
HAL Id: inria-00354248
https://inria.hal.science/inria-00354248

Submitted on 19 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The k-simultaneous consensus problem
Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, Corentin Travers

To cite this version:
Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, Corentin Travers. The k-simultaneous
consensus problem. [Research Report] PI 1920, 2009, pp.17. �inria-00354248�

https://inria.hal.science/inria-00354248
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1920

THE K-SIMULTANEOUS CONSENSUS PROBLEM

Y. AFEK E. GAFNI S. RAJSBAUM M. RAYNAL C. TRAVERS

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

The k-simultaneous consensus problem

Y. Afek* E. Gafni** S. Rajsbaum*** M. Raynal**** C. Travers*****

Systèmes communicants
Projet ASAP

Publication interne n ˚ 1920 — Janvier 2009 — 15 pages

Abstract: This paper introduces and investigates the k-simultaneous consensus problem: each process
participates at the same time in k independent consensus instances until it decides in any one of them. Two
results are presented. The first shows that the k-simultaneous consensus problem and the k-set agreement
problem are wait-free equivalent in read/write shared memory systems. The second shows that the multi-
valued version and the binary version of the k-simultaneous consensus problem are wait-free equivalent.
These equivalences are independent of the number of processes. An immediate consequence of these results
is that the k-set agreement problem and the k-simultaneous binary consensus problem are equivalent. This
not only provides a new characterization of the k-set agreement problem but also provides a meaning to the
notion of k-set binary agreement.

Key-words: Asynchronous shared memory systems, Binary vs multivalued agreement, Consensus, Dis-
tributed computability, Process crash, Set agreement, Wait-free construction.

(Résumé : tsvp)

* Computer Science Department, Tel-Aviv University, Israel 69978. afek@math.tau.ac.il.
** Department of Computer Science, UCLA, Los Angeles, CA 90095, USA, eli@cs.ucla.edu.

*** Instituto de Matemáticas, UNAM, D. F. 04510, Mexico. rajsbaum@math.unam.mx.
**** Université de Rennes 1, IRISA, Campus de Beaulieu, 35042 Rennes, France, raynal@irisa.fr.

***** Computer Science Department, The Technion, Haifa, Israel, travers@gmail.fr.

A preliminary draft of this paper has been presented at the conference ICDCN’06 [2].

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Le problème du consensus simultané avec k instances

Résumé : Ce rapport introduit et analyse le problème du consensus simultané avec k instances.

Mots clés : Accord ensembliste, Calculabilité distribuée, Consensus binaire, Consensus multivalué, Crash
de processus, Mémoire partagée, Synchronisation sans attente, Système asynchrone.

The k-simultaneous consensus problem 3

1 Introduction

Context and motivation of the paper The consensus problem is one of the most basic coordination
problems in distributed systems. Assuming each process proposes a value, it requires that (1) each non-faulty
process decides on a value (termination) in such a way that (2) there is a single decided value (agreement),
and (3) the decided value is one of the proposed values (validity). Unfortunately, this problem has no solution
in asynchronous systems as soon as even only one process may crash, be the system a shared memory system
[18] or a message passing system [10].

One way to weaken the consensus problem is to allow several different values to be decided. This ap-
proach has given rise to the k-set agreement problem where up to k different values can be decided [7].
While this problem (sometimes also called k-set consensus) can be solved despite asynchrony and process
failures when k > t (where t is the maximum number of processes that can be faulty), it has been shown
that it has no solution when t ≥ k [5, 15, 22].

This paper presents and investigates another way to weaken the consensus problem. The intuition that
underlies this problem, called here scalar k-simultaneous consensus, is “win one out of several”. More ex-
plicitly, each process proposes a value to k independent consensus instances (namely, the same value to all
these instances). It is required that every correct process decides on a value in only one consensus instance.
So, a process decides on a pair composed of a value and a consensus instance number. Two processes can
decide on two different pairs; however if they decide on the same consensus instance they also decide on the
same value (that has been proposed by one of the processes)1 . We also consider an equivalent vector version
of the k-simultaneous consensus, where, each process proposes k possibly different values, one value to
each of the k independent consensus instances. Again a process decides on a pair composed of a value and a
consensus instance number. Two processes can decide on two different pairs; if they decide on the same con-
sensus instance they also decide on the same value (that has been proposed to that instance). It is easy to see
that the two versions of the problem, the scalar version and the vector version, are equivalent (see Section 2).

As explained in [13], simultaneous consensus can be useful in situations where several processes partic-
ipate concurrently in k different applications: a k-simultaneous consensus solution can guarantee wait-free
progress in at least one application2 . Indeed, recently this problem has been instrumental in determining the
weakest failure detector for wait-free solving the (n−1)-set agreement problem in asynchronous read/write
shared memory systems made up of n processes [23] (wait-free means that the solution has to cope with any
number of process failures [14]). More generally, the simultaneous consensus problem captures the situa-
tions where a process has to decide in any one of several consensus instances. Moreover, in addition to its
possible applications, various interesting generalizations are fairly natural, namely, each consensus instance
can be instead some other agreement problem, for example a `-set agreement instance (the Conclusion
section discusses this specific case).

