
Faster Communication in Known Topology
Radio Networks
Extended Abstract

Leszek Gasieniec
Dept. of Computer Science
The University of Liverpool

Liverpool L69 7ZF, UK

leszek@csc.liv.ac.uk

David Peleg ∗
Dept. of Computer Science

The Weizmann Institute
Rehovot 76100, Israel

david.peleg@weizmann.ac.il

Qin Xin
Dept. of Computer Science
The University of Liverpool

Liverpool L69 7ZF, UK

qinxin@csc.liv.ac.uk

ABSTRACT
This paper concerns the communication primitives of broad-
casting (one-to-all communication) and gossiping (all-to-all
communication) in radio networks with known topology, i.e.,
where for each primitive the schedule of transmissions is pre-
computed based on full knowledge about the size and the
topology of the network.
The first part of the paper examines the two communi-

cation primitives in general graphs. In particular, it pro-
poses a new (efficiently computable) deterministic schedule
that uses O(D + ∆ logn) time units to complete the gos-
siping task in any radio network with size n, diameter D
and max-degree ∆. Our new schedule improves and sim-
plifies the currently best known gossiping schedule, requir-
ing time O(D+ i+2

√
D∆logi+1 n), for any network with the

diameter D = Ω(logi+4 n), where i is an arbitrary integer
constant i ≥ 0, see [17]. For the broadcast task we de-
liver two new results: a deterministic efficient algorithm for
computing a radio schedule of length D + O(log3 n), and
a randomized algorithm for computing a radio schedule of
length D+O(log2 n). These results improve on the best cur-
rently known D+O(log4 n) time schedule due to Elkin and
Kortsarz [12].
The second part of the paper focuses on radio communica-

tion in planar graphs, devising a new broadcasting schedule
using fewer than 3D time slots. This result improves, for
small values of D, on currently best known D + O(log3 n)
time schedule proposed by Elkin and Kortsarz in [12]. Our
new algorithm should be also seen as the separation result
between the planar and the general graphs with a small di-
ameter due to the polylogarithmic inapproximability result
in general graphs due to Elkin and Kortsarz, see [11].

∗Supported in part by a grant from the Israel Science Foun-
dation and by the Royal Academy of Engineering.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-994-2/05/0007 ...$5.00.

Categories & Subject Descriptors:
F.2.2[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems;
G.2.2[Discrete Mathematics]: Graph Theory;
General Terms: Algorithms, Theory.
Keywords: broadcasting, gossiping, algorithms, radio net-
works, planar graphs.

1. INTRODUCTION

1.1 Background
The two classical problems of information dissemination

in computer networks are the broadcasting problem and the
gossiping problem. The broadcasting problem requires dis-
tributing a particular message from a distinguished source
node to all other nodes in the network. In the gossiping
problem, each node v in the network initially holds a mes-
sage mv, and it is required to distribute all messages mv to
all nodes in the network. In both problems, the efficiency
criterion is very often to minimize the time needed to com-
plete the task.
The paper concerns the following model of a radio net-

work. A network is an undirected connected graph G =
(V,E), where V represents the set of nodes of the network
and E contains unordered pairs of distinct nodes, such that
(v, w) ∈ E iff the transmissions of node v can directly reach
node w and vice versa (the reachability of transmissions is
assumed to be a symmetric relation). In this case, we say
that the nodes v and w are neighbours in G. One of the
properties of radio network is that a message transmitted
by a node is always sent to all its neighbors.
The number of neighbours of a node w is called its de-

gree, and the maximum degree of any node in the network
is called the max-degree of the network and is denoted by ∆.
The size of the network is the number of nodes n = |V |. The
communication is synchronous and consists of a sequence of
communication steps. During each step, each node v either
transmits or listens. If v transmits, then the transmitted
message reaches each of its neighbours by the end of this
step. However, a node w adjacent to v successfully receives
this message iff in this step w is listening and v is the only
transmitting node among w’s neighbors. If node w is adja-
cent to a transmitting node but is not listening, or is adja-
cent to more than one transmitting node, then a collision
occurs and w does not retrieve any message in this step.

129

The running time of any communication schedule is de-
termined by the number of the time steps required to com-
plete the communication task. That is, we do not account
for any internal computation within individual nodes. An-
other abstraction of the model is that no limit is placed on
the length of a message which one node can transmit in one
step. This assumption is used here in the context of the gos-
siping problem where it is assumed that if a node transmits
in the current step, then it transmits all the information it
currently has.
In this paper we focus on gossiping algorithms that rely

on using complete information about the network topology.
This type of topology-wise communication algorithms are
useful in radio networks that have a reasonably stable topol-
ogy/infrastructure. As long as no changes occur in the net-
work topology during the execution of the algorithm, the
tasks of broadcasting and gossiping will be completed suc-
cessfully. Note also that our main goal was the design of
time efficient communication procedures. However it would
not be difficult to increase the level of fault-tolerance in our
algorithm at the expense of some extra time consumption.

1.2 Communication in radio networks with
known topology

The work on communication in known topology radio net-
works was initiated in the context of the broadcasting prob-
lem. In [13], Gaber and Mansour prove that the broadcast-
ing task can be completed in time O(D log2 n). An Ω(log2 n)
time lower bound was proved for the family of graphs of
radius 2, see [2]. While it was known for quite a while
[3] that for every n-vertex radio network of diameter D
there exists a deterministic broadcasting schedule of length
O(D logn+log2 n), an appropriate efficient construction for
such a schedule was proposed only very recently in [19].
More recently, an efficient deterministic construction for a
broadcasting schedule of length D+O(log4 n) was proposed
by Elkin and Kortsarz [12]. They have also presented an effi-
cient deterministic construction for a broadcasting schedule
of length D +O(log3 n) for planar graphs.
Efficient radio broadcasting algorithms for various partic-

ular types of network topologies can be found in Diks et
al. [10]. For general networks, however, it is known that
the computation of an optimal (radio) broadcast schedule is
NP-hard, even if the underlying graph is embedded in the
plane [4, 21].
Radio gossiping in networks with known topology was first

studied in the context of radio communication with messages
of limited size, see [6]. In this model the authors proposed
several optimal or close to optimal O(n)-time gossiping pro-
cedures for various standard network topologies, including
lines, rings, stars and free trees. They also proved that there
exists a radio network topology in which the gossiping (with
unit size messages) requires Ω(n logn) time. The first work
on radio gossiping in known topology networks with arbi-
trarily large messages is [17], where the authors propose
several optimal gossiping schedules for a wide range of radio
network topologies.

