Model Checking Transactional Memories

Rachid Guerraoui Thomas A. Henzinger Barbara Jobstmann Vasu Singh

EPFL, Switzerland
Abstract First, there is no generally agreed upon formal notion of cor-

Model checking software transactional memories (STMs) is diffi- '€Ctness for STM. Scott[Sco06] was the first to provide a formal
semantics of STM. However, his weakest correctness criterion re-

cult because of the unbounded number, length, and delay of con->%. it orderi b 4 Th h lar STM
current transactions and the unbounded size of the memory. Wequwles commit O'II:LngBgS;%Ge pkr]c_sshe(rjve - Thus, the poEu ar sih
show that, under certain conditions, the verification problem can implementation [], which does not preserve the commit

be reduced to a finite-state problem and we illustrate the use of °rdering, falls outside the semantic classification by Scott. Guer-
the method by proving the correctness of several STMs, including "2°0Ui @nd Kapalka [GKO8] discussed various alternatives to pre-
two-phase locking, DSTM, TL2, and optimistic concurrency con- cisely capture the safety aspect of STM and highlighted the subtle

trol. The safety properties we consider include strict serializability differences with database transactions.

and abort consistency: the liveness properties include obstruction _S€cond while model checking is the verification technique
freedom. livelock freedom. and wait freedom. that is best equipped to find concurrency bugs, model checking

Our main contribution lies in the structure of the proofs, which 'S Severely handicapped by several sources of unbounded state in

are largely automated and not restricted to the STMs mentioned 51 M: memory size, thread count, and transaction length cannot
above. In a first step we show that every STM that enjoys certain € Pounded, and neither can the delay until a transaction commits
symmetry properties either violates a safety or liveness requirementnor the number of times that a transaction aborts._As with .f.e'ax.ed
on some program with 2 threads and 2 shared variables, or satisfied"€Mory models, special care is needed in formulating a verification
the requirement on all programs. In the second step we use aproblem that is both relevant and solvable, as some problems about

model checker to prove the requirement for the STM applied to S€duentializing concurrent systems are undecidable [AMPOO].
a most general program with 2 threads and 2 variables. In the Third, the specification of an STM universally quantifies over

safety case, the model checker constructs a simulation relation@!! Possible application programs, requiring the desired safety and

between two carefully constructed finite-state transition systems, IVeness conditiontor all programs that are executed on the STM.

one representing the given STM applied to a most general program,.ln this sense, STM verification resembles the problem of check-

and the other representing a most liberal STM applied to the same!Nd that a processor implements an instruction set architecture,

program. In the liveness case, the model checker analyzes fairnes here the executed.programs are also unlversa!ly que_mt|f|ed. In
conditions on the given STM transition system. oth cases, the key is to define (and check) a suitable implemen-

tation relation [JD94]. While in processor verification, the imple-
mentation relation needs to handle pipelines and out-of-order exe-
1. Introduction cution, in STM, we need to handle aborted transactions.

We present in this paper a new technique for verifying STM

With the advent of multi-core processors, there is a new urgency for fot an ties. Our techni dd the th
concurrent programming models that give the programmer the illu- salely and liveness properties. Dur technique addresses the three

sion of sequentiality and the compiler maximal flexibility. A model ISSL'J:_EStabtﬁve asfﬂtyllows. . N id teict ial
that has enjoyed particular recent success is software transactional Irst, the salety requirements we consicer atact serial-
memory (STM), which allows the programmer to think in coarse- '2aPility [Pap79] andabort consistency(The latter is a single
grained code blocks that appear to be executed atomically but doedversion read/write restriction of the notion opacity introduced

not constrain the compiler by blocking memory access. Inspired by in [GKOS]'.) Strict serializapility preserves the order of conflict_—
g operations by transactions, and the order of non-overlapping

how databases manage concurrency, transactional memory was firsf!
introduced by Herlihy and Moss [HM93] in multi-processor de- transact!ons. Abort conS|st§ncy ensures, in addition, that abortmg
sign. Later Shavit and Touitou [ST95] introduced STM, a software- transactions do not see an inconsistent state of the memory, which
based variant of the concept, which enables a new way of looking can be disastrous in .STMS (due to |nf|_n|te Io_ops, or exceptions).

at concurrent programming. An extensive overview of STM can We study abport consistency, _because it provides the programmer
be found in [LRO7]. In this paper, we consider the following STM with the full sequentiality illusion and, to our knowledge, is satis-

algorithms: two-phase locking, DSTM [HLMS03], TL2 [DSS06], fled by most STM protocols that claim that illusion [LRO7]. Strict
and optimistic concurrency cor,1trol [KR81] ' ' serializability is considered here for pedagogical reasons, as it is

Precisely because it encapsulates the difficulty of handling con- intuitive and captures the main technical difficulties behind verify-

currency, the potential of subtle errors in STM implementations is ![ngtke]tbortt conS|stent§:y. Ou; ve;n‘ltcagl_on techglqbueg:anttbesexgeGndsd
enormous. This makes STM a ripe and important proving ground 0 the stronger notions of safety discussed by Scott [Sco06] by

for formal verification. While there have been initial steps in this rcnoondslifg:anrgatrgetﬁgms;nrﬂjcasrgfncc?tinc:lrﬁzmgt]reug\tli’csyrrlleffgerggrl#ir\?glfcnlfs we
direction, the challenge remains daunting for several reasons. freedom andwait freedon{HLMO3, AKHO3, Hero1].

Secongwe exploit the symmetries that are inherentin STM im-
plementations to reduce the unbounded STM state verification to a
problem that involves only a small number of threads and shared
Permission to make digital or hard copies of all or part of this work for personal or Variables. Specifically, we show that every STM that enjoys certain
classroom use is granted without fee provided that copies are not made or distributedsymmetry properties either violates any of the considered safety
forproft o conmercil advantage an that copiesbear s note and e ltaton and liveriess reqirerments on some program with 2 threads and 2
to lists, requires prior specific permission andfor a fee. shared variables, or satisfies the requirement on all programs. The
PLDI 08 symmetry properties, which expect all thrgads to .be tregted qually,
Copyright(© 2008 ACM [to be supplied]. . . $5.00 are fulfilled by most transactional algorithms, including for in-

stance two-phase locking, DSTM, TL2, and optimistic concurrency statementsWe defineC' = C U {abort} andS = €' x T'. A word
control. Similar techniques for reducing unbounded instances of 4, ¢ $* is a finite sequence of statements. Given a word S*,
model-checking tasks to small, characteristic instances have beenye define theprojectionw|; of w on thread: € T as the longest
used for verifying protocols with an unbounded number of identi- subsequence’ of w such that every statements is in C' x {t}.
cal processes [BCG89] and cache-coherence protocols [HQR99]. Gijyen a projections|; = sos1 ... s,, of a wordw, a statement;
Third, and perhaps most importantly, we define two finite-state s finishing inw|, if it is a commit or anabort or the last statement
transition systems that generate exactly the strictly serializable of w|;. A statemens; is initiating in w|, if it is the first statement

(resp. abort ponsistent) executi(_)r_ls of programs with 2 threads and,, ws, or the previous statemest_; is a finishing statement.
2 shared variables. These transition systems can be viewed as most Given a projections|, of a wordw on threadt, a consecutive

liberal reference STM implementatiogearanteeing strict serializ- subsequence = s ... sm Of w| is atransactionof threadt in
ability (resp. abort c_on5|_stency). To our knowl_edg(_e,_the transition i so IS initiating inw|; ands,, is finishing inwl;, and no other
systems presented in this paper provide the first finite-state repre-giatement inc is finishing inw|.. The transaction is committing

sentation of the language of strictly serializable (resp. abort consis- i 4, if s, is acommit statement. The transactianis aborting
tent) executions for transactions that may abort. The finite size of j, /it 5 is anabort statement. Otherwise, the transactiofis

the transition systems is achieved by a careful choice of state, WhiChpendingin w. Given a wordw and two transactions andy in
encompasses for every thread a set of read variables (at most 2), g, (possibly of different threads), we say thaprecedesy in w,
set of written variables (at most 2), a set of variables not allowed to \yyitten ass <. y, if the finishing statement af occurs before the
be read (at most 2), a set of variables not allowed to be written (at initiating statement of in w. A word w is sequentialf for every
most 2), and a set of threads with overlapping, preceding transac-pair(x y) of transactions inv, eitherz <., y or y <. .

