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Abstract
Model checking software transactional memories (STMs) is diffi-
cult because of the unbounded number, length, and delay of con-
current transactions and the unbounded size of the memory. We
show that, under certain conditions, the verification problem can
be reduced to a finite-state problem and we illustrate the use of
the method by proving the correctness of several STMs, including
two-phase locking, DSTM, TL2, and optimistic concurrency con-
trol. The safety properties we consider include strict serializability
and abort consistency; the liveness properties include obstruction
freedom, livelock freedom, and wait freedom.

Our main contribution lies in the structure of the proofs, which
are largely automated and not restricted to the STMs mentioned
above. In a first step we show that every STM that enjoys certain
symmetry properties either violates a safety or liveness requirement
on some program with 2 threads and 2 shared variables, or satisfies
the requirement on all programs. In the second step we use a
model checker to prove the requirement for the STM applied to
a most general program with 2 threads and 2 variables. In the
safety case, the model checker constructs a simulation relation
between two carefully constructed finite-state transition systems,
one representing the given STM applied to a most general program,
and the other representing a most liberal STM applied to the same
program. In the liveness case, the model checker analyzes fairness
conditions on the given STM transition system.

1. Introduction
With the advent of multi-core processors, there is a new urgency for
concurrent programming models that give the programmer the illu-
sion of sequentiality and the compiler maximal flexibility. A model
that has enjoyed particular recent success is software transactional
memory (STM), which allows the programmer to think in coarse-
grained code blocks that appear to be executed atomically but does
not constrain the compiler by blocking memory access. Inspired by
how databases manage concurrency, transactional memory was first
introduced by Herlihy and Moss [HM93] in multi-processor de-
sign. Later Shavit and Touitou [ST95] introduced STM, a software-
based variant of the concept, which enables a new way of looking
at concurrent programming. An extensive overview of STM can
be found in [LR07]. In this paper, we consider the following STM
algorithms: two-phase locking, DSTM [HLMS03], TL2 [DSS06],
and optimistic concurrency control [KR81].

Precisely because it encapsulates the difficulty of handling con-
currency, the potential of subtle errors in STM implementations is
enormous. This makes STM a ripe and important proving ground
for formal verification. While there have been initial steps in this
direction, the challenge remains daunting for several reasons.
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First, there is no generally agreed upon formal notion of cor-
rectness for STM. Scott[Sco06] was the first to provide a formal
semantics of STM. However, his weakest correctness criterion re-
quires commit ordering to be preserved. Thus, the popular STM
implementation TL2 [DSS06], which does not preserve the commit
ordering, falls outside the semantic classification by Scott. Guer-
raoui and Kapalka [GK08] discussed various alternatives to pre-
cisely capture the safety aspect of STM and highlighted the subtle
differences with database transactions.

Second, while model checking is the verification technique
that is best equipped to find concurrency bugs, model checking
is severely handicapped by several sources of unbounded state in
STM: memory size, thread count, and transaction length cannot
be bounded, and neither can the delay until a transaction commits
nor the number of times that a transaction aborts. As with relaxed
memory models, special care is needed in formulating a verification
problem that is both relevant and solvable, as some problems about
sequentializing concurrent systems are undecidable [AMP00].

Third, the specification of an STM universally quantifies over
all possible application programs, requiring the desired safety and
liveness conditionsfor all programs that are executed on the STM.
In this sense, STM verification resembles the problem of check-
ing that a processor implements an instruction set architecture,
where the executed programs are also universally quantified. In
both cases, the key is to define (and check) a suitable implemen-
tation relation [JD94]. While in processor verification, the imple-
mentation relation needs to handle pipelines and out-of-order exe-
cution, in STM, we need to handle aborted transactions.

We present in this paper a new technique for verifying STM
safety and liveness properties. Our technique addresses the three
issues above as follows.

First, the safety requirements we consider arestrict serial-
izability [Pap79] andabort consistency. (The latter is a single
version read/write restriction of the notion ofopacity introduced
in [GK08].) Strict serializability preserves the order of conflict-
ing operations by transactions, and the order of non-overlapping
transactions. Abort consistency ensures, in addition, that aborting
transactions do not see an inconsistent state of the memory, which
can be disastrous in STMs (due to infinite loops, or exceptions).
We study abort consistency, because it provides the programmer
with the full sequentiality illusion and, to our knowledge, is satis-
fied by most STM protocols that claim that illusion [LR07]. Strict
serializability is considered here for pedagogical reasons, as it is
intuitive and captures the main technical difficulties behind verify-
ing abort consistency. Our verification technique can be extended
to the stronger notions of safety discussed by Scott [Sco06] by
modifying the semantics of conflict. The liveness requirements we
consider are the standard notions ofobstruction freedom, livelock
freedom, andwait freedom[HLM03, AKH03, Her91].

Second, we exploit the symmetries that are inherent in STM im-
plementations to reduce the unbounded STM state verification to a
problem that involves only a small number of threads and shared
variables. Specifically, we show that every STM that enjoys certain
symmetry properties either violates any of the considered safety
and liveness requirements on some program with 2 threads and 2
shared variables, or satisfies the requirement on all programs. The
symmetry properties, which expect all threads to be treated equally,
are fulfilled by most transactional algorithms, including for in-



stance two-phase locking, DSTM, TL2, and optimistic concurrency
control. Similar techniques for reducing unbounded instances of
model-checking tasks to small, characteristic instances have been
used for verifying protocols with an unbounded number of identi-
cal processes [BCG89] and cache-coherence protocols [HQR99].

Third, and perhaps most importantly, we define two finite-state
transition systems that generate exactly the strictly serializable
(resp. abort consistent) executions of programs with 2 threads and
2 shared variables. These transition systems can be viewed as most
liberal reference STM implementationsguaranteeing strict serializ-
ability (resp. abort consistency). To our knowledge, the transition
systems presented in this paper provide the first finite-state repre-
sentation of the language of strictly serializable (resp. abort consis-
tent) executions for transactions that may abort. The finite size of
the transition systems is achieved by a careful choice of state, which
encompasses for every thread a set of read variables (at most 2), a
set of written variables (at most 2), a set of variables not allowed to
be read (at most 2), a set of variables not allowed to be written (at
most 2), and a set of threads with overlapping, preceding transac-
tions (at most 1). We show that an STM implementation is strictly
serializable (resp. abort consistent) iff for a specific, most general
program with 2 threads and 2 variables, all executions are permitted
by the reference STM implementation. Then, instead of checking
language containment between a given STM implementation and
the reference implementation, we check for the existence of a sim-
ulation relation between both transition systems. (The existence of
a simulation relation is a commonly used, efficient sufficient con-
dition for language containment.)

Putting all steps together, we reduce the problem of verifying
the safety of an STM implementation, which is unbounded in many
dimensions (memory size, thread count, transaction delay, etc.), to
a simulation check between two finite-state systems. For two-phase
locking, DSTM, TL2, and optimistic concurrency control, we ob-
tain transition systems with up to 4,500 states, and a reference im-
plementation has about 12,500 states. We implemented a simula-
tion checker that automatically verifies strict serializability for op-
timistic concurrency control and abort consistency for two-phase
locking, DSTM, and TL2 in less than 15 minutes. It should be noted
that the methodology is applicable to any other STM implementa-
tions that fulfill the symmetry properties. Our simulation checker
finds that correctness is not self-evident in many STM implemen-
tations. To illustrate this, we give an example where reversing two
steps in TL2 renders the STM unsafe. In this case, the simulation
check provides as counterexample an execution that is not strictly
serializable (and thus not abort consistent). We therefore expect our
verification tool to be useful to STM designers when they develop
or modify STM implementations. Our tool also allows the com-
parison of different STMs according to whether one allows strictly
more executions than another.

On the liveness side, we use again symmetry reduction theo-
rems to check the desired liveness requirement on the finite-state
transition system that results from a given STM implementation
applied to a most general program with 2 threads and 2 variables.
We extend our model checking tool to verify the different live-
ness properties. In the case of obstruction freedom, this amounts to
checking a Streett condition and the check goes through for DSTM.
For two-phase locking, TL2, and optimistic concurrency control,
the model checker automatically generates counterexamples to ob-
struction freedom, as it does for DSTM and livelock freedom.