1.3 Our results
In the first part of the paper we examine the commu-

nication primitives in general graphs. In particular, we
propose a new efficiently computable deterministic sched-

ule that uses O(D + ∆ logn) time units to complete the
gossiping task in any radio network with size n, diameter
D and max-degree ∆. Our new schedule improves and sim-
plifies the currently best known gossiping schedule requir-
ing time O(D+ i+2

√
D∆logi+1 n), for any network with the

diameter D = Ω(logi+4 n), where i is an arbitrary integer
constant i ≥ 0, see [17]. For the broadcast task we show
two new results: a deterministic efficient algorithm for com-
puting a radio schedule of length D +O(log3 n), and a ran-
domized algorithm for computing a radio schedule of length
D + O(log2 n). These results improve on the best currently
known D +O(log4 n) time schedule due to [12].
In the second part of the paper we focus on radio com-

munication in planar graphs, devising a new broadcasting
schedule using fewer than 3D time slots. This result im-
proves, for small values of D, on currently best known D +
O(log3 n) time schedule proposed in [12]. Our new algorithm
should be also seen as the separation result between the pla-
nar and the general graphs with a small diameter due to the
polylogarithmic inapproximability result in general graphs
due to Elkin and Kortsarz [11].

2. GOSSIPING IN GENERAL GRAPHS
WITH KNOWN TOPOLOGY

The gossiping task can be performed in two consecutive
stages. During the first stage we gather all individual mes-
sages in one (central) point of the graph. Then, during the
second stage, the collection of individual messages is broad-
cast to all nodes in the network. We start this section with
the presentation of a simple gathering procedure that works
in time O((D+∆) logn) in free trees. Later we show how to
choose a spanning breadth-first (BFS) tree in an arbitrary
graph G in order to gather (along its branches) all messages
in G also in time O((D + ∆) logn), despite the additional
edges in G which might potentially cause additional colli-
sions. Finally, we show how the gathering process can be
pipelined and sped up to time O(D +∆ logn).

2.1 Ranking procedure
Given an arbitrary tree, we choose as the root its central

node c. The nodes in a tree rooted in c are partitioned into
consecutive layers Li = {v | dist(c, v) = i}, for i = 0, .., r
where r is a radius of the tree. We denote the size of each
layer Li by |Li|.
We adopt a standard definition of the rank of nodes in a

rooted tree, used earlier in the context of radio communica-
tion in known topology networks in [13]. This ranking was
used even earlier in defining the Strahler number of binary
trees, introduced in hydro-geology [23] and later studied ex-
tensively in computer science (cf. [24] and the references
therein).
Specifically, every leaf v has rank(v) = 1. A non-leaf

node determines its rank according to the rank of its chil-
dren as follows. Given the ranks of the children of a node
v, say r1, · · · , rk, let rmax = max(ri). If v has a unique
child whose rank is rmax, then the rank of node v is set to
rank(v) = rmax. Otherwise, there are at least two children
with the rank rmax, in which case the rank of node v is set
to rank(v) = rmax + 1. For an illustration see Figure 1.

Lemma 2.1. The largest rank in a tree of size n is bounded
by dlogne. (see [8]).

130

The schedule is now defined in stages using the ranked tree.
This is done by partitioning the nodes into different rank
sets Ri = {v | rank(v) = i}, where 1 ≤ i ≤ rmax ≤ dlogne.
The meaning of this partition is that the nodes in Ri are
involved in transmissions only during the stage i.

3
1 3 2 1

2 2 1 1 2 1

2 2 1 1 2 1

2 1 1 1 2 1

1 2 1 1 2 1

1 1 1 1 1 1

1 1

Figure 1: A ranked tree of size n = 37

We now define two key subsets of nodes for each stage.
The fast transmission set:

F ki = {v | v ∈ Lk ∩Ri and parent(v) ∈ Ri}.
Also define Fi =

⋃D
k=1 F

k
i and F =

⋃rmax≤dlogne
i=1 Fi.

The slow transmission set:
Ski = {v | v ∈ Lk ∩Ri and parent(v) ∈ Rj , j > i}.

Also define Si =
⋃D
k=1 S

k
i and S =

⋃rmax≤dlogne
i=1 Si.

Lemma 2.2. During the ith stage, all nodes in F ki can
transmit to their parents simultaneously without any colli-
sions, for i = 1, .., rmax ≤ dlogne and k = 1, .., D.

Proof. Consider any two distinct nodes u and v in F ki ,
and suppose they interfere with each other, namely, have a
neighbor in common. Obviously, these two nodes must have
the same parent x in the tree. Moreover, according to the
definition of the fast transmission set F ki , the ranks of u,
v and x are i. However, according to the definition of the
ranking procedure, if rank(u) = rank(v) = i then the rank
of the node x must be at least i+1. Hence the nodes u and
v cannot both belong to F ki , which leads to contradiction.

The following procedure moves messages from all nodes
with rank i into their parents with ranks i+ 1 or higher.

Procedure Gathering(i);

1. Move messages from nodes in Fi to Si;
from FDi down to F 1

i layer by layer.

2. Move messages from nodes in Si to their parents;
all parents collect their messages from their children in
Si one by one.

The time complexity of step 1 is O(D) due to Lemma 2.2.
The time complexity of step 2 is bounded by O(∆) where ∆
is the maximum degree of the tree.
Due to Lemma 2.1, procedure Gathering completes the

gathering stage in time O((D +∆) logn).