tions (at most 1). We show that an STM implementation is strictly We7define a functioom : $* — S* such that for all words
serializable (resp. abort consistent) iff for a specific, most general w € S, the word com(w) ié the longest subsequenaé of w
program with 2 threads and 2 variables, all executions are permlttedSuch thét every statementir is part of a committing transaction

by the reference STM implementation. Then, instead of checking i, Thys, com (w) consists of all statements of all committing
language containment between a given STM implementation andtransactions ino

the reference implementation, we check for the existence of a sim- A transactionz of a thread: writesto a variablev if = contains
ula'.ﬂonlretllatlonlbstweien both translltlon sgsteﬁm.s. (tTheﬁe.xllstetnce ofa statement(write, v),). A statements — ((read, v),) in « is
3.?'”“; a ||on relation |sta_commton Yy used, efmcient suincient con- aglobal readof a variablev if there is no statemer{(write, v), t)
ttion for language containmen) .. . befores in the transaction:. A transactionc of a thread globally
Putting all steps together, we reduce the problem of verifying readsa variablev if there exists a global read of variablein

the safety of an STM implementation, which is unbounded in many transactionz. A word w is transaction equivalento a word w’
dimensions (memory size, thread count, transaction delay, etc.), 104 tor every tHreadt € T, we havew|, = /|

a simulation check between two finite-state systems. For two-phase ’ ¢ b
locking, DSTM, TL2, and optimistic concurrency control, we ob-
tellin transit_ion r?ystergs Wl:fg ggéo 4,500 f/t/atgs, almd a refsrenge ir|n-2_1 Safety criteria
plementation has about 12, states. We implemented a simula- . T .
tion checker that automatically verifies strict serializability for op- Conflict ser_|al|;abll|ty (cf. [EGLT76]) is a commqnly us_ed cor-
timistic concurrency control and abort consistency for two-phase '€Ctness criterion for concurrent systems and, in particular, for
locking, DSTM, and TL2 in less than 15 minutes. It should be noted transactional systems. Conflict serializability allows us to omit
that the methodology is applicable to any other STM implementa- trllcethvaluels of fre"ad ar}d write Comma'lﬂ& 5|ch tpe C?Pstlstelncy
tions that fulfill the symmetry properties. Our simulation checker O th€ VaIUES TOllows Irom preéserving the order ot conflicts. In
finds that correctness is not self-evident in many STM implemen- thg context of t‘rgnsgcuonall memories, a stronger property, called
tations. To illustrate this, we give an example where reversing two strict serializability, is considered. Strict serializability preserves
steps in TL2 renders the STM unsafe. In this case, the simulation t.he. ord.e.r of non-overlapping transactions. We note that strict se-
check provides as counterexample an execution that is not strictly 1lizability does not state any restrictions on the operations of
serializable (and thus not abort consistent). We therefore expectouri.he alfnortlng :ransactl?ns. (ljnt theb SiOpe O.f tSTMS' abstronger no-
verification tool to be useful to STM designers when they develop 1N Of correctness, referred to abort consistenchias been sug-

or modify STM implementations. Our tool also allows the com- gested [GK08, HLMSO03] to avoid unexpected side effects, like in-

parison of different STMs according to whether one allows strictly {inite 100ps, or array bound violations. Abort consistency requires

more executions than another. t_hat a word is strictly _serlall_zablle, and that the aborting transac-
On the liveness side, we use again symmetry reduction theo- {10NS do not see read inconsistent values. .

rems to check the desired liveness requirement on the finite-state NOW’ we form_allze these correctness criteria. We start with the

transition system that results from a given STM implementation n°tion of a conflict. Transactional memories use direct update se-

applied to a most general program with 2 threads and 2 variables, mantics (every transaction modifies the shared variables in place

We extend our model checking tool to verify the different live- and restores them upon abort), or deferred update semantics (ev-

ness properties. In the case of obstruction freedom, this amounts tcF7Y ransaction modifies a local copy, and changes the shared copy

checking a Streett condition and the check goes through for DSTM. UPON @ commit). We choose to define conflicts under the deferred
For two-phase locking, TL2, and optimistic concurrency control, update semantics. All our work can be similarly applied to TMs

the model checker automatically generates counterexamples to obWith direct update semantics, with a slight modification of defini-
struction freedom, as it does for DSTM and livelock freedom. tion of conflict. A statements, of transaction: and a statement,

of transactiorny (z # y) conflictin a wordw if (i) s1 is a global
. . : read of variabley and sz is a commit andy writes towv, or (i) s1
2. Safety in transactional memories ands. are both commits, and andy writgyto V. ®
We introduce some notions to define the correctness of a TM. Let A word w = sq .. . s, is conflict equivalento a wordw’ if (i)
V bease{l,...,k} of kvariables LetC = {commit}U{read x w is transaction equivalent to’, and (i) for every pairs;, s; of
V} U {write x V'} be the set ofommand®n the variabled’. Let statements inv, if s; ands; conflict andi < j, thens; occurs
T ={1,...,n} be the set ofhreads Let.S = C x T be the set of befores; in w'. Aword w = s ... sn is strictly equivalento a

0, 0.:
Y (read, v1) 2" (write, v1) Program
0/\1 0/\1 Response | | Commands
(read, v1) (write, v2) (write, v1) (commit) _ Execution
- .. . TM Algorithm
. 0/\1

" (read, v1) (commit)

(@) An example program on two (b) Interac-
threads and two variables tion in the
system

Figure 1. Our framework of transactional memory

word w’ if (i) w is conflict equivalent tav’” and (ii) for every pair
z,y of transactions inv, if z <., y thenz <, y.

Awordw € S™ is strictly serializableif there exists a sequen-
tial word w’ such thaty’ is strictly equivalent taom (w). Further-
more, we define that a word is abort consistenif there exists a
sequential wordv’ such thatw’ is strictly equivalent taw. (Note
that w may contain pending transactions.) We note that given a
word w, if w is abort consistent, them is strictly serializable.

Example.Considerw = ((read, v1), t1), ((write, v1), t2), ((write,
v2), t2), (commit, t2), ((read, v2), t1). w has two transactions:
(i) a pending transactionrdad,v1),t1), ((read, v2),t1), and (ii) a
committing transaction {(rite, v1), t2), ((write, v2), t2), (com-
mit, t2). The following pairs of statements conflict: idéd, v1),
t1),(commit, t2)) and ((fead, v2), t1), (commit, t2)). The word
w is strictly serializable becausem (w) consists only of (frite,
v1), t2), ((write, v2), t2), and gommit, ¢2). On the other handy
is not abort consistent sin¢e reads the old value af; (beforets
commits) and the new value of (committed byts).

2.2 Transactional memories

We consider a thread as our basic sequential unit of computation,

and describe a program to be a collection of threads. Each threa

consists of a sequence of transactions. In our formalism, we al-
low programs to retry a transaction, or start another transaction

on anabort. Formally, anunrolled thread® on C is a function
0 : B* — C.We write © for the set of unrolled threads. Defin-

ing unrolled threads as infinite binary trees on commands makes
the representation independent of specific control flow statements
such as exceptions for handling abort. For every command of the

thread, we define two successor commands, one if the command i
successfully executed, and another if the command fails due to an

abort of the transaction.

Note that this definition allows us to capture easily different
retry mechanisms of TMs, e.g., retry the same transaction until it
succeeds or try other transaction after an abort. We defjmre-a
gramp onn threads and variables as an-tuplep = (9*,...,0™)
of unrolled threads o6'. Figure 1(a) shows an example program on
two threads and two variables. LBf"* be the set of all programs
onn threads and variables. LetP be the set of all programs.

We define a transactional memory as an abstract function that
takes as input a program, and produces a set of infinite words.

Formally, atransactional memorys a functionM : P — 25,

A transactional memon/ ensures strict serializability for all
programs withn threads andk variablesif for every program
p € P™F, for every wordw € M(p), all finite prefixes ofw
are strictly serializable. Similarly}/ ensures abort consistency for
all programs withn threads andk variablesif for every program
p € P™F, for every wordw € M(p), all finite prefixes of
w are abort consistent. We say that a transactional meméry

ensures strict serializabilityresp.abort consistengyif it ensures
strict serializability (resp. abort consistency) for all programs with
arbitrary number. of threads and arbitrary numbkiof variables.

3. Transactional memory algorithms

We use state transition systems to define TMs. A TM algorithm is a
family of TM transition systems, one farthreads and variables,

for everyn andk. The TM transition system consists of a set of
states, an initial state, a transition relation between the states, and
an extended set of commands depending on the underlying TM.
For example, a given TM may require that a thread locks a variable
before writing to the variable, or that a thread validates the variables
read in a transaction, before accessing a new variable.

