting all DNS
mappings and is assumed to know what the request
rate in the requesting domain is like. In the peer-
to-peer case the authority node has no idea what the
request rate throughout the network is like, nor how
large is the set of requesting nodes.

Lottery scheduling is another technique that, like
Max-Cap, uses proportional allocation. This ap-
proach has been proposed in the context of resource
allocation within an operating system (the Mach mi-
crokernel) [WW94]. Client processes hold tickets
that give them access to particular resources in the
operating system. Clients are allocated resources
by a centralized lottery scheduler proportionally to
the number of tickets they own and can donate their
tickets to other clients in exchange for tickets at a
later point. Max-Cap is similar in that it allocates
requests to a replica node proportionally to the max-
imum capacity of the replica node. The main differ-
ence is that in Max-Cap the allocation decision is
completely distributed with no opportunity for ex-
change of resources across replica nodes.

VI. Conclusions

In this paper we examine the problem of load-
balancing in a peer-to-peer network where the goal
is to distribute the demand for a particular content
fairly across the set of replica nodes that serve that
content. Existing load-balancing algorithms pro-
posed in the distributed systems literature are not
appropriate for a peer-to-peer network. We find
that load-based algorithms do not handle the hetero-
geneity that is typical in a peer-to-peer network. We
also find that algorithms based on available capacity
reports can suffer from load oscillations even when
the workload request rate is as low as 60% of the
total maximum capacities of replicas.

We propose and evaluate Max-Cap, a practical
algorithm for load-balancing. Max-Cap handles
heterogeneity, yet does not suffer from oscillations
when the workload rate is below 100% of the total
maximum capacities of the replicas, adjusts better
to very large fluctuations in the workload and con-
stantly changing replica sets, and incurs less over-
head than algorithms based on available capacity
since its reports are affected only by extraneous load
on the replicas. We believe this makes Max-Cap a
practical and elegant algorithm to apply in peer-to-
peer networks.

VII. Acknowledgments

This research is supported by the Stanford Net-
working Reseach Center, and by DARPA (contract
N66001-00-C-8015).

The work presented here has benefited greatly
from discussions with Armando Fox and Rajeev
Motwani. We thank them for their invaluable feed-
back. We also thank Petros Maniatis for his detailed
comments on earlier drafts of this paper.

References

[AAFL96] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton.
Making Commitments in the Face of Uncertainty:
How to Pick a Winner Almost Every Time. In
Twenty-eighth ACM Symposium on Theory of
Computing, 1996.

20

[AB00] L. Aversa and A. Bestavros. Load Balanc-
ing a Cluster of Web Servers Using Distributed
Packet Rewriting. InIEEE International Perfor-
mance, Computing, and Communications Confer-
ence, February 2000.

[ABKU94] Y. Azar, A. Broder, A. Karlin, and E. Upfal. Bal-
anced Allocations. InTwenty-sixth ACM Sympo-
sium on Theory of Computing, 1994.

[AYHI96] D. Andresen, T. Yang, V. Holmedahl, and O.H.
Ibarra. SWEB: Towards a Scalable WWW Server
on MultiComputers. InIEEE International Sym-
posium on Parallel Processing, April 1996.

[AYI96] D. Andresen, T. Yang, and O.H. Ibarra. Towards a
Scalable Distributed WWW Server on Networked
Workstations.Journal of Parallel and Distributed
Computing, 42:91–100, 1996.

[Cao02] P. Cao. Search and Replication in Unstructured
Peer-to-Peer Networks, February 2002. Talk
at http://netseminar.stanford.edu/
sessions/2002-01-31.html.

[CC97] R. Carter and M. Crovella. Server Selection Us-
ing Dynamic Path Characterization in Wide-Area
Networks. InInfocom, 1997.

[CCY99] V. Cardellini, M. Colajanni, and P.S. Yu. Redirec-
tion Algorithms for Load Sharing in Distributed
Web Server Systems. InICDCS, June 1999.

[CCY00] V. Cardellini, M. Colajanni, and P.S. Yu. Geo-
graphic Load Balancing for Scalable Distributed
Web Systems. InProceedings of Modeling, Anal-
ysis and Simulation of Computer and Telecommu-
nication Systems (Mascots), August 2000.

[CDR99] M. Castro, M. Dwyer, and M. Rumsewicz. Load
balancing and control for distributed World Wide
Web servers. InProceedings of the IEEE Inter-
national Conference on Control Applications, Au-
gust 1999.

[cis] Scaling the Internet Web Servers. Cisco Systems
Whitepaper, November 1997.

[CYC98] M. Colajanni, P. S. Yu, and V. Cardellini. Dy-
namic Load Balancing in Geographically Dis-
tributed Heterogeneous Web Servers. InICDCS,
1998.

[CYD97] M. Colajanni, P.S. Yu, and D.M. Dias. Schedul-
ing Algorithms for Distributed Web Servers. In
ICDCS, 1997.