Theorem 2.3. In any tree of size n, diameter D and
maximum degree ∆, the gossiping task can be completed in
time O((D +∆) logn).

Proof. Gathering all messages at the root of the tree is
done in time O((D+∆) logn). This is followed by the trivial
broadcasting stage in time D.

2.2 Gathering messages in arbitrary graphs
We start this section with an introduction of a novel con-

cept of a gathering spanning tree (GST). These trees play
a crucial role in time efficient gossiping in arbitrary graphs.
Indeed, we show that an arbitrary graph G contains a GST.
We also propose an O(n2)-time algorithm that constructs
the GST for any graph of size n and diameter D. In the
concluding part of this section, we propose a new more ef-
ficient schedule that completes message gathering in time
O(D +∆ logn).

2.2.1 The construction
We start this subsection with the definition of the gath-

ering spanning tree.
In an arbitrary graph G = (V,E), any BFS spanning tree

TG of G s.t.

(1) TG is rooted at the central node c of G,

(2) TG is ranked, and

(3) all nodes in F ki of TG are able to transmit their messages
to their parents simultaneously without any collision,
for all 1 ≤ k ≤ D and 1 ≤ i ≤ rmax ≤ dlogne,

is called a gathering spanning tree, or simply GST.
In a graph G = (V,E), a pre-gathering-tree TPGT =

(V,EPGT) is an arbitrary ranked BFS spanning tree rooted
in the central node c. The procedure for constructing a
gathering spanning tree from a pre-gathering-tree TPGT is
based on the pruning process. During the pruning process, a
function Check-collision(i, j) is used to detect two nodes
in F ij (if such a pair exists) that are not able to transmit si-
multaneously their messages to their parents in TPGT . The
function returns either a pair of nodes (u, v) whose trans-
missions may cause a collision or ’null’ if such a pair does
not exist. The outcome is illustrated in Figure 2.

3
1 3 2 1

2 2 1 1 2 1

2 2 1 1 2 1

2 1 1 1 2 1

1 2 1 1 2 1

1 1 1 1 1 1

1 1

Pre−gathering−tree with ranksOriginal Graph

Figure 2: Creating ranked pre-gathering-tree

Function Check-collision(i, j): a pair of nodes;
(1) if ∃u, v ∈ F ij and (u, parent(v)) ∈ E, where u 6= v

then return(u, v);
else return(’null’);

Procedure Gathering-Spanning-Tree constructs a
gathering-spanning-tree GST ⊆ G on the basis of TPGT ⊆
G. The pruning process is performed layer by layer start-
ing from the bottom (layer D) of TPGT (outer loop). At
each layer we gradually fix the parents of all nodes who are
potentially involved in collisions starting with nodes with

131

the highest rank at the layer (inner loop). The outcome is
illustrated in Figure 3.

Procedure Gathering-Spanning-Tree(TPGT);
(1) For i := D down to 1 do
(2) begin
(3) For j := rmax down to 1 do
(4) begin
(5) While Check-collision(i, j) 6= ’null’ do
(6) begin
(7) rank(parent(v)) = j + 1;
(8) F ij = F ij − {v, u};
(9) Sij = Sij ∪ {v, u};
(10) EPGT = EPGT − {(u, parent(u))};
(11) EPGT = EPGT ∪ {(u, parent(v))};
(12) re-rank TPGT only at the top BFS layers

from i− 1 down to 0;
(13) recompute sets in F and S in new TPGT ;
(14) end
(15) end
(16) end

In what follows, we use an inductive argument to show
that the ProcedureGathering-Spanning-Tree constructs
the GST of an arbitrary graph G = (V,E) in time O(n2).

Lemma 2.4. After completing the pruning process at layer
i in TPGT , the structure of edges in TPGT between layers
i−1, .., D is fixed, i.e., the transmissions within layers i, .., D
in all sets Fj, for j = 1, .., rmax ≤ dlogne, are free of colli-
sions.

Proof. We rely on the assumption that before the ith ex-
ecution of the outer loop, all edges in TPGT between layers
from i through D are already fixed and will never change
again. Note that during the pruning process at layer i, the
updates involve only some edges between layers i and i− 1.
Note also that the updates at layer i are executed always
first at the nodes with higher ranks. Thus, after a pair of
nodes u, v with the same rank j gets pruned and their now
joint parent parent(v) gets a higher rank j + 1, neither the
pair u, v nor the edges leading to their new parent will be
considered again. This is because the pair u, v no longer be-
longs to the set F and further updates at this layer at nodes
with ranks j or lower cannot change this property. On the
other hand, the former parent of u (parent(u)) might be
downgraded to a lower rank after losing its child u. But
this poses no problem to the correctness of the construc-
tion since the pruning process is performed at nodes with
gradually decreasing ranks and the former parent of u will
be reconsidered (if necessary) during some later stage of the
pruning process at the layer i. The lemma follows.

Theorem 2.5. There exists an efficient polynomial time
construction of a GST on an arbitrary graph G.

Proof. The claim follows directly from Lemma 2.4.

2.2.2 O((D +∆) logn)-time gossiping
Using the ranks of the GST nodes (constructed in the pre-

vious section), all nodes get partitioned into distinct rank
sets Ri = Fi ∪ Si, where 1 ≤ i ≤ rmax ≤ dlogne. Initially,
all messages are gathered into the central node c, stage by

3
1 3 2 1

2 2 1 1 2 1

2 2 1 1 2 1

2 1 1 1 2 1

1 2 1 1 2 1

1 1 1 1 1 1

1 1
4

1 3 3 1

3 1 1 1 3 1

2 2 1 1 3 1

2 1 1 1 3 1

1 2 1 1 2 1

1 1 1 1 1 1

1 1

Pre−gathering−tree with ranks Gathering−spanning−tree

Figure 3: From pre-gathering-tree to gathering-spanning-tree

stage, using the structure of the GST . This is done as fol-
lows. During the ith stage, all messages from nodes in Fi are
first moved to the nodes in Si. In order to avoid collisions be-
tween transmissions originating at neighbouring BFS layers
we divide the sequence of transmission time slots into three
separate (interleaved) subsequences of time slots. Specifi-
cally, the nodes in Si transmit in time slots: t ≡ 0 (mod 3)
iff i ≡ 0 (mod 3); t ≡ 1 (mod 3) iff i ≡ 1 (mod 3); and t ≡ 2
(mod 3) iff i ≡ 2 (mod 3). Later, we move all messages from
nodes in Si to their parents in GST .