A TM algorithm interacts with a program and a scheduler (see
Fig. 1(b)). The scheduler chooses a thread and determines the
next command of that thread to be executed. The TM transition
system decides whether the command can be executed in a single
atomic step, or in several atomic steps, or has to be aborted. Given
a program, a scheduler, and a TM transition system, we get an
execution trace. Projecting this trace to the €ebf commands,
we get a word inS*. We describe the language of a TM transition
system as the set of words 6fi that it can produce.

Formally, aschedulers on T is a functiono : N — T'. Let X

be the set of schedulers. We defin&M algorithm A as a family
of TM transition systemd™* = (Q, qinit, D, 8) for eachn andk,
where@ is a set of statesyni; is the initial state,D is the set of
extended commands with C D, andd C QxCxSp x RespXxQ
is the deterministic or non deterministic transition relation, where
Sp = (D U {abort}) x T'andResp = {0, 1, L}. The transition
relationd obeys the following rules:
1. if there exists a transitioriq, c, (d,t),r,q1) € § of thread
t to stateqi € @ such thatr =1, then for every transition
(q1,c1, (d1,t1),7“1,(]2) € 6 with t, = t, we haveq = c. In this
case, we say that only commaagdis enabledn ¢; for threadt.

. if for all transitions(q, ¢, (d,t),r,q1) € ¢ of threadt to state
q1 € Q ,r #L holds then there exists for every commands C
a transition(q1, c1, (d1,t),71,92) € J. In this case, we say that
every command,; € C'is enabledn ¢; for threadt.
3.for all ¢ € @ and for all transitiongq, c, (d,t),r,q1) € d such
thatd = abort, we haver = 0.
4.forall g € Q and(c,t) € S, if cis not enabled irg for threadt

'then there exists a transitidn, ¢, (d, t),r,¢1) € 6 with d = abort

for someg; € Q. In this case, we say that the commanid abort

Senabledn the state; for threadt.

Moreover, for a deterministic transition relatieih we have
forall ¢ € Q and(c,t) € S, if (q,¢,(d1,t),71,q1) € 6 and
(q,c, (dg,t)/r’g,(]g) € dthend:, = ds, g1 = ¢z, andr; = 7.
Unless otherwise stated, TM transition systems have deterministic
transition relations.

Letp = (#',...,0™) be a program inP™*. Let ¢ be a
scheduler om threads. Aun p = {(qo, lo){q1, 1) ... of A™* with
scheduler on prograny is an infinite sequence of states together
with program locations, wherg (ljl-, .03 e (B)™ for all
j >0 and (I) qdo = Qinit andlo <6, .. .,E>, (II) for all j >0
there exists a transitioy;, c;, (d;,t;),75,¢+1) € ¢ such that
t; = o(j) andc; = 0% (l;.’) andforallt € Tif t £ ¢t; orr; =L
thenl’,, = [}, otherwisel},, = I} - r;. We associate withp
an execution tracesos; . .. in 5% such thats; = (d;, t,) for all

j > 0. We define thdanguageL(A™*) of A™* as the set of all

finite wordsw € S$* such thatw = e|4, wheree is a finite prefix
of an execution trace od™* for some progranp onn threads and
k variables, and some scheduteonn threads.

A TM algorithm A defines a transactional mematy such that
for all n, k, for every progranp in P™* and every wordv € S,
we havew € M/(p) iff there exists a scheduler on T" such that
w = el|g, wheree is the execution trace gf ando on the TM
algorithm A. It follows that a TM M defined by a TM algorithm
A ensures strict serializability (abort consistency) for all programs
with n threads and: variables iff all words inL(A™*) are strictly
serializable (abort consistent).

In the following sections, we describe different transactional
memories as TM algorithms. To simplify the description, we view
a statey of the corresponding TM transition systems aswatuple
(qg"...q™), where each componedqit corresponds to a threacnd
is calledthread stateof ¢.

3.1 The sequential TM

To keep our first example simple, we describe a sequential TM. The
sequential TM executes the transactions sequentially (as ideally
suited for a uniprocessor). We define the sequential’lM, using
a sequential TM algorithmA,.,. The sequential TM transition
systemA?;;j for n threads and: variables is given by the tuple
(Q, qinit, D, 6). The thread statg’ of threadt is {0, 1}. The initial
stategini: = (0, ...,0). The set of extended commanddis= C.
Atransition(qi, ¢, (d, t), 7, g2) isind if cis enabled iny; for thread
t and one of the following holds:
1. Read/Write. (i) ¢ € {read,write} x V andd = candr = 1,
and (ii) ¢gi* = 0 for all u # t andgs = 1, and (iii) ¢% = g} for
all u # t (When a thread reads or writes a variable, the state of all
other threads should be false. The stateisfset to true.)
2. Commit. (i) ¢ = commit andd = candr = 1, and (ii)¢f = 0
for all u # ¢, and (i) ¢5 = 0 andgy = ¢¥ for all u # ¢t (When a
threadt commits, the state of all other threads should be false. The
state oft is set to false.)

A transition(qi, ¢, (abort, t), 0, g2) is in § if ¢ is abort enabled
in ¢1 for threadt andgs = ¢1.

3.2 The two-phase locking TM

Our second example of a TM algorithm is based on two phase lock-
ing (2PL) protocol, commonly used in database transactions. Every
transaction locks the variables it reads or writes before accessing
them, and releases all the acquired locks during the commit. We
define the 2PL TMM2p., using a 2PL TM algorithmA zp.,. The
2PL TM transition systemi’;, for n threads and: variables is
given by the tuple(Q, ginit, D, d). The thread statg’ of thread
t is a subset of/. It denotes the variables locked by the thread.
The initial stateg;..: = (0, ..., 0). The set of extended commands
is D = C U ({lock} x V). ¢ is the transition relation such that
(q1,¢,(d,t),r,q2) € 0 if cis enabled iny; for threadt and one of
the following holds:
1. Read/Write. (i) ¢ € {read, write} x {v} andd = candr =1,
and (i)v € ¢%, and (iii) g2 = ¢ (When a thread has to read or write
v and it already holds a lock om the read or write is executed by
the TM.)
2. Lock. (i) ¢ € {read, write} x {v} andd = (lock, v) andr =1,
and (i) v ¢ ¢f and for allu # ¢, we havev ¢ ¢, and (i)
g5 = ¢t U {v}, and (iv)¢¥ = qi for all u # ¢ (When a thread has
to read or writev, and it does not hold a lock an the thread first
locksv.)
3. Commit. (i) ¢ = commit andd = c andr = 1, and (i) ¢ = 0,
and (iii) g5 = q¢* for all threadsu # ¢t (When a thread commits, it
releases all the locks.)

A transition(q1, ¢, (abort, t), 0, g2) is in § if cis abort enabled
in ¢, for threadt andg’ = @ andgy = ¢} for all threadsu # t.

3.3 The dynamic software transactional memory

Dynamic software TM (DSTM) [HLMSO03] is one of the most pop-
ular STM algorithms. The algorithm exists in many flavors. In this
work, we focus on one of them, call@a/isible read DSTMwhere
the transactions require ownership of variables only for writing.
The reads are not visible to the writers. Upon reading, the trans-
actions validate their read set. In our work, we ignore optimiza-
tions like early release possible in DSTM. Our TM transition sys-
tem does not directly allow one thread to abort another thread. So,
we allow a thread to set an abort flag for another thread and change
the state of the aborted thread appropriately, and also, require that a
thread aborts whenever the abort flag is set for the thread. We define
the DSTM TM M 441, USing @ DSTM TM algorithmA 4s¢,,. The
DSTM TM transition systemd’;;¥ for n threads and: variables
is given by(Q, qinit, D, 6). A thread state® of threadt is defined
as a 3-tuplgstatus®, rst, 0s), wherestatus’ € {aborted, valid,
invalid} is the status of threaid rs* C V is the read set of threag
andos® C V is the ownership set of thread For every thread,
the initial thread state of threadis ¢t,;, = (valid, #,%). The set
of extended commands B = C U ({own} x V). A transition
(q1,¢,(d,t),r,g2) isind if cis enabled iny; for threadt and one
of the following holds:
1. Local read. (i) ¢ = (read,v) andd = c andr = 1, and (ii)
v € os} andstatust # aborted, and (i) g2 = ¢: (When a thread
readv such that the read is not global, nothing changes)
2. Global read. (i) ¢ = (read,v) andd = c andr = 1, and (ii)
v ¢ ost andstatust = valid, and (iii) rs} rss U {v}, and
0sb = ost andstatust = valid, and (iv) ¢y = ¢} for all threads
u # t (When a thread reads globally, the status of the thread
should be valid and is added to the read set of the thread)
3. 0wn. (i) ¢ = (write,v) andd = (own,v) andr =L, and (ii)
status® # aborted, and (jii) s} rst and os} ost U {v}
andstatush = status®, and (iv) for all threads: # t if v € os?
then statusy = aborted, andosy =), andrsy = (), otherwise
statusy = statusy, oss = osy, andrsy = rst. (When a thread
writes tow, it should first ownv, the status should not be aborted,
the variablev is added to the owned set of the threadw Ifvas
owned by some other thread earlier, the status of that thread is
aborted and its read and own sets are set to empty).
4. Write. (i) ¢ (write,v) andd = candr = 1, and (ii)
status® # aborted andv € os!, and (iii) g5 = ¢} forallu € T
(A thread can write t@ if the status is not aborted and the variable
v is in the own set of the thread).
5. Commit. (i) ¢ = commit andd = c andr 1, and (ii)
statust = valid, and (iii) os5 = 0, andrsf = 0, and (iv) for
all threadsu # ¢, rs5 = rst, osy = os}, andstatusy = invalid
if rs%¥ U osi #) andstatusy = statusy otherwise. (A thread
commits if the status is valid. The own and read sets of the thread
are set to empty. The status of threads whose read set intersects
with the own set of is set to invalid.)