Content of the paper This paper originated from the following questions.
• The first question addresses the relation between the k-set agreement problem and the k-simultaneous

consensus problem. While, given a solution to the k-simultaneous consensus problem, it is easy to
solve the k-set agreement problem, what about the other direction? Said in another way, are these
problems equivalent or not?

1Let us notice that the words “simultaneous consensus” have been used with a different meaning in round-based synchronous
systems. In these systems, they mean that all the processes that participate in a consensus instance have to terminate during the
very same round [8, 9].

2The k-simultaneous problem is close but different from the BG simulation [5, 6]. Here each process systematically participates
in k concurrent consensus. In the BG simulation, a process participates in a new agreement only if it is blocked in the previous one.

PI n ˚ 1920

4 Y. Afek & E. Gafni & S. Rajsbaum & M. Raynal & C. Travers

The paper answers this question positively by showing that they are indeed equivalent. To that end,
it presents a wait-free transformation that, given a k-set agreement object, builds a k-simultaneous
consensus object.

• The second question concerns the relation between the k-simultaneous multivalued consensus and its
binary counterpart. More precisely, while it is known that multivalued consensus and binary consensus
are equivalent (e.g., [21]), what about k-simultaneous multivalued consensus and k-simultaneous
binary consensus? The binary version of the problem is a simple case of the multivalued one, but
what in the other direction?

The paper shows that the two problems are equivalent. To that end, it presents a wait-free trans-
formation, that, given k-simultaneous binary consensus objects, builds a k-simultaneous multivalued
object.

Hence, the paper shows that the k-set agreement problem and the k-simultaneous binary consensus
problem are equivalent. Thus, while k-set agreement, unlike consensus, has no binary version, the previous
equivalence provides a characterization of k-set agreement in terms of k-simultaneous binary consensus.

The origin of the problem The line of research developed in this paper originates from [12, 13]. More
precisely, first [12] investigated the musical benches problem (inspired by the musical chairs children’s
game) to model a new distributed coordination difficulty, namely, processes jump from bench to bench
trying to find one in which they may be alone or not in conflict with one another (of course, there is one
more process than benches, and each bench is made up of two places). Then, a binary version of the vector
consensus problem was introduced in [13] under the name committee decision problem (each committee
being a consensus instance). It is shown in [13] that, with binary inputs an for three processes, musical
benches, 2-set agreement and 2-simultaneous consensus are wait-free equivalent.

The results in [12, 13] have been obtained through a novel reduction technique that combines distributed
algorithmic ideas with topological intuition, but are for three processes only. The equivalence of set agree-
ment and simultaneous consensus was extended to any number of processes in [2] (which is the conference
version of this paper).

Roadmap Section 2 describes the computation model and presents the base problems we are interested
in. Then, Section 3 shows that the k-set agreement problem and the k-simultaneous consensus problem are
equivalent. Section 4 shows that the k-simultaneous multivalued consensus problem its not more powerful
than its binary counterpart. Finally, Section 5 concludes the paper.

2 Computation model and problem definitions

2.1 Computation model

Processes The system consists of an arbitrary number of processes denoted pi, pj, . . . [11, 20]. The integer
i is the identity of pi, and no two processes have the same identity. Each run is characterized by an unknown
number of participating processes. A process that participates in a run knows neither the identities of the
processes that participate in that run, nor their number.

There is no assumption on the speed of processes: they are asynchronous. Moreover, any number of
processes may crash. Before it crashes (if it ever crashes), a process executes correctly its algorithm. A
crash is a premature halt: after it has crashed, a process executes no more statement. Given a run, a process
that does not crash is correct in that run, otherwise it is faulty in that run.

Irisa

The k-simultaneous consensus problem 5

A remark on the number of processes Most distributed algorithms are designed for a set of n processes
where n is fixed and known by every process. Moreover, each process is assigned a unique identity com-
prised between 1 and n, and an algorithm can make use of both the number of processes and their identity.

Differently, the algorithms designed in this paper work with an arbitrary number of processes. Such a
situation occurs in systems that dynamically change over time. For example, a network may allow nodes
to be added or removed, or an operating system may allow processes to dynamically join, participate in
a distributed algorithm and finally leave. Algorithms for infinitely many processes (e.g. [11, 20]) have
recently received attention. Their advantages over algorithms for a fixed number of processes are significant
[3]: (1) They have no system size parameters to configure, and (as a result) they are more robust and elegant;
(2) They automatically handle crash recovery of processes (as a process that crashes and recovers can join
the algorithm simply by assuming a new identity); (3) They guarantee progress even if processes keep on
arriving (which is important in loosely-coupled systems, like peer-to-peer systems, where there is a large
number of nodes that come and go all the time).