Lemma 2.6. In stage i, nodes in set Si of the GST trans-
mit their messages to the parents in time O(∆).

Proof. Lemma 4 in [17] states that one can move all mes-
sages between two partitions of a bipartite graph with max-
degree ∆ (in this case two consecutive BFS layers) in time
∆. The solution is based on the use of the minimal covering
set. Please note that during this process a (possibly) com-
bined message m sent by a node v ∈ Si may be delivered to
the parent of another transmitting node w ∈ Si rather then
to parent(v). But this is fine, since now the time of deliv-
ery of the message m to the root of the tree is controlled
by the delivery mechanism from the node w. Obviously this
flipping effect can be observed a number of times in various
parts of the tree, though each change of the route does not
change the delivering mechanism at all.
In order to avoid extra collisions caused by nodes at neigh-

bouring BFS layers, we use the solution with three separate
interleaved subsequences of time slots incurring a slowdown
with a multiplicative factor of 3.

Upon the completion of the gathering stage, the gossip-
ing problem is reduced to the broadcasting problem. We
distribute all messages to every node in the network by re-
versing the direction and the time of transmission of the
gathering stage. In section 3 we prove that the broadcast-
ing stage can be performed faster in graphs with large ∆,
i.e., in time D +O(log3 n).

Theorem 2.7. In any graph G, the gossiping task can be
completed in time O((D +∆) logn).

Proof. During the ith stage, all messages from Fi are moved
to Si in time O(D). This is feasible due to the fact that
the maximum distance between any two nodes in GST is
limited to D and the properties of the GST . According to
Lemma 2.6, all nodes in the set Si are able to move their
messages to their parents in TG in time O(∆). Since this

132

process has to be repeated not more than logn times (the
number of different ranks, see Lemma 2.1), we conclude that
the gossiping time can be bounded by O((D+∆) logn).

2.3 O(D +∆ logn)-time gossiping
In the previous section, the transmission process was split

into dlogne separate stages, each costing O(D + ∆) units
of time. In this section we show how to pipeline the trans-
missions of different stages. This will allow a new gossiping
schedule of length O(D +∆ logn).
In order to achieve this, the communication process is

split into consecutive blocks of 6 time units each. The first
3 units of each block will be used for fast transmissions from
the set F , and the remaining 3 will be used for slow trans-
missions of nodes from the set S. We use 3 units of time for
each type of transmission to avoid collisions between neigh-
bouring BFS layers, similarly to what was done in the last
section. Recall that due to Lemma 4 in [17] we can move
all messages between two consecutive BFS layers in time ∆.
We compute for each node v ∈ S at layer i a number of a
step 1 ≤ s(v) ≤ ∆ in which the node v can transmit without
interruption from other nodes in S at the layer i.
The pattern of transmissions of a node v at layer i and

with rank j in GST depends on whether it belongs to the
set F or to the set S, and it is as follows:

(1) if v ∈ F , then v transmits within the time block (D −
i) + j ·∆

(2) otherwise (v ∈ S), v transmits within the time block
(D − i) + j ·∆+ s(v).

Lemma 2.8. A node v transmits its message as well as all
messages collected from its descendants towards its parent in
GST successfully during the time block allocated to it by the
pattern of transmissions.

Proof. First note that according to the pattern of trans-
missions all descendants of the node v transmit in earlier
time blocks. E.g., if a descendant w of v is at layer i′ < i
and the same rank j, then the first term of the expression
(D− i)+ j ·∆ is smaller for w. If w has also smaller rank j′,
then both terms of the expression are smaller. This means
that the node w transmits earlier than the node v.
We now prove that any node v following the pattern of

transmissions will transmit to its parent without being in-
terrupted by anyone else. First note that there will be no
collisions between neighbouring BFS layers thanks to the
separation into three subsequences, ensuring that three time
units are available within each block. Also there will be no
collision between transmissions coming from different types
of transmission (fast and slow), thanks to the two parts of
each time block. Hence we have to consider only potential
collisions within the same type of transmission at the same
BFS layer in GST. Assume that v, w ∈ F and they are at the
same BFS layer i in GST. If v and w have also the same rank
j, then they do not interrupt each other due to the property
of GST. If they have different ranks j and j′ respectively,
then they transmit in different time blocks (D − i) + j · ∆
and (D − i) + j′ · ∆, so they do not interrupt each other.
Now assume that v, w ∈ S and they are at the same BFS

layer i in GST. Then they do not interrupt each other since
either their ranks are different and both s(v), s(w) ≤ ∆, or
if they have the same rank j, then they have different values
of s(v) and s(w). This completes the proof.

Since the number of blocks used in the schedule is limited
to D +∆ logn, the following theorem holds.

Theorem 2.9. In any graph G, the gossiping task can be
completed in time O(D +∆ logn).

Using this theorem we can extend the class of graphs from
[17] in which the gossiping can be completed in time O(D)
as follows.

Corollary 2.10. The gossiping can be completed in time
O(D) in all graphs with ∆ = O(D

logn).