A transition(qu, ¢, (abort, t), 0, ¢2) is in § if the command: is
abort enabled i for threadt, andstatuss = valid, andrss = ()
andosh = 0, andgy = ¢} for all threadsu # ¢.

3.4 The TL2 transactional memory

Transactional locking 2 (TL2) [DSS06] is a TM which works as
follows. First, a transaction reads and writes locally to the variables.
After the transaction has locally completed, the thread acquires
locks for the variables it writes to. Then, the transaction is validated
using version numbers. If for all the variables in the read set, the
version is consistent, and no other thread owns the variable, then the
transaction is allowed to commit. We note that TL2 uses locks for
synchronization and version control to check validation. A version
number is maintained for every variable, which is incremented

when the variable is written. Every transaction reads the variable Taple 1. Examples of execution traces and words in the language

along with the version number. A transaction successfully commits of gifferent TM algorithms. Notationr = read, w = write,
if all the variables that it reads have the same version number . — commit, = abort, | = lock, 0 = own, v = validate,

at the time of commit. TL2 uses version control to validate the ; — chklock, s = serialize. Command(c,) is written asc;.

read set efficiently in a distributed setting. To model TL2 using a St :
finite state TM transition system, we replace the version control |), | Scheduler| 1> trace: Execution trace
by invalidation. When a transaction commits, it invalidates the output | 214 racen = e|4 in L(A)
transactions whose read set intersects with the transaction’s write 11122 (r, 1)1, (w,2)1,c1, (w, 1)2,c2...
set. seq ()1, (w,2)1, ¢1, (w, 1)2, c2
We define the TL2 TMM . using the TL2 TM algorithm 112122 | (D1 (w,2)1, a2, ¢, (w, T)2,c2.
as Arzs. The TL2 TM transition systemd’:f, for n threads (r, 1)1, (W, 2)1, a2, 1, (w, 1)3, 2
and k variables is given by the tupléQ, ginit, D, 5). A thread 2PL | 111112.. | gl’ll)l’((’“’ 1%3’(1’2)1’(w’2)1’01’(l’2)2“'
stateqttof tthreatdt itn the TL2 algorithm is defined as a 4-tuple VARREM (;‘,71))11:;2”,7(7«,11’)?1, ()P (T SreTT () rae
(status®, rs*, ws*, Is*), where status® € {valid, invalid, vali- az, (r, 1)1, (w,2)1, c1
dated, commitrdy} rs’ C Vs the read Setz_us_t' C Vis the 1221112 | (1, 1)1, (0, 1)z, (w,)z, (0,2)1, (@,)1, ¢z, ¢1 .- |
write set, andis C V is the lock set. The initial thread state dstm| " (r, 1)1, (w, 1)2, (w, 2)1, c2, c1
Qi = (valid, 0,0,) for all threadst € T'. The set of extended 1222111 | (7, 1)1, (0, D)2, (w, 1), ¢2, (02)1, (W, 2)1, a1 - - -
commands iD = C U ({lock} x V) U {validate, chklock}. We (r, D1, (w, 1)2, c2, (w,2)1, a1
express the transition relation informally. The formal transition re- 11211122 | (D1 (w,2)1, (w, D)2, (1,2)1, 01, cla,
lation can be obtained, as in the previous examples. A transition on| 712 | 915 (I, 1)2,v2,¢cl2,c1,c2 ...
a command: for a threadt in stateq occurs ifc is enabled in the (r, 1)1, (w, 2)1, (w, 1)2, €1, c2
stateq for threadt, where the command is one of the following: 11212112 | D1 (@, 2)1, (w, 1, 1(,l7 2(31’1(117 10)12’ .
1. Local read. A thread can read if the read is local. 22... (T,1)17(%2)17(%1)27@1’,@1’ B2
2. Global read. When a thread readsand the read is global, the 1211212 | (r, 1)1, (w, 1)2, (w, 2)1, 51, 52, €1, C2 ...
status of the thread should be valid, the lock set should be empty,| ¢ | . (r, 1)1, (w,1)a, (w,2)1,c1, ca
and the variable is added to the read set. 12211 (r, D1, (w, 12, s2, (w,2)1, s1,a1,c2 . - .
3. Lock. When a thread commits, the thread first locks every vari- 12... (r, 1)1, (w,1)2, (w,2)1,a1,ca

able in the write set. The status should be valid or invalid. No other
thread should hold the lock on the variable, and the variable is two threads and two variables then the TM ensures strict serializ-
added to the lock set of the thread. ability (abort consistency). The reduction theorems rely on certain
4. Write. When a thread writes to, the status should be valid or symmetry properties of transactional memories. These properties
invalid. The lock set of the thread should be empty. The variable are satisfied by all TMs that were discussed in the previous section.
is added to the write set of the thread. We define four symmetry properties for TMs. Léf be a
5. Validate. When a thread has to commit, it validates the read set transactional memory. Let be a program om threads andc
after acquiring the locks on all the variables in the write set. The variables. Letw be a finite prefix of a word i/ (p).
status of the thread should be valid, and it is set to validated. P1. Symmetry in threadd.et w have no aborting transactions and
6. Chklock. When a thread has to commit, after validating the read gt x pe the set of committed transactions of threéad w. Let
set, it is checked that the read set of the thread does not intersectnere exist a thread such that for all committed transactiopof
with the lock set of any other thread. If so, the status is set to ,, and all committed transactionse X, eitherz <., y ory <. z.
commitrdy, and the thread can now successfully commit. Then the wordw’ obtained by renaming all transactions of thread
7. Commit. When a thread has to commit, if the status is com- ; to pe from thread is a finite prefix of a word in/ (p’) for some
mitrdy, the thread commits. , o programp’ onn — 1 threads and variables.
A threadt aborts on a commandlin stateq if ¢ is abort enabled . .

in stateq for threadt. The read set, lock set, and the write set are Example. Let w = ((read, v1), t2), (commit, t2), ((write, v1),

t1), (commit, t1), ((write, v2), t2), (commit, t2). Then, the word

changed to empty, and the status is setafid. w’ = ((read, v1), t2), (commit, t2), ((write, v1), t2), (commit, t2),
3.5 The optimistic concurrency control TM ((write, v2), t2), (commit, t2) is a finite prefix of a word inV/ (p’)

/
We now discuss a common concurrency protocol used in databases'fOr Some program .

It was proposed by Kung et al. [KR81] and called optimisitic con- P2. Transaction projectionLet X be the set of transactions in
currency control (OCC). The OCC TM executes the transactions of We define @ransaction projectiorof w on X" C X as the longest
the threads without any synchronization. Before committing, every subsequence af such that all the statements are from transactions
transaction chooses a sequence number and validates its read seff X'. This property states that the transaction projection @in
Transactions commit in the order of sequence numbers. X’ where X' is a subset of the set of committing and pending
We define the OCC TMM,.. using an OCC TM algorithm transactions inv is in M (p") for some progranp’. Note that if
Agee. We refer to the OCC TM transition system withthreads we project the word on part of the aborting transactions, then the
and k variables asA”*. The formal definition of the transition resulting word is not guaranteed to belif(p") for any prograny’.
system can be obtained from the original algorithm, as we did in Example. Let w = ((read, v1), t3), ((write, v2), t3), ((write, v1),
the previous examples. t1), (commit, t1), ((write, v2), t2), (commit, ¢2). Then, the word
Table 1 shows execution traces and words for the example pro-w’ = ((write, v1), 1), (commit, 1), ((write, v2), t2), (commit, t2)
gram in Figure 1(a) and different schedulers with every transaction is in M (p') for some progranp’.

memory described above. P3. Variable projection.Let w have no aborting transactions. We
4. Reduction theorems for safety define avariable projectionof w on V' C V as the longest
We present two reduction theorems, corresponding to strict serial- subsequence ab such that all the statements are reads or writes
izability and abort consistency. These theorems state that if a TM to variables inl’’ or commit or abort statements. Given a program
ensures strict serializability (abort consistency) for all programs on p, we define the variable projection pbn V'’ C V as the program

obtained by removing all reads and writes statements to variablesserializability for all programs on two threads and two variables,

in V'\ V' from all unrolled threads ip. This property states that
the variable projection ofv on V' C V is in M (p'), wherep’ is
the projection of on the variable§’’.