2. Safety in transactional memories
We introduce some notions to define the correctness of a TM. Let
V be a set{1, . . . , k} of k variables. LetC = {commit}∪{read×
V } ∪ {write× V } be the set ofcommandson the variablesV . Let
T = {1, . . . , n} be the set ofthreads. LetS = C ×T be the set of

statements. We defineĈ = C ∪ {abort} andŜ = Ĉ × T . A word
w ∈ Ŝ∗ is a finite sequence of statements. Given a wordw ∈ Ŝ∗,
we define theprojectionw|t of w on threadt ∈ T as the longest
subsequencew′ of w such that every statement inw′ is in Ĉ×{t}.
Given a projectionw|t = s0s1 . . . sm of a wordw, a statementsi

is finishing inw|t if it is a commit or anabort or the last statement
of w|t. A statementsi is initiating in w|t if it is the first statement
in w|t, or the previous statementsi−1 is a finishing statement.

Given a projectionw|t of a wordw on threadt, a consecutive
subsequencex = s0 . . . sm of w|t is a transactionof threadt in
w if s0 is initiating in w|t andsm is finishing inw|t, and no other
statement inx is finishing inw|t. The transactionx is committing
in w if sm is a commit statement. The transactionx is aborting
in w if sm is anabort statement. Otherwise, the transactionx is
pendingin w. Given a wordw and two transactionsx and y in
w (possibly of different threads), we say thatx precedesy in w,
written asx <w y, if the finishing statement ofx occurs before the
initiating statement ofy in w. A word w is sequentialif for every
pair (x, y) of transactions inw, eitherx <w y or y <w x.

We define a functioncom : Ŝ∗ → S∗ such that for all words
w ∈ Ŝ∗, the wordcom(w) is the longest subsequencew′ of w
such that every statement inw′ is part of a committing transaction
in w. Thus,com(w) consists of all statements of all committing
transactions inw.

A transactionx of a threadt writes to a variablev if x contains
a statement((write, v), t). A statements = ((read, v), t) in x is
a global readof a variablev if there is no statement((write, v), t)
befores in the transactionx. A transactionx of a threadt globally
readsa variablev if there exists a global read of variablev in
transactionx. A word w is transaction equivalentto a wordw′

if for every threadt ∈ T , we havew|t = w′|t.

2.1 Safety criteria

Conflict serializability (cf. [EGLT76]) is a commonly used cor-
rectness criterion for concurrent systems and, in particular, for
transactional systems. Conflict serializability allows us to omit
the values of read and write commands, since the consistency
of the values follows from preserving the order of conflicts. In
the context of transactional memories, a stronger property, called
strict serializability, is considered. Strict serializability preserves
the order of non-overlapping transactions. We note that strict se-
rializability does not state any restrictions on the operations of
the aborting transactions. In the scope of STMs, a stronger no-
tion of correctness, referred to asabort consistencyhas been sug-
gested [GK08, HLMS03] to avoid unexpected side effects, like in-
finite loops, or array bound violations. Abort consistency requires
that a word is strictly serializabile, and that the aborting transac-
tions do not see read inconsistent values.

Now, we formalize these correctness criteria. We start with the
notion of a conflict. Transactional memories use direct update se-
mantics (every transaction modifies the shared variables in place
and restores them upon abort), or deferred update semantics (ev-
ery transaction modifies a local copy, and changes the shared copy
upon a commit). We choose to define conflicts under the deferred
update semantics. All our work can be similarly applied to TMs
with direct update semantics, with a slight modification of defini-
tion of conflict. A statementss1 of transactionx and a statements2

of transactiony (x 6= y) conflict in a wordw if (i) s1 is a global
read of variablev ands2 is a commit andy writes tov, or (ii) s1

ands2 are both commits, andx andy write tov.
A word w = s0 . . . sn is conflict equivalentto a wordw′ if (i)

w is transaction equivalent tow′, and (ii) for every pairsi, sj of
statements inw, if si andsj conflict andi < j, thensi occurs
beforesj in w′. A word w = s0 . . . sm is strictly equivalentto a
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Figure 1. Our framework of transactional memory

word w′ if (i) w is conflict equivalent tow′ and (ii) for every pair
x, y of transactions inw, if x <w y thenx <w′ y.

A word w ∈ Ŝ∗ is strictly serializableif there exists a sequen-
tial wordw′ such thatw′ is strictly equivalent tocom(w). Further-
more, we define that a wordw is abort consistentif there exists a
sequential wordw′ such thatw′ is strictly equivalent tow. (Note
that w may contain pending transactions.) We note that given a
wordw, if w is abort consistent, thenw is strictly serializable.

Example.Considerw = ((read, v1), t1), ((write, v1), t2), ((write,
v2), t2), (commit, t2), ((read, v2), t1). w has two transactions:
(i) a pending transaction ((read,v1),t1), ((read, v2),t1), and (ii) a
committing transaction ((write, v1), t2), ((write, v2), t2), (com-
mit, t2). The following pairs of statements conflict: (((read, v1),
t1),(commit, t2)) and (((read, v2), t1), (commit, t2)). The word
w is strictly serializable becausecom(w) consists only of ((write,
v1), t2), ((write, v2), t2), and (commit, t2). On the other hand,w
is not abort consistent sincet1 reads the old value ofv1 (beforet2
commits) and the new value ofv2 (committed byt2).

2.2 Transactional memories

We consider a thread as our basic sequential unit of computation,
and describe a program to be a collection of threads. Each thread
consists of a sequence of transactions. In our formalism, we al-
low programs to retry a transaction, or start another transaction
on anabort. Formally, anunrolled threadθ on C is a function
θ : B∗ → C. We writeΘ for the set of unrolled threads. Defin-
ing unrolled threads as infinite binary trees on commands makes
the representation independent of specific control flow statements,
such as exceptions for handling abort. For every command of the
thread, we define two successor commands, one if the command is
successfully executed, and another if the command fails due to an
abort of the transaction.

Note that this definition allows us to capture easily different
retry mechanisms of TMs, e.g., retry the same transaction until it
succeeds or try other transaction after an abort. We define apro-
gramp onn threads andk variables as ann-tuplep = 〈θ1, . . . , θn〉
of unrolled threads onC. Figure 1(a) shows an example program on
two threads and two variables. LetP n,k be the set of all programs
onn threads andk variables. LetP be the set of all programs.

We define a transactional memory as an abstract function that
takes as input a program, and produces a set of infinite words.
Formally, atransactional memoryis a functionM : P → 2Ŝω

.
A transactional memoryM ensures strict serializability for all
programs withn threads andk variables if for every program
p ∈ P n,k , for every wordw ∈ M(p), all finite prefixes ofw
are strictly serializable. Similarly,M ensures abort consistency for
all programs withn threads andk variablesif for every program
p ∈ P n,k , for every wordw ∈ M(p), all finite prefixes of
w are abort consistent. We say that a transactional memoryM

ensures strict serializability(resp.abort consistency) if it ensures
strict serializability (resp. abort consistency) for all programs with
arbitrary numbern of threads and arbitrary numberk of variables.

3. Transactional memory algorithms
We use state transition systems to define TMs. A TM algorithm is a
family of TM transition systems, one forn threads andk variables,
for everyn andk. The TM transition system consists of a set of
states, an initial state, a transition relation between the states, and
an extended set of commands depending on the underlying TM.
For example, a given TM may require that a thread locks a variable
before writing to the variable, or that a thread validates the variables
read in a transaction, before accessing a new variable.

A TM algorithm interacts with a program and a scheduler (see
Fig. 1(b)). The scheduler chooses a thread and determines the
next command of that thread to be executed. The TM transition
system decides whether the command can be executed in a single
atomic step, or in several atomic steps, or has to be aborted. Given
a program, a scheduler, and a TM transition system, we get an
execution trace. Projecting this trace to the setĈ of commands,
we get a word inŜ∗. We describe the language of a TM transition
system as the set of words on̂S∗ that it can produce.