3. BROADCASTING IN GRAPHS WITH
KNOWN TOPOLOGY

In this section we present the idea of a new determin-
istic algorithm B that generates a schedule for completing
the broadcasting task in a general known topology radio
network in time D + O(log3 n). We then show a random-
ized variant B′ of this algorithm that with high probability
broadcasts the message in time D + O(log2 n). This es-
tablishes the existence of a broadcasting schedule of length
D + O(log2 n) for every n node radio network of diameter
D. As far as constructive results are concerned, this is likely
to be asymptotically optimal, in view of the polylogarithmic
additive inapproximability result of [11].
The deterministic algorithm B uses the concept of the

ranked gathering spanning tree (on this occasion rooted in
the source node s) introduced in section 2. Similarly to the
gossiping case the algorithm uses fast and slow transmis-
sion that partition the set of nodes to the same sets Fi and
Si. However, this time the broadcast message is dissemi-
nated from the root towards the leaves of the tree. Corre-
spondingly, to each node v ∈ Fi we associate the fast edge
connecting it to its parent, (parent(v), v). Note that after
reversing the direction of fast transmissions within the same
stage (i.e., letting the transmissions between nodes of the
same rank go from parent(v) to v), all deliveries must still
be successful. Otherwise there would have to be a crossing
edge causing collisions. But such an edge would cause also
collisions during the transmission in the gathering direction,
which is not possible
Let us start with an overview of the broadcast process

from the point of view of a copy of the message that was
eventually received at some leaf a of the tree. Note that
this message does not necessarily have to follow the unique
shortest path p(a) leading from the root of the tree to a. In
fact, there are many paths along which the message could
be forwarded, some of which do not even need to be shortest
paths. For the sake of the time complexity analysis, however,
we fix our attention on the path p(a) and argue about the
potential progress of the message along this path.
Conceptually, the path p(a) consists in segments

p(a) = 〈pF1 (a), pS1 (a), pF2 (a), pS2 (a), . . . , pFq (a), pSq (a)〉 ,

where each pFi (a) is a segment consisting of fast transmission
edges (i.e., edges leading from parent(v) to v of the same
rank) and each pSi (a) is an edge (u,w) where u is a node

133

on layer Lk for some k, w is a node on layer Lk+1 and
rank(u) > rank(w). We refer to such edges (u,w) as slow
transmission edges. (Note that some of the segments pFi (a)
may be null.)
Again, we stress that in reality, the message need not fol-

low this path. Nevertheless, we may consider the “progress”
of the message along this path, by measuring the delay from
the time the message is already available at some node v on
the path p(a) to the time the message has already reached
the following node w on the path (though not necessarily
via a transmission from v). Hence conceptually, the mes-
sage progress can be viewed as traversing the path p(a) by
alternating (flipping) between chains pFi (a) of fast trans-
mission edges connecting nodes of the same rank and slow
transmission steps over edges pSi (a), connecting high rank
nodes to lower rank nodes.
Let us next describe the schedule governing these trans-

missions. During the broadcasting process the nodes in
the tree use the following pattern of transmissions. Let
rmax ≤ dlogne be the largest rank in the tree. Consider
a node v of rank 1 ≤ j ≤ rmax on BFS layer Li with a child
w of the same rank at the next BFS layer. Then v is set to
perform a fast transmission to w in time steps t satisfying
t ≡ i + 6j (mod 6rmax). Observe that in real terms, v will
perform such a fast transmission exactly once, on the first
appropriate time slot after it receives the message for the
first time. The slow transmissions at the BFS layer Li are
performed in time steps t satisfying t ≡ i+3 (mod 6). Note
that this pattern of transmissions separates the fast and the
slow transmissions at any BFS layer by three units of time.
Thus there are no collisions between the fast and the slow
transmissions at the same BFS layer. The pattern also en-
sures that at any time step, transmissions are performed on
BFS layers at distances that are multiples of 3 apart. Thus
there will be no conflicts between transmissions coming from
different BFS layers.
Note also that once the broadcast message arrives at the

first node v of a fast segment pFi (a) of the route (with a
particular rank), it may have to wait for as many as 6rmax =
O(logn) time steps, but then, when finally transmitted to
the next BFS layer, it will be forwarded through the fast
segment pFi (a) without further delays.
Once reaching the end node u of the fast segment pFi (a),

the message has to be transmitted from some node on u’s
BFS layer to the next node w on p(a), which is of lower rank,
using a slow transmissions mechanism. For slow transmis-
sions, algorithm B uses the O(log2 n) transmission Proce-
dure CW proposed by Chlamtac and Weinstein in [5]. Pro-
cedure CW allows to move uniform information from one
partition of a bipartite graph of size n (here, an entire BFS
layer Lj of the tree) to the other (here, the next layer Lj+1)
in time O(log2 n). The slow transmission mechanism based
on Procedure CW is run repeatedly in a periodic manner
at every BFS layer of the tree. In particular, at any BFS
layer, the steps of the slow transmission procedure CW are
performed in every 6th step of the broadcasting schedule.
Hence, suppose the broadcast message traversing towards

any destination a in the tree has reached a node u of BFS
layer Lj on its path p(a), such that the next edge (u,w)
on the path is a slow transmission edge. It is possible that
neither u nor any other neighbor of w on BFS layer Lj par-
ticipates in the current activation of procedure CW on Lj
(possibly because neither of those nodes had the message at

the last time the procedure was activated). Nevertheless, u
will participate in the next activation of procedure CW on
BFS layer Lj , which will be started within at most O(log2 n)
time (namely, the time required for the current activation
to terminate). Moreover, it is guaranteed that by the time
that activation of procedure CW terminates, w will have the
message (although it may get it from any of its neighbors in
Lj , and not necessarily directly from u). Hence this entire
stage can be thought of as a slow transmission operation
on the edge (u,w), taking a total of at most O(log2 n) time
steps.
Thus the total time required for the broadcast message to

reach a leaf a in the tree can be bounded as follows. Let Di,
for 1 ≤ i ≤ rmax, denote the length of pF (a), the ith fast
segment of the route p(a) used by the broadcast message
that has reached a. Thus the time required to communicate
a is bounded by O(logn)+D1+. . .+O(logn)+Drmax ≤ D+
O(log2 n) for the fast transmissions plus rmax · O(log2 n) =
O(log3 n) for the slow transmissions, yielding a total of D+
O(log3 n).