Example.Let w be the word as in the example of propeP. The
word w’ = ((write, v2), t3), ((write, v2), t2), (commit, t3) is in
M (p") for thep’, wherep' is the projection op on {v2, vs}.

P4. Monotonicity property for strict serializability (abort consis-
tency). This property states that for a class of words, if a word
is produced by a TM, then more sequential versions of the word
are also produced by the TM. Formally, let the warg ¢ S* be
strictly serializable (abort consistent) and let only transactidoe
pending inw,. We defineW to be the set of worda’ such that
w’ = w, - s wheres is a statement of ands is not an aborting
statement. We calll’ the set ofextensions ofv,,. If w (a finite pre-

fix of aword inM (p)) is extension of some word; with the same
properties asv, andw = ws - s then there exists a word, that is
strictly equivalent tav; such thatom(w2) is sequential ands - s

is also a finite prefix of a word i/ (p).

Example. Let w = ((read, v1), t1), ((read, v1), t3), ((write, v1),
ta), ((write, v2), t2), ((read, v2), t3), (commit, t2), (commit, t3),
((read, v2), t1), (commit, ¢1). The wordw is an extension of word
ws. Then, the wordws - s = ((read, v1), t3), ((read, v2), t3),
(commit, t3), ((read, v1), t1), ((write, v1), t2), ((write, v2), t2),
(commit, t2), ((read, v2), t1), (commit, t1) is a finite prefix of a
word in M (p).

Theorem 1. Let M be a TM that satisfies the properties, P2,

P3, andP4. Moreover,M ensures strict serializablity (resp. abort
consistency) for all programs on two threads and two variables.
Then the TMM ensures strict serializability (resp. abort consis-
tency).

Proof. We prove the theorem for strict serializability. A similar
proof holds for abort consistency. The proof is by contradiction.
Let p be a program ilP™*. Let w be a finite prefix of a word in
M (p) such thatw is not strictly serializable. Leb, be the longest
prefix of w such thatw, is strictly serializable and let, = wy, - s,
wheres = (¢, t) is a statement of transactian Let X be the set
of committed transactions in,. By propertyP2, there exists a
word w» generated by projecting, to X U {z} such thatw, is a
finite prefix of a word inM (p2) for some program.. We note that
we = wy, - s andwy, is strictly serializable anav, is not strictly
serializable. So, using properB4, there exists a worav, that is
strictly equivalent taw;, such thatcom(w),) is sequential and the
wordws = w;’ - s is a finite prefix of a word inV/ (p2). In w3 only
one transactiong, does not execute sequentially. Using property
P1, we rename the threads for the transactionsin We let all
transactions exceptto be executed by thread Let this renaming
give wordw,. We note that the last statementofs a commit.
As w, is not strictly serializable, we know (by the definition of
conflict) that one of the following holds: (§; = ((read, v1),t)
andsz = ((read, v2), t) are global reads of transactiersuch that
some transactiop of threadu writes tov; and some transaction
y of uwithy = yory <., y writes tove and both commit
betweens; and sz, (note thaty andy’ cannot overlap due to the
structure ofwy,) or (i) s1 = ((read,v1),t) is a global read of
transactionz such that some transactignof threadw writes to
v1 and commits aftes;, and there is a committing transactigh
with ¢ = y ory <., % which has a commangread, v2) or
(write, v2), andx also writes tovs. (Note thatv; may be same
asw). Let ws be a variable projection ofvs on {vy,v2}. We
know thatws is a finite prefix of a word inM (ps) for some
programps on two threads and two variables, by propdt8y Also,
we note thatws is not strictly serializable. As\/ ensures strict

we get a contradiction. Thus, there is no such progggmThis
leads us to a contradiction. O

5. The reference TM algorithms

To verify the safety properties of a transactional memory, we take
the following approach. We construct a reference TM algorithm
for strict serializability (RSS TM algorithm), which has an execu-
tion trace for every strictly serializable word. Similarly, we con-
struct a reference TM algorithm for abort consistency (RAC TM
algorithm), which has an execution trace for every abort consistent
word. Then, we show that a given TIW defined by a TM algo-
rithm A ensures strict serializability (resp. abort consistency) iff all
words inL(A*?) are in the language of the RSS (RAC) TM transi-
tion system for two threads and two variables (due to the reduction
theorems).

The key insight that makes our technique work is that the refer-
ence TM algorithms for strict serializability and abort consistency
for two threads and two variables can be definefirdgie-statetran-
sition systems. This is not obvious, as threads may be delayed arbi-
trarily, transactions may contain arbitrarily many instructions and
may be aborted arbitrarily often. We present the RSS TM transition
system first, because it provides the basis for defining the RAC TM
transition system. Suitable finite-state reference TM transition sys-
tems can also be defined for stronger notions of safety, such as those
used by Scott [Sco06], by modifying the semantics of conflict.

5.1 The reference TM algorithm for strict serializability

The classical approach to checking whether a word is strictly se-
rializable is to construct a directed graph= (V, E) (called the
conflict graph [Pap79]) of the committing transactions in the word.
The conflict graph captures the precedence of the committing trans-
actions based on the conflicts. Given a ward= sgs; .. ., the
transactions inv form the setl” of vertices in the conflict graph.
There exists an edge from a vertexto a vertexvs if vo finishes
beforewv, starts, or a statemest of v; conflicts with a statement

s; of va andi > j. The conflict grapiG is acyclic iff the wordw

is strictly serializable. We note that the size of this construction is
unbounded. The following parametrized word illustrates the point.
wy, =((read, v1), t1), (((write, v1), t2), (commit, £2))", (commit,

t1). The number of vertices in the conflict graphwf, isn + 1.
Thus, we cannot aim to create a finite transition system for the RSS
TM algorithm using conflict graphs. We provide a novel approach
to check whether a word is strictly serializable or not. In our knowl-
edge, this is the first finite state representation for the language
of strictly serializable words, when transactions may abort. The
idea of maximal serializability was earlier addressed in a restricted
scope [FR85] for a bounded number of non-aborting transactions
with a bounded number of instructions per transaction. The idea
was built upon a notion of transitive conflicts, which does not hold
when transactions may abort.

The key idea to get around the problem of infinite states is to
maintain sets callegrohibited read and write sefsr every thread.
These sets allow us to handle unbounded delay between transac-
tions, as committing transactions store the required information in
these sets of other threads. Once a transaction commits or aborts,
we need not remember it (unlike conflict graphs). Thus, we need to
store information of at most one transaction per thread. The RSS
TM transition system is based on the following noti&@very com-
mitting transaction should serialize at some point during its execu-
tion. The RSS TM transition system makegwessof when every
transaction serializes. Depending upon the guess, each transaction
has to follow certain restrictions on executable commands, if the
transaction has to successfully commit.

Formally, we define afiRSS TM algorithmd,; as a family of
RSS TM transition systems. TERSS TM transition systert;"* for
n threads and: variables is given by the tupl@), ginit, D,). The
thread state’ is a 6-tuple(Status®, rs*, ws®, prst, pws®, Preds'),
where Status® € {started, invalid, serialized, finished} is the
status functionys® C V is the read setps® C V is the write set,
prst C V is the prohibited read sepws’ C V is the prohibited
write set, andPreds® C T is the predecessor set for threadf
v € prs' (v € pws'), then the status of the threads set to
invalid if ¢ globally reads (writes top. The initial thread state
qhnie is (finished, 0,0, 0,0, 0). The set of extended commands is
D = C'U/{serialize}. The transition relatiod is non deterministic.
A transition(qi1, ¢, (d,t),r,q2) € ¢ if cis enabled irg; for thread
t and one of the following holds.

1. Local read. (i) ¢ = (read,v) andd = c andr = 1, and (ii)
v € ws}, and (i) g2 = ¢1. (When a thread readssuch that the
read is not global, the state remains unchanged.)