[Dah99] M. Dahlin. Interpreting Stale Load Information.
In ICDCS, 1999.

[Dan95] S. Dandamudi. Performance Impact of Schedul-
ing Discipline on Adaptive Load Sharing in Ho-
mogeneous Distributed Systems. InICDCS, 1995.

[DHB95] A. Downey and M. Harchol-Balter. A Note on
’The Limited Performance Benefits of Migrating
Active Processes for Load Sharing’. Technical Re-
port UCB/CSD-95-888, UC Berkeley, November
1995.

[DKMT96] D. M. Dias, W. Kish, R. Mukherjee, and
R. Tewari. A Scalable and Highly Available Web
Server. InProceedings of IEEE COMPCON’96,
1996.

[DO91] F. Douglis and J. Ousterhout. Transparent Pro-
cess Migration: Design Alternatives and the Spite
Implementation.Software - Practice and Experi-
ence, 21(8):757–785, 1991.

[ELZ86] D. Eager, E. Lazowska, and J. Zahorjan. Adaptive
Load Sharing in Homogeneous Distributed Sys-
tems. IEEE Transactions on Software Engineer-
ing, 12(5):662–675, 1986.

[fou98] Foundry Networks ServerIron Server
Load Balancing Switch, 1998. http:

//www.foundrynet.com.
[GC00] Z. Genova and K. J. Christensen. Challenges in

URL Switching for Implementing Globally Dis-
tributed Web Sites. InWorkshop on Scalable Web
Services, 2000.

[gnu] The Gnutella Protocol Specification v0.4.http:
//gnutella.wego.com.

[KBM94] E.D. Katz, M. Butler, and R. McGrath. A Scal-
able HTTP server: the NCSA prototype.Com-
puter Networks and ISDN Systems, 27:155–164,
1994.

[KLH92] R. Karp, M. Luby, and F. M. Heide. Efficient
PRAM Simulation on a Distributed Memory Ma-
chine. InTwenty-fourth ACM Symposium on The-
ory of Computing, 1992.

[LL96] C. Lu and S.M. Lau. An Adaptive Load Balancing
Algorithm for Heterogeneous Distributed Systems
with Multiple Task Classes. InICDCS, 1996.

[LM93] R. Luling and B. Monien. A Dynamic Distributed
Load Balancing Algorithm with Provable Good
Performance. InACM Symposium on Parallel Al-
gorithms and Architectures, 1993.

[Mar02] E. P. Markatos. Tracing a large-scale Peer-to-Peer
System: an hour in the life of Gnutella. InSecond
IEEE/ACM International Symposium on Cluster
Computing and the Grid, 2002.

[MGB01] P. Maniatis, T.J. Giuli, and M. Baker. En-
abling the Long-Term Archival of Signed Docu-
ments through Time Stamping. Technical Report
cs.DC/0106058, Stanford University, June 2001.
http://www.arxiv.org/abs/cs.DC/0106058.

[Mit96] M. Mitzenmacher. The Power of Two Choices
in Randomized Load Balancing. PhD thesis, UC
Berkeley, September 1996.

[Mit97] M. Mitzenmacher. How Useful is Old Informa-
tion? InSixteenth Symposium on the Principles of
Distributed Computing, 1997.

[MTS89] R. Mirchandaney, D. Towsley, and J. Stankovic.
Analysis of the Effects of Delays on Load Sharing.
IEEE Transactions on Computers, 38:1513–1525,
1989.

[MTS90] R. Mirchandaney, D. Towsley, and J. Stankovic.
Adaptive Load Sharing in Heterogeneous Dis-
tributed Systems. Journal of Parallel and Dis-
tributed Computing, 9:331–346, 1990.

[Ora01] Andy Oram.Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly Publishing
Company, March 2001.

21

http://netseminar.stanford.edu/sessions/2002-01-31.html
http://www.foundrynet.com
http://gnutella.wego.com
http://arxiv.org/abs/cs/0106058
http://www.arxiv.org/abs/cs.DC/0106058

[PL95] S. Petri and H. Langendorfer. Load Balancing and
Fault Tolerance in Workstation Clusters - Migrat-
ing Groups of Communicating Processes.Oper-
ating Systems Review, 29(4):25–36, Oct 1995.

[RB02] Mema Roussopoulos and Mary Baker. CUP: Con-
trolled Update Propagation in Peer to Peer Net-
works. Technical Report cs.NI/0202008, Stanford
University, February 2002.http://arXiv.
org/abs/cs.NI/0202008.

[RD01] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and routing for
large-scale peer-to-peer systems. InMiddleWare,
November 2001.

[RF02] Matei Ripeanu and Ian Foster. Mapping the
Gnutella Network: Macroscopic Properties of
Large-Scale Peer-to-Peer Systems. InFirst In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A Scalable Content-Addressable
Network. InSIGCOMM, 2001.

[SGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. InProceedings of Multimedia Comput-
ing and Networking (MMCN), 2002.

[SK90] N.G. Shivaratri and P. Krueger. Two Adaptive Lo-
cation Policies for Global Scheduling Algorithms.
In IEEE International Conference on Distributed
Computing Systems (ICDCS), 1990.

[SKS92] N. Shivaratri, P. Krueger, and M. Singhal. Load
Distributing for Locally Distributed Systems.
IEEE Computer, pages 33–44, Dec 1992.

[SMK+01] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. InSIG-
COMM, 2001.

[SYC02] K. Shen, T. Yang, and L. Chu. Cluster Load Bal-
ancing for Fine-Grain Network Services. InInter-
national Parallel and Distributed Processing Sym-
posium, 2002.

[VDK96] N. Vvedenskaya, R. Dobrushin, and F. Karpele-
vich. Queuing Systems with Selection of the
Shortest of Two Queues: an Asymptotic Ap-
proach. Problems of Information Transmission,
32:15–27, 1996.

[Web78] R. Weber. On the Optimal Assignment of Cus-
tomers to Parallel Servers.Journal of Applied
Probability, 15:406–413, 1978.

[Win77] W Winston. Optimality of the Shortest Line Dis-
cipline. Journal of Applied Probability, 14:181–
189, 1977.

[WW94] C.A. Waldspurger and W.E. Weihl. Lottery
scheduling: Flexible proportional-share resource
management. InProceedings of the First USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI), Nov 1994.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical Re-

port UCB/CSD-01-1141, U. C. Berkeley, April
2001.

[ZYZ+98] H. Zhu, T. Yang, Q. Zheng, D. Watson, O. H.
Ibarra, and T. Smith. Adaptive load sharing for
clustered digital library services. In7th IEEE
Intl. Symposium on High Performance Distributed
Computing (HPDC), 1998.

Appendix

It should not surprise the reader that Inv-Load does not
handle heterogeneity since the same load at one replica
may have a different effect on another with a different
maximum capacity. However, surprisingly it turns out
that when replicas are homogeneous, the performance of
Inv-Load and Max-Cap are comparable.

In this set of experiments, there are ten replicas, each
of whose maximum capacity we set at 10 requests per
second for a total maximum capacity of 100 requests per
second. Queries are generated according to a Poisson
process with a lambda rate that is 80% the total maxi-
mum capacities of the replicas.

Figures 35 and 36 show a scatterplot of how the uti-
lization of each replica proceeds with time when using
Inv-Load with a refresh period of one time unit and Max-
Cap respectively. Inv-Load and Max-Cap have similar
scatterplots.

Figures 37 and 38 show for each replica, the percent-
age of queries that arrived at the replica while the replica
was overloaded. Again, we see that Inv-Load and Max-
Cap have comparable performance.

The difference is that Inv-Load incurs the extra over-
head of one load update per replica per second. In a
CUP tree of 100 nodes this translates to 1000 updates
per second being pushed down the CUP tree. In a tree
of 1000 nodes this translates to 10000 update per second
being pushed. Thus, the larger the CUP tree, the larger
the overall network overhead. The overhead incurred by
Inv-Load could be reduced by increasing the period be-
tween two consecutive updates at each replica. Increas-
ing the period results in staler load updates. We find that
when experimenting with a range of periods (one to sixty
seconds), we confirm earlier studies [Mit97] that have
found that as load information becomes more stale with
increasing periods, the performance of load-based bal-
ancing algorithms decreases.

We ran experiments with Pareto(α, κ) query interar-
rivals with a wide range ofα andκ values (the Pareto
distribution shape and scale parameters) and found that
with homogeneous replicas, Inv-Load with a period of
one and Max-Cap continue to be comparable. However,
Max-Cap is preferable in these cases because it incurs no
overhead.

22

http://arxiv.org/abs/cs/0202008
http://arXiv.org/abs/cs.NI/0202008

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

100% Utilization
Replica Utilization

Fig. 35
REPLICA UTILIZATION VERSUS TIME FOR INV-LOAD

WITH AN INTER-UPDATE PERIOD OF ONE SECOND

AND HOMOGENEOUS REPLICAS.

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n

Time (seconds)

100% Utilization
Replica Utilization

Fig. 36
REPLICA UTILIZATION VERSUS TIME FOR MAX -CAP

WITH HOMOGENEOUS REPLICAS.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 37
PERCENTAGEOVERLOAD QUERIES VERSUSREPLICA

ID FOR INV-LOAD WITH AN INTER-UPDATE PERIOD

OF ONE SECOND AND HOMOGENEOUS REPLICAS.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 38
PERCENTAGEOVERLOAD QUERIES VERSUSREPLICA

ID FOR MAX -CAP WITH HOMOGENEOUS REPLICAS.

23