Communication model The processes communicate through reliable multi-reader/multi-writer atomic
registers [4, 17, 19]. In addition the algorithms presented here make heavy use of the atomic snapshot
primitive [1]. This basic operation, denoted snapshot scan(A) where A is an array in the shared memory
with one entry per process, returns a copy of all the values in the array such that they were simultaneously
present in A during the snapshot operation. Therefore, if each cell in the array is written only once and values
cannot be removed, the sequence of snapshots obtained by repetitive snapshot scan(A)’s is a sequence
of growing snapshots such that each snapshot includes all the previous snapshots in the sequence: the
snapshot scan() invocations are linearizable [16] (an we say that the sequence of growing snapshots satisfies
the containment property). A wait-free snapshot algorithm that works in the case of unbounded concurrency
is described in [11].

Input values In the agreement problems we investigate, the set of input values, denote I , is totally ordered.
If I is finite, n denotes its number of elements. If I contains only two values, the agreement problem is
binary, otherwise it is multivalued. The value ⊥ is a default value that does not belong to I , and for any
non-empty subset S of I we have: min(S ∪ {⊥}) = min(S) and max(S ∪ {⊥}) = max(S) (moreover,
min({⊥}) = max({⊥}) = ⊥).

Remark All the algorithms described in the paper are given for an arbitrary process pi. Uppercase letters
are used to denote shared objects, while lowercase letters are used for local variables (these variables are
subscribed with the index of the corresponding process).

2.2 Problem definitions

The k-set agreement problem As indicated in the Introduction, the k-set agreement problem [7] is a
generalization of the consensus problem (that corresponds to the case k = 1). It is defined by the following
properties.

• Termination: each correct process decides on a value.

• Validity: a decided value is a proposed value.

• Agreement: at most k different values are decided.

As for all the problems considered in this paper, the termination property requires a solution based on
wait-free algorithms [14]: a correct process has to terminate regardless of the number of faulty processes.

PI n ˚ 1920

6 Y. Afek & E. Gafni & S. Rajsbaum & M. Raynal & C. Travers

It is important to notice that, while the binary consensus problem is meaningful, the binary k-set agree-
ment problem is meaningless when k > 1.

Let KSA be an object that solves the k-set agreement problem. It provides the processes with a single
operation denoted KSA.set proposek(). That operation takes a proposed value as input parameter, and
returns a decided value.

The k-simultaneous consensus problem Both (the scalar and the vector) versions of the k-simultaneous
consensus problem consists of k independent instances of the consensus problem where a process is required
to decide in one of them. (The 1-simultaneous consensus problem boils down to the consensus problem.)
More precisely, in the scalar version, process pi proposes the same value vi to each of the consensus in-
stances. In the vector version, process pi proposes a vector [v1

i , · · · , vk
i] where vc

i is the value it proposes
to the c’s consensus instance (1 ≤ c ≤ k). Each process decides on a pair (c, d) where c is a consensus
instance and d is a value. The problem is defined by the following properties.

• Termination: each correct process decides on a pair.

• Validity: if a process pi decides (c, d), then c is a consensus instance (i.e., 1 ≤ c ≤ k), and d is a value
that has been proposed to that consensus instance.

• Agreement: if two processes decide (c, d) and (c, d′), then d = d′.

Let KSC be an object that solves the k-simultaneous consensus problem. It provides the processes with
a single operation denoted KSC .sc proposek(). In the scalar version that operation takes as input parameter
the process input value, and in the vector version it takes a vector with k proposed values (one for each
consensus instance), and returns a pair (c, d). In the case of a binary k-simultaneous consensus object, the
operation is denoted bin sc proposek() and all the input values are binary.

2.3 Problems equivalence

For comparing two problems we use wait-free constructions. Namely, for problems A,B, we say that “A
can implement B” if there is a wait-free algorithm C that has access to any number of copies of A objects
(in addition to read/write atomic registers) and solves the problem B; we say the algorithm C implements
a B object. If A and B implement each other, the problems are said to be equivalent. All the constructions
described in the paper are wait-free and work for an arbitrary number of processes.

2.4 The scalar version and the vector version are equivalent

It is easy to see that the vector version and the scalar version are equivalent, i.e., can implement each other.
To implement the scalar version from the vector version process pi proposes a size k vector [vi, . . . , vi]. The
algorithm described in Figure 1 implements the vector version from the scalar version. A process p i executes
sequentially the following statements: (1) it first publishes its vector in the shared memory (represented by
an array denoted INPUT with one entry per process); (2) then, pi proposes its identity i to the underlying
scalar version of the k-simultaneous consensus problem and obtains a pair (ci, j) finally, (3) pi decides on
the pair (c, res) where res is the value in INPUT [j][ci] (i.e., the value proposed by pj to the ci-th consensus
instance). The prof is easy and left to the reader.

3 k-Set agreement vs k-simultaneous consensus

This section shows that the k-set agreement problem and the scalar k-simultaneous consensus problem are
equivalent. To that end it presents two wait-free constructions, one in each direction. Both constructions are
independent on the number of processes.

Irisa

The k-simultaneous consensus problem 7

operation KSC .sc propose
k
(v1

i , . . . , vk

i): % vector version %
(01) INPUT [i]← [v1

i , · · · , vk

i];
(02) < ci, j >← KSC .sc propose

k
(i); % scalar version %

(03) let di = INPUT [j][ci];
(04) return(ci, di).