Formally, aschedulerσ on T is a functionσ : N → T . Let Σ
be the set of schedulers. We define aTM algorithmA as a family
of TM transition systemsAn,k = 〈Q, qinit , D, δ〉 for eachn andk,
whereQ is a set of states,qinit is the initial state,D is the set of
extended commands withC ⊆ D, andδ ⊆ Q×C×ŜD×Resp×Q
is the deterministic or non deterministic transition relation, where
ŜD = (D ∪ {abort}) × T andResp = {0, 1,⊥}. The transition
relationδ obeys the following rules:
1. if there exists a transition(q, c, (d, t), r, q1) ∈ δ of thread
t to stateq1 ∈ Q such thatr =⊥, then for every transition
(q1, c1, (d1, t1), r1, q2) ∈ δ with t1 = t, we havec1 = c. In this
case, we say that only commandc1 is enabledin q1 for threadt.
2. if for all transitions(q, c, (d, t), r, q1) ∈ δ of threadt to state
q1 ∈ Q , r 6=⊥ holds then there exists for every commandc1 ∈ C
a transition(q1, c1, (d1, t), r1, q2) ∈ δ. In this case, we say that
every commandc1 ∈ C is enabledin q1 for threadt.
3. for all q ∈ Q and for all transitions(q, c, (d, t), r, q1) ∈ δ such
thatd = abort, we haver = 0.
4. for all q ∈ Q and(c, t) ∈ S, if c is not enabled inq for threadt
then there exists a transition(q, c, (d, t), r, q1) ∈ δ with d = abort
for someq1 ∈ Q. In this case, we say that the commandc is abort
enabledin the stateq for threadt.

Moreover, for a deterministic transition relationδ, we have
for all q ∈ Q and (c, t) ∈ S, if (q, c, (d1, t), r1, q1) ∈ δ and
(q, c, (d2, t), r2, q2) ∈ δ thend1 = d2, q1 = q2, andr1 = r2.
Unless otherwise stated, TM transition systems have deterministic
transition relations.

Let p = 〈θ1, . . . , θn〉 be a program inP n,k . Let σ be a
scheduler onn threads. Arun ρ = 〈q0, l0〉〈q1, l1〉 . . . of An,k with
schedulerσ on programp is an infinite sequence of states together
with program locations, wherelj = 〈l1j , . . . , lnj 〉 ∈ (B∗)n for all
j ≥ 0 and (i) q0 = qinit and l0 = 〈ε, . . . , ε〉, (ii) for all j ≥ 0
there exists a transition(qj , cj , (dj , tj), rj , qj+1) ∈ δ such that
tj = σ(j) andcj = θtj (l

tj

j ) and for allt ∈ T if t 6= tj or rj =⊥
then ltj+1 = ltj , otherwiseltj+1 = ltj · rj . We associate withρ
an execution traces0s1 . . . in Ŝω

D such thatsj = (dj , tj) for all
j ≥ 0. We define thelanguageL(An,k ) of An,k as the set of all
finite wordsw ∈ Ŝ∗ such thatw = e|Ŝ , wheree is a finite prefix
of an execution trace ofAn,k for some programp onn threads and
k variables, and some schedulerσ onn threads.



A TM algorithmA defines a transactional memoryM such that
for all n, k, for every programp in P n,k and every wordw ∈ Ŝω,
we havew ∈ M(p) iff there exists a schedulerσ on T such that
w = e|Ŝ , wheree is the execution trace ofp andσ on the TM
algorithmA. It follows that a TMM defined by a TM algorithm
A ensures strict serializability (abort consistency) for all programs
with n threads andk variables iff all words inL(An,k ) are strictly
serializable (abort consistent).

In the following sections, we describe different transactional
memories as TM algorithms. To simplify the description, we view
a stateq of the corresponding TM transition systems as ann-tuple
〈q1 . . . qn〉, where each componentqt corresponds to a threadt and
is calledthread stateof t.

3.1 The sequential TM

To keep our first example simple, we describe a sequential TM. The
sequential TM executes the transactions sequentially (as ideally
suited for a uniprocessor). We define the sequential TMMseq using
a sequential TM algorithmAseq . The sequential TM transition
systemAn,k

seq for n threads andk variables is given by the tuple
〈Q, qinit , D, δ〉. The thread stateqt of threadt is {0, 1}. The initial
stateqinit = 〈0, . . . , 0〉. The set of extended commands isD = C.
A transition(q1, c, (d, t), r, q2) is in δ if c is enabled inq1 for thread
t and one of the following holds:
1. Read/Write. (i) c ∈ {read, write} × V andd = c andr = 1,
and (ii) qu

1 = 0 for all u 6= t andqt
2 = 1, and (iii) qu

2 = qu
1 for

all u 6= t (When a thread reads or writes a variable, the state of all
other threads should be false. The state oft is set to true.)
2. Commit. (i) c = commit andd = c andr = 1, and (ii)qu

1 = 0
for all u 6= t, and (iii) qt

2 = 0 andqu
2 = qu

1 for all u 6= t (When a
threadt commits, the state of all other threads should be false. The
state oft is set to false.)

A transition(q1, c, (abort, t), 0, q2) is in δ if c is abort enabled
in q1 for threadt andq2 = q1.

3.2 The two-phase locking TM

Our second example of a TM algorithm is based on two phase lock-
ing (2PL) protocol, commonly used in database transactions. Every
transaction locks the variables it reads or writes before accessing
them, and releases all the acquired locks during the commit. We
define the 2PL TMM2PL using a 2PL TM algorithmA2PL. The
2PL TM transition systemAn,k

2PL for n threads andk variables is
given by the tuple〈Q, qinit , D, δ〉. The thread stateqt of thread
t is a subset ofV . It denotes the variables locked by the thread.
The initial stateqinit = 〈∅, . . . , ∅〉. The set of extended commands
is D = C ∪ ({lock} × V ). δ is the transition relation such that
(q1, c, (d, t), r, q2) ∈ δ if c is enabled inq1 for threadt and one of
the following holds:
1. Read/Write. (i) c ∈ {read, write} × {v} andd = c andr = 1,
and (ii)v ∈ qt

1, and (iii)q2 = q1 (When a thread has to read or write
v and it already holds a lock onv, the read or write is executed by
the TM.)
2. Lock. (i) c ∈ {read, write} × {v} andd = (lock, v) andr =⊥,
and (ii) v /∈ qt

1 and for all u 6= t, we havev /∈ qu
1 , and (iii)

qt
2 = qt

1 ∪ {v}, and (iv)qu
2 = qu

1 for all u 6= t (When a thread has
to read or writev, and it does not hold a lock onv, the thread first
locksv.)
3. Commit. (i) c = commit andd = c andr = 1, and (ii)qt

2 = ∅,
and (iii) qu

2 = qu
1 for all threadsu 6= t (When a thread commits, it

releases all the locks.)
A transition(q1, c, (abort, t), 0, q2) is in δ if c is abort enabled

in q1 for threadt andqt
2 = ∅ andqu

2 = qu
1 for all threadsu 6= t.

3.3 The dynamic software transactional memory

Dynamic software TM (DSTM) [HLMS03] is one of the most pop-
ular STM algorithms. The algorithm exists in many flavors. In this
work, we focus on one of them, calledinvisible read DSTM, where
the transactions require ownership of variables only for writing.
The reads are not visible to the writers. Upon reading, the trans-
actions validate their read set. In our work, we ignore optimiza-
tions like early release possible in DSTM. Our TM transition sys-
tem does not directly allow one thread to abort another thread. So,
we allow a thread to set an abort flag for another thread and change
the state of the aborted thread appropriately, and also, require that a
thread aborts whenever the abort flag is set for the thread. We define
the DSTM TM Mdstm using a DSTM TM algorithmAdstm . The
DSTM TM transition systemAn,k

dstm for n threads andk variables
is given by〈Q, qinit , D, δ〉. A thread stateqt of threadt is defined
as a 3-tuple〈statust, rst, ost〉, wherestatust ∈ {aborted, valid,
invalid} is the status of threadi, rst ⊆ V is the read set of threadi,
andost ⊆ V is the ownership set of threadi. For every thread,
the initial thread state of threadt is qt

init = 〈valid, ∅, ∅〉. The set
of extended commands isD = C ∪ ({own} × V ). A transition
(q1, c, (d, t), r, q2) is in δ if c is enabled inq1 for threadt and one
of the following holds:
1. Local read. (i) c = (read, v) andd = c andr = 1, and (ii)
v ∈ ost

1 andstatust
1 6= aborted, and (iii) q2 = q1 (When a thread

readv such that the read is not global, nothing changes)
2. Global read. (i) c = (read, v) andd = c andr = 1, and (ii)
v /∈ ost

1 and statust
1 = valid, and (iii) rst

2 = rst
2 ∪ {v}, and

ost
2 = ost

1 andstatust
2 = valid, and (iv)qu

2 = qu
1 for all threads

u 6= t (When a thread readsv globally, the status of the thread
should be valid andv is added to the read set of the thread)
3. Own. (i) c = (write, v) andd = (own, v) andr =⊥, and (ii)
statust