2. Global read. (i) ¢ = (read,v) andd = c andr = 1, and (ii)
v ¢ wsh, and (iii) if status® = finished thenstatush = started,
else if status} = serialized andv € prs!, thenstatusy = invalid,
elsestatush = statust, and (iv)rsh = rst U {v} andwss = ws!
andprst = prst andpwsl, = pws’ and Preds} = Preds!, and
(v) for all threadsu # ¢, we havegy = gi'. (When a thread reads
v globally, v is added to the read set. If the statug @ finished,
change the status ofto started, else if the status of is serialized
andw is in the prohibited read set, then change statusminvalid.)
3. Write. (i) ¢ = (write,v) andd = c andr = 1, and (ii) if
statust = finished then statust, = started, else if status! =
serialized andv € pws!, thenstatusy = invalid, elsestatust =
statust, and (jii) wss = wst U {v} andrss = rst andprsl =
prsi andpwsl, = pws’ and Predsh = Predst, and (iv) for all
threadsu # t, we havegy = ¢i (When a thread writes to, the
variablev is added to the write set. If the status{ois finished,
change the status tearted, else if the status iserialized andv is
in the prohibited write set, then change status wfinvalid.)

4. Serialize. (i) d = serialize andr =1, and (ii) status} =
started, and (iii) statush = serialized andrs} = rs!{ andws} =
ws} and prs, = prst and pwsh, = pws} and Predst = {u €
T | Statusf = serialized}, and (iv) for all threads: # ¢, we
havegs = qi'. (A threadt can serialize if the current statusois
started, and the status dfis set toserialized. Every thread whose
status isserialized is added into the predecessor set.pf

5. Commit. (i) ¢ = commit andd = candr = 1, and (ii)
status} € {serialized, finished}, and (iii) status} = finished
andrsh = wst = prsi = pws, = Predsh = (), and (iv) for
all threadsu # t, we haversy = rsi andwsy = ws} and
Predsy = Preds®, and (v) for all threads, # ¢, if w € Preds?,
then prsy = prs® U ws} and pwsy = pws? U rst U ws},
otherwiseprsy = prs] and pws; = pws], and (vi) for all
threadsu € Predst, setstatusy = invalid if ws¥ N ws? # 0
or wsy N rst # (), andstatusy = statusy otherwise (vii) for all
threadsu ¢ Predst, setstatusy = invalid if ws! N rsy # 0,
andstatusy = status} otherwise (When a threadcommits, the
current status of should beserialized or finished. The status of
is set tofinished. For every predecessor threaadf ¢, all variables
in the write set oft are added to the prohibited read and write set
of w. All variables in the read set @fare added to the prohibited
write set ofu. For all predecessor threadf ¢, if the write set of
u intersects with the read set or write set.pthe status of. is set
toinvalid. For all threads: that are not predecessorstauch that
the read set of; intersects with the write set of the status of: is
set toinvalid.

For every state: € Q, a transition(qi, ¢, (abort, t), 0, g2) is
in ¢ if ¢ € C enabled ing; for threadt, andrs = wsb = prsh, =

c1 C2 c3 c4

5T (w,v)s V)2 ST (w,v)2 2

s?wv)%@/ %7(@12{91‘/111@
Cc2

S Cad Cad G

Figure 2. We use the same notation as in Table 1. The commits
inside ovals are disallowed by the reference strictly serializable
implementation. Each condition shows various cases. The arrows
represent different possible positions for a command to occur in a
given condition

pwsl, = Predsh = (), andstatush = finished, andgy = ¢ for all
threadsu # t.

Note that the non determinism in the transition relation comes
from theserialize command, and the fact thabort is allowed in
every state. For a reference TM transition systéfr, we define a
run as a sequence= sos1 . . . s, in S5 such that there exist states
qo - - - qn, COMmMandsy . . . c,, and responses, . .. r, where (i)
qo = qiniz @nd (ii) for allj > 0, we have(qj, Cj,Sj,Tj, qj+1) € 9.

We define the languagB(A™") as the set of wordsy such that
w = r|g for some run- of A™",

Theorem 2. Given a wordw on n threads and: variables, the
word w is strictly serializable if and only ifv € L(A%*).

Proof. Consider an arbitrary rum = sos;...s, of A%*. Let
w = r|z. Letw’ be the sequential word such thatis transaction
equivalent tow andx <, y if = serializes beforey in the
runr. Then,com(w') is strictly equivalent tazom (w) iff for every
transactionc € X, the transaction: does not commit im if one of
the following conditions holds: (graphically shown in Figure 2):
C1. there exists a transactignsuch thatc serializes beforg and
y writes to a variable and commits, and thenglobally reads
C2. there exists a transactignsuch thatc serializes beforg and
x writes tov andy readsv beforex commits, and; commits

C3. there exists a transactignsuch thatc serializes beforg and
bothx andy write to a variablev, andy commits before: does.
C4. there exists a transactignsuch that serializes afteyy andy
writes tov andz readsv beforey commits, and theg commits

The RSS TM transition system™* guarantees by construc-
tion, that a transactiom does not commit irr if one of the con-
ditions, C1-C4 holds. Hence, for every run of A™*, the word
w = r|g is strictly serializable.

Conversely, consider a wond € S* onn threads and: vari-
ables such tha is strictly serializable. Thus, there is a sequential
word w’ such thatcom (w') is strictly equivalent tacom (w)). Let
the committing transactions in the sequential warcbe given by
the sequence; . .. zx of transactions. Consider a rurof the RSS
TM transition systemd™* such thatw = r|¢ and for alli andj
such thatt < j, the transaction:; serializes before:; in r. The
runr exists because (i) the RSS TM transition system guesses ev-
ery possible serialization for every transaction during its execution,
and (i) given thatw is strictly serializable, there is no transaction
in the sequence; . . . z; that satisfies any of the conditiog-C4,
and commits in-. Thus, the wordv € L(A%"). O

5.2 The reference TM algorithm for abort consistency

Apart from the requirements of the above mentioned reference TM
algorithm for strict serializability, abort consistency requires that
even global reads of aborting transactions observe consistent val-
ues. It turns out that we can even obtain a finite state representation
of the RAC TM transition system by slightly modifying our RSS
TM transition system.

The RAC TM transition system is based on the following no-

serialize at some point during its executidiike the RSS TM tran-
sition system , the RAC TM transition system makeguessof

. . > ¢ ! Table 2. Time for simulation checking for TM algorithms on a
tion: Every transaction (committing, aborting, or pending) should quad dual core 2.8 GHz server with 16 GB RAM. In case simu-
lation holds, we writeYES followed by the time required for the

i Vi) T simulation. Otherwise, we writelO followed by the counterex-
when every transaction serializes. Here, in addition to the RSS TM gmple produced, followed by the time required to prove that no

transition system, every transaction has to follow certain restric- simylation exists and to find the counterexample.

tions on executable commands, even to read some variable glob- ™ - Numb
ally. transition umber 422 2 422 | a22 422
. . 2,2 88 ac
The formalism forRAC TM algorithmA,. and theRAC T™M systemA of states
transition systemd”:* is exactly similar to that of the RSS T™M seq 3 YES, 0.8s YES, 0.7s
algorithm. The only difference comes in the transition relafipon 2PL 99 YES, 13s YES, 8s
a global read, and on a serialize command. We obtain the transition dstm 944 YES, 127s YES, 82s
relation for A™* by replacing rules 2 and 4 of that ¢f’;* by the TL2 341128 Eg ?225 \N(gs’ 3875569
rules 2a and 4 low. We only provi n informal ription occ , (008 » W1, OVYS
hore fo?sZkg o?btr):v(i)ty e only provide an informal description | —z—e ey 5480 | NO, ws, 8875 | NO, ws, 674s
2a. Global read.When thread readsv globally, v should not - 22230426 — —
be in the prohibited read setis added to the read set. If the status c |
of ¢ is finished, it is changed tatarted. For every other thread) OEJ”tle)rexamF e1)
with statusserialized such that is not a predecessor af we add w1 Wy)2, A)1, 02,47, 1)1
w2 (w,2)2, (r,2)1, (w,2)1,c2,c1

v to the prohibited write set af, and we set status af to invalid
if v is in the write set ofs.