Figure 1: k-Simultaneous consensus: from the scalar version to the vector version

3.1 From scalar k-simultaneous consensus to k-set agreement

A pretty simple wait-free algorithm that builds a k-set agreement object (denoted KSA) on top of a k-
simultaneous consensus object (denoted KSC) is described in Figure 2. The invoking process pi calls the
underlying object KSC with its input to the k-set agreement as input, and obtains a pair (ci, di). It then
returns di as the decision value for its invocation of KSA.set proposek(vi).

operation KSA.set propose
k
(vi):

(01) (ci, di)← KSC .sc propose
k
(vi);

(02) return(di).

Figure 2: From scalar k-simultaneous consensus to k-set agreement

Lemma 1 The algorithm described in Figure 2 is a wait-free construction of a k-set agreement object from
a scalar k-simultaneous consensus object.

Proof The proof is immediate. The termination and validity of the k-set agreement object follow directly
from the code and the same properties of the underlying k-simultaneous consensus object. The agreement
property follows from the fact that at most k values can be decided from the k consensus instances of the
k-simultaneous consensus object. 2Lemma 1

3.2 From k-set agreement to scalar k-simultaneous consensus

A wait-free algorithm that constructs a scalar version k-simultaneous consensus object KSC from a k-set
agreement object KSA is described in Figure 3.

operation KSC .sc propose
k
(vi):

(01) dvi ← KSA.set propose
k
(vi);

(02) SM [i]← dvi;
(03) snapi ← snapshot scan(SM);
(04) let ci = |snapi|; let di = minimum value in snapi;
(05) return(ci, di).

Figure 3: From k-set agreement to scalar k-simultaneous consensus

In the algorithm, the processes first go through a k-set agreement object to reduce the number of distinct
values to at most k (line 01). Then, each process pi (1) posts the value it has just obtained in the cell SM [i]

PI n ˚ 1920

8 Y. Afek & E. Gafni & S. Rajsbaum & M. Raynal & C. Travers

of the shared memory (initialized to ⊥), and (2) takes a snapshot of the whole shared memory (line 03).
Finally, a process pi returns the pair (ci, di) where the consensus instance ci is defined as the number of
distinct values in the snapshot returned to pi, and di is the minimum value in that snapshot.

Lemma 2 The algorithm described in Figure 3 is a wait-free construction of a scalar k-simultaneous con-
sensus object from a k-set agreement object.

Proof The code in Figure 3 is wait-free since there are no loops and both the k-set agreement and the
snapshot operations are wait-free. The validity follows from the fact that all the values in the algorithm
originate from process inputs.

Since the snapshots by the different processes define a linearizable sequence ordered by containment,
they also define a growing sequence when we consider the size of the snapshots returned to the processes.
Therefore, there is a unique set of values contained in each snapshot size and hence the minimum value in
each snapshot size is unique. Thus there are at most k distinct snapshot sizes, each with its unique minimum
value. Hence, there are at most k distinct outputs returned and any two processes that return a pair with
the same snapshot size (same first coordinate) have the same value associated with it, which proves the
agreement property of the k-simultaneous consensus. 2Lemma 2

3.3 A first equivalence

Theorem 1 The k-set agreement problem and the scalar k-simultaneous consensus problem are wait-free
equivalent in read/write shared memory systems made up of an arbitrary number of processes. Moreover,
this equivalence is independent of the number of values that can be proposed.

Proof The proof of the equivalence follows directly from Lemmas 1 and 2. The fact that this equivalence
is independent of n follows from a simple examination of the text of the algorithms, where n never appears.

2Theorem 1

4 Binary vs multivalued k-simultaneous consensus

The operation bin sc proposek() is trivially a particular instance of the sc proposek() operation: it corre-
sponds to the case where only two values can be proposed (|I| = 2). This section focuses on the trans-
formation in the other direction. Assuming |I| is bounded and n = |I| is known to the processes, this
section describes an algorithm that implements the scalar multivalued sc proposek() operation from atomic
registers and binary vector simultaneous consensus objects. Let us observe that, while every process knows
n, none of them knows initially the values that define the set I (but the value it proposes).

4.1 A modular construction

The main construction presented in the next subsection builds an intermediary object, that we call a restricted
`-simultaneous consensus object. The aim of such an object is to reduce by one the number of proposed
values. More precisely, assuming that at most ` + 1 different values are proposed by the processes, this
object guarantees that (1) each process decides a value, and (2) at most ` different values are decided on.
The next subsection (Section 4.2) shows how a restricted `-simultaneous consensus object can be built out
of atomic registers and a binary vector `-simultaneous consensus object.