1 6= aborted, and (iii) rst
2 = rst

1 andost
2 = ost

1 ∪ {v}
andstatust

2 = statust
1, and (iv) for all threadsu 6= t if v ∈ osu

1

thenstatusu
2 = aborted, andosu

2 = ∅, andrsu
2 = ∅, otherwise

statusu
2 = statusu

1 , osu
2 = osu

1 , andrsu
2 = rsu

1 . (When a thread
writes tov, it should first ownv, the status should not be aborted,
the variablev is added to the owned set of the thread. Ifv was
owned by some other thread earlier, the status of that thread is
aborted and its read and own sets are set to empty).
4. Write. (i) c = (write, v) and d = c and r = 1, and (ii)
statust

1 6= aborted andv ∈ ost
1, and (iii) qu

2 = qu
1 for all u ∈ T

(A thread can write tov if the status is not aborted and the variable
v is in the own set of the thread).
5. Commit. (i) c = commit and d = c and r = 1, and (ii)
statust

1 = valid, and (iii) ost
2 = ∅, andrst

2 = ∅, and (iv) for
all threadsu 6= t, rsu

2 = rsu
1 , osu

2 = osu
1 , andstatusu

2 = invalid
if rsu

1 ∪ ost
1 6= ∅ andstatusu

2 = statusu
1 otherwise. (A threadt

commits if the status is valid. The own and read sets of the thread
are set to empty. The status of threads whose read set intersects
with the own set oft is set to invalid.)

A transition(q1, c, (abort, t), 0, q2) is in δ if the commandc is
abort enabled inq1 for threadt, andstatust

2 = valid, andrst
2 = ∅

andost
2 = ∅, andqu

2 = qu
1 for all threadsu 6= t.

3.4 The TL2 transactional memory

Transactional locking 2 (TL2) [DSS06] is a TM which works as
follows. First, a transaction reads and writes locally to the variables.
After the transaction has locally completed, the thread acquires
locks for the variables it writes to. Then, the transaction is validated
using version numbers. If for all the variables in the read set, the
version is consistent, and no other thread owns the variable, then the
transaction is allowed to commit. We note that TL2 uses locks for
synchronization and version control to check validation. A version
number is maintained for every variable, which is incremented



when the variable is written. Every transaction reads the variable
along with the version number. A transaction successfully commits
if all the variables that it reads have the same version number
at the time of commit. TL2 uses version control to validate the
read set efficiently in a distributed setting. To model TL2 using a
finite state TM transition system, we replace the version control
by invalidation. When a transaction commits, it invalidates the
transactions whose read set intersects with the transaction’s write
set.

We define the TL2 TMMTL2 using the TL2 TM algorithm
as ATL2 . The TL2 TM transition systemAn,k

TL2 for n threads
and k variables is given by the tuple〈Q, qinit , D, δ〉. A thread
stateqt of threadt in the TL2 algorithm is defined as a 4-tuple
〈statust, rst,wst, lst〉, where statust ∈ {valid, invalid, vali-
dated, commitrdy} rst ⊆ V is the read set,wst ⊆ V is the
write set, andls ⊆ V is the lock set. The initial thread state
qt
init = 〈valid, ∅, ∅, ∅〉 for all threadst ∈ T . The set of extended

commands isD = C ∪ ({lock} × V ) ∪ {validate, chklock}. We
express the transition relation informally. The formal transition re-
lation can be obtained, as in the previous examples. A transition on
a commandc for a threadt in stateq occurs ifc is enabled in the
stateq for threadt, where the command is one of the following:
1. Local read.A thread can readv if the read is local.
2. Global read.When a thread readsv and the read is global, the
status of the thread should be valid, the lock set should be empty,
and the variablev is added to the read set.
3. Lock. When a thread commits, the thread first locks every vari-
able in the write set. The status should be valid or invalid. No other
thread should hold the lock on the variable, and the variable is
added to the lock set of the thread.
4. Write. When a thread writes tov, the status should be valid or
invalid. The lock set of the thread should be empty. The variablev
is added to the write set of the thread.
5. Validate. When a thread has to commit, it validates the read set
after acquiring the locks on all the variables in the write set. The
status of the thread should be valid, and it is set to validated.
6. Chklock. When a thread has to commit, after validating the read
set, it is checked that the read set of the thread does not intersect
with the lock set of any other thread. If so, the status is set to
commitrdy, and the thread can now successfully commit.
7. Commit. When a thread has to commit, if the status is com-
mitrdy, the thread commits.

A threadt aborts on a commandc in stateq if c is abort enabled
in stateq for threadt. The read set, lock set, and the write set are
changed to empty, and the status is set tovalid.

3.5 The optimistic concurrency control TM

We now discuss a common concurrency protocol used in databases.
It was proposed by Kung et al. [KR81] and called optimisitic con-
currency control (OCC). The OCC TM executes the transactions of
the threads without any synchronization. Before committing, every
transaction chooses a sequence number and validates its read set.
Transactions commit in the order of sequence numbers.

We define the OCC TMMocc using an OCC TM algorithm
Aocc . We refer to the OCC TM transition system withn threads
and k variables asAn,k

occ . The formal definition of the transition
system can be obtained from the original algorithm, as we did in
the previous examples.

Table 1 shows execution traces and words for the example pro-
gram in Figure 1(a) and different schedulers with every transaction
memory described above.
4. Reduction theorems for safety
We present two reduction theorems, corresponding to strict serial-
izability and abort consistency. These theorems state that if a TM
ensures strict serializability (abort consistency) for all programs on

Table 1. Examples of execution traces and words in the language
of different TM algorithms. Notation:r = read, w = write,
c = commit, a = abort, l = lock, o = own, v = validate,
cl = chklock, s = serialize. Command(c, t) is written asct.

TM
Scheduler

output
1st trace: Execution tracee
2nd trace:w = e|Ŝ in L(A)

seq 11122 . . .
(r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . .
(r, 1)1, (w, 2)1, c1, (w, 1)2, c2

112122 . . .
(r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . .
(r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2

2PL 111112 . . .
(l, 1)1, (r, 1)1, (l, 2)1, (w, 2)1, c1, (l, 2)2 . . .
(r, 1)1, (w, 2)1, c1

1211112
. . .

(l, 1)1, a2, (r, 1)1, (l, 2)1, (w, 1)1, c1, (l, 2)2 . . .
a2, (r, 1)1, (w, 2)1, c1

dstm
1221112
. . .

(r, 1)1, (o, 1)2, (w, 1)2, (o, 2)1, (w, 2)1, c2, c1 . . .
(r, 1)1, (w, 1)2, (w, 2)1, c2, c1

1222111
. . .

(r, 1)1, (o, 1)2, (w, 1)2, c2, (o2)1, (w, 2)1, a1 . . .
(r, 1)1, (w, 1)2, c2, (w, 2)1, a1

TL2
11211122
212 . . .

(r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, v1, cl1,
(l, 1)2, v2, cl2, c1, c2 . . .

(r, 1)1, (w, 2)1, (w, 1)2, c1, c2

11212112
22 . . .

(r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, (l, 1)2,
v1, a1, v2, cl2, c2 . . .

(r, 1)1, (w, 2)1, (w, 1)2, a1, c2

occ
1211212
. . .

(r, 1)1, (w, 1)2, (w, 2)1, s1, s2, c1, c2 . . .
(r, 1)1, (w, 1)2, (w, 2)1, c1, c2

12211
12 . . .

(r, 1)1, (w, 1)2, s2, (w, 2)1, s1, a1, c2 . . .
(r, 1)1, (w, 1)2, (w, 2)1, a1, c2

two threads and two variables then the TM ensures strict serializ-
ability (abort consistency). The reduction theorems rely on certain
symmetry properties of transactional memories. These properties
are satisfied by all TMs that were discussed in the previous section.

We define four symmetry properties for TMs. LetM be a
transactional memory. Letp be a program onn threads andk
variables. Letw be a finite prefix of a word inM(p).

P1. Symmetry in threads.Let w have no aborting transactions and
let X be the set of committed transactions of threadt in w. Let
there exist a threadu such that for all committed transactionsy of
u and all committed transactionsx ∈ X, eitherx <w y or y <w x.
Then the wordw′ obtained by renaming all transactions of thread
u to be from threadt is a finite prefix of a word inM(p′) for some
programp′ onn− 1 threads andk variables.

Example. Let w = ((read, v1), t2), (commit, t2), ((write, v1),
t1), (commit, t1), ((write, v2), t2), (commit, t2). Then, the word
w′ = ((read, v1), t2), (commit, t2), ((write, v1), t2), (commit, t2),
((write, v2), t2), (commit, t2) is a finite prefix of a word inM(p′)
for some programp′.