Theorem 3.1. There exists a deterministic polynomial
time algorithm that constructs, for any n node radio net-
work of diameter D, a broadcasting schedule of length D +
O(log3 n).

We replace now Procedure CW with the following ran-
domized procedure RCW . Procedure RCW works for a
block of dlogne rounds, and is activated repeatedly in a pe-
riodic manner every block of K = dlogne rounds at every
BFS layer Lj of the tree. At the beginning of each block
on layer Lj of the tree, the nodes of Lj that have a copy of
the message join the activation and participate in the pro-
cedure. (Nodes that get the message during the time block
will join the process only in the next activation and after.)
Each participating node v in each round 1 ≤ i ≤ K decides
whether to transmit the message randomly and uniformly
with probability 1/2i. We observe the following.

Claim 3.2. Consider an uninformed node w in Lj+1. Sup-
pose that at the beginning of the current activation of pro-
cedure RCW , w has some informed neighbors on layer Lj.
Then w will get the message during the current activation
of procedure RCW with constant probability p ≥ 1/(4e).

Proof. Let d(w) denote the number of informed neighbors
w has on layer Lj at the beginning of the current activation.
Let 1 ≤ i ≤ K be an integer satisfying 2i−1 < d(w) ≤ 2i.
Then in step i of the activation, w will get the message with
probability

p ≥ d(v) · 1
2i
·
(

1− 1

2i

)d(w)−1

> 2i−1 · 1
2i
·
(

1− 1

2i

)2i−1

>
1

2
·
(

1− 1

2i

)

· 1
e
>

1

4e
.

Now consider an arbitrary node v in the graph, and con-
sider the path along which it is supposed to get the message
from the root. This path is divided into “fast segments”
and “slow steps” as discussed above. As argued, the fast
segments require D + O(log2 n) steps. We now claim that
the total number of time cycles spent by the message for

134

the slow steps on its way to v is at most O(log2 n) as well.
More precisely, we argue that with high probability, the mes-
sage will participate in at most O(logn) activations of proce-
dure RCW . To see this, note that each participation of the
message in an activation of procedure RCW succeeds (i.e.,
the message crosses from its current node to the next node
on the path to v) independently with constant probability
p ≥ 1/(4e). Hence, letting X be a random variable denot-
ing the number of successes of the message during 24eK
participations in procedure RCW , the expected value of X
is µ = 6K. Clearly, the message arrives at v after at most
K = dlogne successes. By Chernoff’s bound, the probability
Pfail(v) that the message will not reach v after 24eK par-
ticipations in procedure RCW can be bounded from above
by

Pfail(v) ≤ P (X < K) = P (X < (1− 5/6)µ)

< exp

(

−1

2

(

5

6

)2

µ

)

< n−2 .

Subsequently, the probability that for some vertex v in G,
the message will require more than 24eK participations in
procedure RCW until it reaches v, is smaller than 1/n. We
thus have the following result.

Theorem 3.3. There exists a randomised algorithm that
for any known topology of n node radio network of diameter
D and any source node s, following a polynomial preprocess-
ing stage, broadcasts a message from s with high probability
in time D +O(log2 n).

Corollary 3.4. For any known topology n nodes radio
network of diameter D, there exists a broadcasting schedule
of length D +O(log2n).

1 1 1 1

1 1 1

1

111

1 1 1 1

111 1

1 1 1

12

2

2

2

3 3

3

3

33

4

2

11

PSfrag replacements

S1(b)

D1(b)

S1(a)

S2(a)

S3(a)

D1(a)

D2(a)

D3(a)

ba

slow
fast

Figure 4: An example of broadcasting schedule

4. ASYMPTOTICALLY OPTIMAL RA-
DIO BROADCAST ON PLANAR GRAPHS

In this section we sketch an algorithm for constructing a
transmission schedule for performing broadcast from a given
source s on a known planar radio network G in asymptoti-
cally optimal O(D) time. The schedule consists of D phases,
each of up to 3 rounds, where the ith phase involves trans-
mitting the message to the vertices at distance i from the
source s. Layering the graphG by distance from s, let Lp de-
note the set of vertices at distance p from s. The first phase
of the schedule consists of a single round where only s trans-
mits, and by the end of this round, all the vertices of L1 are
informed. Assuming all the vertices of layer U = Lp−1 are

informed, let us now describe the algorithm for construct-
ing the sub-schedule of phase p, designed to inform all the
vertices of D = Lp.
The algorithm starts with a preprocessing stage, whose

purpose is to construct a bipartite graph consisting only of
the nodes of the two layers U and D and the edges connect-
ing them. All the layers below D in the original graph are
discarded, and all the layers above U in the original graph
are replaced by a star connecting the source s to the nodes
of layer U . See Figure 6(b) for the intended final output of
the preprocessing stage.
The preprocessing stage operates in a number of sub-

stages. Let us start by constructing a planar embedding
of G with s at the top (on the outer face) and all other
vertices below it. Erase from the graph all the vertices of
layers Lj for j > p and their edges, as well as all the edges
connecting vertices of D. In the resulting graph, each vertex
of D is connected only to vertices of U . Now mark on the
graph a shortest paths tree T rooted at s and leading to all
the vertices of U . The leaves of this tree are precisely the
vertices of U . An example outcome of this process is illus-
trated in Figure 5(a). Next, erase from the graph all the

(a) (b)

s s

Figure 5: Example: Phase p=4, where the vertices of layer
U = L3 (plain hollow circles) must transmit to the vertices of
layer D = L4 (solid circles). Bold hollow circles are vertices
of layers L1 and L2. (a) Bold lines mark the edges of the
tree T leading from s to layer U . (b) Picture after removal of
irrelevant vertices and edges from layers L1 and L2. Bold lines
mark the edges connecting U to L.