Here we show how a cascading sequence of restricted `-simultaneous consensus objects for ` = n −
1, n − 2, . . . , k is used to construct a k-simultaneous consensus object KSC . Each restricted simultaneous

Irisa

The k-simultaneous consensus problem 9

consensus object in the sequence reduces the number of different values by one and the whole sequence
reduces |I| from n to k as described in Figure 4. Notice that a binary `-simultaneous consensus is trivially
implemented from binary k-simultaneous consensus for ` ≥ k, thus, all together we construct a multivalued
k-simultaneous consensus from binary k-simultaneous consensus.

operation KSC .sc propose
k
(vi):

(01) propi ← vi;
(02) for ` from n− 1 step −1 to k do
(03) (ci, propi)← RSC [`].rsc propose

`
(propi)

(04) end for;
(05) return(ci, propi).

Figure 4: From restricted simultaneous consensus to scalar k-simultaneous consensus

Lemma 3 The algorithm described in Figure 4 is a wait-free construction of a scalar k-simultaneous con-
sensus object from restricted `-simultaneous consensus objects, with ` = n − 1, · · · , k.

Proof The proof relies on the fact that the loop is made up of consecutive rounds. As there are initially
at most n different values proposed by the processes, it follows from the definition of the RSC [n − 1]
object that at most n − 1 of these values are returned by the invocations RSC [n − 1].rsc proposen−1()
issued by the processes. Then, the next rounds reduce the number of values to (at most) k. Finally, it
follows from the definition of the last restricted simultaneous consensus object (RSC [k]) that the invocations
RSC [k].rsc proposek() returns at most k pairs (ci, di) and those are such that 1 ≤ ci ≤ k. As for any two
pairs (ci, propi) and (cj , propj) we have (ci = cj) ⇒ (propi = propj), the agreement property follows.
The validity and (wait-free) termination properties follow directly from the text of the algorithm and the
corresponding properties of the underlying RSC [n − 1..k] objects. 2Lemma 3

4.2 Constructing a restricted `-simultaneous consensus object

Here each of an arbitrary number of processes proposes a value such that at most ` + 1 different values are
proposed and the processes decide on at most ` different pairs < ci, di >, such that 1 ≤ ci ≤ `, each di

is a value that has been proposed, and any two processes that return a pair with the same ci also return the
same di.

The wait-free algorithm constructing a restricted `-simultaneous consensus object is described in Fig-
ure 5. To reduce the number of values from ` + 1 to `, the processes go through two sequential phases
(lines 01-10, and lines 11-23). Only processes that have not decided in the first phase go into the second
phase.

In the first phase (lines 01-10) the processes go through ` stages T 1, ..., T `, each is one iteration of the
loop in lines 02-09. A pair of arrays, T1 and T2, are associated with each stage r, 1 ≤ r ≤ `; they are
denoted T1r and T2r . In each stage r, each process pi posts its initial proposal (line 03) into T1r, then takes
a snapshot of the posted proposals (line 04), then posts the snapshot in T2r shared array of snapshots (line
05), and then reads all the snapshots from T2r (line 06). If a process finds a snapshot of size 1 containing
some value vj but no snapshot of size 2 then it returns the pair < c, vj >, where c is the iteration number.
Otherwise the process adopts the minimum value of some snapshot of size 2 or more and continues to the
next iteration with this adopted value.

PI n ˚ 1920

10 Y. Afek & E. Gafni & S. Rajsbaum & M. Raynal & C. Travers

The key observation of the algorithm is that if a process has finished the ` iterations of the first phase
without deciding (i.e., without returning in line 07 during any iteration), then there are snapshots of size 2
that have been posted in all the stages of the first phase. Let us notice that, due to the minimum function
in line 08, one value is left behind in each iteration. Thus at most 2 different values arrive at the last (`-
th) iteration and, if some process did not decide in this last iteration, then the size 2 snapshot there is not
empty. The size 2 snapshot in all the other iterations is also not empty because otherwise two values would
have been left behind in one of the iterations, ensuring that all processes decide by the last iteration (See
Lemma 5).

In the second phase (lines 11-23), all the processes that have not decided in the first phase use the vector
version binary `-simultaneous consensus object to decide on one of the values in these non-empty size 2
snapshots in a way that is consistent with all the decisions that have been already made during the first
phase. For each stage of the first phase we associate the smaller value of the size 2 snapshot with 0, and
the larger with 1. If the process also sees a snapshot of size 1 in stage r, then the r-th entry in its proposed
vector is the binary value associated with the value in the size 1 snapshot (lines 14 and 15). Otherwise a
process proposes an arbitrary binary value in all the other entries of its proposed binary vector (line 16).
This ensures that a value that has been decided by some process during the stage r of the first phase will be
the value proposed by all the processes that enter the second phase.