P2. Transaction projection.Let X be the set of transactions inw.
We define atransaction projectionof w onX ′ ⊆ X as the longest
subsequence ofw such that all the statements are from transactions
in X ′. This property states that the transaction projection ofw on
X ′ whereX ′ is a subset of the set of committing and pending
transactions inw is in M(p′) for some programp′. Note that if
we project the word on part of the aborting transactions, then the
resulting word is not guaranteed to be inM(p′) for any programp′.

Example. Let w = ((read, v1), t3), ((write, v2), t3), ((write, v1),
t1), (commit, t1), ((write, v2), t2), (commit, t2). Then, the word
w′ = ((write, v1), t1), (commit, t1), ((write, v2), t2), (commit, t2)
is in M(p′) for some programp′.

P3. Variable projection.Let w have no aborting transactions. We
define avariable projectionof w on V ′ ⊆ V as the longest
subsequence ofw such that all the statements are reads or writes
to variables inV ′ or commit or abort statements. Given a program
p, we define the variable projection ofp onV ′ ⊆ V as the program



obtained by removing all reads and writes statements to variables
in V \ V ′ from all unrolled threads inp. This property states that
the variable projection ofw on V ′ ⊆ V is in M(p′), wherep′ is
the projection ofp on the variablesV ′.

Example.Let w be the word as in the example of propertyP2. The
word w′ = ((write, v2), t3), ((write, v2), t2), (commit, t2) is in
M(p′) for thep′, wherep′ is the projection ofp on{v2, v3}.

P4. Monotonicity property for strict serializability (abort consis-
tency).This property states that for a class of words, if a word
is produced by a TM, then more sequential versions of the word
are also produced by the TM. Formally, let the wordwp ∈ Ŝ∗ be
strictly serializable (abort consistent) and let only transactionx be
pending inwp. We defineW to be the set of wordsw′ such that
w′ = wp · s wheres is a statement ofx ands is not an aborting
statement. We callW the set ofextensions ofwp. If w (a finite pre-
fix of a word inM(p)) is extension of some wordw1 with the same
properties aswp andw = w1 · s then there exists a wordw2 that is
strictly equivalent tow1 such thatcom(w2) is sequential andw2 ·s
is also a finite prefix of a word inM(p).

Example. Let w = ((read, v1), t1), ((read, v1), t3), ((write, v1),
t2), ((write, v2), t2), ((read, v2), t3), (commit, t2), (commit, t3),
((read, v2), t1), (commit, t1). The wordw is an extension of word
w1. Then, the wordw2 · s = ((read, v1), t3), ((read, v2), t3),
(commit, t3), ((read, v1), t1), ((write, v1), t2), ((write, v2), t2),
(commit, t2), ((read, v2), t1), (commit, t1) is a finite prefix of a
word inM(p).

Theorem 1. Let M be a TM that satisfies the propertiesP1, P2,
P3, andP4. Moreover,M ensures strict serializablity (resp. abort
consistency) for all programs on two threads and two variables.
Then the TMM ensures strict serializability (resp. abort consis-
tency).

Proof. We prove the theorem for strict serializability. A similar
proof holds for abort consistency. The proof is by contradiction.
Let p be a program inP n,k . Let w be a finite prefix of a word in
M(p) such thatw is not strictly serializable. Letwp be the longest
prefix ofw such thatwp is strictly serializable and letw1 = wp · s,
wheres = (c, t) is a statement of transactionx. Let X be the set
of committed transactions inwp. By propertyP2, there exists a
wordw2 generated by projectingw1 to X ∪ {x} such thatw2 is a
finite prefix of a word inM(p2) for some programp2. We note that
w2 = w′

p · s andw′
p is strictly serializable andw2 is not strictly

serializable. So, using propertyP4, there exists a wordw′′
p that is

strictly equivalent tow′
p such thatcom(w′′

p ) is sequential and the
wordw3 = w′′

p · s is a finite prefix of a word inM(p2). In w3 only
one transaction,x, does not execute sequentially. Using property
P1, we rename the threads for the transactions inw3. We let all
transactions exceptx to be executed by threadu. Let this renaming
give wordw4. We note that the last statement ofx is a commit.
As w4 is not strictly serializable, we know (by the definition of
conflict) that one of the following holds: (i)s1 = ((read, v1), t)
ands2 = ((read, v2), t) are global reads of transactionx such that
some transactiony of threadu writes tov1 and some transaction
y′ of u with y′ = y or y <w4 y′ writes tov2 and both commit
betweens1 ands2, (note thaty andy′ cannot overlap due to the
structure ofw4,) or (ii) s1 = ((read, v1), t) is a global read of
transactionx such that some transactiony of threadu writes to
v1 and commits afters1, and there is a committing transactiony′

with y′ = y or y <w4 y′ which has a command(read, v2) or
(write, v2), andx also writes tov2. (Note thatv1 may be same
as v2). Let w5 be a variable projection ofw4 on {v1, v2}. We
know that w5 is a finite prefix of a word inM(p5) for some
programp5 on two threads and two variables, by propertyP3. Also,
we note thatw5 is not strictly serializable. AsM ensures strict

serializability for all programs on two threads and two variables,
we get a contradiction. Thus, there is no such programp5. This
leads us to a contradiction. �

5. The reference TM algorithms
To verify the safety properties of a transactional memory, we take
the following approach. We construct a reference TM algorithm
for strict serializability (RSS TM algorithm), which has an execu-
tion trace for every strictly serializable word. Similarly, we con-
struct a reference TM algorithm for abort consistency (RAC TM
algorithm), which has an execution trace for every abort consistent
word. Then, we show that a given TMM defined by a TM algo-
rithm A ensures strict serializability (resp. abort consistency) iff all
words inL(A2,2) are in the language of the RSS (RAC) TM transi-
tion system for two threads and two variables (due to the reduction
theorems).

The key insight that makes our technique work is that the refer-
ence TM algorithms for strict serializability and abort consistency
for two threads and two variables can be defined asfinite-statetran-
sition systems. This is not obvious, as threads may be delayed arbi-
trarily, transactions may contain arbitrarily many instructions and
may be aborted arbitrarily often. We present the RSS TM transition
system first, because it provides the basis for defining the RAC TM
transition system. Suitable finite-state reference TM transition sys-
tems can also be defined for stronger notions of safety, such as those
used by Scott [Sco06], by modifying the semantics of conflict.

5.1 The reference TM algorithm for strict serializability

The classical approach to checking whether a word is strictly se-
rializable is to construct a directed graphG = (V, E) (called the
conflict graph [Pap79]) of the committing transactions in the word.
The conflict graph captures the precedence of the committing trans-
actions based on the conflicts. Given a wordw = s0s1 . . ., the
transactions inw form the setV of vertices in the conflict graph.
There exists an edge from a vertexv1 to a vertexv2 if v2 finishes
beforev1 starts, or a statementsi of v1 conflicts with a statement
sj of v2 andi > j. The conflict graphG is acyclic iff the wordw
is strictly serializable. We note that the size of this construction is
unbounded. The following parametrized word illustrates the point.
wn =((read, v1), t1), (((write, v1), t2), (commit, t2))n, (commit,
t1). The number of vertices in the conflict graph ofwn is n + 1.
Thus, we cannot aim to create a finite transition system for the RSS
TM algorithm using conflict graphs. We provide a novel approach
to check whether a word is strictly serializable or not. In our knowl-
edge, this is the first finite state representation for the language
of strictly serializable words, when transactions may abort. The
idea of maximal serializability was earlier addressed in a restricted
scope [FR85] for a bounded number of non-aborting transactions
with a bounded number of instructions per transaction. The idea
was built upon a notion of transitive conflicts, which does not hold
when transactions may abort.

The key idea to get around the problem of infinite states is to
maintain sets calledprohibited read and write setsfor every thread.
These sets allow us to handle unbounded delay between transac-
tions, as committing transactions store the required information in
these sets of other threads. Once a transaction commits or aborts,
we need not remember it (unlike conflict graphs). Thus, we need to
store information of at most one transaction per thread. The RSS
TM transition system is based on the following notion:Every com-
mitting transaction should serialize at some point during its execu-
tion. The RSS TM transition system makes aguessof when every
transaction serializes. Depending upon the guess, each transaction
has to follow certain restrictions on executable commands, if the
transaction has to successfully commit.