vertices of layers other than D and U that do not partici-
pate in this tree. An outcome of this process is illustrated
in Figure 5(b).
Next, we replace the tree T by a star connecting s directly

to the vertices of layer U . To see that this transformation
does not affect the planarity of the graph, observe that it
can be done by gradually contracting edges in the tree T and
gluing together adjacent vertices while moving the vertices
on the plane so as to preserve the planarity of the embed-
ding. The outcome of this on the graph of Figure 5(b) is
illustrated in Figure 6(a).
Next, we modify the embedding so that the vertices of

layer U occur on a straight horizontal line and the vertices
of layer D occur below this line. For our example, this yields
the embedding depicted in Figure 6(b).
We now assign depth values to the vertices of D. This is

done recursively as follows. Let d = 1. Assign each vertex
v ∈ D on the outer face a depth value depth(v) = d. Now
erase all the vertices of D on the outer face and their edges,
and increase d by 1. If D is still nonempty then recurse.

135

s s

D

D

D

D
U

(a) (b)

4

3

2

1

Figure 6: (a) Transforming the shortest paths tree T from s
to the vertices of U into a star. (b) The embedding with the
vertices of U on a straight line.

The depth values partition the set D into subsets D` for
` ≥ 1 such that D` contains all the D vertices of depth `.
The resulting depth values and sets D` for our example are
depicted in Figure 6(b).
For each vertex v ∈ D, denote its leftmost U neighbour

by left(v), its rightmost U neighbour by right(v), and the
list of its remaining neighbours (if any) by rest(v), taken
from left to right. Also, order the vertices of each set D` as
an ordered list going from left to right consistently with the
order of their U neighbours, i.e., so that v1 occurs to the left
of v2 if right(v1) is the same as or to the left of left(v2).
Finally, the schedule is defined as follows. The three time

slots of the current phase p are t1 = 3p − 4, t2 = 3p − 3
and t3 = 3p − 2. The procedure operates in stages, where
stage ` constructs the part of the schedule responsible for
informing the depth ` vertices of D. In particular, stage
` starts with the depth 1 vertices, kept in the ordered list
D1 = 〈v1, . . . , vk〉. Construct the ordered list of “breakpoint
vertices”

B = 〈left(v1), right(v1), . . . , left(vk), right(vk)〉.

Note that some of the vertices in this list may coincide,
namely, right(vi) may equal left(vi+1) for some i’s, in
which case only one copy is kept in the list B. Assign time
slots t1 and t2 alternately to the vertices of the list B. Next,
for each vi with nonempty list rest(vi), assign time slots to
the vertices of that list as follows. If left(vi) was assigned
the time slot t1 (hence right(vi) was assigned the time slot
t2), then assign the time slots t3 and t1 alternately to the
nodes of rest(vi) from left to right. Similarly, if left(vi)
was assigned the time slot t2 (and right(vi) was assigned
the time slot t1), then assign the time slots t3 and t2 al-
ternately to the nodes of rest(vi) from left to right. See
Figure 7(a) for an illustration. Observe that at this point in

s

1 3 1 2 3 1 1

s

3 1
A B

(a) (b)

3 222

Figure 7: (a) Assigning transmission times to depth 1 vertices
of D. (Here i represents time slot ti for i = 1, 2, 3.) (b) As-
signing transmission times to depth 2 vertices of D connected
to U vertices between A and B.

time, for every vertex v ∈ D1, we have the following prop-

erties. First, all the U neighbours of v have been assigned
a time slot. Second, this assignment ensures that v gets the
message at some time slot among {t1, t2, t3}. Third, letting
Uassigned denote the list of U vertices that have already been
assigned time slots, ordered from left to right, we have the
property that every two consecutive vertices in Uassigned are
assigned different time slots.
Let us now describe stage ` ≥ 2, showing how to assign

time slots to some U neighbours of vertices in D` so as to
ensure that they get the message during the current phase.
The inductive hypotheses we rely on at the beginning of
stage ` are the following:

(P1) At the end of stage `−1, all the neighbours of vertices
of Dk for k < ` were already assigned time slots,

(P2) these previously made assignments ensure that all the
vertices of Dk for k < ` receive the message during the
phase, and

(P3) at the end of stage `−1, every two consecutive vertices
in Uassigned are assigned different time slots.

Consider some vertex v ∈ D`. Let A be the rightmost U
vertex to the left of left(v) that has already been assigned
a time slot tA previously. (A can possibly be left(v) it-
self.) Similarly, let B be the leftmost U vertex to the right
of right(v) (possibly right(v) itself) that has already been
assigned a time slot tB previously. (See Figure 7(b), where
the assigned time slots are tA = t3 and tB = t1 respectively.)
Note that left(v) and right(v) may have already been as-
signed a time slot previously, but the vertices of rest(v) (if
any exist) are necessarily still unassigned at the beginning of
stage `. Moreover, if both left(v) and right(v) have been
assigned a time slot previously (in which case A = left(v)
and B = right(v)), then these time slots must be different
by the inductive hypothesis (P3), as A and B occur consec-
utively in Uassigned.
Now assign time slots to all unassigned U neighbours of

v as follows. Let tC ∈ {t1, t2, t3} be a time slot different
from tA and tB . Go over the unassigned U neighbours of v
from left to right, and assign them the time slots tC and tA
alternately. See Figure 7(b).
Note that once this is done, the inductive hypotheses are

guaranteed for v, namely, (P1) all the neighbours of v are
already assigned time slots, (P2) v is ensured to receive
the message during the current phase, and (P3) every two
consecutive vertices in Uassigned are assigned different time
slots.
The final assignment of time slots for layer U vertices in

our example graph is depicted in Figure 8. By the fact
that the inductive hypotheses are maintained throughout
the process of assigning time slots to the vertices of U , it is
clear that the resulting 3-round schedule ensures that all the
vertices of D receive the message by the end of the phase.
We have the following.