Finally, the binary `-simultaneous consensus object is used (line 19) to decide on one of the values in
these size 2 snapshots (T2r[2]) and the algorithm terminates.

operation KSC .rsc propose
`
(vi):

(01) esti ← vi;
(02) for r from 1 to ` do
(03) T1r[i]← esti;
(04) si ← snapshot scan(T1r);
(05) T2r[|si|]← si;
(06) for j from 1 to ` + 1 do ss[j]← T2r[j] end for;
(07) if (ss[1] = {v} 6= ⊥) ∧ (ss[2] = ⊥) then return(r, v)
(08) else esti ← min(ss[x]) for some x such that (ss[x] 6= ⊥ ∧ x ≥ 2)
(09) end if ;
(10) end for;
(11) for each r ∈ {1, · · · , `} do
(12) let vm be the smallest value in T2

r [2];
(13) let vM be the largest value in T2

r [2];
(14) case (T2

r [1] = {vm}) then propi[r]← 0
(15) (T2

r [1] = {vM}) then propi[r]← 1
(16) else propi[r]← 0 or 1 arbitrarily
(17) end case
(18) end for;
(19) (ci, deci)← BSC [`].bin sc propose

`
(propi); % vector version %

(20) if (deci = 1) then di ← max(T2
ci [2])

(21) else di ← min(T2
ci [2])

(22) end if;
(23) return(ci, di).

Figure 5: From binary `-simultaneous consensus to restricted `-simultaneous consensus

The rest of this section formalizes the previous intuitive presentation by proving that the algorithm
described in Figure 5 implements a restricted `-simultaneous consensus object.

Irisa

The k-simultaneous consensus problem 11

Each cell of the shared array T1r is written at most once. It is then read through snapshot scan()
operations, and the returned snapshots are posted in T2r . Thus, the sets of values associated with each
snapshot form a growing sequence and each set contains all previous sets in the sequence. Hence,

Lemma 4 For every r, 1 ≤ r ≤ `, for every x ≥ 1, at most one set of values of size x is written in T2r[x]
by the processes.

The following lemma establishes that if a process does not decide in the first phase, a snapshot of size 2
has been posted in each stage r, 1 ≤ r ≤ ` when the process starts the second phase.

Lemma 5 In the second phase (Lines 11-23), for every r, 1 ≤ r ≤ `, each read of T2r[2] returns a non-⊥
value.

Proof Let pi be a process that does not decide in the first phase and starts executing the second phase. Let
us assume for contradiction that the lemma is false. This means that, while pi is executing the second phase
of the protocol, a read of T2R[2] for some R, 1 ≤ R ≤ ` returns ⊥. We show that pi would have to decide
in the first phase at line 07 : a contradiction.

Write, read and snapshot scan() operations are linearizable. Let τ be the linearization point of the read
of T2R[2] issued by pi that returns ⊥. Since no process writes ⊥ in T2R[2], every read of T2R[2] linearized
before τ must return ⊥.

For every r, 1 ≤ r ≤ ` + 1, let I[r] be the set of values proposed to the r-th iteration in the first phase
of the protocol. A value v is proposed to iteration r if v is written in some entry of T1r. We claim that for
every r, 1 ≤ r < `, |I[r] − I[r + 1]| ≥ 1, i.e., each iteration eliminates at least one initial value (Claim C).
Since at most `+1 values are initially proposed, Claim C implies that at most `+1− (R− 1) = `−R + 2
values can be written in T1R. Assuming Claim C (which is proved in the sequel) we consider below the
prefix of the execution that ends at time τ . The proof is divided in two cases according to the value of R.

• R = `. Following Claim C at most two values are written in T1`, no snapshot of size ≥ 3 can be
posted in T2`. Process pi executes iteration R before time τ . In particular, its read of T2`[2] returns
⊥. It then follows from the code that the snapshot of T1` by pi contains a single value, from which
we conclude that pi decides at Line 07 since it observes no posted snapshot of size ≥ 2 in T2`.

• R < `. Each value written in T1R+1 is the smallest value in some snapshot of size ≥ 2 that have been
posted in T2R. We know that at most (` + 1) − (R − 1) values are written in T1R. Therefore, no
snapshot of size ≥ (` + 1) − (R − 1) is posted in T2R. Moreover, before τ , no snapshot of size 2 is
observed.

Furthermore, it follows from Lemma 4 that for every x, 2 ≤ x ≤ (` + 1) − (R − 1), at most one
snapshot of size x can be observed in T2R. Finally, since each snapshot defines a unique estimate,
we conclude that at most (` + 1) − (R − 1) − 2 = ` − R values are proposed to iteration R + 1, i.e.,
|I[R + 1]| ≤ ` − R.

It remains to show that pi decides in the first phase. By applying Claim C to iterations R+1, . . . , `−1,
we have |I[`]| ≤ 1. Process pi executes iteration ` before τ . Therefore, pi obtains a snapshot of size
1, writes it in T2`[1] and then decides since no snapshot of size 2 is posted in T2` before τ .

Claim C: ∀r, 1 ≤ r ≤ ` − 1, |I[r] − I[r + 1]| ≥ 1.
Proof of Claim C. A value written in T1r+1 is the smallest value in some snapshot of size ≥ 2 posted in
T2r (Line 08). The claim follows since there are at most |I[r]| − 1 distinct snapshots of size ≥ 2 that may
be written in T2r. End of the Proof of Claim C. 2Lemma 5

PI n ˚ 1920

12 Y. Afek & E. Gafni & S. Rajsbaum & M. Raynal & C. Travers

Lemma 6 If a process decides (r, v), then r ∈ {1, . . . , `} and v is a value proposed by a process.