Formally, we define anRSS TM algorithmAss as a family of
RSS TM transition systems. TheRSS TM transition systemAn,k

ss for
n threads andk variables is given by the tuple〈Q, qinit , D, δ〉. The
thread stateqt is a 6-tuple〈Statust, rst,wst, prst, pwst,Predst〉,
whereStatust ∈ {started, invalid, serialized, finished} is the
status function,rst ⊆ V is the read set,wst ⊆ V is the write set,
prst ⊆ V is the prohibited read set,pwst ⊆ V is the prohibited
write set, andPredst ⊆ T is the predecessor set for threadt. If
v ∈ prst (v ∈ pwst), then the status of the threadt is set to
invalid if t globally reads (writes to)v. The initial thread state
qt
init is 〈finished, ∅, ∅, ∅, ∅, ∅〉. The set of extended commands is

D = C∪{serialize}. The transition relationδ is non deterministic.
A transition(q1, c, (d, t), r, q2) ∈ δ if c is enabled inq1 for thread
t and one of the following holds.
1. Local read. (i) c = (read, v) andd = c andr = 1, and (ii)
v ∈ wst

1, and (iii) q2 = q1. (When a thread readsv such that the
read is not global, the state remains unchanged.)
2. Global read. (i) c = (read, v) andd = c andr = 1, and (ii)
v /∈ wst

1, and (iii) if statust
1 = finished thenstatust

2 = started,
else ifstatust

1 = serialized andv ∈ prst
1, thenstatust

2 = invalid,
elsestatust

2 = statust
1, and (iv)rst

2 = rst
1 ∪ {v} andwst

2 = wst
1

andprst
2 = prst

1 andpwst
2 = pwst

1 andPredst
2 = Predst

1, and
(v) for all threadsu 6= t, we havequ

2 = qu
1 . (When a threadt reads

v globally, v is added to the read set. If the status oft is finished,
change the status oft to started, else if the status oft is serialized
andv is in the prohibited read set, then change status oft to invalid.)
3. Write. (i) c = (write, v) and d = c and r = 1, and (ii) if
statust

1 = finished then statust
2 = started, else if statust

1 =
serialized andv ∈ pwst

1, thenstatust
2 = invalid, elsestatust

2 =
statust

1, and (iii) wst
2 = wst

1 ∪ {v} andrst
2 = rst

1 andprst
2 =

prst
1 andpwst

2 = pwst
1 andPredst

2 = Predst
1, and (iv) for all

threadsu 6= t, we havequ
2 = qu

1 (When a thread writes tov, the
variablev is added to the write set. If the status oft is finished,
change the status tostarted, else if the status isserialized andv is
in the prohibited write set, then change status oft to invalid.)
4. Serialize. (i) d = serialize and r =⊥, and (ii) statust

1 =
started, and (iii) statust

2 = serialized andrst
2 = rst

1 andwst
2 =

wst
1 andprst

2 = prst
1 andpwst

2 = pwst
1 andPredst

2 = {u ∈
T | Statusu

1 = serialized}, and (iv) for all threadsu 6= t, we
havequ

2 = qu
1 . (A threadt can serialize if the current status oft is

started, and the status oft is set toserialized. Every thread whose
status isserialized is added into the predecessor set oft.)
5. Commit. (i) c = commit and d = c and r = 1, and (ii)
statust

1 ∈ {serialized, finished}, and (iii) statust
2 = finished

and rst
2 = wst

2 = prst
2 = pwst

2 = Predst
2 = ∅, and (iv) for

all threadsu 6= t, we haversu
2 = rsu

1 and wsu
2 = wsu

1 and
Predsu

2 = Predsu
1 , and (v) for all threadsu 6= t, if u ∈ Predst

1,
then prsu

2 = prsu
1 ∪ wst

1 and pwsu
2 = pwsu

1 ∪ rst
1 ∪ wst

1,
otherwiseprsu

2 = prsu
1 and pwsu

2 = pwsu
1 , and (vi) for all

threadsu ∈ Predst
1, setstatusu

2 = invalid if wsu
1 ∩ wst

1 6= ∅
or wsu

1 ∩ rst
1 6= ∅, andstatusu

2 = statusu
1 otherwise (vii) for all

threadsu /∈ Predst
1, setstatusu

2 = invalid if wst
1 ∩ rsu

1 6= ∅,
andstatusu

2 = statusu
1 otherwise (When a threadt commits, the

current status oft should beserialized or finished. The status oft
is set tofinished. For every predecessor threadu of t, all variables
in the write set oft are added to the prohibited read and write set
of u. All variables in the read set oft are added to the prohibited
write set ofu. For all predecessor threadsu of t, if the write set of
u intersects with the read set or write set oft, the status ofu is set
to invalid. For all threadsu that are not predecessors oft such that
the read set ofu intersects with the write set oft, the status ofu is
set toinvalid.

For every stateq1 ∈ Q, a transition(q1, c, (abort, t), 0, q2) is
in δ if c ∈ C enabled inq1 for threadt, andrst

2 = wst
2 = prst

2 =

(r, v)2

(w, v)1

s2

s1

c2

c1

C4

s1

s2

c2

c1

C3

(w, v)2
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C2

s2
(r, v)1

(w, v)2
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Figure 2. We use the same notation as in Table 1. The commits
inside ovals are disallowed by the reference strictly serializable
implementation. Each condition shows various cases. The arrows
represent different possible positions for a command to occur in a
given condition

pwst
2 = Predst

2 = ∅, andstatust
2 = finished, andqu

2 = qu
1 for all

threadsu 6= t.
Note that the non determinism in the transition relation comes

from theserialize command, and the fact thatabort is allowed in
every state. For a reference TM transition systemAn,k , we define a
run as a sequencer = s0s1 . . . sn in Ŝ∗

D such that there exist states
q0 . . . qn, commandsc0 . . . cn, and responsesr0 . . . rn where (i)
q0 = qinit and (ii) for all j ≥ 0, we have(qj , cj , sj , rj , qj+1) ∈ δ.
We define the languageL(An,k ) as the set of wordsw such that
w = r|Ŝ for some runr of An,k .

Theorem 2. Given a wordw on n threads andk variables, the
wordw is strictly serializable if and only ifw ∈ L(An,k

ss ).

Proof. Consider an arbitrary runr = s0s1 . . . sn of An,k
ss . Let

w = r|Ŝ . Let w′ be the sequential word such thatw′ is transaction
equivalent tow and x <w′ y if x serializes beforey in the
runr. Then,com(w′) is strictly equivalent tocom(w) iff for every
transactionx ∈ X, the transactionx does not commit inr if one of
the following conditions holds: (graphically shown in Figure 2):
C1. there exists a transactiony such thatx serializes beforey and
y writes to a variablev and commits, and thenx globally readsv
C2. there exists a transactiony such thatx serializes beforey and
x writes tov andy readsv beforex commits, andy commits
C3. there exists a transactiony such thatx serializes beforey and
bothx andy write to a variablev, andy commits beforex does.
C4. there exists a transactiony such thatx serializes aftery andy
writes tov andx readsv beforey commits, and theny commits

The RSS TM transition systemAn,k
ss guarantees by construc-

tion, that a transactionx does not commit inr if one of the con-
ditions, C1-C4 holds. Hence, for every runr of An,k

ss , the word
w = r|Ŝ is strictly serializable.

Conversely, consider a wordw ∈ S∗ on n threads andk vari-
ables such thatw is strictly serializable. Thus, there is a sequential
word w′ such thatcom(w′) is strictly equivalent tocom(w)). Let
the committing transactions in the sequential wordw′ be given by
the sequencex1 . . . xk of transactions. Consider a runr of the RSS
TM transition systemAn,k

ss such thatw = r|Ŝ and for alli andj
such thati < j, the transactionxi serializes beforexj in r. The
run r exists because (i) the RSS TM transition system guesses ev-
ery possible serialization for every transaction during its execution,
and (ii) given thatw is strictly serializable, there is no transactionx
in the sequencex1 . . . xk that satisfies any of the conditionsC1-C4,
and commits inr. Thus, the wordw ∈ L(An,k

ss ). �

5.2 The reference TM algorithm for abort consistency

Apart from the requirements of the above mentioned reference TM
algorithm for strict serializability, abort consistency requires that
even global reads of aborting transactions observe consistent val-
ues. It turns out that we can even obtain a finite state representation
of the RAC TM transition system by slightly modifying our RSS
TM transition system.