4a. Serialize When a thread serializes, the current statusiof
should bestarted. The status of is set toinvalid if there is a thread
u With statusstarted and the read set af intersects with the write
set oft, otherwise, the status ofs set toserialized. All variables in
read sets of threads with statstarted are added to the prohibited
write set oft. All threads with statuserialized are added to the
predecessor set of For every other thread, if the status ofu is
serialized and the write set of. intersects with the read set of
then the status af is set toinvalid. For every thread, with status
serialized, the read set of is added to the prohibited write setof

The results of our simulation checks are presented in Table 2.
Our results demonstrate that all TMs discussed in Section 3 —
sequential, 2PL, DSTM, and TL2— are simulated by both refer-
ence TM transition systems. As for the OCC TM, it is simulated by
the RSS TM transition system, but not by the RAC TM transition
system. The tool gives a counterexample in the latter case.

Theorem 4. The sequential TM, two phase locking TM, DSTM,
and TL2 TM ensure abort consistency. The optimistic concurrency
control TM ensures strict serializability, but not abort consistency.

We also experimented with a subtle point in the TL2 algorithm.
We interchanged the order of the commaiwgtk andvalidate in
the TL2 to obtain modified TL2 TM algorithm. We first dalidate,
thenlock the variables, and then perforchklock. The tool found
that the modified TL2 is not simulated by either of the reference TM
A TM M defined by a TM algorithm4 ensures strict serializ- transition systems, and provided counterexamples corresponding to
ability if L(A>2) C L(A%?). As checking language inclusion is ~ Poth simulation checks. Thus, we conclude that the modified TL2
PSPACE-hard, we use the common technique of checking for the &lgorithm does not ensure abort consistency, or even the weaker
existence of a simulation relation between both transition systems. Safety criterion of strict serializability.
The existence of a simulation relation is a sufficient condition for
language inclusion. We writel?> < A3 to denote that there
exists a simulation relation betweelf’2 and Agﬂ_ Fora TMM In our framework, we can also compare the languages of different
defined by a TM algorithm which satisfies the symmetry assump- TM transition systems. Checking language inclusion between TM
tions of the reduction theorem (Theorem 1), the following hold: (i) transition systems provides information about liberality of different
The TM M ensures strict serializability (resp. abort consistency) if TM implementations, i.e., which TM algorithm has strictly more
A%? < A%2 (resp.A?? < A2Z2). (i) M does not ensure strict se- ~ words than egnother. Liberality can be one of the important criteria
rializability (resp. abort consistency) if there exists a woret S* for ranking different TM algorithms. _
such thatw € L(A%>?) andw ¢ L(A%?) (respw ¢ L(A%?)). We compare the sequential, 2PL, DSTM, and TL2 TMs for lib-

We built an automatic verification tool in C for checking the ~€rality. For this purpose, we need to define an additional symmetry
existence of simulation relations using the quadratic algorithm by Property,P5, which is satisfied by these TMs. For TMs that en-
Henzinger et al. [HHK95]. The tool is conceived as a platform Sure abort consistency, and satisfy the propefisP5, we can
for the automatic verification of TMs that satisfies the symmetry Show the reduction theorem that, If(A7"") C L(A3”), then
properties. We mention that simulation checking requires extra L(A7"*) C L(Ay"*) for arbitraryn andk.
technical care in this scenario due to different extended alphabet ps5_For every wordw such that there is no programwhere
in different TMs. The tool takes as input two TM algorithris w is a finite prefix of a word inM(p), one of the following
and A, and checks whethet?* < A3, If the tool fails to find a holds: (i) w is not abort consistent, or (i) there exists a wastl
simulation relation, it attempts to return a counterexanple S* such that for no program’, the wordw’ € M (p'), wherew' is
such thatw € L(A*?) andw ¢ L(AZ%?). However, in certain obtained as follows. All aborting transactions wfare removed,
cases, it is possible that even though language inclusion holds, thethen a transaction projection is taken on transactions of any two
tool cannot find a simulation relation. Thus, our decision procedure threads, then a variable projection is taken on any two variables
is sound but not complete. It turns out that for the TM transition to obtain wordw’. This property just states that when an abort
systems that we considered, our tool terminates after proving the consistent wordy is not produced by a TM, then it is due lacal
simulation relation, or after finding a counterexample. conflictson two threads and two variables. This is due to the fact

Theorem 3. Given a wordw on n threads and: variables, the
word w is abort consistent if and only if € L(A7).

5.3 Implementation and simulation checking

5.4 Comparing TM algorithms

Table 3. Ranking different transactional memories. The time is
measured on a 2.66 GHz dual core desktop PC with 2 GB of RAM.
The notation is similar to that in Table 2

A22 | < AT < Agpy < A% | <AL

seq — YES, 0.1s YES, 0.2s YES, 0.4s

2PL NO, w1,0.3s | — YES, 0.6s YES, 2.1s

dstm | NO,w1,0.7s | NO, wo,2.4s | — YES, 13s

TL2 NO, w1,0.8s | NO, wo, 4s NO, w3, 17s | —
Counterexample

w1 (r,2)2,c1

wo (w,)2, (r, 1

w3 (w,2)1, (w,2)2,c1

that conventional TM algorithms use techniques like validating the

read set, and locking the write set, to guarantee correctness.
Formally, a TMM; defined by a TM algorithn¥; is more lib-

eral than a TM M, defined by a TM algorithmA, (denoted as

M, > M) if L(A2?) C L(A>?). As in the previous subsec-

exist a loopl in A™* such that there is ncommit in I, and every
thread that has a commandliaborts ini.

6.1 Reduction theorem for liveness

As we did for safety, we state a reduction theorem that proves that
it is sufficient to verify liveness of a TM on programs with two
threads and two variables to generalize the result to all programs.
For this purpose, we need two more symmetry properties of TM al-
gorithms. These properties are again satisfied by all TM algorithms
that we have discussed. Let= w; - w2 be an infinite word such
thatw is in M (p) for some progranp, and no pending transaction

in wy has a statement im2, and all the commands i are from

the same thread. Fare {1, 2}, let V; be the variables accessed
N w;.

P6. Transaction projectionLet w; be the word obtained by taking
the transaction projection af; on non aborting transactions. Then
wi - w2 € M(p') for some progranp’. Moreover, ifw; has no
aborting transactions, there exists a ward= wy’ - ws € M (p),
wherew? is obtained by projecting; to transactions of threatd

tion, we check language inclusion by checking the existence of a wheret has commands in;.

simulation relation. Our results are listed in Table 3. The following
theorem follows.

Theorem 5. TL2-TM > DSTM > 2PL-TM > sequential-TM.

6. Verifying liveness

We define two different notions of liveness, obstruction freedom
and livelock freedom, as discussed in the TM literature. The third
notion, wait freedom, implies livelock freedom. Since we will show
that none of our example TMs satisfy livelock freedom, they do not
satisfy wait freedom either.

Obstruction freedoniHLMO3] requires that if a thread performs

an infinite number of commands in isolation, where the commands

P7. Variable projection.There exists a wordh’ = w; - w5 such
thatws is the variable projection ofv; on {v}, wherev € V5,
andw’ is in M (p’) for some progranp’. Moreover, ifw; has no
aborting transactions, then the ward = w} - wo is in M (p") for
some programp’, wherew? is the variable projection af; on V5.

Theorem 6. If a TM M satisfies propertieB6 andP7, then M
ensures obstruction freedomAf ensures obstruction freedom for
two threads and one variable.

Proof. Given aw € M (p) on arbitrary number of threads and
variables such thav is not obstruction free, we can use properties
P6 and P7 to obtain a wordw’ on two threads and one variable
such thatw” € M(p’) for some progranp’. O

include an infinite number of aborts, then the commands include 6.2 Model checking liveness

an infinite number of commits. An infinite word € S* is ob-
struction fredf A, (O0((commit,)V (¢, u))VOO~(abort, t)),
wherec € C andu # t. This is a Streett condition.

Livelock freedonfAKHO3] requires that on every infinite trace, an
infinite number of commits are executed. An infinite wards S«

is livelock freeif O(V/, o (commit, ¢))VOOI(A, o —(abort, 1)).
This implies obstruction freedom.

A TM M ensures obstruction freedom (resp. livelock free-
dom) for all programs withn threads andk variablesif for ev-
ery programp € P™*, every wordw € M(p) is obstruction
free (resp. livelock free). A TMM ensures obstruction free-
dom (resp. livelock freedom) M ensures obstruction freedom
(resp. livelock freedom) for all programs with arbitrary number of
threads and variables. A TN/ ensures obstruction freedom if it
ensures livelock freedom. We use the formalism of TM algorithms
for verifying of liveness properties in TM. We defindaop ! in a
TM transition systemﬁl"*’C as awordy . .. s, such that there exist
asetof stategy . . . ¢ in A™* such that for alf where0 < i < m,
we have(qs, ci, si,7:¢i+1) € 9§ and (¢m, Cm, Sm,Tm,q0) € 9,
whered is the transition relation afi™*.