Theorem 4.1. Given a known planar radio network G
of diameter D and a source vertex s in G, it is possible to
construct (in polynomial time) a transmission schedule for
performing broadcast from s in O(D) time (which is asymp-
totically optimal).

136

s

1 3 1 2 3 1 2 12 1 21 23 2 3 22

Figure 8: Final assignment of transmission times in D.

5. CONCLUSION
We proposed here new efficient (polynomial time) con-

struction of the deterministic schedule that performs the
gossiping task in radio networks in time O(D + ∆ logn).
The solution is based on the new concept of the gathering
spanning tree. The new gossiping schedule is asymptotically
optimal if ∆ = O(D

logn). Unfortunately, when ∆ is larger,
our schedule might be far from being optimal. Though it
provides the best known upper bound for all ∆ = O(n

logn).
The search for the optimal deterministic gossiping schedule
for a wider classes of graphs remains the main unsolved prob-
lem here. The evident open problem regarding broadcast is
whether there exists a deterministic broadcast schedule of
time O(D + log2 n) for any n-node graph G of diameter D.

6. REFERENCES
[1] B. Awerbuch and D. Peleg. Sparse partitions. Proc.

31st Symp. on Foundations of Computer Science,
1990, pp. 503-513.

[2] N. Alon, A. Bar-Noy, N. Linial and D. Peleg. A lower
bound for radio broadcast. J. Computer and System
Sciences 43, (1991), 290 - 298.

[3] R. Bar-Yehuda, O. Goldreich and A. Itai. On the time
complexity of broadcasting in radio networks: an
exponential gap between determinism and
randomization. Proc. 5th Symp. on Principles of
Distributed Computing, 1986, 98 - 107.

[4] I. Chlamtac and S. Kutten. On broadcasting in radio
networks-problem analysis and protocol design. IEEE
Trans. on Communications 33, (1985), pp. 1240-1246.

[5] I. Chlamtac and O. Weinstein. The wave expansion
approach to broadcasting in multihop radio networks.
Proc. Proc. INFOCOM, 1987.

[6] M. Christersson, L. Gąsieniec and A. Lingas.
Gossiping with bounded size messages in ad-hoc radio
networks. Proc. 29th Int. Colloq. on Automata,
Languages and Programming, 2002, pp. 377-389.

[7] M. Chrobak, L. Gąsieniec and W. Rytter, Fast
broadcasting and gossiping in radio networks. J. of
Algorithms 43(2), (2002), pp. 177-189.

[8] T.H. Cormen, C.E. Leiserson and R.L. Rivest.
Introduction to Algorithms. MIT Press, 1990.

[9] A. Czumaj and W. Rytter. Broadcasting algorithms in
radio networks with unknown topology. Proc. 44th
Symp. on Foundations of Computer Science, 2003, pp.
492-501.

[10] K. Diks, E. Kranakis and A. Pelc. The impact of
knowledge on broadcasting time in radio networks.
Proc. 7th European Symp. on Algorithms, 1999, pp.
41-52.

[11] M. Elkin and G. Kortsarz. Polylogarithmic
inapproximability of the radio broadcast problem.
Proc. APPROX, 2004, LNCS 3122.

[12] M. Elkin and G. Kortsarz. Improved broadcast
schedule for radio networks. Proc. 16th ACM-SIAM
Symp. on Discrete Algorithms, 2005.

[13] I. Gaber and Y. Mansour. Broadcast in radio
networks. Proc. 6th ACM-SIAM Symp. on Discrete
Algorithms, 1995, pp. 577-585.

[14] L. Gąsieniec and A. Lingas. On adaptive deterministic
gossiping in ad hoc radio networks, Information
Processing Letters 2(83), 2002, pp. 89-94.

[15] L. Gąsieniec, E. Kranakis, A. Pelc and Q. Xin.
Deterministic M2M multicast in radio networks. Proc.
31st Int. Colloq. on Automata, Languages and
Programming, 2004, LNCS 3142, pp. 670-682.

[16] L. Gąsieniec and I. Potapov, Gossiping with unit
messages in known radio networks. Proc. 2nd IFIP
Int. Conference on Theoretical Computer Science,
2002, pp. 193-205.

[17] L. Gąsieniec, I. Potapov and Q. Xin. Efficient
gossiping in known radio networks. Proc. 11th Int.
Colloq. on Structural Information and Communication
Complexity, 2004, LNCS 3104, pp. 173-184.

[18] L. Gąsieniec, T. Radzik and Q. Xin. Faster
deterministic gossiping in ad-hoc radio networks.
Proc. 9th Scandinavian Workshop on Algorithm
Theory, 2004, LNCS 3111, pp. 397-407.

[19] D. Kowalski and A. Pelc. Centralized deterministic
broadcasting in undirected multi-hop radio networks.
Proc. APPROX, 2004, LNCS 3122, pp. 171-182.

[20] D. Liu and M. Prabhakaran. On randomized
broadcasting and gossiping in radio networks. Proc.
8th Int. Conf. on Computing and Combinatorics,
2002, pp. 340-349.

[21] A. Sen and M.L. Huson. A new model for scheduling
packet radio networks. Proc. 15th Joint Conf. of IEEE
Computer and Communication Societies, 1996, pp.
1116-1124.

[22] P.J. Slater, E.J.Cockayne and S.T. Hedetniemi.
Information dissemination in trees. SIAM J. on
Computing 10, (1981), pp. 892–701.

[23] A.N. Strahler. Hypsometric (area-altitude) analysis of
erosional topology. Bull. Geol. Soc. Amer. 63, (1952),
pp. 117–1142.

[24] X.G. Viennot. A Strahler bijection between Dyck
paths and planar trees. Discrete Mathematics 246,
(2002), pp. 317–329.

[25] Y. Xu. An O(n1.5) deterministic gossiping algorithm
for radio networks. Algorithmica, 36(1), (2003), pp.
93–96.

137