Proof The fact that r ∈ {1, . . . , `} follows directly from the code of the algorithm. The validity of v

follows from the observation that a value enters a snapshot only if it was already in a previous snapshot, or
was proposed by a process during the first stage of the first phase. 2Lemma 6

Lemma 7 If pi and pj decide (ri, vi) and (rj , vj), respectively, we have (ri = rj) ⇒ (vi = vj).

Proof For each consensus instance R, let DR denote the set of processes that decide in the r-th consensus
instance. We consider three cases according to the phase(s) in which processes that belong to DR decide.

• All the processes that belong to DR decide in the first phase (Line 07). In that case, process pi ∈ DR

decides a value contained in a singleton snapshot that it has observed in T2R. Agreement follows
from the fact that a unique snapshot of size one may be posted in T2R by the different processes
(Lemma 4).

• All the processes that belong to DR decide in the second phase (line 23). Each process pi ∈ DR gets
back a pair (R, di) from the binary `-simultaneous consensus object. Due to the agreement property
of the object, ∃d ∈ {0, 1} such that ∀pi ∈ DR, di = d.

Moreover, per Lemma 5, every process in DR observes a snapshot of size 2 in T2r at lines 20 or 21
and, by Lemma 4, they observe the same snapshot. It then follows from lines20-22 that each process
in DR returns the same value.

• Decisions occur in both phases. Let C be the set of processes that invoke the binary `-simultaneous
consensus object (a process that belongs to C could have not decided in the first phase). Among them,
let pc be the first process that reads T2R[1] in the second phase of the algorithm (lines 14-15). This
occurs at time τ . There are two cases according to the value returned by that read.

– Suppose that pc does not observe a snapshot of size 1 (T2R[1] = ⊥). In that case no process in
DR could decide in the first phase of the algorithm.

Assume for contradiction that process pi decides (R, v) at line 07. pi must observe T2R[1] =
{v} at some time τ ′. As the read of T2R[1] by pc returns ⊥, and no process writes ⊥ in T2R[1],
it follows that τ ′ > τ . But by Lemma 5, we know that T2R[2] 6= ⊥ when pc starts the second
part of the protocol. Consequently, pi must also observe T2R[2] 6= ⊥, which prevents it from
deciding in the first part of the protocol (line 07).

– Suppose that pc observes a singleton snapshot {v} in T2R. Per Lemma 4, only one singleton
snapshot can be written in T2R. Therefore, every process in C reads {v} in T2R[1] at lines
14-15. Then every process in C “proposes” v to the Rth binary-consensus. More precisely, each
process proposes d = 0 (resp. d = 1) to the Rth binary consensus if v is the smallest (resp.
greatest) value in the snapshot written in T2R[2] (by Lemma 5, there is always a snapshot s of
size 2 written in T2R[2] when processes execute the second part of the protocol. Since snapshots
are ordered by containment, v ∈ s).

Therefore, by the validity property of the `-simultaneous binary consensus object, each process
in DR that decides in the second part gets back (R, d) from the object, and consequently returns
the same pair (R, v) (lines 20-22). Moreover, a process in DR that decides in the first part of the
protocol returns also (R, v), {v} being the only snapshot written in T2R[1].

2Lemma 7

Irisa

The k-simultaneous consensus problem 13

Lemma 8 The algorithm described in Figure 5 is a wait-free construction of a restricted `-simultaneous
consensus object from a binary vector `-simultaneous consensus object for any number of processes.

Proof The wait-free property follows directly from the text of the algorithm and the same property of the
underlying binary simultaneous consensus object. The validity and the agreement properties have been
proved in Lemma 6 and Lemma 7, respectively. 2Lemma 8

4.3 A second equivalence

Theorem 2 The multivalued k-simultaneous consensus problem and the binary k-simultaneous consensus
problem are wait-free equivalent in read/write shared memory systems made up of an arbitrary number of
processes.

Proof As already indicated, the multivalued version of the problem trivially solves its binary version. The
other direction follows from the algorithm described in Figure 4 (proved in Lemma 3), and the algorithm
described in Figure 5 (proved in Lemma 8). 2Theorem 2

5 Conclusion

This paper has introduced and studied the k-simultaneous consensus problem. Its main result is the following
theorem, whose proof follows from Theorem 1 and Theorem 2.

Theorem 3 The k-set agreement problem and the k-simultaneous binary consensus problem are wait-free
equivalent in asynchronous read/write shared memory systems made up of an arbitrary number of processes.

This theorem not only provides a new characterization of the k-set agreement problem, but also gives
a precise meaning to the notion of binary k-set agreement. In that sense, it shows in a clear way that k-
simultaneous consensus captures both k-set agreement and consensus. Hence, it is a stronger and more
general paradigm than k-set agreement.