Although obstruction freedom is formally a Streett condition,
the different conjuncts (Streett pairs) do not overlap, which permits
a simple model checking procedure. In particular, a PMlefined
by a TM algorithmA ensures obstruction freedom for all programs
with n threads ande variables iff there does not exist a lodfn
A™* such that all commands inare from the same thread, ahd
has no commit, anthas an abort. Similarly, since livelock freedom
is a single-pair Streett condition, a TM ensures livelock freedom
for all programs withn threads and: variables iff there does not

We extended our verification tool to check obstruction freedom and
livelock freedom properties for transaction memories defined by
TM algorithms A. To check obstruction freedom, our tool tries to
find a loopl in A% such that all commands in are from the same
thread, andv has no commit, and> has an abort. If the tool finds
such a loop, the loop is a counterexample to obstruction freedom.
If the tool does not find a loop, we know that the TM ensures ob-
struction freedom. In this way, our tool provides a platform for TM
designers to check which liveness properties are ensured by their
TMs. If the liveness property fails, then the tool provides feedback
in the form of an execution trace that represents a counterexample.
Our results are shown in Table 4. The next theorem follows.

Theorem 7. DSTM ensures obstruction freedom and does not en-
sure livelock freedom. Sequential TM, 2PL TM, TL2 TM, and opti-
mistic concurrency control TM do not ensure obstruction freedom.

7. Related Work

Very recently, the article [COP07] has been brought to our atten-
tion. While their goals are similar to ours, as far as we can tell,
they check only the correctness of finite instances (e.g., STMs ap-
plied to programs with a small number of threads and variables),
without offering reduction theorems that establish the sufficiency
of such checks. Moreover, they consider only the strong safety cri-
teria of [Sco06], which fail, for example, for TL2. Also, the article
[COP'07] does not address the verification of liveness properties.
Our construction of the reference STM algorithms is related to
the work of Fle and Roucairol [FR85]. They investigated the set
of concurrent traces that are generated by a finite set of iterating

Table 4. Results of model checking liveness on a dual core OUr methodology. It is not clear how to reason about correctness if

2.66GHz desktop PC with 2 GB RAM. The notation is similar to
Table 2. The counterexamples obtained are of the forh”. We

write the looping parb here.

the lower-level primitives are not atomic. It is also an interesting
open question to compare the liberality of STMs when extended
commands are not atomic.

transactions.
that are confl

their results cannot be applied in the presence of aborting transac-[COPTLm]

They proved that the language consisting of all traces
ict equivalent to a sequential trace is regular. However,

tions, as they require transitivity of conflicts, which does not hold
when transactions may abort.

There has been much research in the verification of relaxed
memory models and cache-coherence protocols for modern multi-
processors, e.g., [HQR99]. In most of this work, the semantics of

a shared me

mory is given byraemory consistency mogdethich

defines the possible outcomes of executing concurrent programs.

For example

, in order to determine if a processor complies with its

[BCG

89]

™ Obstruction Livelock
algorithm freedom freedom References
seq NO, w1,0.1s | NO, wy,0.1s [AKHO3] James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-
2PL NO, wy, 0.1s NO, w1, 0.1s memory mutual exclusion: major research trends since 1986.
dstm YES, 2s NO, we, 0.2s Distributed Computingpages 75-110, 2003.
TL2 mg wi, 84;8 mg W1, 84;3 [AMP0O] Rajeev Alur, Kenneth L. McMillan, and Doron Peled. Model-
oce (W3, 0. 18 W3, .18 checking of correctness conditions for concurrent objects.
Counterexamples Information and Computatiqgppages 167-188, 2000.
51 Zl G RCSNTRCS) [BAMO7] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin.
2 LA 21,19, 1)1, 92,19, 72 Checkfence: checking consistency of concurrent data types on
w3 51,01 relaxed memory models. BLDI, pages 12—21, 2007.

M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning
about networks with many identical finite state procesh#s.
Comput, pages 13-31, 1989.

Ariel Cohen, John O’Leary, Amir Pnueli, Mark R. Tuttle,
and Lenore Zuck. Verifying correctness of transactional
memories. IFFMCAD, 2007.

[DSS06] David Dice, Ori Shalev, and Nir Shavit. Transactional locking
ii. In DISC, pages 194-208, 2006.
[EGLT76] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L.

memory model, Gopalakrishnan et. al [GYS04] provided a method [FHO7]
to establish if a given back-annotated execution trace of a processor
is valid with respect to its memory model. The specification of the [FR85]
processor's memory model is translated into a HOL specification
and a QBF-solver is used to establish the corresponding memory[ckos]
ordering constraints taking the given execution trace into account.
Burckhardt et. al [BAMO7] developed a method based on SAT- (GYS04]
based bounded model checking to verify concurrent data types on
different memory models by testing exhaustively all concurrent

executions of a given test program. In comparison, our work is

more general as it targets an STM without a particular program

in mind. On the other hand, since it specifically targets STM and,

correspondingly, uses a deferred update semantics rather than dHHKo3]
memory consistency model, our approach is also more restrictive.

8. Conclusion

We presente

ness properties. The cornerstones of our technique are a finite-stat
representation for the languages of strictly serializable and abort

d a new technique for verifying STM safety and live-

consistent executions, and an automated verification tool for STMs.
Our method applies to all STM protocols that feature certain sym-

metry proper
2PL, DSTM,

Although
symmetry pr

ties, and we successfully verified abort consistency for
and TL2, and the obstruction freedom of DSTM.
most STM protocols we know of fulfill the required

operties, some do not, and these open interesting re-

search opportunities. In particular, our symmetry properties do not
hold in cases when aborting transactions are given priority (in
general when history matters in making decisions). Similarly, our
framework does not apply when transactions help each other. For

instance, we

cannot model for example Fraser's STM [FHO7] nor

[Her91]

[HLMO3]

§HLMS03]

Traiger. The notions of consistency and predicate locks in a
database systencommun. ACMpages 624-633, 1976.

Keir Fraser and Tim Harris. Concurrent programming without
locks. ACM Trans. Comput. SysR007.

Marie-Paule F¢ and G&rard Roucairol. Maximal serializabil-
ity of iterated transactionsICS pages 1-16, 1985.

Rachid Guerraoui and Michat Kapatka. On the correctness of
transactional memory. IRPoPP, 2008. to appear.

Ganesh Gopalakrishnan, Yue Yang, and Hemanthkumar
Sivaraj. QB or Not QB: An efficient execution verification
tool for memory orderings. ICAV, pages 401-413, 2004.

Maurice Herlihy. Wait-free synchronizatiorACM Trans.
Program. Lang. Systpages 124-149, 1991.

Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W.
Kopke. Computing simulations on finite and infinite graphs.
In FOCS pages 453-462, 1995.

Maurice Herlihy, Victor Luchangco, and Mark Moir.
Obstruction-free synchronization: Double-ended queues as an
example.ICDCS page 522, 2003.

Maurice Herlihy, Victor Luchangco, Mark Moir, and
William N. Scherer. Software transactional memory for
dynamic-sized data structures. RODC, pages 92-101,
2003.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
architectural support for lock-free data structuresISGA
pages 289-300, 1993.

[HQR99] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Raja-

[JD94]

the Karmacontention manager of Scherer and Scott [SS05]. Also, [KR81]

our liveness

properties capture deterministic notions. It would be

interesting to account for probabilistic means to deal with con-

tention, such

We also assumed that the commands in the extended alphabet

as random exponential backoff.

we considered are executed atomically. So, STM implementations
have to guarantee this level of atomicity to ensure correctness using[Pap79]

[LRO7]

mani. Verifying sequential consistency on shared-memory
multiprocessor systems. DAV, pages 301-315, 1999.

J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessors control. IBAV, pages 68-80, 1994.

H. T. Kung and John T. Robinson. On optimistic methods
for concurrency controlACM Trans. Database Syspages
213-226, 1981.

James R. Larus and Ravi Rajwafransactional Memory
Synthesis Lectures on Computer Architecture. Morgan &
Claypool, 2007.

Christos H. Papadimitriou. The serializability of concurrent

[Sco06]

[SS05]

[ST95]

database updated. ACM pages 631-653, 1979.

Michael L. Scott. Sequential specification of transactional
memory semantics. IACM SIGPLAN WTC2006.

William N. Scherer and Michael L. Scott. Advanced
contention management for dynamic software transactional
memory. INPODC, pages 240-248, 2005.

Nir Shavit and Dan Touitou. Software transactional memory.
In SPDC pages 204-213, 1995.