The RAC TM transition system is based on the following no-
tion: Every transaction (committing, aborting, or pending) should
serialize at some point during its execution. Like the RSS TM tran-
sition system , the RAC TM transition system makes aguessof
when every transaction serializes. Here, in addition to the RSS TM
transition system, every transaction has to follow certain restric-
tions on executable commands, even to read some variable glob-
ally.

The formalism forRAC TM algorithmAac and theRAC TM
transition systemAn,k

ac is exactly similar to that of the RSS TM
algorithm. The only difference comes in the transition relationδ, on
a global read, and on a serialize command. We obtain the transition
relation forAn,k

ac by replacing rules 2 and 4 of that ofAn,k
ss by the

rules 2a and 4a below. We only provide an informal description
here for sake of brevity.

2a. Global read.When threadt readsv globally,v should not
be in the prohibited read set.v is added to the read set. If the status
of t is finished, it is changed tostarted. For every other threadu
with statusserialized such thatt is not a predecessor ofu, we add
v to the prohibited write set ofu, and we set status ofu to invalid
if v is in the write set ofu.

4a. Serialize.When a threadt serializes, the current status oft
should bestarted. The status oft is set toinvalid if there is a thread
u with statusstarted and the read set ofu intersects with the write
set oft, otherwise, the status oft is set toserialized. All variables in
read sets of threads with statusstarted are added to the prohibited
write set oft. All threads with statusserialized are added to the
predecessor set oft. For every other threadu, if the status ofu is
serialized and the write set ofu intersects with the read set oft,
then the status ofu is set toinvalid. For every threadu with status
serialized, the read set oft is added to the prohibited write set ofu.

Theorem 3. Given a wordw on n threads andk variables, the
wordw is abort consistent if and only ifw ∈ L(An,k

ac ).

5.3 Implementation and simulation checking

A TM M defined by a TM algorithmA ensures strict serializ-
ability if L(A2,2) ⊆ L(A2,2

ss ). As checking language inclusion is
PSPACE-hard, we use the common technique of checking for the
existence of a simulation relation between both transition systems.
The existence of a simulation relation is a sufficient condition for
language inclusion. We writeA2,2

1 ≺ A2,2
2 to denote that there

exists a simulation relation betweenA2,2
1 andA2,2

2 . For a TMM
defined by a TM algorithmA which satisfies the symmetry assump-
tions of the reduction theorem (Theorem 1), the following hold: (i)
The TMM ensures strict serializability (resp. abort consistency) if
A2,2 ≺ A2,2

ss (resp.A2,2 ≺ A2,2
ac ). (ii) M does not ensure strict se-

rializability (resp. abort consistency) if there exists a wordw ∈ Ŝ∗

such thatw ∈ L(A2,2) andw /∈ L(A2,2
ss ) (resp.w /∈ L(A2,2

ac )).
We built an automatic verification tool in C for checking the

existence of simulation relations using the quadratic algorithm by
Henzinger et al. [HHK95]. The tool is conceived as a platform
for the automatic verification of TMs that satisfies the symmetry
properties. We mention that simulation checking requires extra
technical care in this scenario due to different extended alphabet
in different TMs. The tool takes as input two TM algorithmsA1

andA2, and checks whetherA2,2
1 ≺ A2,2

2 . If the tool fails to find a
simulation relation, it attempts to return a counterexamplew ∈ Ŝ∗

such thatw ∈ L(A2,2) andw /∈ L(A2,2
ss ). However, in certain

cases, it is possible that even though language inclusion holds, the
tool cannot find a simulation relation. Thus, our decision procedure
is sound but not complete. It turns out that for the TM transition
systems that we considered, our tool terminates after proving the
simulation relation, or after finding a counterexample.

Table 2. Time for simulation checking for TM algorithms on a
quad dual core 2.8 GHz server with 16 GB RAM. In case simu-
lation holds, we writeYES followed by the time required for the
simulation. Otherwise, we writeNO followed by the counterex-
ample produced, followed by the time required to prove that no
simulation exists and to find the counterexample.

TM transition
systemA2,2

Number
of states A2,2 ≺ A2,2

ss A2,2 ≺ A2,2
ac

seq 3 YES, 0.8s YES, 0.7s
2PL 99 YES, 13s YES, 8s
dstm 944 YES, 127s YES, 82s
TL2 4160 YES, 583s YES, 387s
occ 4480 YES, 765s NO, w1, 569s

TL2 modified 5480 NO, w2, 887s NO, w2, 674s
ss 12346 — —
ac 9202 — —

Counterexample
w1 (w, 1)2, (r, 1)1, c2, (r, 1)1
w2 (w, 2)2, (r, 2)1, (w, 2)1, c2, c1

The results of our simulation checks are presented in Table 2.
Our results demonstrate that all TMs discussed in Section 3 —
sequential, 2PL, DSTM, and TL2— are simulated by both refer-
ence TM transition systems. As for the OCC TM, it is simulated by
the RSS TM transition system, but not by the RAC TM transition
system. The tool gives a counterexample in the latter case.

Theorem 4. The sequential TM, two phase locking TM, DSTM,
and TL2 TM ensure abort consistency. The optimistic concurrency
control TM ensures strict serializability, but not abort consistency.

We also experimented with a subtle point in the TL2 algorithm.
We interchanged the order of the commandslock andvalidate in
the TL2 to obtain modified TL2 TM algorithm. We first dovalidate,
thenlock the variables, and then performchklock. The tool found
that the modified TL2 is not simulated by either of the reference TM
transition systems, and provided counterexamples corresponding to
both simulation checks. Thus, we conclude that the modified TL2
algorithm does not ensure abort consistency, or even the weaker
safety criterion of strict serializability.

5.4 Comparing TM algorithms

In our framework, we can also compare the languages of different
TM transition systems. Checking language inclusion between TM
transition systems provides information about liberality of different
TM implementations, i.e., which TM algorithm has strictly more
words than another. Liberality can be one of the important criteria
for ranking different TM algorithms.

We compare the sequential, 2PL, DSTM, and TL2 TMs for lib-
erality. For this purpose, we need to define an additional symmetry
property,P5, which is satisfied by these TMs. For TMs that en-
sure abort consistency, and satisfy the propertiesP1–P5, we can
show the reduction theorem that, ifL(A2,2

1 ) ⊆ L(A2,2
2 ), then

L(An,k
1 ) ⊆ L(An,k

2 ) for arbitraryn andk.

P5. For every wordw such that there is no programp where
w is a finite prefix of a word inM(p), one of the following
holds: (i) w is not abort consistent, or (ii) there exists a wordw′

such that for no programp′, the wordw′ ∈ M(p′), wherew′ is
obtained as follows. All aborting transactions ofw are removed,
then a transaction projection is taken on transactions of any two
threads, then a variable projection is taken on any two variables
to obtain wordw′. This property just states that when an abort
consistent wordw is not produced by a TM, then it is due tolocal
conflictson two threads and two variables. This is due to the fact



Table 3. Ranking different transactional memories. The time is
measured on a 2.66 GHz dual core desktop PC with 2 GB of RAM.
The notation is similar to that in Table 2

A2,2 ≺ A2,2
seq ≺ A2,2

2PL ≺ A2,2
dstm ≺ A2,2

TL2

seq — YES, 0.1s YES, 0.2s YES, 0.4s
2PL NO, w1, 0.3s — YES, 0.6s YES, 2.1s
dstm NO, w1, 0.7s NO, w2, 2.4s — YES, 13s
TL2 NO, w1, 0.8s NO, w2, 4s NO, w3, 17s —

Counterexample
w1 (r, 2)2, c1
w2 (w, 1)2, (r, 1)1
w3 (w, 2)1, (w, 2)2, c1

that conventional TM algorithms use techniques like validating the
read set, and locking the write set, to guarantee correctness.

Formally, a TMM1 defined by a TM algorithmA1 is more lib-
eral than a TMM2 defined by a TM algorithmA2 (denoted as
M1 ≥ M2) if L(A2,2

2 ) ⊆ L(A2,2
1 ). As in the previous subsec-

tion, we check language inclusion by checking the existence of a
simulation relation. Our results are listed in Table 3. The following
theorem follows.

Theorem 5. TL2-TM ≥ DSTM≥ 2PL-TM≥ sequential-TM.

6. Verifying liveness
We define two different notions of liveness, obstruction freedom
and livelock freedom, as discussed in the TM literature. The third
notion, wait freedom, implies livelock freedom. Since we will show
that none of our example TMs satisfy livelock freedom, they do not
satisfy wait freedom either.