A natural generalization of `-simultaneous consensus is the `-simultaneous k-set-agreement [2, 13]. This
problems is defined in the same way as the `-simultaneous consensus problem, namely, each process has to
decide a pair (c, v) subject to the following constraints : (1) 1 ≤ c ≤ `, (2) v is a proposed value for the
c-th instance and (3) at most k values are decided in each instance. It is easy to see that the scalar version an
vector version of this problem are equivalent. Also, given a solution to the `-simultaneous k-set-agreement
problem, it easy to solve k`-set-agreement, since at most k` pairs are decided.

What about the other direction ? A simple modification of the algorithm described in Figure 3 constructs
a `-simultaneous k-set-agreement object from a k`-set-agreement object. In a very simple way, the first
statement in line 04 that defines the consensus instance is replaced by “let ci = d |snapi|

k
e” that now defines

the k-set instance number associated with the value decided by pi.
The k`-set-agreement object reduces the number of distinct values to k`. Thus, the first coordinate of

the decided pairs is at most `. Finally, as snapshots are related by containment, there at most k distinct
snapshots snap such that (c − 1)k + 1 ≤ |snap| ≤ ck. Therefore, at most k values are decided in the cth
instance. Hence,

Theorem 4 The k`-set agreement problem and the `-simultaneous k-set-agreement problem are wait-free
equivalent in asynchronous read/write shared memory systems made up of an arbitrary number of processes.

PI n ˚ 1920

14 Y. Afek & E. Gafni & S. Rajsbaum & M. Raynal & C. Travers

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic Snapshots of Shared Memory. Journal
of the ACM, 40(4):873-890, 1993.

[2] Afek Y., Gafni E., Rajsbaum S., Raynal M. and Travers C., Simultaneous Consensus Tasks: a Tighter Charac-
terization of Set Consensus. Proc. 8th Int’l Conference on Distributed Computing and Networking (ICDCN’06),
Springer-Verlag LNCS #4308, pp. 331-341, 2006.

[3] Aguilera M., A pleasant stroll through the land of infinitely many creatures. ACM SIGACT News, Distributed
Computing Column, 35(2):36-59, 2004.

[4] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics, (2d Edition),
Wiley-Interscience, 414 pages, 2004.

[5] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations.
Proc. 25th ACM Symposium on Theory of Computing (STOC’93), pp. 91-100, 1993.

[6] Borowsky E., Gafni E., Lunch N. an Rajsbaum S., The BG Distributed Simulation Algorithm. Distributed Com-
puting, 14:127-146, 2001.

[7] Chaudhuri S., More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems.
Information and Computation, 105:132-158, 1993.

[8] Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of the ACM, 37(4):720-
741, April 1990.

[9] Dwork C. and Moses Y., Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures.
Information and Computation, 88(2):156-186, 1990.

[10] Fischer M.J., Lynch N.A. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2):374-382, 1985.

[11] Gafni E., Merritt M., and Taubenfeld G., The Concurrency Hierarchy, and Algorithms for Unbounded Con-
currency. Proc. 20th ACM Symposium on Principles of Distributed Computing (PODC’01), ACM Press, pp.
161-170, 2001.

[12] Gafni E. and Rajsbaum S., Musical Benches. Proc. 19th Int’l Symposium on Distributed Computing (DISC’05),
Springer Verlag LNCS #3724, pp. 63–77, 2005.

[13] Gafni E., Rajsbaum R., Raynal M. and Travers C., The Committee Decision Problem. Proc. 8th Latin American
Theoretical Informatics (LATIN’06), Springer-Verlag LNCS #3887, pp. 502-514, 2006.

[14] Herlihy M.P., Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124-149, 1991.

[15] Herlihy M.P. and Shavit N., The Topological Structure of Asynchronous Computability. Journal of the ACM,
46(6):858-923, 1999.

[16] Herlihy M.P. and Wing J.M., Linearizability: a Correctness Condition for Concurrent Objects. ACM Transac-
tions on Programming Languages and Systems, 12(3):463-492, 1990.

[17] Lamport L., On interprocess communication, Part 1: Models, Part 2: Algorithms. Distributed Computing,
1(2):77-101, 1986.

[18] Loui M.C., Abu-Amara H., Memory Requirements for Agreement Among Unreliable Asynchronous Processes.
Advances in Computing research, JAI Press, 4:163-183, 1987.

Irisa

The k-simultaneous consensus problem 15

[19] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[20] Merritt M. and Taubenfeld G., Computing with Infinitely Many Processes. Proc. 14th Int’l Symposium on Dis-
tributed Computing (DISC’00), Springer-Verlag LNCS #1914, pp. 164-178, 2000.

[21] Mostéfaoui A., Raynal M. and Tronel F., From Binary Consensus to Multivalued Consensus in Asynchronous
Message-Passing Systems. Information Processing Letters, 73:207-213, 2000.

[22] Saks M. and Zaharoglou F., Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge.
SIAM Journal on Computing, 29(5):1449-1483, 2000.

[23] Zielińsky P., Anti-Ω: the Weakest Failure Detector for Set Agreement. Proc. 27th ACM Symposium on Principles
of Distributed Computing (PODC’08), ACM Press, pp. 55-64, 2008.

PI n ˚ 1920