Obstruction freedom[HLM03] requires that if a thread performs
an infinite number of commands in isolation, where the commands
include an infinite number of aborts, then the commands include
an infinite number of commits. An infinite wordw ∈ Ŝω is ob-
struction freeif

V
t∈T (�♦((commit, t)∨(c, u))∨♦�¬(abort, t)),

wherec ∈ Ĉ andu 6= t. This is a Streett condition.

Livelock freedom[AKH03] requires that on every infinite trace, an
infinite number of commits are executed. An infinite wordw ∈ Ŝω

is livelock freeif �♦(
W

t∈T (commit, t))∨♦�(
V

t∈T ¬(abort, t)).
This implies obstruction freedom.

A TM M ensures obstruction freedom (resp. livelock free-
dom) for all programs withn threads andk variables if for ev-
ery programp ∈ P n,k , every wordw ∈ M(p) is obstruction
free (resp. livelock free). A TMM ensures obstruction free-
dom (resp. livelock freedom)if M ensures obstruction freedom
(resp. livelock freedom) for all programs with arbitrary number of
threads and variables. A TMM ensures obstruction freedom if it
ensures livelock freedom. We use the formalism of TM algorithms
for verifying of liveness properties in TM. We define aloop l in a
TM transition systemAn,k as a words0 . . . sm such that there exist
a set of statesq0 . . . qm in An,k such that for alli where0 ≤ i < m,
we have(qi, ci, si, riqi+1) ∈ δ and (qm, cm, sm, rm, q0) ∈ δ,
whereδ is the transition relation ofAn,k .

Although obstruction freedom is formally a Streett condition,
the different conjuncts (Streett pairs) do not overlap, which permits
a simple model checking procedure. In particular, a TMM defined
by a TM algorithmA ensures obstruction freedom for all programs
with n threads andk variables iff there does not exist a loopl in
An,k such that all commands inl are from the same thread, andl
has no commit, andl has an abort. Similarly, since livelock freedom
is a single-pair Streett condition, a TMM ensures livelock freedom
for all programs withn threads andk variables iff there does not

exist a loopl in An,k such that there is nocommit in l, and every
thread that has a command inl aborts inl.

6.1 Reduction theorem for liveness

As we did for safety, we state a reduction theorem that proves that
it is sufficient to verify liveness of a TM on programs with two
threads and two variables to generalize the result to all programs.
For this purpose, we need two more symmetry properties of TM al-
gorithms. These properties are again satisfied by all TM algorithms
that we have discussed. Letw = w1 · w2 be an infinite word such
thatw is in M(p) for some programp, and no pending transaction
in w1 has a statement inw2, and all the commands inw2 are from
the same thread. Fori ∈ {1, 2}, let Vi be the variables accessed
in wi.

P6. Transaction projection.Let w′
1 be the word obtained by taking

the transaction projection ofw1 on non aborting transactions. Then
w′

1 · w2 ∈ M(p′) for some programp′. Moreover, ifw1 has no
aborting transactions, there exists a wordw′ = w′′

1 · w2 ∈ M(p),
wherew′′

1 is obtained by projectingw1 to transactions of threadt,
wheret has commands inw1.

P7. Variable projection.There exists a wordw′ = w1 · w′
2 such

that w′
2 is the variable projection ofw2 on {v}, wherev ∈ V2,

andw′ is in M(p′) for some programp′. Moreover, ifw1 has no
aborting transactions, then the wordw′ = w′

1 · w2 is in M(p′) for
some programp′, wherew′

1 is the variable projection ofw1 onV2.

Theorem 6. If a TM M satisfies propertiesP6 andP7, thenM
ensures obstruction freedom ifM ensures obstruction freedom for
two threads and one variable.

Proof. Given aw ∈ M(p) on arbitrary number of threads and
variables such thatw is not obstruction free, we can use properties
P6 andP7 to obtain a wordw′ on two threads and one variable
such thatw′ ∈ M(p′) for some programp′. �

6.2 Model checking liveness

We extended our verification tool to check obstruction freedom and
livelock freedom properties for transaction memories defined by
TM algorithmsA. To check obstruction freedom, our tool tries to
find a loopl in A2,1 such that all commands inw are from the same
thread, andw has no commit, andw has an abort. If the tool finds
such a loop, the loop is a counterexample to obstruction freedom.
If the tool does not find a loop, we know that the TM ensures ob-
struction freedom. In this way, our tool provides a platform for TM
designers to check which liveness properties are ensured by their
TMs. If the liveness property fails, then the tool provides feedback
in the form of an execution trace that represents a counterexample.

Our results are shown in Table 4. The next theorem follows.

Theorem 7. DSTM ensures obstruction freedom and does not en-
sure livelock freedom. Sequential TM, 2PL TM, TL2 TM, and opti-
mistic concurrency control TM do not ensure obstruction freedom.

7. Related Work
Very recently, the article [COP+07] has been brought to our atten-
tion. While their goals are similar to ours, as far as we can tell,
they check only the correctness of finite instances (e.g., STMs ap-
plied to programs with a small number of threads and variables),
without offering reduction theorems that establish the sufficiency
of such checks. Moreover, they consider only the strong safety cri-
teria of [Sco06], which fail, for example, for TL2. Also, the article
[COP+07] does not address the verification of liveness properties.

Our construction of the reference STM algorithms is related to
the work of Fle and Roucairol [FR85]. They investigated the set
of concurrent traces that are generated by a finite set of iterating



Table 4. Results of model checking liveness on a dual core
2.66GHz desktop PC with 2 GB RAM. The notation is similar to
Table 2. The counterexamples obtained are of the forma · bω. We
write the looping partb here.

TM
algorithm

Obstruction
freedom

Livelock
freedom

seq NO, w1, 0.1s NO, w1, 0.1s
2PL NO, w1, 0.1s NO, w1, 0.1s
dstm YES, 2s NO, w2, 0.2s
TL2 NO, w1, 0.4s NO, w1, 0.4s
occ NO, w3, 0.7s NO, w3, 0.7s

Counterexamples
w1 a1

w2 a1, (r, 1)1, (o, 1)1, a2, (o, 1)2
w3 s1, a1

transactions. They proved that the language consisting of all traces
that are conflict equivalent to a sequential trace is regular. However,
their results cannot be applied in the presence of aborting transac-
tions, as they require transitivity of conflicts, which does not hold
when transactions may abort.

There has been much research in the verification of relaxed
memory models and cache-coherence protocols for modern multi-
processors, e.g., [HQR99]. In most of this work, the semantics of
a shared memory is given by amemory consistency model, which
defines the possible outcomes of executing concurrent programs.
For example, in order to determine if a processor complies with its
memory model, Gopalakrishnan et. al [GYS04] provided a method
to establish if a given back-annotated execution trace of a processor
is valid with respect to its memory model. The specification of the
processor’s memory model is translated into a HOL specification
and a QBF-solver is used to establish the corresponding memory
ordering constraints taking the given execution trace into account.
Burckhardt et. al [BAM07] developed a method based on SAT-
based bounded model checking to verify concurrent data types on
different memory models by testing exhaustively all concurrent
executions of a given test program. In comparison, our work is
more general as it targets an STM without a particular program
in mind. On the other hand, since it specifically targets STM and,
correspondingly, uses a deferred update semantics rather than a
memory consistency model, our approach is also more restrictive.

8. Conclusion
We presented a new technique for verifying STM safety and live-
ness properties. The cornerstones of our technique are a finite-state
representation for the languages of strictly serializable and abort
consistent executions, and an automated verification tool for STMs.
Our method applies to all STM protocols that feature certain sym-
metry properties, and we successfully verified abort consistency for
2PL, DSTM, and TL2, and the obstruction freedom of DSTM.

Although most STM protocols we know of fulfill the required
symmetry properties, some do not, and these open interesting re-
search opportunities. In particular, our symmetry properties do not
hold in cases when aborting transactions are given priority (in
general when history matters in making decisions). Similarly, our
framework does not apply when transactions help each other. For
instance, we cannot model for example Fraser’s STM [FH07] nor
theKarmacontention manager of Scherer and Scott [SS05]. Also,
our liveness properties capture deterministic notions. It would be
interesting to account for probabilistic means to deal with con-
tention, such as random exponential backoff.

We also assumed that the commands in the extended alphabet
we considered are executed atomically. So, STM implementations
have to guarantee this level of atomicity to ensure correctness using

our methodology. It is not clear how to reason about correctness if
the lower-level primitives are not atomic. It is also an interesting
open question to compare the liberality of STMs when extended
commands are not atomic.
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